
Adaptive Search Techniques in
AI Planning and Heuristic Search

Maximilian Fickert

A dissertation submitted towards the degree
Doctor of Natural Sciences (Dr. rer. nat.)

of the Faculty of Mathematics and Computer Science
of Saarland University

Saarbrücken, 2022

mailto:fickert@cs.uni-saarland.de

Day of Colloquium February 11, 2022
Dean of the Faculty Prof. Dr. Thomas Schuster

Chair of the Committee Prof. Dr. Jan Reineke
Reviewers Prof. Dr. Jörg Hoffmann

Prof. Dr. Antonio Krüger
Prof. Wheeler Ruml, PhD

Academic Assistant Daniel Fišer, PhD

Abstract

State-space search is a common approach to solve problems appearing in artificial in-
telligence and other subfields of computer science. In such problems, an agent must
find a sequence of actions leading from an initial state to a goal state. However, the state
spaces of practical applications are often too large to explore exhaustively. Hence, heuris-
tic functions that estimate the distance to a goal state (such as straight-line distance for
navigation tasks) are used to guide the search more effectively.

Heuristic search is typically viewed as a static process. The heuristic function is assumed
to be unchanged throughout the search, and its resulting values are directly used for
guidance without applying any further reasoning to them. Yet critical aspects of the task
may only be discovered during the search, e.g., regions of the state space where the
heuristic does not yield reliable values.

Our work here aims to make this process more dynamic, allowing the search to adapt to
such observations. One form of adaptation that we consider is online refinement of the
heuristic function. We design search algorithms that detect weaknesses in the heuristic,
and address them with targeted refinement operations. If the heuristic converges to per-
fect estimates, this results in a secondary method of progress, causing search algorithms
that are otherwise incomplete to eventually find a solution.

We also consider settings that inherently require adaptation: In online replanning, a plan
that is being executed must be amended for changes in the environment. Similarly, in
real-time search, an agent must act under strict time constraints with limited information.

The search algorithms we introduce in this work share a common pattern of online adap-
tation, allowing them to effectively react to challenges encountered during the search.
We evaluate our contributions on a wide range of standard benchmarks. Our results
show that the flexibility of these algorithms makes them more robust than traditional
approaches, and they often yield substantial improvements over current state-of-the-art
planners.

iii

Zusammenfassung

Die Zustandsraumsuche ist ein oft verwendeter Ansatz um verschiedene Probleme zu lö-
sen, die in der Künstlichen Intelligenz und anderen Bereichen der Informatik auftreten.
Dabei muss ein Akteur eine Folge von Aktionen finden, die einen Pfad von einem Startzu-
stand zu einem Zielzustand bilden. Die Zustandsräume von praktischen Anwendungen
sind häufig zu groß um sie vollständig zu durchsuchen. Aus diesem Grund leitet man die
Suche mit Heuristiken, die die Distanz zu einem Zielzustand abschätzen; zum Beispiel
lässt sich die Luftliniendistanz als Heuristik für Navigationsprobleme einsetzen.

Heuristische Suche wird typischerweise als statischer Prozess angesehen. Man nimmt an,
dass die Heuristik während der Suche eine unveränderte Funktion ist, und die resultie-
renden Werte werden direkt zur Leitung der Suche benutzt ohne weitere Logik darauf
anzuwenden. Jedoch könnten kritische Aspekte des Problems erst im Laufe der Suche
erkannt werden, wie zum Beispiel Bereiche des Zustandsraums in denen die Heuristik
keine verlässlichen Abschätzungen liefert.

In dieser Arbeit wird der Suchprozess dynamischer gestaltet und der Suche ermöglicht
sich solchen Beobachtungen anzupassen. Eine Art dieser Anpassung ist die Onlinever-
besserung der Heuristik. Es werden Suchalgorithmen entwickelt, die Schwächen in der
Heuristik erkennen undmit gezielten Verbesserungsoperationen beheben.Wenn die Heu-
ristik zu perfekten Werten konvergiert ergibt sich daraus eine zusätzliche Form von Fort-
schritt, wodurch auch Suchalgorithmen, die sonst unvollständig sind, garantiert irgend-
wann eine Lösung finden werden.

Es werden auch Szenarien betrachtet, die schon von sich aus Anpassung erfordern: In der
Onlineumplanung muss ein Plan, der gerade ausgeführt wird, auf Änderungen in der
Umgebung angepasst werden. Ähnlich dazu muss sich ein Akteur in der Echtzeitsuche
unter strengen Zeitauflagen und mit eingeschränkten Informationen bewegen.

Die Suchalgorithmen, die in dieser Arbeit eingeführt werden, folgen einem gemeinsamen
Muster von Onlineanpassung, was ihnen ermöglicht effektiv auf Herausforderungen zu
reagieren die im Verlauf der Suche aufkommen. Diese Ansätze werden auf einer breiten
Reihe von Benchmarks ausgewertet. Die Ergebnisse zeigen, dass die Flexibilität dieser
Algorithmen zu erhöhter Zuverlässigkeit im Vergleich zu traditionellen Ansätzen führt,
und es werden oft deutliche Verbesserungen gegenüber modernen Planungssystemen
erzielt.

v

Acknowledgements
First and foremost, I would like to express my gratitude towards my advisor Jörg Hoff-
mann for giving me the opportunity to write this thesis. This work would not have been
possible without his support and mentorship throughout these years, and his feedback
has been invaluable to guide me in the right direction.

I would like to thank Wheeler Ruml for his inspiration and advice in all these fruitful dis-
cussions. Working with him has been a great pleasure, and his unparalleled enthusiasm
has always kept me going.

Thanks to my co-authors, most of all Tianyi and Ivan, for the constructive collaborations
that helped make this thesis possible.

Thanks to Anna, Álvaro, Daniel, Ivan, and Tina for joining the proofreading effort for this
thesis and greatly improving the quality of this work.

I would also like to thank everyone at the FAI group, I have had a great time working
here. I will definitely miss the post-lunch table-tennis sessions!

Finally, thanks to Tina and my family for their continuous support and encouragement
during this time.

vii

Contents

1 Introduction 1
1.1 Contributions . 3
1.2 Experiments Setup . 5
1.3 Publications . 6

2 Background 9
2.1 Transition Systems . 9
2.2 Heuristic Search . 10
2.3 Classical AI Planning . 11

2.3.1 Induced Transition System . 12
2.3.2 Planning Heuristics . 13

I Adaptive Partial Delete Relaxation 15

3 Partial Delete Relaxation 17
3.1 Delete Relaxation . 17
3.2 Partial Delete Relaxation through Explicit Conjunctions 19

3.2.1 hCFF in Practice . 19
3.2.2 The Refinement Operation of hCFF . 21

3.3 Red-Black Planning . 22
3.3.1 Tractable Fragment (ACI) . 24
3.3.2 Red-Black State-Space Search (RBS) 25

4 Online Relaxation Refinement for Satisficing Planning 29
4.1 Background: Techniques We Build On . 32

4.1.1 Novelty Pruning . 33
4.1.2 Subgoal Counting . 33

4.2 Experiments Setup . 34
4.3 Converging Heuristic Functions . 35
4.4 Online-Refinement Hill-Climbing . 36

4.4.1 Episode-EHC . 37

ix

x Contents

4.4.2 Refinement-HC . 38
4.4.3 Completeness . 42
4.4.4 Experiments . 43

4.5 Refinement-HC with Novelty Pruning . 45
4.5.1 Replacing the Depth Bound with Novelty Pruning 45
4.5.2 Novelty Pruning over Conjunctions . 46
4.5.3 Experiments . 46

4.6 Refinement-HC with Relaxed Subgoal Counting 50
4.6.1 Method . 50
4.6.2 Experiments . 52

4.7 Greedy Best-First Search . 57
4.7.1 Online Refinement in GBFS . 57
4.7.2 GBFS with Subgoal-Counting Lookahead and Online Refinement . 58
4.7.3 Experiments . 60

4.8 Experiments . 63
4.8.1 Comparison to Baselines without Online Refinement 63
4.8.2 Online vs. Offline Conjunctions Quality 65
4.8.3 Comparison to the State of the Art . 66

4.9 Related Work . 70
4.10 Conclusion . 72

5 Ranking Conjunctions for Partial Delete Relaxation Heuristics 73
5.1 Candidate Ranking Strategies . 74

5.1.1 Ranking Strategies . 75
5.1.2 Motivation . 76
5.1.3 Practical Remarks . 76

5.2 Online Ranking Strategies . 77
5.2.1 Strategies . 77
5.2.2 Motivation . 78

5.3 Conflict Extraction Algorithm . 78
5.4 Experiments . 79

5.4.1 Conflict Extraction Algorithm . 80
5.4.2 Candidate Ranking Strategies . 82
5.4.3 Online Ranking Strategies . 86

5.5 Conclusion . 88

6 Finding Plans with Red-Black State-Space Search 89
6.1 Combining RBS with ACI . 90

6.1.1 The RBS+ACI Framework . 91

Contents xi

6.1.2 Overall Planning Process: Iterated RBS+ACI 94
6.2 Adaptive Refinement via Realizability . 95

6.2.1 Realizability Refinement: X-RBS . 96
6.2.2 Combination with ACI . 97

6.3 Experiments . 98
6.3.1 Coverage . 98
6.3.2 Number of Black Variables until Finding a Solution in RBS 101

6.4 Conclusion . 101

II Adaptive Heuristic Search Techniques 103

7 Choosing the Initial State for Online Replanning 105
7.1 Previous Work . 107
7.2 Continual Online Planning . 108
7.3 The Multiple Initial State Technique . 109
7.4 Theoretical Analysis . 112
7.5 MIST for Recoverable Tasks . 113
7.6 Experiments . 116

7.6.1 Benchmarks . 116
7.6.2 Results . 118

7.7 Conclusion . 121

8 Exploiting Heuristic Uncertainty in Deterministic Real-Time Search 123
8.1 Background . 124

8.1.1 Problem Definition . 125
8.1.2 LSS-LRTA∗ . 125
8.1.3 Real-Time Search as Decision Making Under Uncertainty 126

8.2 The Nancy Framework . 126
8.2.1 Risk-Based Lookahead . 126
8.2.2 Persistent Action Selection . 127
8.2.3 Nancy Backups . 128

8.3 Theoretical Analysis . 128
8.4 Conclusion . 133

9 Exploiting Heuristic Uncertainty in Suboptimal Search 135
9.1 Background . 137

9.1.1 Problem Definition . 137
9.1.2 Bounded-Cost Search . 137
9.1.3 Bounded-Suboptimal Search . 139

xii Contents

9.2 Exploiting Heuristic Uncertainty in Bounded-Cost Search 140
9.2.1 Expected Effort Search . 141
9.2.2 BEES with Explicit Probability Estimates 144
9.2.3 Experimental Evaluation . 144
9.2.4 Summary . 148

9.3 Exploiting Heuristic Uncertainty in Bounded-Suboptimal Search 148
9.3.1 Exploiting Expected Effort . 148
9.3.2 A Simple Round-Robin Scheme . 150
9.3.3 Experimental Evaluation . 151

9.4 Conclusion . 154

III Conclusion 157

10 Conclusion 159

Bibliography 161

1 Introduction

Many problems in the field of computer science—in particular in the area of artificial
intelligence (AI)—can be cast as state-space search, where an agent must find a path
from an initial state to a state satisfying some goal property. In this process, a state de-
scribes the current configuration of the model of the underlying problem, and transitions
to other states represent the modifications that are available on the current configura-
tion. For example, consider a navigation task where an agent must find a route from
one location to another. This can be modeled as state-space search, where each state
represents the current position of the agent, transitions between states correspond to the
possible movement of the agent, and a state is a goal if the agent is at the desired target
location. While this is a straightforward example, state-space search is a powerful tool
that can be applied to various kinds of problems, e.g., solving combinatorial puzzles [Korf
and Taylor, 1996; Korf, 1997], playing games like chess or Go [Campbell et al., 2002;
Silver et al., 2016; 2017], intelligently controlling devices such as elevators [Koehler and
Ottiger, 2002] or industrial printers [Ruml et al., 2011], or verifying network security
through simulated penetration testing [Hoffmann, 2015].

Most practical applications have state spaces that are too large to be fully explored or
even represented in memory. For example, chess is estimated to have between 1046 and
1052 different reachable positions [Allis, 1994; Chinchalkar, 1996]—roughly equivalent
to the number of atoms on the planet Earth (∼1050). This calls for methods that do not
require constructing the full state space, and aim to keep the part of the generated state
space as small as possible. One common technique is heuristic search, where the search
through the state space is guided by heuristics [e.g., Doran and Michie, 1966; Hart et al.,
1968]. Such heuristics estimate the remaining distance to the goal, allowing the search
to focus on the most promising states. For example, straight-line distance can be used
as a simple heuristic for navigation problems to prioritize states which are closer to the
target location.

One area where heuristic search is particularly useful is AI planning (see Ghallab et al.’s
[2016] textbook for an overview). This subarea of AI is concerned with general problem

1

2 Chapter 1 Introduction

solving; in other words, the aim is to build solvers that are given a high-level description
of the domain and problem at hand, and are effective without any additional human
input or domain-specific knowledge. Classical AI planning tasks consist of a set of finite-
domain state variables, and a set of actions that have preconditions and effects on these
variables. The objective is to find a sequence of actions leading from an initial state
to a state that satisfies the goal conditions. Heuristic search is one of the most promi-
nent approaches to solve planning tasks [e.g., Bonet and Geffner, 2001; Hoffmann and
Nebel, 2001; Helmert, 2006; Richter and Westphal, 2010], in particular in recent years.
Planning heuristics are domain-independent, and typically generate their estimates by
solving a relaxation (a simplified version) of the input task; for example by ignoring neg-
ative effects of the actions or considering abstract states that group many original states
into one.

Most heuristic search methods follow a static approach: The search algorithm and heuris-
tic are selected in advance, and the state space is then systematically explored, expanding
outward from the initial state until a solution is found. The heuristic is assumed to be
unchanged throughout this process, and its raw estimates are used for guidance without
applying any further reasoning to them.

Yet during the search additional information may become available, for example by dis-
covering particularly challenging aspects of the task at hand or finding that the heuristic
is not always as accurate as expected. If such observations were somehow taken into
account by the search algorithm, it would enable the search to enhance its effectiveness
online by adapting to the problem at hand. Such online adaptation could take differ-
ent forms, e.g., improving the accuracy of the heuristic function through refinement, or
adjusting the search strategy to consider the uncertainty of the heuristic. However, this
raises nontrivial questions: When should the search adapt? How should the search adapt?
These questions are central to this thesis; and they must be answered carefully to avoid
computational overhead, which may cancel out the benefits of such an approach.

We introduce several novel heuristic search techniques that follow a common paradigm
of online adaptation. Our contributions are set in different variations of heuristic search,
ranging from classical AI planning to more complex settings where an agent is moving
through the search space and has a limited time to choose the next action, or where an
agent is currently executing a plan and must react to changes in its environment like
additional goals. We show that our adaptive search algorithms can effectively react to
challenges and difficulties encountered during search, and their superior flexibility can
yield substantial improvements over other state-of-the-art approaches.

Chapter 1 Introduction 3

1.1 Contributions

In the first part of this thesis, we explore online relaxation refinement in classical AI plan-
ning as heuristic search. A popular method to derive planning heuristics is the delete
relaxation [Bonet and Geffner, 2001; Hoffmann and Nebel, 2001], which ignores neg-
ative effects of the actions. Our techniques build on partial delete relaxation methods
[Keyder et al., 2014; Domshlak et al., 2015; Fickert et al., 2016], which extend the
delete relaxation by un-relaxing some aspects of the task (at the cost of computational
complexity), enabling a full interpolation between the standard delete relaxation and
the original task.

Chapter 4 We introduce a family of heuristic search algorithms that improve the heuris-
tic during search by refining its underlying relaxation. These algorithms identify areas
of the search space where the heuristic is inaccurate, and use targeted refinement oper-
ations to address these weaknesses. Compared to traditional heuristic search methods
that instantiate the heuristic before search and keep it unchanged throughout, our online
refinement methods can reduce overhead by refining the heuristic only if it is necessary
to do so, and make the heuristic more precise on the part of the search space that is
explored by the search. We evaluate our algorithms with the partial delete relaxation
heuristic hCFF [Keyder et al., 2014; Fickert et al., 2016], which treats a given set of com-
binations of facts (variable-value pairs) as atomic, and demonstrate superior performance
over related methods and state-of-the-art planners.

Chapter 5 The refinement operation of hCFF is based on counterexample-guided ab-
straction refinement—an iterative procedure that analyzes flaws in the current model,
and applies fine-grained refinement steps to address the observed flaws. Specifically, the
refinement operation of hCFF generates a set of possible conflicts, out of which a single
one is selected, and the heuristic is refined to avoid the exact conflict in future compu-
tations. In this chapter, we systematically investigate which conflict should be selected,
and empirically evaluate a wide range of strategies.

Chapter 6 Red-black planning is another type of partial delete relaxation, where vari-
ables are partitioned into two sets (called painting), of which one is treated with delete-
relaxed semantics while the others retain their normal semantics [Domshlak et al., 2015].
This technique has been used to derive red-black heuristics, yet the painting must satisfy
some conditions to keep the computation of the heuristic efficient (the tractable frag-
ment). Another direction, and the one we extend in this chapter, is red-black search,

4 Chapter 1 Introduction

where the relaxation is used for the search instead of the heuristic. Specifically, the search
is performed directly on the relaxed task, and the relaxation is refined until the computed
plans are plans for the original task. We show how this search strategy can be combined
with the tractable fragment to reduce the search effort, and design an adaptive variant
that employs such refinement locally where needed.

In the second part of this thesis, we turn to different variations of heuristic search. We
first consider online replanning, where an agent is currently executing a plan and must
react to a change in its environment such as additional goals that must be achieved.
In real-time search, an agent is moving through the state space and only has a limited
time to act before each step. Finally, we consider bounded-suboptimal search, where the
generated solutions must satisfy a given bound (either an absolute cost bound or a factor
of the minimal solution cost).

Chapter 7 When the need for online replanning arises, one important question is how
long the agent should proceed on the original plan, i.e., at which state the agent should
deviate to a new plan. If the agent’s execution reaches the chosen state too early, the
planning process might not have finished. On the other hand—if the selected state is too
far along the original plan, an opportunity to proceed more efficiently may have been
missed. The most common solution of prior approaches is to always select a deviation
state at some fixed time in the future, but this requires making an offline estimate of the
planning time which may be inaccurate. We introduce an algorithm that incorporates
this choice into the search process itself, and is able to select the most suitable state by
reasoning about its own planning time. Our evaluation shows that this approach yields
robust behavior and consistently outperforms methods using offline predictions.

Chapter 8 In real-time search, the agent must commit to the next action within a fixed
time bound. In this time frame, only a small portion of the search space ahead can be ex-
plored during a short lookahead such that the agent may move towards the most promis-
ing state according to the heuristic. However, even in deterministic search, the heuristic
estimates contain an inherent uncertainty. Recent work has shown how this uncertainty
can be modeled explicitly [Mitchell et al., 2019], replacing heuristic values with belief
distributions in the search. We provide a theoretical analysis of this framework here, and
prove that this approach is complete, i.e., if the task is solvable then the search will even-
tually find a solution. Our proof applies to a general class of real-time search algorithms,
in particular, we provide a more general completeness proof for LSS-LRTA∗ [Koenig and
Sun, 2009]—one of the most popular state-of-the-art real-time search algorithms—that
imposes fewer restrictions on the heuristic than the original proof.

Chapter 1 Introduction 5

Chapter 9 Inmany applications, computing optimal solutions is too expensive, yet high-
quality solutions are desired. In that case, one may employ bounded-cost search, which
aims to find a plan within a given absolute cost bound as quickly as possible. Building
on the aforementioned models of the heuristic uncertainty, we show how to estimate the
probability of finding a solution within the bound under a given state, and introduce a
search algorithm that aims to minimize the expected search time. We prove that this
search strategy is optimal in a simplified model, and show that it is highly effective in
practice.

1.2 Experiments Setup

Throughout this thesis, we interleave theoretical contributions with corresponding em-
pirical evaluations. We give an overview over the shared basic setup here, which holds
for all experiments unless noted otherwise.

All algorithms are implemented in Fast Downward [Helmert, 2006]; the source code is
publicly available and linked in the respective chapters. The experiments were run using
the Downward Lab framework [Seipp et al., 2017] on a cluster of Intel Xeon E5-2660
processors with a clock rate of 2.2 GHz. The time and memory limits were set to 30
minutes respectively 4 GB.

The algorithms discussed in this work are evaluated on the benchmarks of the Interna-
tional Planning Competitions (IPC).1 We give more details on the specific instances used
in each chapter as the benchmark sets are slightly different and sometimes require ad-
ditional inputs (for example, a cost bound for our bounded-cost search experiments in
Chapter 9). We typically consider the coverage (the number of solved instances of the
benchmark set) as the main indication for an algorithm’s performance. In addition to the
overall coverage, we sometimes discuss the normalized coverage to account for different
numbers of instances across the domains of the benchmark set (computed as the average
fraction of solved instances per domain). Another important measure is the search time,
in which we exclude the preprocessing time of Fast Downward as it is the same among
all algorithms.

1See https://www.icaps-conference.org/competitions/.

https://www.icaps-conference.org/competitions/

6 Chapter 1 Introduction

1.3 Publications

This thesis is mainly based on the following publications:2

• Maximilian Fickert, Tianyi Gu, and Wheeler Ruml: “New Results in Bounded-
Suboptimal Search”. In Proceedings of the 36th AAAI Conference on Artificial In-
telligence, AAAI 2022.

• Maximilian Fickert and Jörg Hoffmann: “Online Relaxation Refinement for Satis-
ficing Planning: On Partial Delete Relaxation, Complete Hill-Climbing, and Novelty
Pruning”. In Journal of Artificial Intelligence Research, Volume 73.

• Maximilian Fickert, Tianyi Gu, and Wheeler Ruml: “Bounded-cost Search Using
Estimates of Uncertainty”. In Proceedings of the 30th International Joint Conference
on Artificial Intelligence, IJCAI 2021.

• Maximilian Fickert, Ivan Gavran, Ivan Fedotov, Jörg Hoffmann, Rupak Majumdar,
and Wheeler Ruml: “Choosing the Initial State for Online Replanning”. In Proceed-
ings of the 35th AAAI Conference on Artificial Intelligence, AAAI 2021.

• Maximilian Fickert: “A Novel Lookahead Strategy for Delete Relaxation Heuristics
in Greedy Best-First Search”. In Proceedings of the 30th International Conference on
Automated Planning and Scheduling, ICAPS 2020.

• Maximilian Fickert, Tianyi Gu, Leonhard Staut, Wheeler Ruml, Jörg Hoffmann, and
Marek Petrik: “Beliefs We Can Believe in: Replacing Assumptions with Data in Real-
Time Search”. In Proceedings of the 34th AAAI Conference on Artificial Intelligence,
AAAI 2020.

• Maximilian Fickert: “Making Hill-Climbing Great Again through Online Relaxation
Refinement and Novelty Pruning”. In Proceedings of the 11th International Sympo-
sium on Combinatorial Search, SOCS 2018.

• Maximilian Fickert, Daniel Gnad, and Jörg Hoffmann: “Unchaining the Power of
Partial Delete Relaxation, Part II: Finding Plans with Red-Black State Space Search”.
In Proceedings of the 27th International Joint Conference on Artificial Intelligence,
IJCAI 2018.

• Maximilian Fickert and Jörg Hoffmann: “Complete Local Search: Boosting Hill-
Climbing through Online Relaxation Refinement”. In Proceedings of the 27th Inter-
national Conference on Automated Planning and Scheduling, ICAPS 2017.

2We give more details on how these works relate to this thesis and the individual contributions at the
beginning of the chapters that build on them.

Chapter 1 Introduction 7

• Maximilian Fickert and Jörg Hoffmann: “Ranking Conjunctions for Partial Delete
Relaxation Heuristics in Planning”. In Proceedings of the 10th International Sympo-
sium on Combinatorial Search, SOCS 2017.

Additionally, the following papers have been published during the author’s doctoral stud-
ies but are not part of this thesis:

• Joschka Groß, Álvaro Torralba, and Maximilian Fickert: “Novel Is Not Always Bet-
ter: On the Relation between Novelty and Dominance Pruning”. In Proceedings of
the Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020.

• Rebecca Eifler, Maximilian Fickert, Jörg Hoffmann, and Wheeler Ruml: “Refining
Abstraction Heuristics during Real-Time Planning”. In Proceedings of the Thirty-
Third AAAI Conference on Artificial Intelligence, AAAI 2019.

• Rebecca Eifler andMaximilian Fickert: “Online Refinement of Cartesian Abstraction
Heuristics”. In Proceedings of the Eleventh International Symposium on Combinato-
rial Search, SOCS 2018.

2 Background

We next introduce the common background on heuristic state-space search and AI plan-
ning that provide the theoretical framework for our contributions.

2.1 Transition Systems

State spaces are formally defined as transition systems:

Definition 2.1 (Transition System). A labeled, weighted transition system is a tuple Θ =
〈S,A,T , c,I,G〉, where

• S is the (finite) set of states,

• A is the (finite) set of actions,

• T ⊆ S ×A× S is the transition relation,

• c : A 7→ R+0 is the cost function,

• I ∈ S is the initial state, and

• G ⊆ S is the set of goal states.

We usually denote a transition (s, a, s′) ∈ T by s
a−→ s′ (or just s→ s′ when a is not relevant

or clear from the context). In this work, assume the transition relation to be deterministic,
i.e., for each pair (s, a) ∈ S ×A there is at most one s′ ∈ S such that s

a−→ s′ ∈ T . We say
an action a is applicable in a state s if there exists a state s′ such that s

a−→ s′ ∈ T , and
denote its successor through a by sJaK := s′ (conversely, s is a predecessor of s′). The set of
applicable actions in a state s is denoted by A(s).

If the cost function returns one for all actions, we say that Θ has unit costs. In some
contexts, we consider transition systems Θ = 〈S,A,T ,I,G〉 where the cost function is
omitted; we assume unit costs in this case.

9

10 Chapter 2 Background

Given a sequence of transitions of the form s0
a1−→ s1, s1

a2−→ s2, . . . , sn−1
an−→ sn, the action

sequence π = 〈a1, a2, . . . , an〉 is called a path from s0 to sn, and its cost C(π) is the sum
of the cost of its actions

∑n
i=1 c(ai). A solution for a state s ∈ S is a path from s to a state

sG ∈ G (also called a plan), and it is optimal if its cost is minimal among all solutions for
s. A solution for a transition system Θ is a solution for its initial state I.

We say that a state s′ is reachable from another state s if there exists a (possibly empty)
path from s to s′. If at least one goal state is reachable from a state s then s is solvable,
otherwise it is called a dead end.

A search node n is a state in the search space with an associated path to it from the initial
state. The cost of this path is denoted by g(n) and is usually referred to as the node’s
g value.

2.2 Heuristic Search

A heuristic function (or short heuristic), is a function h : S 7→ R+0 ∪ {∞} that estimates
the cost of a solution for a given state s, or returns∞ to indicate that s is a dead end.
The perfect heuristic h∗ returns the cost of an optimal solution for solvable states, and∞
otherwise.

A heuristic is admissible if it never overestimates the optimal solution cost, i.e., h(s)≤ h∗(s)
for all states s ∈ S. This is an important property if optimal solutions are desired since
it is a requirement for most optimal search algorithms such as A∗ [Hart et al., 1968]. A
stronger property is consistency, which requires that h(s)≤ h(sJaK) + c(a) for all states s

and all applicable actions a. A heuristic is goal-aware if h(sG) = 0 for all goal states sG ∈ G.
Throughout this work, we assume that heuristics are safe, that is, if h(s) =∞ then s is
indeed a dead end (this is the case for the vast majority of heuristics that are used in
practice, especially in domain-independent planning).

Sometimes it can be useful to estimate the goal distance d(s) for some state s, i.e., the
number of transitions from s to reach a goal state. Distance estimates are typically derived
from a heuristic by considering unit action costs.

Another important measure of a search node n is its f value, f (n) := g(n) + h(n). If h is
admissible, then f (n) is a lower bound on the solution cost below n.

The most common type of search algorithms are those that systematically explore the
state space, such as A∗ [Hart et al., 1968] or Greedy Best-First Search (GBFS). Starting
from the initial state, these algorithms iteratively expand states (generating their suc-
cessors) until a goal state is reached. The states that have been generated but not yet

Chapter 2 Background 11

expanded are kept in an open list. The search strategy is defined by the open list order-
ing; for example, A∗ orders the search nodes in the open list by increasing f value, GBFS
orders them by increasing h. A search algorithm is called complete if it terminates in finite
time, returning a plan in case the task is solvable, or proving unsolvability otherwise (A∗
and GBFS are examples of complete search algorithms).

2.3 Classical AI Planning

We formalize planning tasks using the finite-domain representation (FDR) [Bäckström
and Nebel, 1995; Helmert, 2009], where states are encoded by variables with finite
domains, and actions have preconditions and effects on these variables.

Definition 2.2 (FDR Planning Task). An FDR planning task is a tuple Π = 〈V,A, c,I,G〉,
where

• V is the (finite) set of variables, where each v ∈ V has a finite domain Dv,

• A is the (finite) set of actions, where each a ∈ A is a pair (pre(a),eff(a)) of its
preconditions and effects (each is a partial assignment of V),

• c : A 7→ R+0 is the cost function (we sometimes omit this, and assume unit action
costs in this case),

• I is the initial state (complete assignment of V), and

• G is the goal (partial assignment of V).

A variable-value pair var= val is called a fact, and we denote the set of all facts by F . A
state is a complete assignment of V, and we usually treat them as sets of facts. The set
of all states is denoted by S. For a partial variable assignment p, we denote the set of
variables defined in p by V(p), and we denote the projection of p to a subset of its variables
V ⊆ V(p) by p|V . If a variable v is defined in a partial assignment p (i.e., v ∈ V(p)), we
denote its value in p by p(v). An action a is applicable in a state s if its preconditions
are satisfied in s, i.e., pre(a) ⊆ s (equivalent to s|V(pre(a)) = pre(a)), and the successor sJaK

retains the variable assignments from s in variables where eff(a) is not defined, and has
the assignments eff(a)(v) in the variables v ∈ V(eff(a)).

Wewill require the concept of regression, which describes theminimal set of facts required
to achieve a subgoal through a given action. A set of facts g ⊆ F is regressable over an
action a ∈A if:

12 Chapter 2 Background

• eff(a)∩ g 6= ; (a achieves some part of g),

• there is no variable v ∈ V which is defined in both eff(a) and g but with different
values (a does not invalidate g), and

• there is no variable v ∈ V which is defined in both pre(a) and g but with different
values, and which is not defined in eff(a) (the preconditions of a are compatible
with g).

If g is regressable over a, then the regression of g over a is defined as R(g, a) = (g\eff(a))∪
pre(a), otherwise we write R(g, a) =⊥.

Some planning heuristics make use of the causal graph, which describes dependencies
between variables [Knoblock, 1994; Brafman and Domshlak, 2003]. The causal graph is
a directed graph 〈V, E〉 with vertices V = V, and there is an arc 〈v, v′〉 ∈ E if v 6= v′ and
there exists an action a ∈A such that v is defined in pre(a) and v′ is defined in eff(a), or
both v and v′ are defined in eff(a).

2.3.1 Induced Transition System

A planning task Π = 〈V,A, c,I,G〉 induces the transition system ΘΠ = 〈S ′,A′,T , c′,I′,G′〉,
where

• S ′ is the set of all states S of Π,

• A′ =A,

• T is defined by the actions of Π: for each state s ∈ S and action a ∈ A, iff a is
applicable in s then s

a−→ sJaK is a transition in T ,

• c′ = c,

• I′ = I, and

• G′ = {s ∈ S | s ⊇ G} is the set of states consistent with G.

A solution for ΘΠ is also a solution for Π and vice versa (retaining optimality). When
the terms defined for transition systems are used for a planning task Π they refer to its
transition system ΘΠ; e.g., a path from a state s to a state s′ is a sequence of actions that
can be consecutively applied to s and result in the state s′.

Chapter 2 Background 13

2.3.2 Planning Heuristics

Most planning heuristics are based on a relaxation Π+ of the original task Π, and base
their estimate for a state s on a plan π[h](s) computed in that relaxation. In addition to
a heuristic value h(s), some heuristics also yield a set of helpful actions (in some contexts
also called preferred operators) H(s) [Hoffmann and Nebel, 2001; Richter et al., 2008;
Richter and Helmert, 2009]. For heuristics based on a relaxation, H(s) is typically the
subset of actions in π[h](s) that is applicable in s. A search that uses helpful actions
pruning only considers the actions H(s) when expanding a state s, discarding all other
successors of s [Hoffmann and Nebel, 2001]. Helpful actions pruning can be a source of
incompleteness, as H(s)may exclude the only actions that start a plan for s. An alternative
and completeness-preserving method to exploit helpful actions is the use of a dual queue
[Helmert, 2006]. The search then maintains two separate open lists—one containing all
open search nodes, and one containing only nodes generated by helpful actions—and
nodes are expanded from each list alternately.

The first part of this thesis is concerned with satisficing AI planning, where solutions are
not required to be optimal. In the second part, we will consider more general heuristic
search problems (not restricted to AI planning). We explore various settings with addi-
tional challenges such as parallel planning and execution or suboptimality bounds, and
introduce the relevant definitions in the respective chapters.

Part I

Adaptive Partial Delete Relaxation

15

3 Partial Delete Relaxation

The delete relaxation [Bonet and Geffner, 2001; Hoffmann and Nebel, 2001], under
which variables accumulate their values instead of switching between them, is one of
the most popular relaxations for heuristics used in satisficing planning. However, delete
relaxation heuristics sometimes ignore critical aspects of a planning task such as fuel
consumption. By “un-relaxing” critical parts of the planning task, partial delete relax-
ation attempts to address these issues and make the relaxation more precise. Our work
describes contributions to different partial delete relaxation approaches; we introduce
the relevant background in this chapter.

3.1 Delete Relaxation

In the delete relaxation, any facts that are made true are assumed to remain true forever.
In FDR planning, that means that state variables can accumulate multiple values instead
of switching between them.

Example 3.1. Consider the following task:

A B C

The car must drive from A to C, consuming fuel at each step. Initially, the car holds one unit
of fuel, so a plan for this task must refuel at location B before it can proceed to C.

Formally, the task has a variable “fuel” with domain {0,1} indicating the amount of available
fuel, and a variable “at” with domain {A, B, C} indicating the position of the car. The “refuel”
action has no preconditions, and its only effect is setting fuel to 1. The “drive(x, y)” actions
take the car from location x to location y; they have preconditions {at= x , fuel= 1} and
effects {at= y , fuel= 0}.

17

18 Chapter 3 Partial Delete Relaxation

One plan for this task is 〈drive(A, B), refuel, drive(B, C)〉. A delete-relaxed plan—for example
〈drive(A, B), drive(B, C)〉—does not need to include the refuel action, since the fuel= 1 fact is
still available after applying a drive action in the relaxation.

The perfect delete relaxation heuristic h+ maps each state to the length of an optimal
delete-free plan, or to∞ if no such plan exists. Computing an optimal delete-relaxed
plan isNP-complete [Bylander, 1994]. Hence, in practice the approximative hFF heuristic
[Hoffmann andNebel, 2001] is used instead, which bases its estimates on (not necessarily
optimal) delete-relaxed plans π[hFF] (or returns∞ in the same case as h+). These plans
for hFF are usually generated using a best-supporter function bs : F 7→ A, which, given a
fact f ∈ F , returns an action that is deemed to be the cheapest achiever for f . The plan
extraction procedure then starts by adding the best supporter of each goal fact to the
relaxed plan, and preconditions of the selected actions are then recursively propagated
until an achiever for each open precondition (that is not already true in the current state)
has been added.

Most implementations of hFF use the additive heuristic hadd [Bonet and Geffner, 2001]
as the best-supporter function. Given a state s, the heuristic assigns a value to each fact
f according to the following equation:

hadd(s, f) =

0 if f ∈ s,
min

a∈A, f ∈eff(a)
[c(a) +
∑

p∈pre(a)
hadd(s, p)] otherwise.

Intuitively, the heuristic yields a pessimistic estimate of the cost to achieve a given fact f

under the delete relaxation—it simply sums up the costs of all preconditions on a delete-
relaxed path to f , disregarding the fact that making progress to one of the preconditions
may help with achieving another one. The best supporter for each fact f is the arg min

of the minimum in the second case in the equation, i.e., the action for which the sum of
hadd values of its preconditions added to its cost is lowest.

Delete relaxation is a simple approach that yields effective heuristics in practice [e.g.,
Hoffmann and Nebel, 2001; Richter and Westphal, 2010]. However, it ignores some
aspects of the task—like the fuel consumption in the example above—which may render
the heuristic inaccurate in some domains. The concept of partial delete relaxation aims
to improve the accuracy of delete relaxation heuristics by taking some delete information
into account. There are two main lines of research on partial delete relaxation: treating
conjunctions of facts as atomic [Keyder et al., 2014; Fickert et al., 2016], and red-black
planning, which relaxes only some variables instead of all of them [Domshlak et al., 2015].

Chapter 3 Partial Delete Relaxation 19

3.2 Partial Delete Relaxation through Explicit Conjunctions

One technique for partial delete relaxation is based on explicit conjunctions, where a given
set of conjunctions (fact sets) C are treated as atomic, and the facts contained in a con-
junction c ∈ C must be achieved simultaneously [Haslum, 2012; Keyder et al., 2012;
2014; Hoffmann and Fickert, 2015; Fickert et al., 2016]. The hCFF heuristic and its ide-
alized counterpart hC+ compute such C-relaxed plans: Whenever a conjunction c ∈ C is
a subset of the preconditions of an action, the partially relaxed plan π[hCFF] must satisfy
c instead of the individual facts contained in c. A conjunction c can only be achieved by
an action a if c is regressable over a, i.e., a makes some part of the conjunction true and
its other preconditions and effects are not incompatible with c, and the remaining facts
of c that are not achieved by a are treated as additional preconditions.

Example 3.2. Consider again the task shown in Example 3.1. The critical issue of the relaxed
plan in Example 3.1 is that the preconditions of the drive(B, C) action are not satisfied under
normal semantics, as the fact fuel= 1 is assumed to still be available after driving to B.
Consider the conjunction c = {fuel= 1, at= B}. If c is contained in the set of conjunctions C

used by the heuristic, then a C-relaxed plan must consider c as a required precondition for
drive(B, C). Observe that c can only be achieved through the refuel action: The only actions
that achieve some part of c are refueling and the drive(x, B) actions, but the latter also sets the
fuel variable to 0, which conflicts with c (which contains fuel= 1). Furthermore, achieving
c through refueling requires at= B to be true beforehand, so the C-relaxed plan that hC+

would compute for this example is 〈drive(A, B), refuel, drive(B, C)〉, which is also a real plan.

The set of conjunctions C controls the degree of the relaxation for the corresponding
heuristic. Throughout this work, we assume that C always consists of at least all singleton
facts, i.e., C ⊇ C0 where C0 := {{ f } | f ∈ F}. If C does not contain any non-singleton
facts (C = C0), then a C-relaxed plan is just a relaxed plan and hC+ = h+. On the
other hand, if it contains all combinations of facts, i.e., C = P(F), then every C-relaxed
plan is also a plan under non-relaxed semantics, and hC+ = h∗. Hence, this allows for
a smooth interpolation between fully relaxed and non-relaxed semantics. In practice,
the set of conjunctions for hCFF must be chosen carefully, as the heuristic becomes more
expensive to compute with each added conjunction. Standard methods generate C using
counterexample-guided abstraction refinement (see Section 3.2.2).

3.2.1 hCFF in Practice

Like hFF, the partially relaxed plans for hCFF are extracted using a best-supporter function.
The standard choice (and the one we use in this work) is hCadd, which generalizes hadd

20 Chapter 3 Partial Delete Relaxation

to an arbitrary set of conjunctions C:

hCadd(s, c) =

0 if c ⊆ s

min
a∈A,R(c,a)6=⊥

[c(a) +
∑

cpre∈R(c,a)C
hCadd(s, cpre)] otherwise

The definition makes use of the shorthand “X C” to indicate all conjunctions that are con-
tained in X , i.e., {c ∈ C | c ⊆ X }. In practice, we only consider the non-dominated con-
junctions, i.e., those that are not a subset of a different conjunction also contained in the
set.

We can compute the hCadd values through a forward exploration until a fixed point is
reached. First, hCadd(s, c) is set to 0 for all conjunctions c ⊆ s. Now we can iteratively
set the hCadd value for conjunctions where hCadd is yet undefined, and for which there
is an action a such that hCadd is defined for all conjunctions cpre ∈ R(c, a)C . In that case,
hCadd(s, c) is set to the sum of the hCadd values of these conjunctions cpre plus the cost of
the action.

This algorithm can be efficiently implemented using counters that keep track of the num-
ber of precondition conjunctions cpre ∈ R(c, a)C that need to be made true before a con-
junction c can be reached through an action a [Hoffmann and Fickert, 2015; Fickert
et al., 2016].1 Specifically, such counters are attached to each conjunction-action pair
(c, a) where a can be used to achieve c, i.e., all such pairs where R(c, a) 6= ⊥. The coun-
ters are initially set to |R(c, a)C |, and are decremented whenever the hCadd value for a
conjunction in R(c, a)C is set. When a counter attached to a pair (c, a) reaches zero, all
precondition conjunctions that are necessary to achieve c through a have been reached,
and c is reached in the next iteration.

In the experiments, we will sometimes discuss the increase in computational complexity
of hCFF as conjunctions are added to C . Since, computing hCadd is typically the main
bottleneck to generate a C-relaxed plan for hCFF, we approximate the complexity of hCFF

by the number of counters that are maintained in hCadd. We measure this as a factor
of the number of counters that are being tracked by hCFF when using only singleton
conjunctions; for example, if the heuristic has a growth factor of 2, that means that the
implementation must keep track of twice as many counters as with C0.

1This is similar to the hFF implementation [Hoffmann and Nebel, 2001], which tracks the number of
unsatisfied preconditions for each action.

Chapter 3 Partial Delete Relaxation 21

3.2.2 The Refinement Operation of hCFF

While hCFF can use an arbitrary set of conjunctions according to the desired degree of
relaxation, C must be chosen carefully in practice since each added conjunction makes
the heuristic more expensive to compute. The known methods iteratively generate C via
counterexample-guided abstraction refinement: Let s be a state where hCFF(s) 6=∞, and
let π[hCFF](s) be the corresponding partially relaxed plan. Either π[hCFF](s) is a real plan
for s, or there must be a conflict in the form of an invalidated precondition or goal. In
the latter case, a conjunction c can be generated to address that conflict, and c is added
to C . In the example discussed above, the deletion of the fuel= 1 fact by the drive(A, B)

action forms a conflict, and the conjunction {fuel= 1, at= B} can be added to address it.

The original refinement algorithm by Haslum [2012] guarantees that π[hCFF](s) is no
longer a valid C-relaxed plan after adding the generated conjunctions to C . Keyder et
al.’s [2014] method generates only a single conjunction, with the weaker guarantee that
this conjunction was not contained in C before. However, this method is more efficient
in practice, since adding a single conjunction is typically sufficient for hCFF to compute a
different plan, and it induces significantly less computational overhead. Hence, we use
Keyder et al.’s [2014] method in this work; we summarize the algorithm in the following.

Internally, the partially relaxed plans returned by hCFF consist of pairs of an action and a
set of supported conjunctions, called action occurrences. For an action occurrence (a, G),
the set of supported conjunctions G ⊆ C indicates the conjunctions that are achieved
by a. The preconditions of (a, G) consist of the preconditions of a and the parts of the
conjunctions that are not achieved by a, i.e., pre((a, G)) = (

⋃
c∈G R(c, a))C . Keyder et al.’s

[2014] refinement method first constructs a data structure called best-supporter graph
(BSG) from the partially relaxed plan.

Definition 3.1 (Best-Supporter Graph). Given a state s for a planning task Π, a set of
action occurrences O corresponding to a partially relaxed plan π[hCFF](s), and the corre-
sponding best supporter function bs, the best-supporter graph is a directed acyclic graph
φ = 〈V, E〉, where V = O ∪ {(aG ,;)}, and E = {〈v, v′〉 | ∃c ∈ pre(v′), v = bs(c)}. Each vertex
is labelled with the action occurrence it represents, and each arc 〈v, v′〉 is labelled with
the set of (non-dominated) precondition conjunctions {cpre | cpre ∈ pre(v′), v = bs(cpre)}.

The BSG models the dependencies between action occurrences: if there is an arc from
a vertex v to another vertex v′, the action occurrence represented by v achieves a con-
junction that is required as a precondition for the action occurrence represented by v′.
There is an additional vertex for the goal which is represented by an artificial action aG

with pre(aG) = G, and incoming arcs from each action occurrence that achieves a goal
conjunction.

22 Chapter 3 Partial Delete Relaxation

If the partially relaxed plan fails to execute in the original planning task, there must
be an action (the deleter) that invalidates a precondition of another action (or the goal)
occurring later in the plan (the failed action). The deleter and failed action can either be
ordered sequentially or have a common descendant in the BSG, as shown in Figure 3.1.

vd . . . v fc1 cn

¬c

(a) sequential conflict

vd . . .

v f . . .

v j

c1 cn

c′1
c′n

¬c

(b) parallel conflict

Figure 3.1: Conflict types in relaxed plans.

In the sequential case, there is a path from the deleter d to the failed action f . Let L

be the set of labels on the path from d to f . Possible new conjunctions addressing this
conflict are {cL ∪ c | cL ∈ L}. In the parallel case, there is no path from d to f , but
they have a common descendant j. Let Ld be the set of edge labels on the path from d

to j and L f be the edge labels on the path from f to j. Possible new conjunctions are
{cLd
∪ cL f

| cLd
∈ Ld , cL f

∈ L f ∪ {c}}. As only one conjunction will be selected to be added
to C , it suffices to consider one candidate for a single conflict to avoid redundancy. The
considered candidate conjunction is cn∪ c in the sequential case and cn∪ c′n in the parallel
case, which is guaranteed to not be contained in C yet [Keyder et al., 2014, Lemma 3].

In Chapter 4, we will introduce a family of search algorithms that refine the heuristic on-
line, and use hCFF to evaluate them. In Chapter 5, we evaluate different strategies to rank
candidate conjunctions in the hCFF refinement procedure, as well as ranking strategies for
conjunctions that have already been added to C .

3.3 Red-Black Planning

Red-black planning [Katz et al., 2013a; b; Domshlak et al., 2015; Gnad et al., 2016],
where only some variables are treated with delete-relaxed semantics, is another approach
to partial delete relaxation.

Definition 3.2 (Red-Black Planning Task). A red-black planning task is a tuple ΠRB =

〈VR,VB,A,I,G〉 with VB ∩ VR = ;, where

• VR is the set of red variables, which have delete-relaxed semantics,

• VB is the set of black variables, which have standard FDR semantics, and

Chapter 3 Partial Delete Relaxation 23

• Π= 〈V,A,I,G〉 with V = VR ∪ VB is an FDR planning task.

In a red-black state sRB, the red variables are mapped to a subset of their domain, while
black variables use the standard semantics. In other words, a red-black state may contain
multiple facts for each red variable (like a delete-relaxed state), and has exactly one fact
for each black variable (like a standard FDR state). The red-black initial state IRB consists
of the same facts as I, and a red-black state sRB is a goal state if G ⊆ sRB. An action a

is applicable to a red-black state sRB if pre(a) ⊆ sRB. The state sRBJaK resulting from
applying a in sRB is the same state as s for all variables where eff(a) is not defined, the
black effects switch (i.e., for variables vB ∈ V(eff(a))∩VB, we get sRBJaK(vB) = eff(a)(vB)),
and the red effects accumulate (i.e., for variables vR ∈ V(eff(a))∩VR, we get sRBJaK(vR) =

sRB(vR)∪ {eff(a)(vR)}). A plan for the red-black task ΠRB is called a red-black plan, and
we also refer to it as a red-black plan for the underlying task Π.

The specific red-black relaxation is defined by its painting, i.e., the partitioning of the
variables V into red variables VR and black variables VB. The degree of the relaxation
depends on the black variables in the painting: If all variables are painted black (VB = V),
then the red-black task uses standard semantics; if all variables are painted red (VB = ;),
then the red-black task is fully delete-relaxed. The paintings thus form a partial order,
where a painting with black variables VB

1 is more refined than a painting with black
variables VB

2 (VB
1 .

To illustrate techniques related to red-black planning, we use a slightly more complex
running example:

Example 3.3. Consider the following task:

A B

2

The task is to drive to the store at location B, buy two products P1 and P2, and return to
A. This time, there is no fuel consumption, so the drive actions only have preconditions and
effects on the position of the car. The two products have associated variables “have−P1” and
“have−P2” with domain {0,1}; they are set to 0 in the initial state, and buying the corre-
sponding product in the store sets them to 1. We have two units of money available initially
(money = 2), and buying each product costs one. For each product Px and available amount
of money m > 0, there is a buy action buy(Px , m) with preconditions {at= B, money = m}
and effects {money = m− 1, have−Px = 1}. The goal is {at= A, have−P1 = 1, have−P2 = 1}.

24 Chapter 3 Partial Delete Relaxation

A plan for this task is 〈drive(A, B), buy(P1, 2), buy(P2, 1), drive(B, A)〉. Under the delete re-
laxation, a possible plan is 〈drive(A, B), buy(P1, 2), buy(P2, 2)〉. This relaxed plan has two
flaws: (1) the car does not return to location A after buying the products, and (2) it does
not account for the spent money, so it may use an incompatible buy action for the second
product.

To address both issues, we must paint both the “at” and “money” variables black: un-
relaxing “at” forces the car to return to A, and un-relaxing “money” ensures that the money
is accounted for. The have−Px variables can be treated with relaxed semantics, since their
values only change once and do not need to change back (as there are no conditions on
have−Px = 0). Any red-black plan using the painting VB = {at, money} is also a plan for the
original task.

3.3.1 Tractable Fragment (ACI)

The initial line of research on red-black planning focused on its use as a heuristic [Domsh-
lak et al., 2015], culminating in the success of the Mercury planner in the 2014 Inter-
national Planning Competition [Katz and Hoffmann, 2014]. The red-black heuristic is
based on the tractable fragment ACI, which imposes some constraints on the painting to
make the generation of red-black plans possible in polynomial time. We summarize this
approach in the following, simplifying some details for easier exposition.

ACI requires that (a) the causal graph over the black variables is acyclic, and that (b) every
black variable is invertible. In this context, a variable v is invertible if, for every action a

that changes the value of v, there is an action a′ that can revert the value of v under the
same or easier conditions on other variables.

Example 3.4. Consider the task shown in Example 3.3. Painting the location of the car
black is possible. The black causal graph is acyclic (since it only contains one vertex and does
not have any arcs), and all actions with effects on the black variable (i.e., the drive actions)
are invertible. Each drive(x, y) action can be inverted by drive(y, x): The only precondition of
drive(y, x) is at= y, which must be available if drive(x, y) was applied before since it is one
of its effects.

On the other hand, painting the money variable black is not possible. While the causal graph
is again acyclic, the money variable is not invertible because its values can only decrease.

In the tractable fragment, a red-black plan can be generated by computing a fully delete-
relaxed plan π+, and running ACI plan repair on π+ to obtain a red-black plan πRB.
The repair process executes π+ step-by-step under the red-black semantics; whenever a

Chapter 3 Partial Delete Relaxation 25

condition (precondition or goal) vB = g on a black variable vB ∈ VB is not satisfied, a
subsequence π achieving vB = g is inserted into the plan. Generating such a repair se-
quence is always possible, in time polynomial in the length of π [Domshlak et al., 2015,
Theorem 11]: Since the black causal graph is acyclic, black variables can be moved indi-
vidually without affecting other black variables; and the invertibility criterion guarantees
that the required value g ∈ Dv can be reached from the current value of vB. For our exper-
iments, we adapted the more advanced red facts following algorithm for ACI plan repair
[Katz and Hoffmann, 2013; Domshlak et al., 2015, Section 5.2], which yields red-black
plans with less redundancy than those returned by the basic repair algorithm.

As discussed in Example 3.4, an ACI painting can only make the location of the car a black
variable. Yet in order to obtain conflict-free plans, the money variable would also need
to be black, but it cannot be handled through ACI. Intuitively, ACI is useful for variables
that have to move back and forth (like the location of car in the example), but it typically
can not handle situations such as resource consumption or other non-invertible variables.

3.3.2 Red-Black State-Space Search (RBS)

In order to enable convergence to real planning in the limit, we require red-black planning
methods that can handle arbitrary paintings. As general red-black planning is PSPACE-
complete [Domshlak et al., 2015, Theorem 3], this necessitates search. To this end, Gnad
et al. [2016] have introduced red-black state-space search (RBS)—a hybrid between for-
ward search and delete-relaxed planning: If VB = V, then RBS performs search with
standard semantics; if VB = ;, then RBS simplifies to fully delete-relaxed planning. Es-
sentially, RBS performs forward search with a relaxed fixed point over the red variables
at each state. When RBS reaches a goal state, it augments the extraction of the solu-
tion path with a relaxed plan extraction step at each state transition. We introduce this
framework in detail here as we introduce extensions for it in Chapter 6.

We first introduce some notations that we will use to define the underlying transition
system of red-black state-space search.

At each red-black state sRB, the red actions can be used to compute the relaxed fixed
point. The red actions of sRB, denoted AR(sRB), are actions that comply with the black
variable values of sRB, i.e., AR(sRB) := {aR | a ∈ A,pre(a)|VB ⊆ sRB,eff(a)|VB ⊆ sRB}, where
the preconditions and effects of aR are those of a projected onto the red variables.

The relaxed fixed point at sRB is now formalized in terms of a local red-black planning
task with only red variables, namely the taskΠ+(sRB) := 〈;,VR,AR(sRB), sRB|VR ,;〉. The red

26 Chapter 3 Partial Delete Relaxation

completion of sRB is the red-black stateF+(sRB)whereF+(sRB)|VB = sRB|VB , andF+(sRB)|VR

is the set of all facts reachable in Π+(sRB).

Definition 3.3 (Red-Black State Space). Let ΠRB = 〈VR,VB,A,I,G〉 be a red-black plan-
ning task. The red-black state space induced by ΠRB is the labeled transition system
ΘRB = 〈SRB,A,T RB,I,GRB〉, where

• SRB is the set of all states of ΠRB;

• A are the actions of ΠRB;

• T RB is defined by the actions of ΠRB: for each red-black state sRB ∈ SRB and action
a ∈A, iff a is applicable to F+(sRB) and eff(a)|VB * sRB, then sRB

a−→ F+(sRB)JaK is a
transition in T RB;

• I is the initial state of ΠRB; and

• GRB is the set of all goal states of ΠRB.

In the red-black state space, state transitions induced by actions which affect black vari-
ables are interleaved with red-variable fixed points.

Example 3.5. Consider again the task shown in Example 3.3. Assume that we paint the
money variable black, i.e., VB = {money}. In the initial state, at= B is reachable by red
actions, so it is added to the red completion of I. The applicable actions with effects on
black variables are buy(P1, 2) and buy(P2, 2). If we apply the action buy(P1, 2), we reach the
red-black state {at= {A, B}, money = 1, have−P1 = 1, have−P2 = 0}. The red completion of
that state does not add any new facts. We can again apply two different buy actions, namely
buy(P1, 1) and buy(P2, 1): applying buy(P2, 1) leads to the goal state {at= {A, B}, money = 0,

have−P1 = 1, have−P2 = 1}; applying buy(P1, 1) leads to a dead end where we are out of
money but have failed to obtain both products.

The red-black state space preserves red-black plans πRB in the sense that the subsequence
of actions in πRB that affect black variables labels a solution in ΘRB [Gnad et al., 2016,
Theorem 1].

In order to construct the solution, red-black plan extraction augments the sequence of
transitions taken in the state-space search by the necessary red actions through relaxed
plan extraction steps. The red-black plan extraction makes use of a variant of regression
projected to red variables: Given a set of red facts g and an action a, the red regression of g

over a is defined as RR(g, a) := (g \eff(a)|VR)∪pre(a)|VR . The red regression is overloaded
on action sequences by applying it recursively, i.e., the red regression of g over an action
sequence 〈a1, . . . , an〉 is defined as RR(g, 〈a1, . . . , an〉) := RR(RR(g, an), 〈a1, . . . , an−1〉).

Chapter 3 Partial Delete Relaxation 27

Let π = 〈a0, . . . , an−1〉 be a plan for ΘRB. If π is empty, then a red-black plan is just a
relaxed plan using the red actions to achieve the red goals G|VR . Otherwise, assume that
backward red-black plan extraction has already extracted a red-black plan for the postfix
πk := 〈ak, . . . , an−1〉, and assume that the transition taken by ak−1 in π is sRBk−1

ak−1−−→ sRBk .
Then the red goal for relaxed plan extraction at this transition is G(sRBk−1) := RR(G|VR , ak−1◦
πk). Intuitively, G(sRBk−1) is the set of red facts that must be achieved in sRBk−1 before ak−1

can be applied, and that cannot be achieved further along the plan. Any relaxed plan
extraction mechanism can now be used to find a relaxed plan π+(sRBk−1) achieving G(sRBk−1).
Then πk is replaced by π+(sRBk−1) ◦ ak−1 ◦ πk, and the red-black plan extraction process
continues recursively.

Example 3.6. Consider again Example 3.5, and consider the sequence of (black) actions
π = 〈buy(P1, 2), buy(P2, 1)〉 that reaches a goal state in ΘRB. Let sRB0 , sRB1 , sRB2 be the red-
black states traversed by π, i.e.,

• sRB0 = {at= A, money = 2, have−P1 = 0, have−P2 = 0},

• sRB1 = {at= {A, B}, money = 1, have−P1 = 1, have−P2 = 0}, and

• sRB2 = {at= {A, B}, money = 0, have−P1 = 1, have−P2 = 1}.

The red-black plan extraction starts by processing the empty postfix of the plan, where it
must find a relaxed plan to achieve G|VR = {at= A, have−P1 = 1, have−P2 = 1} from the
red-black state sRB2 . Since sRB2 already satisfies all goal facts, the resulting relaxed plan is
empty.

Next, the transition sRB1

buy(P2,1)−−−−−→ sRB2 is considered. The red goal at this step is G(sRB1) =

RR(G|VR , buy(P2, 1)) = {at= A, at= B, have−P2 = 1}. These facts are again already true in
sRB1 , so no additional actions are inserted into the plan.

Finally, the plan extraction procedure processes the transition sRB0

buy(P1,2)−−−−−→ sRB1 , with the
red goal G(sRB0) = RR(G|VR , 〈buy(P1, 2), buy(P2, 1)〉) = {at= A, at= B}. The fact at= B is
missing in sRB0 , so the red action drive(A, B) must be inserted into the plan to achieve it.

Thus, the overall red-black plan returned by the plan extraction procedure is 〈drive(A, B),

buy(P1, 2), buy(P2, 1)〉.

The red-black plan extraction procedure guarantees that the resulting plan πRB is indeed
a red-black plan for the original task [Gnad et al., 2016, Theorem 2].

Note that the red-black plan constructed in Example 3.6 is correct about the black vari-
able money, but has a flaw in the location of the car as it does not return to A. This is

28 Chapter 3 Partial Delete Relaxation

complementary to the tractable fragment ACI in Example 3.4, which can un-relax the
“at” variable but cannot address flaws in the money variable.

In Chapter 6, we propose a method motivated by this observation, combing red-black
state-space search with the tractable fragment ACI to handle each kind of flaw with the
most appropriate method. Additionally, we introduce a more flexible variant of red-black
state-space search that can use different paintings for different areas of the search space,
refining them adaptively when needed.

4 Online Relaxation Refine-
ment for Satisficing Planning

Most planning heuristics can compute their estimates at different levels of precision de-
pending on how the underlying relaxation is instantiated: Abstraction heuristics [e.g.,
Clarke et al., 1994; Culberson and Schaeffer, 1998; Edelkamp, 2001; Helmert et al.,
2007; 2014; Seipp and Helmert, 2018] construct an abstract state space, which can
range from just a single state (where all heuristic estimates would be zero) to the full
state space of the input task (computing the perfect heuristic h∗). Critical-path heuristics
[Haslum and Geffner, 2000; Haslum, 2006; Fickert et al., 2016] compute their estimates
based on the most costly subgoals towards the goal, where considering larger subgoals
results in a more accurate heuristic. Partial delete relaxation heuristics [Keyder et al.,
2014; Domshlak et al., 2015; Fickert et al., 2016] ignore some of the delete effects of the
input task, interpolating between the full delete relaxation and non-relaxed semantics.

All of these techniques offer a trade-off between heuristic accuracy and computational
complexity. A practical approach to make this decision is based on iterative refinement
operations: starting from a base abstraction, the abstraction is repeatedly refined until the
desired level of precision is reached. Most such heuristics eventually converge to h∗ with
sufficient refinement operations if it is not made infeasible through technical limitations
(e.g., time or memory constraints).

One commonly used strategy to refine a heuristic is counterexample-guided abstraction re-
finement [Clarke et al., 2003], short CEGAR. Starting from a simple abstraction, CEGAR
identifies flaws in the current model that are then resolved by making the abstraction
more precise. This can be applied iteratively, and typically leads to convergence as even-
tually the abstract model becomes perfect. The main advantage of the CEGAR approach
is that it focuses the refinement on areas where the heuristic is currently flawed, making
the refinement procedure more effective. In planning, CEGAR is used as the refinement
method for Cartesian abstractions [Seipp and Helmert, 2013; 2018], pattern database
heuristics [Rovner et al., 2019], and the partial delete relaxation heuristic hCFF based on
atomic conjunctions [Keyder et al., 2014; Fickert et al., 2016].

29

30 Chapter 4 Online Relaxation Refinement for Satisficing Planning

Traditionally, the heuristic is refined offline, before starting the search, until some crite-
rion is met, such as hitting a time or memory bound. Yet the most challenging aspects of
the planning task at hand may only be discovered during the search, and these difficulties
may not be considered when constructing the heuristic offline (this is particularly true for
CEGAR approaches which may identify flaws in the heuristic on the current region of the
search space). Online relaxation refinement, during search, thus is a promising approach.
However, it has seen limited success in the literature so far.

In optimal planning, online refinement has been tried using Cartesian abstraction heuris-
tics [Eifler and Fickert, 2018], as their fine-grained CEGAR method is well suited to be
applied during search. However, in practice, state-of-the-art variants using offline refine-
ment are still superior due to the added overhead and other practical limitations of these
online approaches. A different form of online refinement are per-state heuristic value up-
dates in real-time search [e.g., Korf, 1990; Koenig and Sun, 2009], though this method of
refining the heuristic does not generalize to the part of the state space that has not been
explored yet as the relaxation underlying the heuristic is not refined. If the search uses an
ensemble of heuristics, their combination can be improved via online refinement [Felner
et al., 2004; Fink, 2007; Katz and Domshlak, 2010; Karpas et al., 2011; Domshlak et al.,
2012; Seipp, 2021], but not with a guarantee of convergence.

Here, we explore online heuristic refinement for satisficing planning. A key issue for
online refinement is the question of when to refine the relaxation. Intuitively, refinement
should be triggered when the heuristic is inaccurate, such as in local minima or plateaus.
In satisficing planning, the state of the art is currently dominated by planners using
systematic search algorithms such as GBFS or weighted A∗. Detecting local minima or
plateaus online is difficult in these search algorithms, as the search does not focus on
limited areas of the search space at a time. Local search algorithms like hill-climbing
seem more suitable for this task as their exploration is constrained to small areas of the
search space. Yet such algorithms have fallen out of favor, since they are incomplete (the
search can get stuck in dead ends), and have been outperformed by complete search
algorithms very broadly and consistently for more than a decade.

In this chapter, we introduce changes fundamentally altering the properties and compet-
itiveness of local search in this context. We introduce multiple search algorithms that are
designed for online refinement, in particular a family of hill-climbing algorithms that we
call Refinement-HC. Similar to FF’s enforced hill-climbing [Hoffmann and Nebel, 2001],
Refinement-HC explores the local search space around the current state, but with the
addition of a bound on the local search. If the local search space does not contain a state
with lower heuristic value than that of the root state s of the local exploration, then s must
be a local minimum. Instead of trying to escape s through brute-force search (as enforced

Chapter 4 Online Relaxation Refinement for Satisficing Planning 31

hill-climbing would do), Refinement-HC aims to remove the local minimum from the search
space surface by refining the heuristic. If the refinement operation of the heuristic satis-
fies a suitable convergence criterion, Refinement-HC is a complete search algorithm, thus
fixing the major theoretical weakness of local search in satisficing planning.

The simplest variant of Refinement-HC uses a depth bound to limit the local search. This
bound controls the trade-off between search and refinement: Smaller bounds shift the
focus towards refinement, while larger bounds give the search more time to find a better
state. We devise a more effective approach leveraging novelty pruning [Lipovetzky and
Geffner, 2012; 2014] instead of a simple depth bound. This form of local search discards
states that do not contain facts that have not yet been seen in the current lookahead. We
further combine this technique with subgoal counting [Lipovetzky and Geffner, 2017],
which can be used as a simple and computationally efficient approximation for delete
relaxation heuristics, reducing the overhead of the local explorations.

In addition to our hill-climbing algorithms, we introduce an extension of GBFS with on-
line refinement. This variant of GBFS repeatedly performs bounded lookahead searches
based on Refinement-HC, trying to find a state with strictly better heuristic value. If the
lookahead search succeeds, it allows the GBFS search to quickly jump towards the goal;
otherwise refinement is triggered to improve the heuristic. This variant of GBFS is not just
useful for online refinement, but can also be used in combination with other heuristics
to boost search progress.

We instantiate our online-refinement search algorithms with the hCFF heuristic and eval-
uate them on the International Planning Competition (IPC) benchmarks as well as on the
Autoscale benchmarks [Torralba et al., 2021], which are designed to make performance
differences of recent planners more visible compared to the IPC instances of the same
domains. Our online-refinement methods yield substantial improvements over compara-
ble baselines and state-of-the-art planners such as LAMA [Richter and Westphal, 2010],
MERWIN [Katz et al., 2018], and Dual-BFWS [Francès et al., 2018; Lipovetzky and
Geffner, 2017], and are competitive even with complex state-of-the-art portfolios. On
the Autoscale benchmarks the advantage increases further, e.g., beating the portfolio
planner and winner of the IPC’18 satisficing track Fast Downward Stone Soup [Seipp
and Röger, 2018; Helmert et al., 2011] by more than 90 (out of 780) solved instances.

To summarize, our contributions are:

• A family of hill-climbing search algorithms called Refinement-HC that resolve local
minima through online refinement of the heuristic function instead of brute-force
search. We prove that Refinement-HC is complete if the refinement operation of
the heuristic meets a suitable convergence criterion.

32 Chapter 4 Online Relaxation Refinement for Satisficing Planning

• A variant of greedy best-first search augmented with local lookahead searches that
can be used both with and without online refinement.

• Extensive experiments on both the IPC and the Autoscale benchmarks, evaluating
different configurations of our algorithms, and demonstrating their advantages over
related baselines as well as state-of-the-art planners.

This chapter is structured as follows. First, we give a brief summary of the existing tech-
niques that we use in our algorithms (Section 4.1), and discuss the common setup of the
experiments in this chapter (Section 4.2). In Section 4.3, we give a formal description on
heuristic refinement operations, and describe the convergence property that is required to
make our hill-climbing search algorithms complete. We introduce our online-refinement
hill-climbing search algorithm Refinement-HC in Section 4.4, and show how to extend it
with novelty pruning (Section 4.5) and subgoal counting (Section 4.6). In Section 4.7,
we show how the ideas behind our hill-climbing algorithms can be transferred to GBFS.
We empirically compare our online-refinement search algorithms to related baselines and
to the state of the art in Section 4.8. Finally, we give a more detailed discussion of related
work (Section 4.9) before concluding this chapter in Section 4.10.

Papers and Contributions This chapter is based on the paper “Online Relaxation Re-
finement for Satisficing Planning: On Partial Delete Relaxation, Complete Hill-Climbing,
and Novelty Pruning” [Fickert and Hoffmann, 2022], and transitively on “Complete Lo-
cal Search: Boosting Hill-Climbing through Online Relaxation Refinement” [Fickert and
Hoffmann, 2017a], “Making Hill-Climbing Great Again through Online Relaxation Re-
finement and Novelty Pruning” [Fickert, 2018], and “A Novel Lookahead Strategy for
Delete Relaxation Heuristics in Greedy Best-First Search” [Fickert, 2020]. All papers were
principally developed by the author. Episode-EHC and the depth-bounded Refinement-
HC variant (Section 4.4) were already included in the author’s Master’s thesis [Fickert,
2016].

4.1 Background: Techniques We Build On

Our online-refinement search algorithms leverage novelty pruning and subgoal counting
for the local exploration component. We summarize these techniques in the following.

Chapter 4 Online Relaxation Refinement for Satisficing Planning 33

4.1.1 Novelty Pruning

Novelty is a concept to capture the similarity of a given state compared to a set of states
that have been seen before. Formally, given a set of states seen so far T , the novelty of a
state s is the size of the smallest tuple of facts t such that t ⊆ s and t * s′ for all s′ ∈ T .
In its simplest form, novelty can be used as a pruning function in a search, discarding all
states that are not sufficiently novel: A search with k-novelty pruning, which we denote
by Nk, prunes all states with novelty greater than k. This kind of pruning is used in
Iterated Width Search (IW) [Lipovetzky and Geffner, 2012], where each iteration IW(k)
is a simple breadth-first search with k-novelty pruning. IW(k) expands at most |F |k
states, and is incomplete unless k = |F |, where Nk only prunes duplicate states. Novelty
relates to the theoretical notion of width in that IW(w) is guaranteed to find a solution
for tasks of width at most w.

More recently, novelty measures have been introduced that take the heuristic into consid-
eration, comparing the novelty of a given state only to previously seen states with equal
[Lipovetzky and Geffner, 2017] or lower [Katz et al., 2017] heuristic value. Best-First
Width Search (BFWS) [Lipovetzky and Geffner, 2017] is a best-first search which uses a
novelty measure as the main evaluation function to guide the search.

4.1.2 Subgoal Counting

The best-performing BFWS configuration uses the novelty measure w#g,#r as the main
search guidance (breaking ties by #g), where, for a state s,

• #g(s) is the number of unsatisfied goal facts in s, and

• #r(s) is the number of achieved subgoals of the last relaxed plan π+ along the path
to s from the state in which π+ was computed [Lipovetzky and Geffner, 2014].

Relaxed plans are only computed in states s where #g(s) is different from its parent (and
in the initial state). The path-dependent counter #r then keeps track of the relaxed plan’s
subgoals that are achieved below such a state s. Combined with the fact that the main
evaluation function is based on simple counters, the infrequent computation of the main
heuristic makes BFWS extremely lightweight, which is one of the main reasons for its
success at the 2018 IPC [Francès et al., 2018].

In this chapter, we introduce several search algorithms that make use of the idea to
use subgoal counting (similar to the #r counter) as an approximation of a relaxation
heuristic. Given a plan π[h](s), we denote the subgoal-counting heuristic for that plan

34 Chapter 4 Online Relaxation Refinement for Satisficing Planning

by hSC[π[h](s)] (or short hSC where the underlying plan is not relevant or is clear from
context). In the context of hSC, a subgoal is a fact that appears as an effect in one of
the actions of the plan underlying hSC, and is either a goal or a precondition for another
action in the plan. For a state s′, the heuristic value hSC[π[h](s)](s′) is the number of
subgoals that are not true in at least one state along the path from s to s′.

The main difference of hSC compared to the #r counter is that hSC counts in the opposite
direction, making it consistent with other heuristics where lower values indicate that the
state is closer to the goal (this was not a concern in BFWS where #r was only used in a
novelty measure, not as a heuristic). Additionally, we also make a slight technical adjust-
ment in our definition of subgoals for hSC: While #r considers all effects of the actions in
the underlying plan as subgoals, we only consider the necessary ones. This change more
accurately captures the “intention” of the underlying plan, and in preliminary experi-
ments we found that it improves the performance of our search algorithms introduced
here as well as that of BFWS (though to a lesser degree).

4.2 Experiments Setup

Our online-refinement search algorithms are generally independent of the used heuristic,
given that it offers a refinement operation with the convergence properties discussed in
the following section. However, in our experiments, we use the hCFF heuristic, and the
required convergence properties have been derived from those of hCFF. We use Keyder
et al.’s refinement method for hCFF, with the minor change of extracting the conflicts from
the sequentialized plan as returned by hCFF instead of any valid ordering (cf. Section 5.3).

We evaluate our algorithms on all unique STRIPS instances from the satisficing tracks of
the International Planning Competition (IPC) domains up to 2018, which yields a total
of 1695 instances from 48 domains. All experiments with hill-climbing search algorithms
use helpful actions pruning, and all GBFS configurations (including our GBFS extension
introduced in Section 4.7) use a dual queue for preferred operators. When comparing
our methods to the state of the art, we additionally present results on the Autoscale
benchmarks (Section 4.8.3).

Several of the algorithms we experiment with (hCFF, hill-climbing) use randomness to
break ties. In these cases, we average the results over 5 runs with different random
seeds.

The source code of our implementations of hCFF and the online-refinement algorithms is
available at https://github.com/fickert/fast-downward-conjunctions.

https://github.com/fickert/fast-downward-conjunctions

Chapter 4 Online Relaxation Refinement for Satisficing Planning 35

4.3 Converging Heuristic Functions

Given a heuristic h and a refinement operation ρ, the strongest possible convergence
property would be to have h= h∗ after a finite number of applications of ρ. However, this
property is not always practical, and the hCFF heuristic in particular does not satisfy it.
We therefore identify a slightly weaker convergence property that suffices to make our
online-refinement hill-climbing algorithms complete. We start our discussion based on
hCFF, and then give a more general definition.

As pointed out in Section 3.2, the hC+ heuristic satisfies the strong convergence to h∗. The
hCFF heuristic on the other hand does not, because the C-relaxed plans are not optimal,
so the resulting heuristic value may be an overestimation of the actual goal distance.
However, there exists a set of conjunctions C such that hCFF agrees with h∗ on states s

where h∗(s) =∞, and its partially relaxed plans become real plans on solvable states.

More precisely, let C∗ := P(F) be the maximal set of conjunctions, considering all combi-
nations of facts of a given task with facts F . With C = C∗, the hCFF heuristic is converged,
and we can prove the aforementioned property:

Proposition 4.1. Let Π = 〈V,A,I,G〉 be a planning task, and let s be a state of Π. Then
there exists a set of conjunctions C such that (a) in case s is unsolvable, we have hCFF(s) =∞;
and (b) in case s is solvable, π[hCFF](s) is a plan for s. In particular, both (a) and (b) hold
for C = C∗.

Proof. We prove (a) and (b) for C = C∗ = P(F).

For (a): By Fickert et al.’s [2016] Corollary 1, hCFF(s) =∞ iff hC+(s) =∞, and there
exists C such that hC+(s) = h∗(s). As hC∗+ ≥ hC+ for any C , this shows the claim.

For (b): As s is solvable, h∗(s) 6=∞, so hC∗+(s) 6=∞ and hC∗FF(s) 6=∞. Thus, we can
run C-refinement on s. Assume that π[hCFF](s) is not a plan for s. Then, by Keyder
et al.’s [2014] Lemma 3, C-refinement on s generates an atomic conjunction c /∈ C∗, in
contradiction.

Since each refinement operation on hCFF adds a conjunction to C , eventually the heuris-
tic converges as C grows towards C∗. Proposition 4.1 shows that, with repeated refine-
ment, hCFF eventually detects all dead ends, and computes real plans for all other states.
This is exactly the convergence property that is required for completeness in our online-
refinement hill-climbing search algorithms.

Formally, we define a refinement operation as a function ρ that maps a heuristic h to a
modified heuristic ρ[h], where ρ is again applicable to its output. This function may

36 Chapter 4 Online Relaxation Refinement for Satisficing Planning

possibly require a state s as a secondary input where h(s) 6=∞ and the relaxed solution
π[h](s) is not a real plan (this is the case for the refinement operation of hCFF). This
allows us to define convergence as follows:

Definition 4.2 (Converging Heuristic). Let S be the set of states of a planning task Π,
and let h be a heuristic function with relaxed solutions π[h], and let ρ be a refinement
operation for h. The heuristic h converges with ρ if there exists N ∈ N0 such that, for all
states s ∈ S,

(C1) if h∗(s) =∞, then ρN [h](s) =∞, and

(C2) otherwise π[ρN [h]](s) is a plan for s.

As discussed, hCFF converges with Keyder et al.’s [2014] refinement method. Another ex-
ample for converging heuristics are abstraction heuristics (as long as their abstract state
space can be refined to the real state space, allowing them to converge to h∗). This is par-
ticularly true for Cartesian abstractions, which converge with a CEGAR-based refinement
operation similar to hCFF. However, in practice, combining multiple smaller Cartesian ab-
stractions (that are constrained to a subproblem of the input task) via cost partitionings
is the most effective approach [Seipp and Helmert, 2014; 2018; Seipp et al., 2020], yet
convergence is only guaranteed if abstractions are merged (which is expensive) or only a
single abstraction is used [Eifler and Fickert, 2018]. In principle though, any such heuris-
tic that converges according to Definition 4.2 is sufficient to guarantee completeness of
our hill-climbing algorithms introduced in the following.

4.4 Online-Refinement Hill-Climbing

We introduce a family of hill-climbing-style local search algorithms with the underlying
idea of escaping local minima by refining the heuristic instead of brute-force search. Stan-
dard hill-climbing (HC) performs a simple gradient descent, selecting the action that leads
to the immediate successor with lowest h value at each step until it reaches a state s with
h(s) = 0. The FF planner [Hoffmann and Nebel, 2001] introduced enforced hill-climbing
(EHC), which replaces this strategy with a complete lookahead at each step: From the
current state s, it runs breadth-first search (BrFS) until it finds a state s′ with h(s′)< h(s).
The lookahead strategy of our algorithms lies between those extremes: We consider more
than just the immediate successors, but add a bound to the lookahead search. This bound
can be defined by a lookahead horizon k (i.e., maximum search depth). If the lookahead
from s does not yield a state s′ with h(s′) < h(s), then s is a local minimum of depth k

Chapter 4 Online Relaxation Refinement for Satisficing Planning 37

under h. In that case, the search algorithm will attempt to raise h(s) through heuristic
refinement until the local minimum is removed from the search space surface.

We first describe an intermediate algorithm called Episode-EHC, which augments EHC
with restarts and a global dead-end cache. Based on Episode-EHC, we introduce our
local search algorithm with online heuristic refinement which we call Refinement-HC.

4.4.1 Episode-EHC

The FF planner uses EHCwith helpful actions pruning as an incomplete first search phase,
switching to GBFS in case of failure. Without helpful actions pruning, EHC can still fail
to find a solution by walking into a dead end that is not recognized by the heuristic. In
Episode-EHC, we handle this situation by globally marking the state as a dead end, and
then restarting from the initial state. While Episode-EHC is merely an intermediate step
towards our online-refinement search algorithms, we include it to show that the addition
of a global dead end cache is already sufficient to achieve completeness (without helpful
actions pruning).

Algorithm 1: Episode-EHC
1 Cde := ; // cross-episode dead-end cache
2 s := I
3 while I /∈ Cde do
4 Run BrFS (pruning states in Cde) from s for a state s′ with h(s′)< h(s) or s′ ⊇ G
5 if no such s′ exists then

// mark s as a dead end and start a new episode
6 Cde := Cde ∪ {s}
7 s := I
8 else
9 s := s′

10 if s ⊇ G then
11 return SOLVED

12 return UNSOLVABLE

Algorithm 1 shows the pseudocode for Episode-EHC. Essentially, it adds a restart mech-
anism to the standard EHC procedure. While EHC gives up in case it cannot find a better
state in the BrFS phase, Episode-EHC instead marks the root state of the lookahead as a
dead end and starts a new EHC episode by resetting the search to the initial state (Lines 5–
7). The global dead end cache ensures that the search continually makes progress: Either
an EHC episode succeeds by finding a solution, or it adds a new state to the dead-end
cache, pruning it in subsequent iterations.

Proposition 4.3. Episode-EHC is a complete search algorithm.

38 Chapter 4 Online Relaxation Refinement for Satisficing Planning

Proof. Every EHC episode adds at least one new state into Cde. After at most N episodes,
where N is the number of dead-end states, Cde contains all dead-ends. Hence, the EHC
episode N + 1 will either fail directly as I ∈ Cde, or will find a plan.

Note that using helpful actions pruning in Episode-EHC will break completeness: Since
the lookahead search space is not guaranteed to be fully explored (because successors
via non-helpful actions are pruned), the root state of the lookahead is not necessarily a
dead end and can not be safely added to Cde.

4.4.2 Refinement-HC

Based on Episode-EHC, we can now introduce Refinement-HC (short RHC). The key ex-
tensions of Refinement-HC over (Episode-)EHC are bounding the lookahead search, and
handling the lookahead failure by refining the heuristic. We assume that the heuristic
h is (1) based on abstract plans π[h], and (2) has a refinement operation ρ, which is
applicable in a state s if h(s) 6=∞ and π[h](s) is not a real plan for s. We will show that
Refinement-HC is complete even if the lookahead itself is not (Section 4.4.3). Hence, the
discussion below assumes that the lookahead may use helpful actions pruning.

The pseudocode for Refinement-HC is shown in Algorithm 2. The lookahead search depth
is bounded by a parameter k (denoted by BrFS[k]; line 3). Like in (Episode-)EHC, if the
lookahead from the current state s succeeds in finding a state s′ with h(s′) < h(s) within
that horizon, the search proceeds to that state for the next lookahead iteration (line 15).
However, if the lookahead does not yield such a state, then the heuristic is refined in s

(Lines 9 to 14). The refinement proceeds until h(s) is raised above the minimal heuristic
value seen in the lookahead, which aims to ensure that the next lookahead search suc-
ceeds in finding a better state. In contrast to Episode-EHC, Refinement-HC does not need
the cross-iteration dead-end cache. Instead, progress is guaranteed through converging
refinement operations, leading to completeness even with helpful actions pruning (see
the next subsection).

Note that the lookahead horizon k defines a trade-off between search and refinement.
For smaller values of k, most progress is made by refining the heuristic (with the extreme
at k = 1 which is similar to standard HC with the addition of heuristic refinement). On
the other hand, a larger horizon relaxes the requirement for refinement, thus giving the
search more opportunity to find a better state without frequent refinement operations;
until at the extreme end of k = ∞, the search is similar to EHC, triggering heuristic
refinement only if the entire search space below s is exhausted unsuccessfully. Interme-
diate values of k allow the refinement to focus on regions of the search space where the

Chapter 4 Online Relaxation Refinement for Satisficing Planning 39

Algorithm 2: Refinement-HC (RHC)
1 s := I
2 while h(I) 6=∞ do
3 Run BrFS[k] from s for a state s′ with h(s′)< h(s) or s′ ⊇ G
4 if no such s′ exists then // lookahead failed
5 if the lookahead search space was exhausted before reaching the depth bound then

// s is likely a dead end
6 HANDLE_EXHAUSTION

7 if the previous lookahead iteration also originated at s and s 6= I then
// previous refinement was unsuccessful

8 HANDLE_STAGNATION

// raise h(s) to resolve the local minimum
9 Let hmin be the minimal h value observed in the current lookahead

10 while h(s)≤ hmin do
11 REFINE_HEURISTIC
12 if h(s) =∞ then
13 HANDLE_DEAD_END
14 break

15 else
16 s := s′

17 if s ⊇ G then
18 return SOLVED

19 return UNSOLVABLE

20 macro REFINE_HEURISTIC
21 if π[h](s) is a plan for s then
22 return SOLVED
23 refine h on s, i.e., replace h with ρ[h]

heuristic is poor (deep local minima), leaving more shallow local minima to be escaped
via search.

The Refinement-HC pseudocode contains several macros (typeset in UPPERCASE)—in
contrast to subprocedures, any contained control-flow statements (like break, continue,
or return) refer to the position where the macro is inserted instead of the macro itself.
The REFINE_HEURISTIC macro applies one refinement step to the heuristic (line 20).
We first check whether the underlying relaxed plan is a real plan. If that is the case, we
can terminate the search, and return the relaxed plan appended to the path to s as the
solution. Otherwise, the preconditions for the refinement operation are satisfied, and we
can update the heuristic.

The HANDLE_* macros are called in specific situations that offer some freedom in our
search algorithm design. Before discussing the specific macros and the possible options

40 Chapter 4 Online Relaxation Refinement for Satisficing Planning

Algorithm 3: Backjump
input : a state s, a function λ : S 7→ bool describing the break condition
output: the first state s′ when chaining back towards I where λ(s′) = true, or I

1 while s 6= I do
2 s := the predecessor of s (along the path from I to s)
3 if λ(s) then
4 break

5 return s

for each scenario, we introduce the Backjump function (see Algorithm 3). The function is
given a state s and a Boolean function λ as inputs, and chains backwards until it reaches
a state s′ where λ(s′) = true, which it returns (or I if no state along the path satisfies λ).

Algorithm 4: Handle Lookahead Search Space Exhaustion
1 macro HANDLE_EXHAUSTION
2 switch Exhaustion do
3 case ExhaustionContinue do
4 pass // do nothing
5 case ExhaustionRestart do
6 REFINE_HEURISTIC
7 s := I
8 continue
9 case ExhaustionBackjump do

10 REFINE_HEURISTIC
11 s := Backjump(s,λ(s) 7→

BrFS[k] from s does not exhaust its search space before reaching the bound)
12 continue

First, the HANDLE_EXHAUSTION macro is called in case the search space is exhausted
without reaching the depth bound (Algorithm 2, line 6). Since we assume that the search
uses helpful actions pruning, this does not guarantee that the root state of the lookahead
is a dead end. However, it can still be an indication that the state is likely a dead end
and should be avoided. Algorithm 4 shows the different options that we consider: We can
simply ignore this case and proceed as normal (ExhaustionContinue), restart from the ini-
tial state (ExhaustionRestart), or jump back to a state where the lookahead search space
does not exhaust (ExhaustionBackjump). The backjump option performs a full looka-
head search as in a normal iteration of Refinement-HC, but prunes the states which the
backjump procedure has chained back from. This ensures that the search does not imme-
diately move back into the state from which we want to escape. Note that we need to do
one iteration of refinement when using either ExhaustionRestart or ExhaustionBackjump:

Chapter 4 Online Relaxation Refinement for Satisficing Planning 41

Otherwise, the search could eventually end up in the same state in which the exhaustion
case was triggered, causing an infinite loop.

Algorithm 5: Handle Refinement Stagnation
1 macro HANDLE_STAGNATION
2 switch Stagnation do
3 case StagnationContinue do
4 pass // do nothing
5 case StagnationRestart do
6 s := I
7 continue
8 case StagnationBackjump do
9 s := Backjump(s,λ(s) 7→

BrFS[k] from s yields a state s′ with h(s′)< h(s) or s′ ⊇ G)
10 continue

If the lookahead from s fails to find a better state s′, the heuristic is refined until h(s)

increases over hmin (the lowest h value observed in the lookahead). Note that hmin is not
recomputed during the iterative refinement, i.e., in the next lookahead after the refine-
ment phase hmin might have increased as well, which would trigger another refinement
phase with the same root state. It might be useful to treat this case separately (Algo-
rithm 2, line 8), and we consider several options via the HANDLE_STAGNATION macro
(see Algorithm 5). Similar to the lookahead search space exhaustion case, we can opt
to not do any special handling (StagnationContinue), restart from the initial state (Stag-
nationRestart), or go back to the last state where the lookahead would succeed. Like
with ExhaustionBackjump, the lookahead search in a backjump phase prunes states from
which the backjump procedure is chaining back.

Algorithm 6: Handle Dead End
1 macro HANDLE_DEAD_END
2 switch DeadEnd do
3 case DeadEndRestart do
4 s := I

5 case DeadEndBackjump do
6 s := Backjump(s,λ(s) 7→ h(s) 6=∞)

Finally, it might happen that the heuristic recognizes s as a dead end after a refinement
step (Algorithm 2, line 13). In that case, it does not make sense to start the next looka-
head iteration from s, and instead we consider either restarting or going back along the
current path to the most recent state that is not a dead end for the HANDLE_DEAD_END
macro (Algorithm 6).

42 Chapter 4 Online Relaxation Refinement for Satisficing Planning

4.4.3 Completeness

Like Episode-EHC, Refinement-HC can be understood as a series of EHC episodes where
new episodes are started by changing the root state of the next lookahead iteration via
the Backjump or Restart options of the HANDLE_* macros. Observe that in each such
episode, the search will either eventually reach a goal state or refine the heuristic at least
once: HANDLE_EXHAUSTION explicitly invokes the refinement procedure before starting
a new episode, stagnation can only happen if the heuristic was refined in the previous
lookahead iteration (in that same episode), and HANDLE_DEAD_END is only invoked after
the refinement step. If the heuristic converges with the refinement procedure according
to Definition 4.2, then the search must eventually reach a goal or refine the heuristic to
convergence, making Refinement-HC complete.

Theorem 4.4. Given a heuristic h converging with ρ, Refinement-HC is a complete search
algorithm.

Proof. Observe that every (unsuccessful) episode refines h at least once, and that this
sequence of refinements stops only if either (a) a plan is found, or (b) h(I) =∞. Say
the input task Π is unsolvable. Then (a) never happens, and termination on (b) is an
unsolvability proof as desired. Unless termination on (b) happens earlier, h will eventu-
ally converge. At this point, by Definition 4.2 (C1) we have h(s) =∞ for all unsolvable s

(including I), leading to termination on (b) (Algorithm 2, line 19).

Say now that Π is solvable. Then (b) never happens, and (a) is the desired termina-
tion. Unless that termination happens earlier, h will eventually converge, at which point
h(s) =∞ for all unsolvable s, and π[h](s) is a plan for all solvable s by Definition 4.2 (C2).
If, at that point, s is a dead end (h(s) =∞), the search will start a new episode from a
solvable state through HANDLE_DEAD_END (line 13). In that episode, the search will even-
tually reach a goal state (line 18) or call REFINE_HEURISTIC, where it terminates on (a)
since π[h](s) is a plan for s (line 22).

Note that the completeness proof holds for all 18 possible instantiations of the HANDLE_*
macros, i.e., an entire family of search algorithms. In fact, Refinement-HC does not even
depend on using depth-bounded breadth-first search as the lookahead search algorithm—
any incomplete lookahead search algorithm will do (even one that would always fail im-
mediately), as completeness is guaranteed through the converging heuristic.

For unsolvable tasks, completeness relies only on convergence property (C1) (h(I) =∞).
For solvable tasks, if the heuristic were to converge to h∗, then each BrFS[k] lookahead
iteration from s would always succeed in finding a state s′ with h(s′) < h(s) until a goal

Chapter 4 Online Relaxation Refinement for Satisficing Planning 43

1 2 3 4 5 6 7 8

1,320

1,340

1,360

1,380

1,400

1,420

∞

Coverage

1 2 3 4 5 6 7 8

500

1,000

1,500

∞

Evaluations per Second

1 2 3 4 5 6 7 8

400

500

600

700

800

∞

Expansions

1 2 3 4 5 6 7 8

0.2

0.25

0.3

0.35

∞

Search Time (s)

Figure 4.1: Results for Refinement-HC with varying depth bounds (x-axis): total cov-
erage, geometric mean of the heuristic evaluations per second, and geometric means

across commonly solved instances of the number of expansions and search time.

state is reached. Our weaker convergence property (C2) suffices since π[h](s) will be a
plan for s in case no better state is found during the lookahead and the refinement is
triggered.

4.4.4 Experiments

Our experiments in this subsection focus on the heuristic refinement vs. search trade-
off from varying the depth bound parameter in Refinement-HC. The HANDLE_* macros
are instantiated with DeadEndRestart, StagnationBackjump, and ExhaustionRestart (we
evaluate all possible instantiations in Section 4.5.3.2).

44 Chapter 4 Online Relaxation Refinement for Satisficing Planning

1 2 3 4 5 6 7 8
0%

20%

40%

60%

80%

100%

∞

Stagnation
Exhaustion
Refinement
Success

Figure 4.2: Lookahead result for Refinement-HC with varying depth bounds (x-axis).

Figure 4.1 highlights key statistics for Refinement-HC on the IPC benchmarks with depth
bounds ranging from 1 to 8 and∞. As expected, with lower depth bounds, the heuris-
tic is more accurate as refinement is triggered frequently, and the search needs fewer
expansions overall. On the other hand, frequent refinement makes the heuristic more
expensive to compute, and choosing larger depth bounds allows the heuristic to remain
computationally efficient. This trade-off has its sweet spot at a depth bound of 4, where
Refinement-HC reaches its peak coverage of 1413.8 (with a standard error of 5.89).

This pattern is consistent across most domains (though the exact sweet spot may vary
slightly). One notable exception is Sokoban, where the average coverage increases from
2.2 with a bound of 1 to 11.2 when setting the bound to infinity, and to a lesser degree on
Freecell (where coverage increases from 71.6 to 79.6). Conversely, smaller bounds work
best on Transport, where coverage decreases with growing bounds (from 56.2 down to
26.8); similarly, on TPP and Woodworking the coverage is mostly unaffected, but search
time consistently increases with larger depth bounds. These domains correspond to cases
where the conjunctions are generally useful for hCFF (Transport, TPP, Woodworking) vs.
cases where hFF works better (Sokoban, Freecell); Section 4.8.1 discusses this in more
detail.

Figure 4.2 shows the distribution of the lookahead results to give further insight into the
search behavior of Refinement-HC for different depth bounds. Recall that each lookahead
in Refinement-HC can have four distinct results: (1) it succeeds in finding a state with
lower heuristic value, (2) the heuristic is refined, (3) the HANDLE_EXHAUSTION case is
triggered, or (4) the HANDLE_STAGNATION case is triggered. With small depth bounds,
the heuristic refined much more frequently (after 28.8% of lookaheads for a depth bound
of 1), while larger bounds let the lookahead search run longer, enabling it to find a better
state more often.

Chapter 4 Online Relaxation Refinement for Satisficing Planning 45

4.5 Refinement-HC with Novelty Pruning

We next show that the hill-climbing methods just introduced can be synergistically com-
bined with novelty pruning. We first discuss how to replace the depth bound in the
Refinement-HC lookahead with novelty pruning and why this is a good idea; then we
introduce a generalization of novelty pruning over arbitrary conjunction sets C and point
out the possible synergy with online refinement of hCFF; finally, we evaluate these tech-
niques experimentally as before.

4.5.1 Replacing the Depth Bound with Novelty Pruning

As pointed out in Section 4.4.3, Refinement-HC is complete irrespective of the specific
lookahead search algorithms used. Depth-bounded BrFS seems like an obvious choice
since it is a minimal change from the traditional EHC lookahead, and it yields a good
intuition for heuristic refinement: the search is stuck in a local minimum or plateau of
the given depth, so refining the heuristic can make that search region easier to navigate.
Varying the depth bound allows some trade-off between prioritizing progress via search
vs. heuristic refinement. However, a simple depth bound on the lookahead ignores the
structure of the local space: It might be useful to explore certain regions in more depth,
while others could be abandoned early. Additionally, BrFS does not use a heuristic for
more effective guidance (though the expansion order becomes less important if the looka-
head uses a simple depth bound).

A more practical choice for bounding the lookahead is to use incomplete novelty prun-
ing. Using novelty pruning instead of restricting search depth still effectively bounds the
lookahead search, as there is only a finite number of novel states (e.g., at most |F | states
for simple 1-novelty pruning). With novelty pruning, regions of the local search space
that do not contain novel facts are avoided, whereas branches with states that do pass
the novelty test can be explored in more depth.

Essentially, our Refinement-HC variants with novelty pruning replace BrFS[k] by a search
algorithm with incomplete novelty pruning like IW(k). The only other notable change
is that HANDLE_EXHAUSTION is invoked if the lookahead search space was exhausted
without pruning a state due to novelty instead of search depth. Note that when using
novelty pruning instead of a depth bound, the expansion order of the lookahead becomes
important; not just to potentially find a state with lower heuristic value more quickly, but
it also changes which states are novel. In our experiments, we consider best-first search
with the open list orderings g, g + h, and h, i.e., BrFS, A∗, and GBFS.

46 Chapter 4 Online Relaxation Refinement for Satisficing Planning

The novelty in the lookahead search is only evaluated locally (i.e., only within a sin-
gle lookahead iteration, not across the overall search), since its main goal is to bound
each lookahead search, and not to apply aggressive cross-iteration pruning. Thus, we
only exchange the local search algorithm of the lookahead, retaining completeness of
Refinement-HC as discussed in Section 4.4.3.1

4.5.2 Novelty Pruning over Conjunctions

IW(k) applies k-novelty pruning (Nk), pruning all states that do not contain a novel
fact tuple of size at most k. We can generalize the definition of Nk to consider arbitrary
conjunctions instead of fixed-size tuples:

Definition 4.5 (C-Novelty Pruning). Given a set of conjunctions C and a set of states
seen so far T , a search with C-novelty pruning (denoted NC) prunes a state s if there
does not exist a conjunction c ∈ C such that c ⊆ s and c * s′ for all s′ ∈ T .

This idea of generalizing novelty pruning to arbitrary conjunctions was previously men-
tioned (e.g., in the conclusion of Katz et al.’s [2017] work on novelty heuristics), but has
not been explored before. A key problem is how to effectively generate a set C of con-
junctions specifically suited for novelty pruning. We do not provide an answer to that
question here, however, we realize the obvious synergy with partial delete relaxation
methods selecting such a set of conjunctions. Running Refinement-HC with hCFF, we can
simply re-use the set of conjunctions from hCFF for novelty pruning as well.

Using NC in the lookahead search for Refinement-HC with hCFF has an interesting syn-
ergistic side effect. The hCFF heuristic becomes more costly to compute with each added
conjunction, so refinement should be applied carefully. On the other hand, the pruning
provided by NC becomes less aggressive as C grows. Thus, as more conjunctions are
added to C , the lookahead can expand more states before refinement is triggered, re-
ducing the overhead for hCFF, and gradually shifting the trade-off between search and
refinement towards the former.

4.5.3 Experiments

We next compare Refinement-HC with different types of novelty pruning to the depth-
bounded variant, and then compare different expansion orders in the lookahead with

1Note that even with global novelty pruning Refinement-HC would still be complete due to the refinement
of the heuristic, though extremely ineffective in practice as it would usually require convergence on the initial
state as the search eventually runs out of novel states.

Chapter 4 Online Relaxation Refinement for Satisficing Planning 47

Lookahead Search BrFS[4] BrFS[N1] BrFS[NC] BrFS[N2] A∗[NC] GBFS[NC]

Agricola (20) 7.8 10.2 10.0 11.8 11.0 11.6
Airport (50) 45.0 46.6 46.6 33.2 47.4 46.4
Barman (40) 30.8 30.4 28.8 3.6 40.0 40.0
Childsnack (20) 2.8 5.2 6.0 5.2 8.8 9.6
DataNetwork (20) 15.0 15.0 16.4 10.2 17.2 16.6
Freecell (80) 73.0 76.2 76.8 78.2 77.2 78.0
GED (20) 14.6 20.0 20.0 19.0 20.0 20.0
Logistics (63) 59.4 63.0 63.0 59.0 63.0 63.0
Parking (40) 23.4 40.0 39.4 33.2 40.0 40.0
Pipes-notank (50) 45.8 46.0 45.8 42.8 45.6 45.6
Snake (20) 6.8 10.4 10.2 11.8 12.6 12.4
Sokoban (30) 6.6 10.4 11.2 11.6 11.6 11.0
Spider (20) 1.0 9.6 11.6 12.0 12.4 12.2
Storage (30) 26.8 28.6 28.4 24.2 28.4 28.8
Tetris (20) 10.0 14.0 14.2 1.0 16.4 15.8
Transport (60) 39.2 43.4 42.0 33.8 51.6 54.2
VisitAll (37) 15.4 16.6 16.2 5.2 18.0 19.2

Others (1075) 990.4 984.6 991.0 982.8 994.0 993.0
Sum (1695) 1413.8 1470.2 1477.6 1378.6 1515.2 1517.4
Std. Error 5.9 5.3 5.2 4.9 4.2 4.6
Exp. per Lookahead 27.9 15.3 16.6 43.6 15.2 14.9
Lookahead Success 88.5% 87.8% 88.7% 95.4% 89.5% 89.6%

Table 4.1: Coverage results for Refinement-HC with BrFS lookahead and a depth bound
of 4 compared to BrFS with different types of novelty pruning (left part of the table), and
A∗ and GBFS lookahead with C-novelty pruning (right part of the table). Domains where
the difference in coverage between the best and worst configuration is at most 3 are
grouped into “Others”. The last two rows additionally show the number of expansions
per fully explored lookahead (geometric mean across all commonly solved instances
where at least one lookahead was fully explored by all configurations) and the average
percentage of lookaheads that result in a state with lower heuristic value to be found.

novelty pruning. Finally, we evaluate all instantiations of the HANDLE_* macros with the
best-performing lookahead search.

4.5.3.1 Comparison of Lookahead Search Algorithms

We first compare different lookahead search algorithms for Refinement-HC, again using
the macro instantiations DeadEndRestart, StagnationBackjump, and ExhaustionRestart.

The left side of Table 4.1 shows the coverage for Refinement-HC with breadth-first search
lookahead using different bounding methods. The Refinement-HC variants with N1 and
NC heavily outperform the best depth-bounded variant by +56.4 respectively +63.8 over-
all coverage. Comparing the IW(C) and BrFS[4] variants directly, the former is better in
23 domains and worse in only 6. The most significant gains come from Parking (+16

48 Chapter 4 Online Relaxation Refinement for Satisficing Planning

solved instances), Spider (+10.6), and GED (+5.4). However, in domains where the
depth-bounded lookaheadworks better, the difference is comparatively small: The largest
per-domain losses in coverage are just two fewer solved instances in each of Barman and
Nomystery.

The novelty variant using N2 performs considerably worse compared to the ones with N1

and NC because the pruning is much less aggressive, so each lookahead may expand a
large number of states before exhausting the novel ones. Most domains where the IW(2)
lookahead works well are those that also benefit from large depth bounds, examples are
Freecell, Sokoban, and Spider.

The last two rows of Table 4.1 give further insight into the difference between using a
depth bound compared to novelty pruning in the lookahead. The “Exp. per Lookahead”
statistic indicates the average lookahead search space size, giving some insight into the
search vs. refinement trade-off for the different bounding methods. Specifically, it shows
how many states are expanded in lookahead iterations where the search space is fully
exhausted until the depth bound is reached, or all novel states are expanded (i.e., those
resulting in refinement or stagnation). While BrFS[4] considers more states on average
compared to IW(1) and IW(C), the percentage of lookahead iterations that result in a
state with lower heuristic value to be found is similar (88.5% compared to 87.8% re-
spectively 88.7%), which shows that the novelty-based lookahead is similarly effective
with less search effort. Overall, Refinement-HC with IW(C) needs on average 38% fewer
expansions to find a solution compared to Refinement-HC with BrFS[4] lookahead on
commonly solved instances. For our remaining experiments that use a novelty-based
lookahead we stick to NC as the best-performing novelty variant overall.

Consider now the right part of Table 4.1, which shows the results when the lookahead uses
the heuristic for guidance instead of a pure breadth-first search. Using either A∗ or GBFS
instead of BrFS for the lookahead (i.e., replacing BrFS[k] by A∗ or GBFS with novelty
pruning in Algorithm 2 and the HANDLE_* macros) further boosts the performance of
Refinement-HC: The lookahead success rate improves slightly, and these variants achieve
37.6 respectively 39.8 more solved instances in total. The biggest difference can be seen
in Transport (+12.2 coverage for GBFS[NC] compared to BrFS[NC]) and Barman (+11.2),
though the advantage is consistent across most domains, dropping only slightly in 5
domains (yet at most by −0.6).

4.5.3.2 Evaluating the Macro Choices

Table 4.2 shows the coverage for all available combinations of options in the HANDLE_*
macros. Depending on the chosen settings, the coverage can vary significantly. For the

Chapter 4 Online Relaxation Refinement for Satisficing Planning 49

DEBackjump DERestart

SContinue SBackjump SRestart SContinue SBackjump SRestart

EContinue 1412.0 1422.0 1397.2 1451.8 1457.0 1415.8
EBackjump 1436.2 1440.6 1457.4 1476.8 1479.2 1465.4
ERestart 1510.6 1514.6 1467.8 1508.2 1517.4 1465.8

Table 4.2: Coverage of Refinement-HC using GBFS with C-novelty pruning as the looka-
head search algorithm for different instantiations of the HANDLE_*macros (abbreviating
DeadEnd (DE), Stagnation (S), and Exhaustion (E); results are averaged over 5 runs, the

standard error ranges from 4.0 to 6.5).

DeadEnd and Stagnation options, there are no clear winners, but we can make some
general observations:

(a) DeadEndBackjump is inferior to DeadEndRestart in most cases.

(b) For Stagnation, Backjump is usually the best configuration, and Restart is generally
the worst.

(c) For Exhaustion, Restart is always the best configuration, and Continue is always the
worst.

Observation (a) shows that recognized dead ends are most effectively escaped through a
full restart. However, when combined with ExhaustionRestart, the results for the different
choices of the DeadEnd options are very close, as restarting too frequently diminishes its
benefit.

Regarding observation (b); restarting the search in case of stagnation seems to be an
overreaction, while backjumping can avoid excessive refinement in a single state. Both
Restart and Backjump reduce the number of conjunctions added during the search com-
pared to Continue as expected, but restarting from the initial state adds significant search
effort (+26% expansions compared to Continue, +25%over Backjump) as the search must
redo some of the effort to move away from the initial state.

For Exhaustion, restarting from the initial state is clearly the best choice. The results indi-
cate that, if the search space is exhausted with helpful actions pruning, the root state of
the lookahead is indeed likely a dead end, and a restart from the initial state effectively
escapes that region of the search space (similar to the observations for the DeadEnd op-
tions). The advantage of ExhaustionRestart is most apparent in domains with many dead
ends. For example, in Sokoban, the ExhaustionRestart configurations have a coverage
of 11.2 on average compared to 3.3 for ExhaustionContinue and 6.7 for ExhaustionBack-
jump, and in Pegsol the same comparison yields average coverage values of 34.7, 20.9,
and 24.1.

50 Chapter 4 Online Relaxation Refinement for Satisficing Planning

The overall best-performing configuration is also the combination of the individually
strongest options in DeadEndRestart with StagnationBackjump and ExhaustionRestart,
with an overall coverage of 1517.4± 4.6. This result is robust across most domains; the
only two domains where other configurations solve at least three more instances on aver-
age are Snake (where the mentioned configuration has an average coverage of 12.4, but
configurations using StagnationBackjump and ExhaustionBackjump have 15.6) and Tetris
(15.8 vs. 19.2 for configurations with StagnationContinue and either ExhaustionContinue
or ExhaustionBackjump).

4.6 Refinement-HC with Relaxed Subgoal Counting

We now show that relaxed subgoal counting can be leveraged to speed up the costly com-
putation arising from refined heuristic functions during Refinement-HC. We first describe
our idea and method, then evaluate the method experimentally.

4.6.1 Method

While the heuristic becomes more accurate through iterative refinement, it typically
also becomes more computationally expensive to compute, which is particularly true for
hCFF. In depth-bounded Refinement-HC, one can attempt to compensate for this effect
by choosing the depth bound sufficiently large, thereby avoiding too many refinement
operations and shifting more responsibility to the search (yet this is detrimental to over-
all performance). Another strategy to counteract the computational complexity of the
heuristic is to attempt to reduce the frequency of heuristic evaluations. One way is to
cache heuristic values, thereby avoiding reevaluations on states that have been seen be-
fore, but that approach contradicts the purpose of online refinement.

The solution we propose here is to use an approximative heuristic instead: We compute
a relaxed plan only in the root state of the current lookahead, and then use a subgoal-
counting heuristic hSC based on that to guide the lookahead search. In Refinement-HC, we
check all states s′ that are explored in the lookahead from s for h(s′) < h(s), considering
them as potential root states for the next lookahead iteration. With our subgoal-counting
variant, we only compute h twice for each lookahead iteration: once in the root state
s, and then on the state from the lookahead with minimal hSC value s′, which is the
only state for which we test h(s′) < h(s). If the test passes, the next lookahead iteration
continues from s′ as before. Otherwise, we refine the heuristic once and continue again
from s.

Chapter 4 Online Relaxation Refinement for Satisficing Planning 51

Algorithm 7: Refinement-HC with Subgoal Counting (RHC-SC)
1 s := I
2 while h(I) 6=∞ do
3 Let hSC be the subgoal counting heuristic derived from π[h](s)
4 Run a bounded lookahead search from s
5 Let s′ be the state with minimal hSC value seen in the lookahead
6 if h(s′)≥ h(s) then // lookahead failed
7 if lookahead search space was exhausted without pruning any state then

// s is a dead end (no helpful actions pruning)
8 Mark s as a dead end, pruning it in future lookaheads
9 HANDLE_DEAD_END

10 if the previous lookahead iteration also originated at s and s 6= I then
// previous refinement was unsuccessful

11 HANDLE_STAGNATION

// refine h once
12 REFINE_HEURISTIC
13 if h(s) =∞ then
14 HANDLE_DEAD_END
15 break

16 else
17 s := s′

18 if s ⊇ G then
19 return SOLVED

20 return UNSOLVABLE

The pseudocode for Refinement-HC with subgoal counting (short RHC-SC) is shown in
Algorithm 7. The macros are defined as before (only in the Backjump procedure of the
HANDLE_STAGNATION macro, we stop chaining back if the state with minimal hSC value
seen in the lookahead has a lower h value). One major change is that we do not use
helpful actions pruning in the lookahead since hSC does not define helpful actions. This
means that we can collapse the “search space exhaustion” case with the “dead end” case,
as not reaching the lookahead horizon means that s is in fact a dead end (line 9). The
main motivations behind only doing a single iteration of refinement instead of refining h

until h(s)> h(s′) are (a) since we only sample one state in the lookahead, the difference
between h(s) and h(s′) might be large, leading to many iterations of refinement, and
(b) the lookahead is very cheap, so we can afford to start another one immediately after
each refinement step.

When using a subgoal counting heuristic hSC, the two key challenges are (1) selecting
the underlying plan from which the subgoals are derived, and (2) ensuring that hSC

values are not compared across different underlying plans. In BFWS [Lipovetzky and
Geffner, 2017], relaxed plans for subgoal counting are computed in states where the

52 Chapter 4 Online Relaxation Refinement for Satisficing Planning

DEBackjump DERestart

SContinue SBackjump SRestart SContinue SBackjump SRestart

g 1419.0 1482.4 1277.2 1439.4 1491.2 1278.8
g + h 1479.8 1526.8 1437.6 1504.0 1534.0 1435.2

h 1450.2 1507.6 1428.0 1467.0 1510.4 1427.2

Table 4.3: Coverage of Refinement-HC with subgoal counting and C-novelty pruning
for different instantiations of the HANDLE_* macros and different expansion orders in

the lookahead (averaged over 5 runs, the standard error ranges from 4.5 to 5.8).

number of satisfied top-level goals increases over that of its parent. However, BFWS does
compare subgoal-counting values between states with potentially different underlying
relaxed plans, though the subgoal counting value is not used as a heuristic directly but
instead as part of a novelty measure, making challenge (2) less important. The lookahead
of Refinement-HC is perfectly suitable for a subgoal counting heuristic, since the root state
of the lookahead is a straightforward choice for computing a relaxed plan with which to
instantiate hSC, and only one instance of the heuristic is used in each lookahead (ensuring
comparability between the hSC values).

Refinement-HC with subgoal counting inherits the completeness property from standard
Refinement-HC:

Proposition 4.6. Given a heuristic h converging with ρ, Refinement-HC with subgoal count-
ing is a complete search algorithm.

Proof. Observe again that every (unsuccessful) episode refines h at least once, and that
this sequence of refinements stops only if either (a) a plan is found, or (b) h(I) =∞.
Then by the same chain of reasoning as applied in the proof of Theorem 4.4, Refinement-
HC with subgoal counting is complete.

4.6.2 Experiments

First, we again evaluate the different choices for the HANDLE_* macros and different
expansion orders for the lookahead search. We highlight an important implementation
detail, and finally compare RHC-SC to Refinement-HC without subgoal counting. In all
experiments for RHC-SC we use NC to bound the lookahead search.

Chapter 4 Online Relaxation Refinement for Satisficing Planning 53

4.6.2.1 Evaluating the Macro Choices

Table 4.3 shows an overview of the different configurations for RHC-SC. The main take-
aways are:

(a) DeadEndRestart is better than DeadEndBackjump when using Continue or Backjump
for the HANDLE_STAGNATION case, and they are close to equal when using Stagna-
tionRestart.

(b) StagnationBackjump is generally the best option followed by StagnationContinue,
while the performance of StagnationRestart trails far behind.

(c) Using the expansion order g + h works best, followed by h and then g.

Consistent to our results in the previous section, restarts can help performance, but not if
done too frequently (i.e., combining DeadEndRestartwith StagnationRestart is not a good
idea). Like before, DeadEndRestart is consistently the best option. The only configura-
tions where DeadEndBackjump and DeadEndRestart have similar performance are those
that are combined with StagnationRestart, but both StagnationBackjump and Stagnation-
Continue yield much better results overall.

Using hSC to guide the lookahead positively impacts the results compared to pure breadth-
first search. In Refinement-HC without subgoal counting, expanding nodes greedily by
hCFF in the lookahead works best, whereas for the less accurate hSC the more conservative
choice of an open list ordered by g + h is superior.

Overall, the combination of DeadEndRestart and StagnationBackjump with an A∗ looka-
head works best, yielding a coverage of 1534± 5.1. There are domains where other
combinations are better though: On Parking and Airport, configurations using BrFS for
the lookahead have a coverage of up to 39.6 (+19.8 over the overall best combination)
respectively 47.8 (+8); on Thoughtful, configurations using StagnationRestart have a
coverage of up to 20 (+8).

4.6.2.2 Memory Overhead

In satisficing planning with limits similar to the settings used by the International Plan-
ning Competitions (30 minute timeout and memory limits between 2 and 8 GB), time
is usually the most constraining factor. While there exist some domains where already
the (grounded) problem representation poses an issue for standard memory constraints
(e.g., Organic Synthesis), the memory usage is mostly dominated by the state data of

54 Chapter 4 Online Relaxation Refinement for Satisficing Planning

104 105 106

104

105

106

un
s.

unsolved

RHC-SC

RH
C-
SC

(n
aiv

ei
m
pl
em

en
ta
tio

n)

Figure 4.3: Comparison of the peak searchmemory usage (in kilobytes) for Refinement-
HC with subgoal counting.

generated states, which is kept for duplicate detection. Since many satisficing planners
use heuristics that are non-trivial to compute, they tend to hit the time limit before the
number of generated states becomes an issue.

The subgoal-based lookahead in RHC-SC may generate a large number of states very
quickly since the heuristic is a simple counter. To avoid memory issues, we release the
states that were generated in each lookahead frommemory, keeping only the states along
the current path from the initial state and those that were evaluated by hCFF (to be able
to prune states with hCFF =∞).

Figure 4.3 shows a comparison of the memory usage of our implementation to a naive
version that keeps all generated states in memory. Except for few random outliers, the
naive implementation uses significantly more memory, often by more than one order of
magnitude. The naive implementation runs out of memory on 55–57 instances (depend-
ing on the random seed) compared to just 5 instances when the lookahead states are
discarded. In Childsnack and Parking, this implementation detail has the biggest impact,
reducing the number of instances where the search runs out of memory from 11 (out of
20) respectively 27 (out of 40) to zero, and increasing coverage by 3.6 respectively 5.4.

Chapter 4 Online Relaxation Refinement for Satisficing Planning 55

Coverage RHC RHC-SC Diff.
Agricola (20) 11.6 11.8 +0.2
Airport (50) 46.4 39.8 −6.6
Childsnack (20) 9.6 13.4 +3.8
DataNetwork (20) 16.6 19.4 +2.8
Freecell (80) 78.0 77.4 −0.6
Nomystery (20) 10.4 10.0 −0.4
Openstacks (90) 89.6 90.0 +0.4
OrgSynth-split (20) 2.6 1.6 −1
Parcprinter (40) 40.0 39.8 −0.2
Parking (40) 40.0 19.8 −20.2
Pegsol (35) 35.0 33.8 −1.2
Pipes-notank (50) 45.6 48.8 +3.2
Pipes-tank (50) 44.2 47.0 +2.8
Satellite (36) 36.0 31.0 −5
Snake (20) 12.4 18.0 +5.6
Sokoban (30) 11.0 11.4 +0.4
Spider (20) 12.2 14.2 +2
Storage (30) 28.8 30.0 +1.2
Termes (20) 4.0 9.6 +5.6
Tetris (20) 15.8 20.0 +4.2
Thoughtful (20) 20.0 12.0 −8
Tidybot (20) 18.0 19.4 +1.4
Transport (60) 54.2 60.0 +5.8
Trucks (30) 16.2 18.8 +2.6
VisitAll (37) 19.2 37.0 +17.8

Others (817) 800.0 800.0 ± 0
Sum (1695) 1517.4 1534.0 +16.6
Std. Error 4.6 5.1

Table 4.4: Coverage of Refinement-HC with vs. without subgoal counting. Domains
with equal coverage are grouped into “Others”.

4.6.2.3 Comparison to Refinement-HC without Subgoal Counting

Table 4.4 shows a direct comparison of the coverage for the best-performing variants of
Refinement-HC with vs. without subgoal counting. Both RHC and RHC-SC fully solve all
domains that are grouped into Others, except for Organic Synthesis, where both solve 3
instances and the Fast Downward translator runs out of memory on the other 17. None
of the two variants consistently outperforms the other, however, there are 16 domains
where RHC-SC has the upper hand compared to 9 where it is worse. The domains with
the biggest change in coverage are Parking (−20.2) and VisitAll (+17.8). In Parking,
the subgoal-counting heuristic is unreliable: Only 3.6% of lookahead searches result in
a state with lower hCFF value to be found for RHC-SC (compared to 93.7% for RHC). On

56 Chapter 4 Online Relaxation Refinement for Satisficing Planning

10−2 10−1 100 101 102 103
10−2

10−1

100

101

102

103

Search Time

100 101 102 103 104
100

101

102

103

104

Solution Cost

0 0.2 0.4 0.6
0

0.2

0.4

0.6

Lookahead Refinement

100 101 102 103 104

100

101

102

103

104

Added Conjunctions

Figure 4.4: Search time, solution cost, percentage of lookaheads that result in refine-
ment, and number of added conjunctions for commonly solved instances of RHC (x-axis)

and RHC-SC (y-axis).

the other hand, hSC yields good guidance in VisitAll, enabling RHC-SC to make significant
jumps towards the goal after each lookahead iteration.

Figure 4.4 compares additional statistics between Refinement-HC with and without sub-
goal counting. When aggregating across the full benchmark set, the overall search times
for Refinement-HC and RHC-SC are very similar. However, the scatter plot reveals that
there are many instances where they differ by multiple orders of magnitude. As men-
tioned above, there are extreme cases where hSC is consistently accurate (VisitAll) or
inaccurate (Parking), but also many domains where either approach has an advantage
on some instances. Using the weaker hSC heuristic in the lookahead also comes with a
slight penalty in solution cost (on average, plans computed by RHC are 12.8% cheaper

Chapter 4 Online Relaxation Refinement for Satisficing Planning 57

than those of RHC-SC).

Many more lookahead iterations of Refinement-HC with subgoal counting result in re-
finement compared to standard Refinement-HC. This is expected, since RHC-SC already
triggers refinement if one lookahead state (i.e., the state with minimal hSC value) does not
have a better hCFF value than the root state of the lookahead, whereas RHC may consider
all states that have been explored in the lookahead. However, this does not necessarily
result in more added conjunctions overall, mainly because the refinement procedure in
RHC-SC is more conservative, adding just one conjunction to hCFF instead of refining until
the hCFF value of the lookahead root state increases sufficiently.

4.7 Greedy Best-First Search

Wefinally consider greedy best-first search as a systematic-search alternative to hill climb-
ing. We first discuss general challenges with online refinement in GBFS, then introduce
our online-refinement GBFS variant, and evaluate it empirically.

4.7.1 Online Refinement in GBFS

Intuitively, hill-climbing algorithms are well suited for online refinement because of the
local exploration phases, giving a clear indication that the heuristic is weak on the local
search space. However, most state-of-the-art satisficing planners are based on greedy
best-first search, which maintains a global open list, and expands nodes by lowest h

values. Since GBFS does not have a similar focus on smaller areas of the search space, it
is much harder to identify local minima or plateaus in the search procedure (and thereby
more difficult to define suitable refinement criteria).

Our initial ideas for online refinement in GBFS were focused on attempting to identify
local minima, following the central paradigm of Refinement-HC. Specifically, we wanted
to consider the set S0 of states with the lowest h value seen so far, and then track the
evaluation of their successors (this is not straightforward even just for the immediate
successors, as GBFS is typically used with lazy evaluation, where the heuristic is only
evaluated on expansion, not generation, of a state). If h has been evaluated on all the
successors of at least one state s ∈ S0 and none of these successors have a better heuristic
value, then s is a local minimum under h and we have identified an opportunity for
refinement. We implemented this idea, including different variants where we require that
all states in S0 are proven local minima and/or consider successors up to a given depth,
as well as refining only a single conjunction instead of refining until the local minimum is

58 Chapter 4 Online Relaxation Refinement for Satisficing Planning

removed from the search space surface. However, in preliminary experiments, we found
this variant of GBFS to be vastly inferior to our hill-climbing algorithms, with the overall
coverage ranging between 1368 and 1434.

Instead, we augment GBFS with a lookahead function similar to the one we use in
Refinement-HC. Note that the lookahead search based on subgoal counting as introduced
in Section 4.6 is particularly suitable as a lookahead function in GBFS due to its low over-
head. This lookahead strategy achieves two purposes in GBFS: (1) it can identify states
where refining the heuristic may be effective (if the lookahead does not yield a better
state according to the heuristic), and (2) it allows the search to skip ahead to a state
closer to the goal (if the lookahead does find a better state).2

4.7.2 GBFS with Subgoal-Counting Lookahead and Online Refinement

As discussed in the context of Refinement-HC, the lookahead search based on subgoals
is extremely lightweight, which opens up its use as a lookahead method in GBFS. Our
GBFS variant, that we call GBFS-SCL (GBFS with Subgoal-Counting Lookahead)3, invokes
this lookahead procedure after each expansion, and either inserts the resulting state at
the front of the open list, or refines the heuristic.

Algorithm 8 shows the pseudocode of GBFS-SCL, with the changes to standard GBFS
highlighted in red. After each expansion, GBFS-SCL invokes the lookahead search that is
also used by RHC-SC, i.e., it performs a bounded lookahead search using hSC for guidance.
The lookahead search maintains its own closed list starting from an empty one at the
beginning of each lookahead, and does not consider the closed list of the overall search
(neither for lookup nor updating). Like in RHC-SC, the lookahead search returns the
best lookahead state s′ according to hSC. If s′ is already closed, the search proceeds like
standard GBFS.4 Otherwise, s′ is evaluated with the main heuristic h. If the heuristic
value decreases from the root state of the lookahead, then s′ is inserted at the front of
the open list, and otherwise the heuristic is refined. When GBFS-SCL finds a goal state,
it reconstructs the plan from parent pointers like standard GBFS. Hence, we store the
parent information for the path to s′ from the lookahead, which can be updated if a
better path (with lower g value) is found.

2This method relates to previous works on lookahead strategies in GBFS [Vidal, 2004; 2011; Nakhost
and Müller, 2009; Lipovetzky and Geffner, 2017]; we will discuss these below.

3In the original conference paper [Fickert, 2020] this algorithm was introduced as GBFS-RSL (for Relaxed
Subgoals Lookahead). We prefer the name GBFS-SCL because it seems slightly more apt and for consistency
with RHC-SC.

4We tested other options on what to do if s′ is closed (namely, (a) invoking REFINE_HEURISTIC, or
(b) invoking REFINE_HEURISTIC if h(s′) < h(s)), but found no statistically significant effect on the results.
We thus stick to what we consider the most straightforward option of just continuing without refinement as
shown in the pseudocode.

Chapter 4 Online Relaxation Refinement for Satisficing Planning 59

Algorithm 8: GBFS-SCL
1 Open := [I]
2 Closed := ;
3 while Open 6= [] do
4 s := Open.pop()
5 if s ∈ Closed then
6 continue
7 if s ⊇ G then
8 return SOLVED
9 Closed := Closed∪ {s}

10 if h(s) 6=∞ then
11 Insert the successors of s into Open
12 Let hSC be the subgoal counting heuristic derived from π[h](s)
13 Run a bounded lookahead search from s
14 Let s′ be the state with minimal hSC value seen in the lookahead
15 if s′ ∈ Closed then
16 continue
17 else if h(s′)< h(s) then
18 Insert s′ at the front of Open
19 else
20 REFINE_HEURISTIC

21 return UNSOLVABLE

Note that the online refinement of the heuristic causes the open list to be ordered ac-
cording to mixed versions of the heuristic (with different degree of refinement). This is
less significant with lazy evaluation, but it can create a small bias towards states closer
to the initial state as the heuristic values increase with refinement. On the other hand,
this can also help escape local minima as refinement should quickly cause the heuristic
value to increase in such regions, while open states that were evaluated before reaching
the local minimum retain their original value.

GBFS-SCL can not only be used as an online-refinement algorithm, but also as a stan-
dard search algorithm by simply continuing the search normally if the lookahead does
not return a state with lower h value (i.e., dropping the else case in line 19 that invokes
REFINE_HEURISTIC). The only remaining requirement is that hSC must somehow be in-
stantiated, either by using heuristics that have an underlying relaxed plan (e.g., heuristics
based on (partial) delete relaxation or abstractions), or by using an alternative method
to derive subgoals such as landmarks. The addition of the lookahead is generally a non-
intrusive change to GBFS, and does not affect compatibility with most search-enhancing
techniques like a dual queue for preferred operators (which we use in our experiments).

GBFS-SCL is related to the YAHSP planner [Vidal, 2004; 2011]. YAHSP is based on
greedy best-first search with hFF. After each expansion of a state s, YAHSP attempts to

60 Chapter 4 Online Relaxation Refinement for Satisficing Planning

repair the current relaxed plan π[hFF](s), and inserts the state resulting from following
the applicable (under non-relaxed semantics) prefix of the repaired plan into the open list.
Our lookahead based on subgoal counting uses the same underlying idea of extracting
information from the relaxed plan to generate a lookahead state. While YAHSP uses the
actions of the relaxed plan, GBFS-SCL uses its subgoals, following the relaxed plan more
loosely compared to YAHSP.

Extending GBFS with local exploration methods has been considered before, either via
random walks [Nakhost and Müller, 2009], or bounded local search [Xie et al., 2014;
Lipovetzky and Geffner, 2017]. Lipovetzky and Geffner’s method is similar to ours in that
they also exploit novelty to enhance the exploration aspect, and they observed significant
gains over previous methods. The main difference to our work is that these methods
aim to use local exploration as a tool to escape local minima or plateaus, and it is only
triggered if the search is considered to be stuck (by tracking the number of expansions
since the minimal heuristic value has decreased). GBFS-SCL instead uses low-overhead
local searches after each GBFS expansion with the main goal of accelerating the search,
and using it as a trigger to improve the heuristic in the online-refinement variant.

4.7.3 Experiments

GBFS-SCL does not have options like the HANDLE_*macros of Refinement-HC that control
certain aspects of the algorithm, but there is still one choice to make: the instantiation
of the lookahead search algorithm. Like with RHC-SC, we evaluate BrFS, A∗, and GBFS
with novelty pruning. While we are mainly interested in GBFS-SCL with online refine-
ment of hCFF, we also evaluate the GBFS-SCL variant without online refinement using
various (partial) delete relaxation heuristics. Specifically, we consider standard hFF, as
well as the partial delete relaxation heuristics hRB, hgray, and hCFF with offline refinement.
The red-black heuristic hRB [Domshlak et al., 2015] is based on the tractable fragment as
introduced in Section 3.3.1. The gray-planning heuristic hgray extends hRB by addition-
ally considering limited-memory variables that remember a limited number of their most
recent assignments [Speicher et al., 2017]. For hCFF with offline refinement, the heuris-
tic is iteratively refined in the initial state until its internal complexity has increased to
a growth factor of 1.5 (or a timeout of 15 minutes is reached), following the best per-
forming settings of previous work on hCFF [Fickert et al., 2016]. We compare GBFS-SCL
to standard GBFS, as well as to a GBFS variant similar to GBFS-SCL but using YAHSP’s
lookahead instead, i.e., after each expansion, we consider the state returned by YAHSP’s
lookahead method and insert it at the front of the open list if it has a lower heuristic
value.

Chapter 4 Online Relaxation Refinement for Satisficing Planning 61

h
GBFS-SCL GBFS YAHSPBrFS A∗ GBFS

hFF 1390.6 1462.4 1457.6 1397.6 1477.0
hRB 1388 1425 1450 1397 1427
hgray 1437 1463 1469 1441 1467
hCFF

off 1406.8 (1400.6) 1490.2 (1491.8) 1463.2 (1465.4) 1372.6 1498.2
hCFF

on 1499.4 (1445.2) 1558.8 (1530.8) 1519.4 (1494.0) – 1464.6

Table 4.5: Coverage of GBFS-SCL with different configurations, compared to standard
GBFS and GBFS using YAHSP’s lookahead. The hCFF heuristic is included with offline
(hCFF

off) and online (hCFF
on) refinement variants. The GBFS-SCL configurations for hFF, hRB,

and hgray use 1-novelty pruning, for hCFF results with both C-novelty and 1-novelty prun-
ing are shown (with the latter in parentheses). For each heuristic, the best-performing
lookahead search algorithm in GBFS-SCL is underlined. The overall best configuration

is boldfaced.

Table 4.5 shows an overview of the results. A∗ is the best choice for the lookahead search
algorithm when using hCFF (like with RHC-SC) and hFF, while GBFS works better for
hRB and hgray.5 Regarding N1 vs. NC for hCFF; while there is no clear winner for the
offline variant of hCFF, NC is superior when using online refinement (as before). This
observation again highlights the synergistic effect of sharing the set of conjunctions with
novelty pruning for online refinement discussed in Section 4.5.2, i.e., by sharing the set
of conjunctions, further refinement is reduced over time.

For all considered heuristics, GBFS-SCL (without online refinement) improves overall
coverage compared to standard GBFS: +64.8 for hFF, +53 for hRB, +28 for hgray, and
+117.6 for (offline) hCFF. For hFF, most of the advantage in coverage is gained in Trans-
port (+21.2), VisitAll (+17), and Barman (+15.6). In some domains, GBFS-SCL performs
worse because the lookahead only rarely yields a better state, in particular in domains
with many dead ends. For example, in Floortile, on average only 1% of lookaheads are
successful resulting in −4.4 coverage, and we get similar results in Sokoban (4% success-
ful lookaheads, −3.4 solved instances). Another source of ineffectiveness for GBFS-SCL is
the added overhead of the lookahead, e.g., in Parking the lookahead uses 96% of the over-
all time (mostly for successor generation and evaluating novelty), which, again combined
with a low lookahead success rate of 3%, leads to leading to 11 fewer solved instances
compared to standard GBFS.

Partial delete relaxation methods are designed to make delete relaxation heuristics more
accurate, which should intuitivelymean that their subgoals provide better guidance, mak-
ing them better suited for GBFS-SCL. However, while the increase in coverage over stan-
dard GBFS is greater for hCFF than it is for hFF, this is not the case for hRB and hgray.

5For hFF here, we use the hCFF implementation with only singleton conjunctions, to avoid implementa-
tional differences when comparing hFF and hCFF throughout this chapter (in particular in Section 4.8.1).

62 Chapter 4 Online Relaxation Refinement for Satisficing Planning

Relaxed Plan Lookahead Search Tree Lookahead State

Figure 4.5: Illustration of GBFS-SCL’s lookahead on an 11x11 instance of VisitAll.

We believe this can be explained by the structure of the partially relaxed plans: For red-
black and gray planning, repair sequences are inserted into the relaxed plan to resolve
conflicts (unsatisfied preconditions) on the un-relaxed variables. In the context of GBFS-
SCL though, these sequences may lead the lookahead search away from the “intended”
path of the relaxed plan, as the subgoal-based lookahead likely does not follow these
sequences exactly.

Even in its variant without online refinement, GBFS-SCL can be an effective method to
boost the search, and sometimes makes big leaps to states closer to a goal in a sin-
gle lookahead (we illustrate such an example below). However, GBFS with YAHSP’s
lookahead leads to similar results, but this picture changes when considering the online-
refinement variants. In combination with hCFF and online refinement, GBFS-SCL clearly
outclasses all other configurations with an overall coverage of 1558.8± 4.7, beating e.g.
its corresponding offline-refinement configuration by +68.6, and configurations with
other heuristics by an even larger margin. Interestingly though, this is not the case if
we add online refinement to GBFS with YAHSP’s lookahead in the same way as in GBFS-
SCL (i.e., invoking REFINE_HEURISTIC if the lookahead does not yield a state with lower
heuristic value), suggesting that a failure of YAHSP’s lookahead does not necessarily in-
dicate that the heuristic needs improvement. In some domains, YAHSP’s lookahead fre-
quently fails to return a better state, leading to large computational overhead due to
excessive refinement, e.g., dropping down to just 2 out of 40 solved instances in Bar-
man, 1.4 out of 40 in Parking, and 2.4 out of 20 on Termes (whereas online-refinement
GBFS-SCL has a coverage of 39.4, 35.6, and 6.8 in these domains).

VisitAll, where an agent must visit all cells in a given grid, is a simple domain that is
particularly well suited for GBFS-SCL. Figure 4.5 illustrates the lookahead on a small in-
stance of that domain. The agent is located in the center of an 11x11 grid (illustrated
by the highlighted border), and must visit all other cells. For the experiment illustrated

Chapter 4 Online Relaxation Refinement for Satisficing Planning 63

here, we use hFF with arbitrary tie breaking and GBFS as the lookahead search algorithm
in GBFS-SCL. The first panel shows the relaxed plan computed by hFF, branching out in
all directions to reach each location of the grid. The center panel shows the search tree
resulting from the lookahead search in GBFS-SCL. Since the lookahead uses 1-novelty
pruning, each location is visited exactly once (each fact of the form at= x is novel once).
The highlighted path leads to the state with lowest hSC value, which is shown in the third
panel. In that state, the agent has already visited 102 of the 121 locations in the grid,
bringing it much closer to the goal than the original state. After two more lookaheads,
GBFS-SCL already returns a solution, after having computed hFF only four times in to-
tal (on the three root states of the lookaheads and in the goal state). For comparison,
standard GBFS with hFF expands 12227 states on this instance.

4.8 Experiments

In this section, we compare our algorithms to similar algorithms without online refine-
ment to highlight its benefits. Furthermore, we compare our algorithms to state-of-the-art
planners, both on the IPC benchmarks and the recently published Autoscale benchmarks
[Torralba et al., 2021].

4.8.1 Comparison to Baselines without Online Refinement

Table 4.6 compares the best-performing configurations of our online-refinement algo-
rithms to related baselines. The baselines we consider here are incomplete enforced
hill-climbing (EHC), the FF [Hoffmann and Nebel, 2001] strategy of running EHC first
and then switching to GBFS in case of failure, and standard GBFS, each with hFF and
(offline-refined) hCFF.

Comparing just hFF with offline hCFF; while the added conjunctions help in some domains
(in particular Floortile and Woodworking), the opposite is true in many others (e.g.,
Openstacks). In total coverage, both the FF and GBFS search algorithms perform better
with hFF than with hCFF. This has two major reasons. First, adding conjunctions intro-
duces overhead in domains where standard hFF is already a sufficiently strong heuristic,
both through the time spent for the refinement at the start of the search, but also by slow-
ing down the heuristic computation. Second, while the heuristic becomes more informed
and its heuristic values increase, this added information may be confined to a small area
of the search space and harm the search performance overall [see e.g., Wilt and Ruml,
2016], as the search may be guided into areas where the heuristic is less informed and
its values are closer to hFF.

64 Chapter 4 Online Relaxation Refinement for Satisficing Planning

Coverage EHC FF GBFS RHC RHC-
SC

GBFS-
SCLhFF hCFF hFF hCFF hFF hCFF

Agricola (20) 4.6 3.8 13.4 13.0 12.8 12.8 11.6 11.8 12.4
Airport (50) 12.6 22.2 34.4 34.8 34.4 34.2 46.4 39.8 41.2
Barman (40) 31.6 19.2 31.2 18.6 24.4 5.4 40.0 40.0 39.4
Childsnack (20) 0.0 0.0 0.8 0.4 0.4 1.4 9.6 13.4 8.4
DataNetwork (20) 1.4 1.6 13.0 8.4 15.0 13.2 16.6 19.4 18.6
Depot (22) 11.2 16.4 19.8 21.8 19.0 21.4 22.0 22.0 22.0
DriverLog (20) 7.8 8.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0
Elevators (40) 40.0 37.0 40.0 37.4 40.0 39.4 40.0 40.0 40.0
Floortile (40) 0.0 37.2 8.4 39.6 8.8 39.8 40.0 40.0 40.0
Freecell (80) 59.6 62.6 80.0 79.8 79.4 78.8 78.0 77.4 80.0
GED (20) 18.2 16.2 18.6 16.4 20.0 19.2 20.0 20.0 20.0
Gripper (20) 20.0 19.8 20.0 20.0 20.0 20.0 20.0 20.0 20.0
Hiking (20) 0.0 2.6 18.4 19.2 20.0 19.8 20.0 20.0 20.0
Logistics (63) 59.4 62.6 59.2 62.4 62.8 63.0 63.0 63.0 62.4
Miconic (150) 150.0 136.2 150.0 150.0 150.0 150.0 150.0 150.0 150.0
Mprime (35) 35.0 34.8 35.0 35.0 35.0 35.0 35.0 35.0 35.0
Mystery (19) 15.0 17.8 18.6 19.0 18.6 18.8 19.0 19.0 19.0
Nomystery (20) 2.2 0.4 8.4 6.2 8.6 6.0 10.4 10.0 9.6
Openstacks (90) 90.0 52.0 90.0 56.2 90.0 66.0 89.6 90.0 90.0
OrgSynth (20) 2.8 2.8 3.0 3.0 3.0 3.0 3.0 3.0 3.0
OrgSynth-split (20) 0.4 0.0 11.2 10.4 10.6 10.4 2.6 1.6 8.0
Parcprinter (40) 19.0 26.2 33.6 34.0 28.8 32.8 40.0 39.8 40.0
Parking (40) 11.2 18.2 18.2 21.2 33.2 19.4 40.0 19.8 35.6
Pathways (30) 22.2 22.2 25.4 24.8 21.8 21.0 30.0 30.0 24.8
Pegsol (35) 3.6 5.6 35.0 35.0 35.0 35.0 35.0 33.8 34.6
Pipes-notank (50) 23.8 27.2 41.8 42.6 41.4 41.2 45.6 48.8 49.6
Pipes-tank (50) 28.4 27.6 38.8 38.0 38.4 39.0 44.2 47.0 48.8
PSR (50) 0.0 8.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0
Rovers (40) 39.2 38.4 39.0 39.0 40.0 40.0 40.0 40.0 40.0
Satellite (36) 35.8 35.0 35.8 36.0 36.0 35.8 36.0 31.0 30.8
Scanalyzer (28) 27.0 26.0 27.6 26.2 26.0 28.0 28.0 28.0 28.0
Snake (20) 3.6 5.0 4.6 6.8 6.8 6.2 12.4 18.0 17.2
Sokoban (30) 0.0 0.0 28.8 26.0 28.2 25.4 11.0 11.4 17.8
Spider (20) 3.2 4.0 13.6 12.6 13.6 12.8 12.2 14.2 15.8
Storage (30) 6.4 5.4 20.0 20.6 20.8 20.0 28.8 30.0 30.0
Termes (20) 0.0 0.6 2.4 3.6 13.4 11.8 4.0 9.6 6.8
Tetris (20) 0.0 0.2 12.2 8.6 14.4 13.8 15.8 20.0 19.8
Thoughtful (20) 12.0 12.2 14.0 15.4 10.8 12.8 20.0 12.0 15.0
Tidybot (20) 14.0 9.0 17.0 16.2 16.4 16.2 18.0 19.4 19.8
TPP (30) 27.6 27.6 27.6 28.0 30.0 30.0 30.0 30.0 30.0
Transport (60) 26.0 25.4 26.8 27.2 38.8 38.8 54.2 60.0 60.0
Trucks (30) 4.0 2.8 18.2 16.6 18.0 16.8 16.2 18.8 18.4
VisitAll (37) 5.8 5.4 5.6 5.4 20.0 18.2 19.2 37.0 37.0
Woodworking (40) 4.0 39.6 32.2 40.0 33.0 40.0 40.0 40.0 40.0
Others (90) 90.0 90.0 90.0 90.0 90.0 90.0 90.0 90.0 90.0
Sum (1695) 968.6 1014.8 1351.6 1335.4 1397.6 1372.6 1517.4 1534.0 1558.8
Std. Error 8.0 10.4 6.2 7.1 5.5 7.0 4.6 5.1 4.7
Normalized (%) 50.2 54.0 75.6 75.1 78.5 77.6 85.0 86.7 88.0

Table 4.6: Coverage on the IPC benchmarks for traditional search algorithms using hFF

and (offline-refined) hCFF compared to our online-refinement search algorithms.

Chapter 4 Online Relaxation Refinement for Satisficing Planning 65

Our online-refinement algorithms on the other hand are much more flexible, and ensure
that there is no unnecessary overhead by avoiding refinement if the heuristic is already
sufficiently accurate. Furthermore, the refinement can focus on areas of the search space
where the heuristic is inaccurate, resulting in very targeted refinement spread out over
the explored search space. RHC, RHC-SC, and GBFS-SCL are clearly superior to these
baselines, dominating coverage over the baselines in almost all domains. The biggest
gains are in Barman, Childsnack, Parcprinter, Snake, Storage, and Transport, where even
the worst of our online-refinement algorithms beats the best baseline by a substantial
margin. One example where online refinement performs poorly is Sokoban. This domain
contains many dead ends, so the local lookahead searches of our algorithms frequently
fail to yield a better state, and our hill-climbing algorithms need to restart often from
getting stuck in those dead ends. Overall, our online-refinement algorithms consistently
yield vast improvements over traditional search algorithms with the same heuristic.

4.8.2 Online vs. Offline Conjunctions Quality

If the set of conjunctions C for hCFF is generated online, then the set of conjunctions at the
end of the search is composed of information gained from many different states observed
in an actual search. In contrast, if C is generated offline, it only contains information
learned from (partially) relaxed plans generated in the initial state. This observation
should conclude that the “quality” of an online-generated set of conjunctions Con should
be superior to a similar set of conjunctions Coff generated offline, i.e., they should result
in a heuristic better suited to guide the search.

In order to assess this hypothesis, we compare runs of greedy best-first search with hCFF

using either a set of conjunctions Con generated by one of our online-refinement search
algorithms or a set of conjunctions Coff of the same size generated via repeated refinement
only in the initial state. Figure 4.6 compares the number of expansions of such GBFS
searches. In this experiment, Con is generated by RHC, i.e., we consider the final set of
conjunctions when RHC finds a solution or reaches the time limit of 30 minutes, and then
start GBFS with hCFF using these conjunctions. We only consider tasks where such Con

contains at least one added conjunction for all five random seeds (917 instances). While
there is some variance, Con leads to fewer expansions in 333 instances, compared to 207
instances where GBFS with Coff is better. Furthermore, the search with Con has a better
coverage (680.8 vs. 648.2), and averages 32% fewer expansions on the 544 commonly
solved instances. We repeated the experiment with conjunctions generated by RHC-SC
and GBFS-SCL, with similar results: 14% fewer expansions and +36.4 coverage (on 885
tasks) for Con resulting from RHC-SC, and 19.5% fewer expansions and +37.8 coverage
(on 953 tasks) for conjunctions generated by GBFS-SCL.

66 Chapter 4 Online Relaxation Refinement for Satisficing Planning

101 102 103 104 105 106

101

102

103

104

105

106

un
s.

unsolved

Coff

C o
n

Figure 4.6: Expansions for GBFS with hCFF using conjunctions generated online by RHC
(Con) vs. conjunctions generated offline in the initial state (Coff).

4.8.3 Comparison to the State of the Art

We compare our best-performing search algorithms to the following state-of-the-art sat-
isficing planners:

• LAMA [Richter andWestphal, 2010], which runs a greedy best-first search using hFF

and a landmark-counting heuristic [Richter et al., 2008] in an alternating queue,

• Mercury [Katz and Hoffmann, 2014], which is based on LAMA, replacing hFF by a
partial delete relaxation heuristic hRB based on red-black planning [Domshlak et
al., 2015],

• MERWIN [Katz et al., 2018], which is similar to Mercury but replaces hRB with a
novelty heuristic that uses hRB for the underlying estimates [Katz et al., 2017],

• Dual-BFWS [Francès et al., 2018; Lipovetzky and Geffner, 2017], a best-first search
using a tie-breaking sequence of multiple novelty heuristics based on estimates us-
ing delete relaxation, landmarks, and (sub-)goal counting,

• the 2018 version of Fast Downward Stone Soup (FDSS) [Seipp and Röger, 2018;
Helmert et al., 2011], an anytime portfolio planner running 41 different configu-
rations in an automatically tuned sequence with varying time limits, and

• Saarplan [Fickert et al., 2018a], another portfolio planner using several state-of-
the-art techniques, including decoupled search [Gnad and Hoffmann, 2018], gray

Chapter 4 Online Relaxation Refinement for Satisficing Planning 67

planning [Speicher et al., 2017], and landmarks, and using an earlier version of
Refinement-HC with hCFF as one of its core components.

FDSS and Saarplan additionally use Alcázar and Torralba’s [2015] h2 preprocessor, which
can reduce the size of the translated task by pruning operators and facts that are detected
to be unreachable.

We include Saarplan not only to provide a comparison point to a state-of-the-art portfo-
lio planner, but also to demonstrate that Refinement-HC can be an effective component
inside a portfolio. Saarplan is set up as a sequential portfolio, starting with two different
configurations of decoupled search, then switching to gray planning (but only to eval-
uate the heuristic on the initial state, returning the partially relaxed plan as solution if
it is also a plan under non-relaxed semantics) and finally to search with hCFF. This last
component first runs Refinement-HC (using BrFS and C-novelty pruning in the lookahead
search) until a time bound or a maximum growth factor of 8 is reached for hCFF, using
the remaining time for a LAMA-like configuration of GBFS with an alternating queue of
hCFF and a landmark heuristic.

Table 4.7 shows the coverage on the IPC benchmarks. Domains that are fully solved by all
shown planners are grouped into “Others”. While the complex portfolio planners FDSS
and Saarplan have the highest overall coverage, all three of our search algorithms with
online refinement of the hCFF heuristic solve more instances than LAMA, Mercury, MER-
WIN, and Dual-BFWS. Our online-refinement planners are particularly effective in the
Data Network and Pipesworld (with tankage) domains, where each of them solves more
instances than any other planner except Saarplan (though in Data Network, 11 of the
19 solved instances by Saarplan are only solved by its hCFF components). RHC-SC and
GBFS-SCL beat all other planners in the Snake domain by (except for Dual-BFWS) signif-
icant margins. On the other hand, our planners have comparatively weak performance
in Nomystery, where fuel consumption causes issues for delete relaxation heuristics and
is hard to capture with conjunctions in hCFF, and Sokoban, which has a large number
of dead ends where the lookahead is not effective and our hill-climbing algorithms are
frequently trapped.

The last two rows of Table 4.7 additionally show the search time and solution cost as the
geometric means across all commonly solved instances (excluding FDSS and Saarplan).
We omit the portfolio planners as their search times and solution costs are not compara-
ble since they use additional preprocessing, potentially run many configurations before
reaching one that finds a solution, and continue search to improve plans after finding
the first solution. Our online-refinement algorithms beat LAMA, Mercury, MERWIN, and
Dual-BFWS not only with regard to coverage, but also in search time. GBFS-SCL needs

68 Chapter 4 Online Relaxation Refinement for Satisficing Planning

Coverage RH
C

RH
C-
SC

GB
FS

-S
CL

LA
M
A

M
er
cu
ry

M
ER

W
IN

Du
al-

BF
W
S

FD
SS

’18

Sa
ar
pl
an

Agricola (20) 11.6 11.8 12.4 12 9 9 11 13 8
Airport (50) 46.4 39.8 41.2 34 35 36 44 47 45
Barman (40) 40.0 40.0 39.4 40 36 40 40 40 40
Childsnack (20) 9.6 13.4 8.4 6 5 0 8 18 20
DataNetwork (20) 16.6 19.4 18.6 11 13 16 9 11 19
Depot (22) 22.0 22.0 22.0 19 18 21 22 21 22
Elevators (40) 40.0 40.0 40.0 40 40 40 40 39 40
Floortile (40) 40.0 40.0 40.0 8 9 8 5 40 40
Freecell (80) 78.0 77.4 80.0 77 79 80 80 80 79
GED (20) 20.0 20.0 20.0 13 20 20 20 20 20
Hiking (20) 20.0 20.0 20.0 20 11 19 11 20 20
Logistics (63) 63.0 63.0 62.4 63 63 63 62 63 63
Mystery (19) 19.0 19.0 19.0 19 16 19 19 19 19
Nomystery (20) 10.4 10.0 9.6 11 13 19 18 19 19
Openstacks (90) 89.6 90.0 90.0 86 88 90 89 89 90
OrgSynth (20) 3.0 3.0 3.0 3 3 3 3 3 3
OrgSynth-split (20) 2.6 1.6 8.0 11 8 11 12 10 9
Parcprinter (40) 40.0 39.8 40.0 40 40 40 39 40 40
Parking (40) 40.0 19.8 35.6 40 34 40 40 40 40
Pathways (30) 30.0 30.0 24.8 23 29 30 30 30 29
Pegsol (35) 35.0 33.8 34.6 35 35 35 35 35 35
Pipes-notank (50) 45.6 48.8 49.6 43 43 44 50 44 48
Pipes-tank (50) 44.2 47.0 48.8 41 40 42 41 43 45
Satellite (36) 36.0 31.0 30.8 36 36 36 31 36 36
Snake (20) 12.4 18.0 17.2 4 5 6 15 8 11
Sokoban (30) 11.0 11.4 17.8 29 27 26 25 29 29
Spider (20) 12.2 14.2 15.8 19 12 14 16 11 15
Storage (30) 28.8 30.0 30.0 19 20 24 30 25 28
Termes (20) 4.0 9.6 6.8 14 13 13 9 12 14
Tetris (20) 15.8 20.0 19.8 6 14 18 15 19 20
Thoughtful (20) 20.0 12.0 15.0 15 12 17 19 20 20
Tidybot (20) 18.0 19.4 19.8 17 13 17 18 19 19
TPP (30) 30.0 30.0 30.0 30 30 30 29 30 30
Transport (60) 54.2 60.0 60.0 57 60 60 60 57 60
Trucks (30) 16.2 18.8 18.4 15 17 21 17 23 19
VisitAll (37) 19.2 37.0 37.0 37 37 37 37 37 37
Woodworking (40) 40.0 40.0 40.0 40 40 31 24 40 40
Others (433) 433.0 433.0 433.0 433 433 433 433 433 433
Sum (1695) 1517.4 1534.0 1558.8 1466 1456 1508 1506 1583 1604
Normalized (%) 85.0 86.7 88.0 81.8 80.4 85.1 85.0 90.1 91.9
Search Time (s) 0.32 0.36 0.26 0.34 0.43 0.51 0.33 – –
Solution Cost 87.4 100.3 94.8 79.7 78.2 76.9 62.9 – –

Table 4.7: Coverage on the IPC benchmarks.

Chapter 4 Online Relaxation Refinement for Satisficing Planning 69

Coverage RH
C

RH
C-
SC

GB
FS

-S
CL

LA
M
A

M
er
cu
ry

M
ER

W
IN

Du
al-

BF
W
S

FD
SS

’18

Sa
ar
pl
an

Barman (30) 4.4 8.0 6.0 22 18 15 4 12 17
Blocksworld (30) 29.0 22.8 16.8 22 18 22 9 15 24
Childsnack (30) 7.4 12.0 14.8 11 7 2 8 24 30
DataNetwork (30) 26.8 29.8 29.8 19 15 21 16 19 29
Depot (30) 25.8 26.0 26.0 18 15 15 20 16 22
DriverLog (30) 23.8 12.0 11.6 14 15 15 11 12 20
Elevators (30) 25.0 30.0 30.0 18 30 30 28 14 30
Floortile (30) 6.8 8.2 8.8 2 2 2 2 7 9
Grid (30) 12.0 21.0 19.6 15 5 12 14 12 14
Gripper (30) 30.0 30.0 30.0 30 30 30 30 30 30
Hiking (30) 6.0 28.8 15.2 15 4 6 6 9 23
Logistics (30) 20.0 21.0 17.6 15 26 26 12 15 15
Miconic (30) 30.0 30.0 30.0 30 30 30 30 30 30
Nomystery (30) 3.8 3.2 2.6 7 25 29 12 29 20
Openstacks (30) 13.8 15.0 17.0 13 20 21 15 14 19
Parking (30) 17.2 25.0 25.0 17 17 17 19 13 13
Rovers (30) 30.0 27.0 26.8 30 25 24 23 30 30
Satellite (30) 18.0 9.0 9.0 14 18 18 9 18 16
Scanalyzer (30) 15.0 15.0 15.0 15 13 13 12 13 12
Snake (30) 25.2 30.0 30.0 5 4 6 18 8 14
Storage (30) 9.4 14.0 14.0 5 7 9 12 8 17
TPP (30) 23.2 24.0 24.0 20 19 14 9 14 14
Transport (30) 18.0 18.0 18.0 12 16 16 13 13 15
VisitAll (30) 13.6 25.8 27.8 29 23 23 30 21 28
Woodworking (30) 30.0 13.0 19.8 10 17 6 3 12 29
Zenotravel (30) 16.0 16.0 16.0 16 14 14 12 14 13
Sum (780) 480.2 514.6 501.2 424 433 436 377 422 533
Search Time (s) 1.07 1.07 0.95 1.47 1.01 1.21 1.99 – –
Solution Cost 140 168 164 127 112 123 127 – –

Table 4.8: Coverage on the Autoscale benchmarks.

less time to find solutions than any of these planners in 15 domains (of the 47 domains
where these planners have at least one commonly solved instance); averaged across all
domains GBFS-SCL is 23% faster than LAMA, 39% faster than Mercury, 49% faster than
MERWIN, and 21% faster than Dual-BFWS. On the other hand, our methods result in
more expensive plans. However, this disadvantage can potentially be compensated for
by running them in an anytime configuration where solutions are continually improved.

Since many domains are fully solved by all state-of-the-art planners (e.g., 11 domains are
fully solved by all planners we consider here), we also compare the performance on the
Autoscale benchmarks [Torralba et al., 2021]. This benchmark set is designed to be chal-
lenging for recent planners through automatic tuning of the parameters of the instance
generators, and typically yields a much larger range of coverage values on most domains

70 Chapter 4 Online Relaxation Refinement for Satisficing Planning

when comparing state-of-the-art planners. Table 4.8 shows the results on these bench-
marks. Like on the IPC benchmarks, all of our online-refinement planners beat LAMA,
Mercury, MERWIN, and Dual-BFWS. FDSS also falls behind on these domains, which can
be attributed to two major factors. First, FDSS has been optimized for the IPC domains
(before 2018) and thus may not be tuned effectively for this benchmark set. Second,
the instances here tend to be larger in size than the ones from the IPC benchmarks, so
running many different configurations with very small time limits may not be as effective
as running fewer configurations with larger bounds. Saarplan again has the highest cov-
erage overall with 533 solved instances, followed by RHC-SC (514.6± 3.2), GBFS-SCL
(501.2± 3.6), and RHC (480.2± 3.9). However, on half of the domains, RHC-SC is the
(at least shared) best configuration (in comparison, Saarplan is the best on only 7 out
of the 26 domains). All our online-refinement search algorithms are particularly effec-
tive in Depot, Snake, TPP, and Transport, where they beat all other considered planners,
and partially also in Blocksworld (RHC), DriverLog (RHC), Grid (RHC-SC and GBFS-
SCL), Hiking (RHC-SC), Parking (RHC-SC and GBFS-SCL), and Woodworking (RHC).
Conversely, Barman and again Nomystery are domains where our planners are generally
inferior to the others.

Overall, all of our online-refinement algorithms, in particular RHC-SC and GBFS-SCL,
show very competitive performance on both the IPC and Autoscale benchmarks, even
compared to state-of-the-art portfolios.

4.9 Related Work

As pointed out before, the heuristic of our choice, hCFF, uses a refinement operation
based on counterexample-guided abstraction refinement (CEGAR) to instantiate its set of
conjunctions. CEGAR was originally established in model checking [Clarke et al., 2003],
and has recently been used in planning to great success. In optimal planning, it most
prominently serves as the refinement method for Cartesian abstraction heuristics [Seipp
and Helmert, 2013; 2018]. More recently, it has also been shown to be an effective
method to instantiate pattern database heuristics [Rovner et al., 2019].

The most closely related approach to ours using online heuristic refinement addresses
Cartesian abstraction heuristics in optimal classical planning [Eifler and Fickert, 2018],
which has been inspired by our earlier work on Refinement-HC [Fickert and Hoffmann,
2017a]. Like hCFF, their fine-grained CEGAR-based refinement operation makes them
a suitable candidate for online refinement. Abstraction heuristics, including those based

Chapter 4 Online Relaxation Refinement for Satisficing Planning 71

on Cartesian abstractions, are most effective when multiple smaller abstractions are com-
bined via cost partitionings [Seipp and Helmert, 2014; 2018]. However, in order to guar-
antee convergence of the heuristic, abstractions must be merged, which is expensive and
diminishes the advantage gained by effective cost partitionings. In practice, the results
of this approach have been promising, but have not yet reached the performance of state-
of-the-art planners that are based on Cartesian abstractions with offline refinement.

Whenmultiple heuristics are used, their combination can be refined instead of the heuris-
tics themselves. For example, Fink [2007] refines a weighted sum of multiple admissible
heuristics for optimal heuristic search. Domshlak et al. [2012] use online learning to ob-
tain a classifier that selects the best heuristic to use in each state. Some approaches for
cost partitionings allow selecting the best one from a set of partitionings generated before
search [Felner et al., 2004; Karpas et al., 2011; Seipp et al., 2020], or may generate a
new partitioning optimized for each state [Katz and Domshlak, 2010; Seipp et al., 2020].
More recently, Seipp [2021] introduced a method to generate additional diverse parti-
tionings online, allowing the search to select the best one in each state for the remainder
of the search. However, none of these approaches refine the underlying relaxations, and
they do not yield a convergence guarantee.

Apart from refining the heuristic function, other forms of online relaxation refinement
exist: Steinmetz and Hoffmann [2017a,b, 2018] use online-refinement of conjunctions
to learn a dead-end detector. Another example is Wilt and Ruml’s [2013] bidirectional
search algorithm, which uses the frontier of the backwards part to improve the heuristic
in the forward search component.

Arfaee et al. [2011] learn a heuristic function for large state spaces through a bootstrap-
ping approach that trains a heuristic on increasingly difficult instances. While this is still a
form of offline refinement, the authors point out that it can be adapted to solve single in-
stances by interleaving refinement and search by periodically starting a search algorithm
in a new thread using the current version of the heuristic. In principle, this strategy could
be used with any offline refinement algorithm, but does not constitute online refinement
in the sense that the heuristic is static during each search.

In real-time search, per-state updates are a common approach to improve the heuristic
and ensure completeness [Korf, 1990; Barto et al., 1995; Bonet and Geffner, 2003]. In
particular, the search strategy of LSS-LRTA∗ [Koenig and Sun, 2009] bears resemblance
to Refinement-HC: Each search step first performs a bounded lookahead, after which the
heuristic values of the local search space are updated from observations of the frontier.
Such per-state updates only correct the heuristic values on states that have been explored,
but lack generalization to those that have not been encountered yet as the relaxation

72 Chapter 4 Online Relaxation Refinement for Satisficing Planning

underlying the heuristic remains unchanged. Following the initial work on online refine-
ment of Cartesian abstractions [Eifler and Fickert, 2018], Eifler et al. [2019] have shown
that the idea can be effectively transferred to real-time planning, often resulting in better
performance due to the added generalization.

Finally, Thayer et al. [2011] provide a simple method to compute a linear correction
factor for the heuristic based on observed errors on the search space surface, but this
method does not yield convergence guarantees.

4.10 Conclusion

Typically, heuristics are instantiated before starting the search, yet many heuristics offer
a refinement operation that can in principle also be applied online. Online refinement
has obvious benefits: Computational overhead can be reduced by only refining the heuris-
tic if it is actually necessary, and online refinement can use information gained during
the search, allowing the heuristic to adapt to the state space explored by the search.
Despite these advantages, online relaxation refinement has barely been addressed be-
fore, as critical questions of when and how to refine have no clear answer. The search
algorithms we introduced in this chapter use local exploration to evaluate whether the
heuristic is sufficiently accurate on the local search space, and use online refinement to
escape local minima and plateaus. Converging refinement makes our hill-climbing algo-
rithms complete, and, instantiated with the hCFF heuristic, makes them competitive with
state-of-the-art systematic search approaches. On the IPC and Autoscale benchmarks, our
algorithms with hCFF online refinement substantially beat related state-of-the-art plan-
ners, and are highly competitive with complex portfolios where they can also be used as
a strong component.

One avenue for future work is to combine online relaxation refinement for the heuris-
tic with similar refinement operations for other purposes. A straightforward example
is nogood learning, choosing new conjunctions for hCFF so as to be able to prune more
dead-end states [Steinmetz and Hoffmann, 2017b; 2018]. Another example, in the spe-
cific arrangement of our techniques relying crucially on novelty pruning, is conjunction
learning for novelty pruning. While, here, we already use C-novelty pruning with con-
junctions added during the search, we use the conjunctions that were selected to be useful
for hCFF, without any information flow specific to novelty pruning. It remains an open
question how to identify conjunctions that are effective for novelty, learning conjunctions
specifically for that purpose. This could be a promising way to improve planners such as
MERWIN and Dual-BFWS, that rely on novelty measures as the main function to guide
the search.

5 Ranking Conjunctions for
Partial Delete Relaxation
Heuristics

Except for Haslum’s [2012] initial work, all existing approaches for partial delete relax-
ation with explicit conjunctions [e.g., Keyder et al., 2014; Fickert et al., 2016; Fickert
and Hoffmann, 2017a; see also Chapter 4] use Keyder et al.’s [2014] method based on
counterexample-guided abstraction refinement to generate the set of conjunctions C . At
each refinement step, the procedure generates a set of candidate conjunctions Ccand ad-
dressing specific flaws in the current partially relaxed plan, and one of the candidates
is selected to be added to C . The set of candidates can be huge, and in some domains
millions of candidates may be generated in one iteration. As observed early on [Haslum,
2012], the choice of conjunctions is important for the overall performance of the heuristic,
and small changes can have a large impact on the results. The previous literature merely
suggests one simple ranking strategy, preferring conjunctions incurring a low computa-
tional overhead [Keyder et al., 2014]. Furthermore, many candidate conjunctions may
incur the same overhead, so even when following that ranking a large selection of “best”
candidates may remain.

Here, we address the candidate selection in more detail. We explore a vast range of
ranking strategies, aiming not only to minimize overhead, but also to capture the rela-
tive “importance” of conjunctions. We systematically evaluate the performance of these
strategies, both individually and as part of lexicographic tie-breaking sequences. Further-
more, we devise ranking strategies for conjunctions that have already been added to C ,
which allows taking into account observations and statistics during search. This can be
used to forget conjunctions, thereby reducing computational overhead, and allowing new
conjunctions to be added to address flaws in more recently computed partially relaxed
plans. Finally, we devise a new variant of the conflict extraction preceding the candidate
ranking, which resolves a major bottleneck in many standard planning domains. On the
IPC benchmarks, we find that the different ranking strategies lead to a large variance in

73

74 Chapter 5 Ranking Conjunctions for Partial Delete Relaxation Heuristics

performance, and that our new strategies can be useful. Furthermore, we devise a simple
periodic conjunction-forgetting strategy for greedy best-first search, which significantly
improves results compared to leaving the heuristic unchanged.

Papers and Contributions This chapter is based on the paper “Ranking Conjunctions
for Partial Delete Relaxation Heuristics in Planning” [Fickert and Hoffmann, 2017b]. The
evaluation has been expanded and updated for recent developments in partial delete
relaxation with explicit conjunctions (cf. Chapter 4).

5.1 Candidate Ranking Strategies

In each iteration, Keyder et al.’s [2014] refinement algorithm yields a set of candidate
conjunctions Ccand that are not yet contained in the set of conjunctions C used by the
heuristic. While it is possible to add all the candidate conjunctions to C at once, in prac-
tice it is better to only add a single conjunction to minimize the computational overhead
and avoid redundant conjunctions addressing the same conflicts [Keyder et al., 2014].
However, in order to select a suitable candidate, the conjunctions must be ranked ac-
cording to some criteria. We now discuss a range of ranking strategies. These strategies
can be combined using lexicographic tie-breaking, which we denote as 〈s1, s2, . . .〉 (the
ranking strategy s1 is applied first, then s2 is used to break the remaining ties, and so on).

Keyder et al. [2014] introduced the following ranking strategies:

min-distance Rank the candidates based on the number of vertices between the deleter
and the failed action in the BSG for sequential conflicts (e.g., if the deleter and
failed action are ordered immediately after each other, this value is 0). For parallel
conflicts this is set to 1.

min-counters Rank the candidates based on the number of additional counters that need
to be tracked by the heuristic. For a candidate conjunction c, this is computed as
the number of actions over which c is regressable, i.e., |{a ∈A | R(c, a) 6=⊥}|.

The intuition of the min-distance strategy is that preferring conflicts with minimal dis-
tance between the deleter and the failed action tends to yield more direct and hence
more relevant conflicts. Preferring conflicts with minimal distance in the best supporter
graph has another practical side effect: Conflicts with lower distance are computation-
ally easier to find—so if those are preferred anyway the algorithm can terminate earlier,
speeding up the conflict extraction process.

Chapter 5 Ranking Conjunctions for Partial Delete Relaxation Heuristics 75

Keyder et al. [2014] combine these two strategies as 〈min-distance, min-counters〉: From
the conflicts with minimal distance, the one that introduces the minimal number of new
counters is chosen in order to minimize the computational overhead.

The overhead is not the only important metric when considering which conjunctions to
add to C—some conjunctions might yield a more informative heuristic than others, which
can offset some overhead. We introduce novel strategies with very different approaches
in the following, and then explain their underlying motivation.

5.1.1 Ranking Strategies

We consider the following candidate ranking strategies:

random Rank the candidates in a random order.

arbitrary Rank the candidates in an arbitrary order (in our implementation, we leave
them in the order they are generated).

min-size/max-size Rank the candidates according to their size (number of facts).

min-counters-estimate Rank the candidates by their estimated number of additional
counters. Given a candidate conjunction c, we compute this estimate as

∑
f ∈c |{a ∈

A | R({ f }, a) 6=⊥}|.

max-occurrences Prefer candidates that have been added to Ccand multiple times for dif-
ferent conflicts.

min-influence/max-influence Rank the candidates based on the number of counters
where the conjunction will appear as a precondition when added to C .

min-deleter-alternatives/max-deleter-alternatives Rank the candidates based on how
many of the deleter’s supported conjunctions could be achieved equally well by
different actions. Specifically, we calculate this as the percentage of supported con-
junctions of the deleter that have other best supporters that do not delete the miss-
ing precondition of the failed action.

max-cost-increase Rank the candidates based on how much the hCadd value of the re-
sulting conjunction would increase over its dominated conjunctions in the current
state.

These strategies range from trivial methods (random and arbitrary), over strategies tak-
ing account simple features of the candidate conjunctions (such as min-size), to more
complex strategies analyzing certain aspects of the considered candidate conjunctions.
We next discuss the ideas behind the non-trivial strategies.

76 Chapter 5 Ranking Conjunctions for Partial Delete Relaxation Heuristics

5.1.2 Motivation

The min-counters-estimate strategy is an attempt to reduce the computational overhead
of min-counters: The latter requires computing R(c, a) for all candidates c ∈ Ccand and
actions a ∈ A. On the other hand, we only need the regressions for all unit conjunctions
for min-counters-estimate—which are already available since the unit conjunctions are
always contained in C .

Themax-occurrences strategy arises from the observation that different conflicts may yield
the same candidate conjunctions. These candidates can fix multiple conflicts at once, so
intuitively, adding them to C should more effectively reduce conflicts in partially relaxed
plans computed afterwards.

The influence-based strategies consider how many existing counters will be affected by a
new conjunction, as an attempt to estimate their influence on the overall heuristic.

The strategies considering the deleter alternatives attempt to predict the changes to the
partially relaxed plans when a conjunction is added. If there are no alternative actions to
achieve the conjunctions supported by the deleter, the structure of the next relaxed plan
is likely to change more compared to the deleter just being exchanged for a different
action.

Finally, themax-cost-increase prioritizes conjunctions that are more difficult to reach than
its subconjunctions. Such conjunctions can directly lead to an increase in the overall
heuristic value if they must be included in a partially relaxed plan.

5.1.3 Practical Remarks

Some ranking strategies require additional computation or memory. For example, the
min-counters strategy requires computing R(c, a) for all candidate conjunctions c ∈ Ccand

and actions a ∈ A, and for the max-occurrences strategy we have to keep track of the
number of times each conjunction is added to the set of candidates. Our implementation
avoids this overhead whenever it is not needed. For example, if themin-counters strategy
only appears as the second tie-breaker, it is only evaluated for the best candidate con-
junctions according to the first ranking strategy. Similarly, if max-occurrences is not used
as a ranking strategy, we do not need to count the number of times the same candidate
is added to Ccand.

Chapter 5 Ranking Conjunctions for Partial Delete Relaxation Heuristics 77

5.2 Online Ranking Strategies

In addition to ranking candidates that are not yet in C , we can also devise rankings for
conjunctions that are already used by the heuristic. For these online ranking strategies,
we can take features and statistics into consideration that can only be measured during
search. This way, we may get more detailed information about the conjunctions. Online
ranking of conjunctions in C can be useful to detect conjunctions that turned out not to be
useful in the search, so removing them from C may reduce the computational overhead
without significantly reducing the informativeness of the heuristic. We will evaluate these
strategies by periodically replacing existing conjunctions in C (those that deemed worst
according to the online ranking strategies) by new ones.

5.2.1 Strategies

We consider the following strategies:

random Rank the conjunctions randomly.

oldest Rank the conjunctions by how long they have been contained in C .

max-counters Rank the conjunctions by the number of attached counters.

min-rp-frequency Rank the conjunctions by how frequently they appear as a supported
conjunction of any action occurrence in a partially relaxed plan. Specifically, we
consider the percentage of generated relaxed plans containing this conjunction
since it was added to C .

min-hCadd-increase Rank the conjunctions according to how frequently their hCadd value
is greater than that of its dominated conjunctions (as a percentage of the number
of evaluations since this conjunction was added to C).

Additionally, we introduce a more complex strategy based on the effectiveness of a con-
junction, defined as follows:

Definition 5.1 (Conjunction Effectiveness). A conjunction c is called effective in a state s

if all its subconjunctions c′ ⊂ c, c′ ∈ C have hCadd(s, c′)< hCadd(s, c), and either

1. c ⊆ G and if hCadd(s, c) =∞, then all other goal conjunctions c′ ⊆ G, c′ ∈ C , c′ 6= c

have hCadd(s, c′) 6=∞, or

2. there exists a counter attached to a conjunction c′ and action a with c ⊆ R(c′, a),
such that either

78 Chapter 5 Ranking Conjunctions for Partial Delete Relaxation Heuristics

(a) hCadd(s, c)<∞ and a is a best supporter of c′, or
(b) hCadd(s, c) =∞, hCadd(s, c′) =∞, and for all conjunctions c′′ ∈ R(c′, a)C , c′′ 6= c

we have hCadd(s, c′′) 6=∞.

A conjunction c is considered effective in a state s if its hCadd value increases over that of its
subconjunctions c′ ⊂ c, and the conjunction contributes in some way to the overall hCadd

value. This contribution means that c should either be part of the goal, or be required
as a precondition for another conjunction. If c is unreachable (hCadd(s, c) =∞), it must
make either the goal or some other conjunction unreachable.

This yields the following ranking strategy:

min-effective Rank the conjunctions according to their effectiveness (as a percentage of
the number of evaluations where a given conjunction was effective according to
Definition 5.1 since it was added to C).

5.2.2 Motivation

Since min-counters is already a successful ranking strategy for refinement, it appears
logical that during search, replacing conjunctions with many attached counters by new
ones with fewer counters can be beneficial.

The min-rp-frequency strategy considers how often conjunctions appear in the partially
relaxed plans, assuming that conjunctions that are used in the relaxed plans often are
more useful than others.

The min-hCadd-increase and min-effective strategies represent the attempt to capture the
importance of a conjunction. The former is rather simple, and just considers if the con-
junction tends to be more difficult to achieve than its subconjunctions. The latter addi-
tionally requires the conjunction to be used for something: either as part of the goal; or
in a precondition of a counter attached to another conjunction, and the other conjunction
is reached through that counter.

5.3 Conflict Extraction Algorithm

We finally designed a variant of the conflict extraction step, which precedes the selection
of candidate conjunctions.

Chapter 5 Ranking Conjunctions for Partial Delete Relaxation Heuristics 79

The refinement algorithm introduced by Keyder et al. [2014] searches conflicts in the
best-supporter graph. Since the BSG models any valid ordering of the relaxed plan, this
conflict extraction method can lead to a very high number of conflicts (thus taking a lot of
time), with many of them not actually appearing in the ordering returned by the heuris-
tic. We suggest a slightly different approach and extract the conflicts directly from the
sequenced relaxed plan instead, only using the BSG to identify the conflict type and gen-
erate the candidate conjunction accordingly. In the experiments section we will show that
this is significantly reduces the worst-case runtime of the refinement procedure on the
IPC benchmarks, while retaining similar informativeness of the resulting conjunctions.

Keyder et al.’s [2014] implementation of the conflict extraction is optimized for their
lexicographic tie breaking: First, only direct sequential conflicts (with a distance of zero
between the deleter and failed action in the BSG) are collected. Only if no such con-
flicts are found, the algorithm proceeds with the computationally much more difficult
procedures to collect all other sequential conflicts and parallel conflicts. We also apply
this optimization in our conflict extraction method whenever min-distance is used as the
primary ranking strategy.

5.4 Experiments

We follow the setup described in Section 4.2: The benchmark set consists of all unique
STRIPS instances of the satisficing tracks up to and including the 2018 IPC, and average
results over 5 random seeds. The source code of our ranking strategies is included in the
same repository at https://github.com/fickert/fast-downward-conjunctions.

In our evaluation of the candidate ranking strategies, we focus on the online-refinement
search algorithms introduced in the previous chapter. To evaluate the online ranking
strategies, we use a simple replacement strategy in GBFS. We enable helpful actions prun-
ing in all search algorithms based on hill climbing, and use a dual queue for preferred
operators in GBFS-based algorithms. Unless noted otherwise, the default lexicographi-
cal tie-breaking for candidate conjunctions is 〈min-distance, min-counters〉, i.e., the one
introduced by Keyder et al. [2014].

The online-refinement search algorithms add conjunctions whenever the heuristic is in-
accurate, failing to find a state with lower heuristic value in a bounded lookahead. When
the search terminates, the number of added conjunctions during the search is a useful
metric to judge the informativeness gained by the added conjunctions: if fewer conjunc-
tions were added with ranking strategy A than with ranking strategy B, then strategy A
is more effective in improving the accuracy of the heuristic. Another useful statistic is

https://github.com/fickert/fast-downward-conjunctions

80 Chapter 5 Ranking Conjunctions for Partial Delete Relaxation Heuristics

10−6 10−5 10−4 10−3 10−2 10−1 100 101 10210−6

10−5

10−4

10−3

10−2

10−1

100

101

102

BSG (lower for 600 tasks)

RP
(lo

we
rf
or

93
2
ta
sk
s)

GED
Miconic
Openstacks
Pathways
Thoughtful

Figure 5.1: Average time of the conflict extraction step (in seconds) of the refinement
procedure when extracting conflicts from the BSG (x-axis) vs. relaxed plan (y-axis).

the growth factor (the increase in the number of counters that the hCFF implementation
needs to keep track of, see Section 3.2.1) as a metric for the increase in computational
complexity of the heuristic.

We start out by assessing the impact of our changes to the conflict extraction algorithm.
Then we evaluate the different ranking strategies; first considering the candidate ranking
strategies and combinations of them before we turn to the online ranking strategies.

5.4.1 Conflict Extraction Algorithm

The main motivation to extract conflicts from the sequentialized relaxed plan instead of
the best supporter graph is to reduce the computational effort by focusing on the subset
of possible conflicts that appear in the concrete relaxed plan returned by hCFF. In addition
to analyzing the computational aspect, we will investigate whether this change affects
the informativeness of the resulting conjunctions.

In order to evaluate the computational effort of the conflict extraction phase, we ran
offline refinement for hCFF with either conflict extraction algorithm for 15 minutes (or
until the current partially relaxed plan is a real plan). Figure 5.1 compares the average
time of each conflict extraction operation between the two variants, highlighting domains
where the difference is particularly pronounced (discussed below). Extracting conflicts

Chapter 5 Ranking Conjunctions for Partial Delete Relaxation Heuristics 81

from the relaxed plan is often faster, but not always: With the default ranking strategy,
the conflict extraction procedure can stop early if zero-distance conflicts are found. If,
due to the specific ordering of the relaxed plan, zero-distance conflicts only appear when
considering all possible orderings in the BSG, then extracting conflicts from the BSG is
more efficient. This happens particularly frequently in GED and (to a lesser degree) in
Miconic, where extracting conflicts from the BSG is on average 17.7 respectively 6.8 times
faster than extracting them from the relaxed plan. On most domains though, the conflict
extraction from the sequentialized relaxed plan is faster, most prominently in Pathways
(16x faster), Thoughtful (11.7x), and Openstacks (10.4x). Averaged across all domains,
our method yields a speedup of 32% over Keyder et al.’s [2014] approach. Furthermore,
it brings down the worst measured conflict extraction time (instance average) from 67.4
to 1.2 seconds.

Figure 5.2 shows the number of added conjunctions during a run of the state-of-the-art
online-refinement search algorithms from Chapter 4 (RHC, RHC-SC, and GBFS-SCL). For
all three algorithms, there is no clear advantage for either conflict-extractionmethod, and
the difference is generally small: on average, conflict extraction from the relaxed plan re-
sults in 9.5% more refined conjunctions in RHC, 4.0% fewer in RHC-SC, and 2.8% fewer
in GBFS-SCL. The highlighted domains in Figure 5.2 are cases where we can see a slight
advantage for either approach: Spider and Parcprinter are examples where our method
works slightly better, conversely, the BSG-based approach is better in Freecell and Trucks.
In terms of coverage, we found no significant difference between the different conflict ex-
traction strategies with any of these search algorithms: considering only instances where
both configurations generate at least one conjunction, we get 936.2± 4.2 (relaxed plan)
vs. 940.8± 4.1 solved instances with RHC, 1018.2± 4.6 vs. 1023.4± 4.0 with RHC-SC,
and 1000.4± 4.3 vs. 999.8± 4.1 with GBFS-SCL.

In conclusion, extracting conflicts from the relaxed plan is typically faster than consider-
ing all conflicts in the best supporter graph (apart from cases where the BSG consistently
yields zero-distance conflicts which are not contained in the sequentialized relaxed plan),
and significantly improves the worst-case runtime. Our evaluation of the difference in
informativeness of the resulting conjunctions shows no significant advantage for either
approach (though there are some domains where one or the other has a small advan-
tage). For the remaining experiments in this chapter, we use our method of extracting
conflicts from the relaxed plan.

82 Chapter 5 Ranking Conjunctions for Partial Delete Relaxation Heuristics

10−1 100 101 102 103 104
10−1

100

101

102

103

104

RHC

Freecell
Parcprinter
Spider
Trucks

10−1 100 101 102 103 104
10−1

100

101

102

103

104

RHC-SC

Freecell
Parcprinter
Spider
Trucks

10−1 100 101 102 103 104
10−1

100

101

102

103

104

GBFS-SCL

Freecell
Parcprinter
Spider
Trucks

Figure 5.2: Number of conjunctions added during the search when extracting conflicts
from the BSG (x-axis) vs. relaxed plan (y-axis).

5.4.2 Candidate Ranking Strategies

We next evaluate the different candidate ranking methods, starting with the basic strate-
gies before considering their combinations. Our evaluation uses Refinement-HC with the
most restrictive depth bound of 1 (cf. Section 4.4.2). We choose this search algorithm in-
stead of the stronger variants (RHCwith novelty pruning, RHC-SC, or GBFS-SCL) because
it triggers refinement more often, resulting in (a) more instances where at least one con-
junction is added, yielding a larger benchmark set where the ranking strategy can make a
difference, and (b) more conjunctions being added in those instances, increasing the dif-
ference between the strategies. For example, the difference in overall coverage between
the best and worst strategies in the following experiment is 192, but would have been

Chapter 5 Ranking Conjunctions for Partial Delete Relaxation Heuristics 83

Ranking Strategy Coverage Conjunctions Growth Factor Ties
〈min-distance〉 1287.2± 6.6 30.4 2.01 9.2
〈min-size〉 1234.8± 7.2 42.0 2.31 12.6
〈min-counters〉 1206.8± 6.5 46.9 1.99 3.1
〈random〉 1206.8± 6.5 43.7 2.41 –
〈min-influence〉 1188.0± 6.9 36.1 2.29 3.1
〈arbitrary〉 1185.4± 6.1 51.7 2.74 –
〈min-deleter-alternatives〉 1180.4± 6.9 63.3 3.33 20.7
〈max-cost-increase〉 1148.8± 6.0 60.3 3.02 3.0
〈max-deleter-alternatives〉 1144.4± 6.7 72.1 3.73 6.4
〈min-counters-estimate〉 1135.6± 7.1 55.0 2.34 3.2
〈max-influence〉 1114.6± 6.9 63.0 3.12 5.3
〈max-occurrences〉 1105.6± 7.1 89.2 4.43 3.8
〈max-size〉 1095.0± 7.3 81.6 4.31 7.6
Table 5.1: Overview of the results with the basic candidate ranking strategies in

Refinement-HC with a depth bound of one (sorted by coverage).

just 97 with GBFS-SCL. We found that the relative effectiveness of the ranking strategies
is mostly consistent across the different search algorithms, so the observations made here
also transfer to the state-of-the-art online-refinement search algorithms.

Table 5.1 shows an overview of the results for the candidate ranking strategies; remaining
ties are broken arbitrarily. The table shows the coverage, and geometric means of the
number of added conjunctions on commonly solved instances with non-empty C , growth
factor of the heuristic, and number of tied candidate conjunctions after applying the given
ranking strategy. The choice of the strategy has a huge effect on the overall coverage,
ranging from 1095.0± 7.3 to 1287.2± 6.6. Overall,min-distance clearly outperforms the
other ranking strategies, and requires the fewest refinement steps in Refinement-HC.

Interestingly, the max-size strategy results in the least informative conjunctions while in-
ducing the greatest computational overhead. One reason for this behavior is that this
strategy favors a set of conjunctions that is focused on few facts rather than a universally
useful one, as new conjunctions that dominate already existing ones are prioritized over
conjunctions that contain facts for which no (non-singleton) conjunction exists yet. Con-
versely, min-size yields much better results, and is only second to min-distance in terms
of absolute coverage.

Like the min-counters strategy, the approximate version min-counters-estimate also re-
duces the overhead of the added conjunctions (e.g., random and arbitrary add fewer
conjunctions yet yield a larger growth factor in the heuristic). However, it performs sig-
nificantly worse, and yields less informative conjunctions than min-counters. We found

84 Chapter 5 Ranking Conjunctions for Partial Delete Relaxation Heuristics

Coverage 〈m
in
-d
ist
an

ce
〉

〈m
in
-s
iz
e〉

〈m
in
-c
ou

nt
er
s〉

〈ra
nd

om
〉

〈m
in
-in

flu
en
ce
〉

〈a
rb
itr
ar
y〉

〈m
in
-d
el
et
er
-a
lt.
〉

Airport (50) 41.8 36.4 34.4 39.8 34.4 25.2 33.8
Barman (40) 6.8 0.4 2.4 2.2 1.2 0.0 0.8
Blocksworld (35) 34.2 28.4 34.8 34.8 33.0 35.0 32.8
Childsnack (20) 3.4 3.0 6.0 6.0 3.4 1.0 4.0
DataNetwork (20) 16.2 17.0 10.8 14.6 17.0 9.6 13.4
Floortile (40) 40.0 5.6 40.0 13.8 7.4 36.0 8.6
Freecell (80) 72.4 70.0 65.0 70.8 67.2 63.4 69.0
Hiking (20) 19.8 19.6 19.6 20.0 20.0 14.2 20.0
Miconic (150) 150.0 150.0 70.4 150.0 150.0 150.0 150.0
Nomystery (20) 8.0 7.8 5.2 6.8 8.0 17.0 5.8
Openstacks (90) 73.4 69.4 54.6 44.6 53.0 40.4 68.8
Parking (40) 6.4 9.8 15.8 3.8 4.8 0.4 1.0
Pegsol (35) 26.6 19.2 34.2 26.2 15.6 33.0 19.0
Pipes-tank (50) 42.0 40.8 41.6 39.8 40.4 34.0 36.6
Storage (30) 27.4 29.2 29.6 27.2 26.8 24.4 28.0
Tetris (20) 18.0 14.6 15.8 15.4 10.4 10.8 12.0
Tidybot (20) 7.2 9.2 10.2 7.0 7.6 3.8 4.4
Transport (60) 38.8 53.6 59.2 35.6 39.6 36.6 37.6
Trucks (30) 10.0 10.0 13.8 9.8 9.4 12.0 8.4
VisitAll (37) 8.8 10.4 11.0 4.0 10.6 11.6 3.4
Others (808) 636.0 630.4 632.4 634.6 628.2 627.0 623.0
Sum (1695) 1287.2 1234.8 1206.8 1206.8 1188.0 1185.4 1180.4
Normalized (%) 69.3 66.1 68.5 66.0 64.3 64.4 63.1
Table 5.2: Coverage results with selected candidate ranking strategies. Domains where
the coverage difference between the best and worst strategy is less than 5 are grouped

to “Others”.

that the intended advantage of saving some computation time does not really have an ef-
fect as the evaluation of the ranking strategies takes only a very small share of the overall
search time, in particular with our adapted conflict extraction method.

Table 5.2 shows the coverage of the best-performing strategies in more detail. In some
domains results are very consistent between the different ranking strategies, in others
they can fluctuate wildly. For example, in Floortile, coverage ranges between 5.6 all the
way to 40.0. Nomystery is another interesting example: The arbitrary strategy works
much better than the others in that domain. In our implementation, arbitrary simply
chooses the first conflict, which tends to occur early in the relaxed plan. Since the main
difficulty in Nomystery is fuel consumption, this results in conjunctions that are immedi-
ately useful. Conflicts further along the relaxed plan might result in conjunctions that are
never reachable, such as the current value of the fuel combined with a truck location that

Chapter 5 Ranking Conjunctions for Partial Delete Relaxation Heuristics 85

Coverage 〈m
d,

m
in
-c
ou

nt
er
s〉

〈m
d,

ar
bi
tr
ar
y〉

〈m
d,

m
in
-d
el
et
er
-a
lt.
〉

〈m
d,

m
in
-s
iz
e〉

〈m
d,

m
in
-c
ou

nt
er
s-
es
t.〉

〈m
d,

m
in
-in

flu
en
ce
〉

〈m
d,

ra
nd

om
〉

Airport (50) 43.4 41.8 42.2 41.2 40.2 41.8 41.0
Barman (40) 2.2 6.8 5.4 0.8 1.2 3.4 3.4
DataNetwork (20) 14.4 16.2 16.8 17.6 13.8 17.6 16.0
Freecell (80) 68.8 72.4 71.4 71.0 70.8 68.4 69.2
Openstacks (90) 56.4 73.4 71.2 60.8 54.2 56.0 45.4
Parking (40) 10.2 6.4 4.0 7.6 8.2 4.4 0.8
Pegsol (35) 29.8 26.6 28.4 27.4 30.6 23.2 27.0
Transport (60) 56.8 38.8 38.6 42.0 37.8 38.8 36.6
Trucks (30) 14.4 10.0 10.0 11.0 11.8 10.0 11.6
VisitAll (37) 11.4 8.8 8.2 10.8 11.4 10.4 8.4
Others (1213) 992.8 986.0 989.2 986.0 991.2 987.2 984.6
Sum (1695) 1300.6 1287.2 1285.4 1276.2 1271.2 1261.2 1244.0
Normalized (%) 70.5 69.3 69.6 69.3 69.2 68.7 67.9
Conjunctions 64.6 59.0 58.5 59.0 65.0 58.5 60.6
Growth Factor 2.34 2.60 2.59 2.52 2.43 2.54 2.66

Table 5.3: Coverage results with selected candidate ranking strategies as lexicographi-
cal tie breaking after min-distance. Domains where the coverage difference between the

best and worst strategy is less than 3 are grouped to “Others”.

requires the truck to move (and thereby consume some fuel) first. While min-distance
is outperformed in a few domains (most significantly in Transport and Parking), it is
otherwise very robust and yields the best results overall.

As the overall best ranking strategy (min-distance) leaves some room for additional tie
breaking (see Table 5.1), we next look at combinations of strategies.

We ran all remaining candidate ranking strategies as lexicographical tie breaking after
min-distance, with results ranging from a total coverage of 1228.2± 5.7 (with the tie-
breaking sequence 〈min-distance, max-influence〉) to 1300.6± 6.3 (with 〈min-distance,
min-counters〉). Table 5.3 shows the results of the best-performing configurations. In most
domains, the variance across the ranking strategies is now small, but the difference is still
quite large in Openstacks and Transport. The latter is the domain where the overall best
configuration stands out the most: the second-best tie breaking sequence (〈min-distance,
min-size〉) solves 14.8 fewer instances than 〈min-distance, min-counters〉.

While Keyder et al.’s [2014] original strategy is the best overall, there are some domains
where our novel strategies have merit. In DataNetwork and Pegsol, other tie breaking

86 Chapter 5 Ranking Conjunctions for Partial Delete Relaxation Heuristics

sequences yield higher coverage (see Table 5.3). However, there are also domains where
coverage remains similar, but the number of expansions reduces significantly with dif-
ferent strategies: in Nomystery, 〈min-distance, arbitrary〉 has 50% fewer expansions than
〈min-distance, min-counters〉; in Miconic, 〈min-distance, min-influence〉 has 44% fewer ex-
pansions.

In most domains, no further tie breaking can be applied. We tested using a third ranking
strategy after 〈min-distance, min-counters〉 in selected domains that had remaining ties,
but found no significant impact on the results.

5.4.3 Online Ranking Strategies

We now consider the strategies to rank conjunctions that are already contained in C and
used by the heuristic. We evaluate the online ranking strategies using GBFS with offline
refinement until a growth factor of 1.5 or a timeout of 900 seconds is reached, and pe-
riodically (after every 25 evaluations) replace a single conjunction by a new one. The
conjunction to be replaced is selected according to each specific online ranking strat-
egy, while the new conjunction is selected using the default candidate selection strategy,
〈min-distance, min-counters〉. We require that the removed conjunction must have been
part of C for at least 250 evaluations (except in the beginning before the threshold of 250
evaluations is reached for any conjunction) to avoid removing conjunctions that have re-
cently been added. After replacing a conjunction, search is continued with the open and
closed lists unchanged.

Table 5.4 shows an overview of the results. The best strategy overall is oldest with a to-
tal coverage of 1450.2± 5.7. The max-counters succeeds in reducing the computational
effort of the heuristic, but yields a less informative heuristic than the other replacement
strategies (higher number of expansions), which outweighs the computational advan-
tage. As shown by the search time, the more complexmin-hCadd-increase andmin-effective
strategies incur additional overhead, which does not pay off in increased informativeness
over the simpler strategies.

All of our replacement strategies yield better results than keeping the set of conjunctions
fixed (rightmost column), boosting not only overall coverage, but also significantly reduc-
ing the number of expansions on commonly solved instances. Since the heuristic steadily
includes new conjunctions, it adapts itself to the region of the search space that is cur-
rently being explored. Conjunctions are often only relevant in some areas of the search
space, but fail to improve the informativeness of the heuristic in others while inducing
computational overhead. The oldest strategy is the most effective one in addressing this

Chapter 5 Ranking Conjunctions for Partial Delete Relaxation Heuristics 87

Coverage ol
de
st

ra
nd

om

m
in
-r
p-
fr
eq
ue
nc
y

m
ax
-c
ou

nt
er
s

m
in
-h

C
ad

d -
in
cr
ea
se

m
in
-e
ffe
ct
iv
e

fix
ed

C

Airport (50) 37.4 37.2 35.4 35.2 33.4 32.8 34.2
Barman (40) 34.6 33.8 25.4 28.8 19.4 19.6 5.4
DataNetwork (20) 13.0 13.6 14.8 14.0 16.4 14.6 13.2
Openstacks (90) 68.2 61.8 60.0 56.6 51.4 52.8 66.0
OrgSynth-split (20) 10.6 10.6 11.0 11.2 7.0 7.4 10.4
Parcprinter (40) 37.0 34.2 35.4 34.8 34.6 34.8 32.8
Parking (40) 26.6 23.8 24.6 21.8 22.0 16.4 19.4
Pipes-tank (50) 43.0 42.8 43.0 42.4 42.6 42.8 39.0
Snake (20) 11.4 10.2 11.4 8.2 9.8 10.8 6.2
Storage (30) 27.2 27.2 25.6 24.2 26.8 26.0 20.0
Tetris (20) 19.0 18.8 19.8 13.4 9.2 9.0 13.8
Transport (60) 40.0 40.4 39.8 47.4 41.0 42.6 38.8
Trucks (30) 18.2 17.0 19.0 16.2 15.6 16.6 16.8
VisitAll (37) 17.0 17.0 16.8 17.0 12.2 12.8 18.2
Others (1148) 1047.0 1048.6 1049.8 1047.6 1046.4 1046.2 1038.4
Sum (1695) 1450.2 1437.0 1431.8 1418.8 1387.8 1385.2 1372.6
Std. Error 5.7 6.0 6.0 6.4 6.3 6.6 7.0
Normalized (%) 82.4 81.9 82.0 80.5 79.0 78.8 77.6
Growth Factor 1.55 1.53 1.59 1.31 1.50 1.54 1.45
Expansions 323.16 321.63 320.12 361.70 349.12 330.25 444.89
Search Time (s) 0.50 0.51 0.50 0.52 0.81 0.79 0.57
Table 5.4: Coverage results for the online ranking strategies in GBFS with offline re-
finement and periodic replacement, and GBFS with a fixed set of conjunctions. Domains
where the coverage difference between the best and worst strategy is less than 3 are
grouped to “Others”. The last three rows show the average growth factor, and geomet-
ric means of the number of expansions and search time on commonly solved instances.

problem, as the oldest conjunctions were likely added in now distant parts of the search
space and should thus be less relevant in recently generated relaxed plans.

In domains where GBFS with a fixed set of conjunctions is already better than the online-
refinement algorithms (cf. Table 4.6 in Section 4.8.1), the replacement variant increases
the advantage slightly. For example, it improves coverage in Sokoban from 25.4 to 27.2
(where the best-performing online-refinement algorithm solves 17.8 instances), and in
Termes from 11.8 to 12.6 (compared to at most 9.6 with online refinement). Overall, this
simple replacement strategy is already competitive with planners like LAMA [Richter and
Westphal, 2010] and Mercury [Katz and Hoffmann, 2014], which achieve a coverage of
1466 respectively 1456 on this benchmark set (cf. Table 4.7 in Section 4.8.3), though it
falls behind more recent planners and the state-of-the-art online refinement methods.

88 Chapter 5 Ranking Conjunctions for Partial Delete Relaxation Heuristics

5.5 Conclusion

Previous work on partial delete relaxation with explicit conjunctions has glossed over
the detail of how to rank conjunctions in the refinement procedure. We filled that gap
with an extensive evaluation of complex strategies and their combinations, both for the
selection of candidate conjunctions, and to rank conjunctions that are already used by
the heuristic. As it turns out, the initial strategies suggested by Keyder et al. [2014]
are already very effective—not just because they reduce the computational overhead as
intended, but also because they result in very informative conjunctions. However, there
are domains where our novel strategies can be superior. We evaluated the ranking of
already added conjunctions with a simple online-replacement mechanism in GBFS, and
achieved surprisingly good results by simply replacing the oldest conjunction repeatedly
as it dynamically adapts the heuristic to the region of the state space currently being
explored.

Given our extensive set of strategies, we conjecture that there is little room for further
improvement through other strategies. However, different approaches could be tried. For
example, a machine-learning approach could combine several of the underlying statis-
tics gathered for our ranking strategies to create a more sophisticated one. As the best-
performing strategies are not always the same across all domains, a per-domain (or per-
instance) selection mechanism similar to those used by portfolio planners [e.g., Cenamor
et al., 2016; Sievers et al., 2019] could potentially boost performance on domains where
the default ranking strategy is not ideal.

Following the success of the simple replacement strategy in GBFS, incorporating conjunc-
tion forgetting into an online-refinement search algorithm might be another interesting
direction for future work. Forgetting conjunctions could significantly reduce the compu-
tational overhead of the heuristic in cases where many conjunctions are added over the
duration of the search. This would be difficult to implement in our hill-climbing algo-
rithms as they rely on converging refinement for completeness, which seems impossible
to retain with conjunction forgetting. However, it could potentially yield improvements
in GBFS-SCL, though it would require a reliable mechanism to detect conjunctions that
are no longer useful and can be removed without sacrificing informativeness.

6 Finding Plans with Red-Black
State-Space Search

There are two main lines of research in red-black planning. The tractable fragment ACI
[Domshlak et al., 2015] enables its use as a heuristic, but imposes restrictions in the
possible paintings. On the other hand, red-black state-space search (RBS) [Gnad et al.,
2016] allows for full interpolation between fully delete-relaxed and real planning, but
comes with the complexity of state-space search.

ACI requires that the causal graph of black variables is acyclic, and that all back variables
are invertible. These restrictions typically only allow a small fragment of variables to be
painted black, and the resulting red-black plans are very different from real plans.

RBS addresses these restrictions, and can generate red-black plans that are real plans
in the limit. Gnad et al. [2016] explored RBS as a method to generated seed plans for
plan repair with LPG [Gerevini et al., 2003; Fox et al., 2006], and to prove unsolvability,
exploiting the fact that if the task is unsolvable in the relaxation, the original task must
also be unsolvable. For the latter, they use an incremental search strategy: Starting out
with a fully relaxed painting (painting all variables red); whenever a solution is found,
the painting is iteratively refined by painting more and more variables black until the
relaxation becomes unsolvable.

Here, we explore RBS as a method to generate plans directly. We follow a similar ap-
proach to the incremental search strategy outlined above, using incremental refinement
of the painting until we obtain a red-black plan that is also a real plan. The challenge
is to make RBS produce real plans early on, with few black variables. We design two
enhancements to this end:

1. We create synergy between RBS and ACI, by replacing delete-relaxed planning with
ACI planning in RBS. This uses ACI where possible (e.g., driving back and forth on
an invertible road map), and uses RBS where not (e.g., resource consumption and

89

90 Chapter 6 Finding Plans with Red-Black State-Space Search

other non-invertible variables). We identify a maximally permissive condition on
the black-variable dependencies under which this combination is possible.

2. We design a variant of red-black state-space search with adaptive refinement, al-
lowing the use of different paintings in different parts of the search space. Ev-
ery transition s

a−→ s′ is checked for realizability of the red parts, i.e., whether the
delete-relaxed plan here works in reality. Non-realizable transitions are pruned,
and spawn refinement options: red-black planning tasks starting at s, with addi-
tional black variables addressing the non-realizability of s

a−→ s′. The refinement
options become search nodes in an overall heuristic search.

We evaluate our techniques on the IPC benchmarks. In overall performance, 1 is compet-
itive, while 2 often suffers from the added overhead of spawning too many refinement
options. Compared to Gnad et al.’s [2016] original approach of using red-black plans
as seed plans for plan repair, generating plans directly through the combination of RBS
with ACI is better overall, and both of our contributions are highly complementary to the
plan repair approach per domain. In five domains, our best configurations outperform
the state-of-the-art planners LAMA [Richter and Westphal, 2010] and Mercury [Katz and
Hoffmann, 2014] by large margins.

Papers and Contributions This chapter is based on the paper “Unchaining the Power
of Partial Delete Relaxation, Part II: Finding Plans with Red-Black State Space Search”
[Fickert et al., 2018b]. The paper was principally developed by the author, in joint work
with Daniel Gnad and Jörg Hoffmann. The plot showing the coverage depending on the
number of black variables (Figure 6.1) and the corresponding discussion (Section 6.3.2)
are Daniel Gnad’s work.

6.1 Combining RBS with ACI

Any flaw in a red-black plan πRB can in principle be fixed by painting the respective
variable v black and re-running RBS. However, the red-black state space grows exponen-
tially in |VB|, raising the question whether we can somehow avoid the computational cost
incurred by painting v black.

As we show in the following, the answer is yes—if we can address flaws in v by ACI instead
(like for the variable “at” in Example 3.4). We can use ACI to effectively handle a tractable
part of the task at hand (e.g., invertible variables moving back and forth), combined with
RBS to handle the remainder (e.g., variables modeling resource consumption).

Chapter 6 Finding Plans with Red-Black State-Space Search 91

6.1.1 The RBS+ACI Framework

Our combined framework, that we baptize RBS+ACI, distinguishes black variables of
two different kinds: those handled by RBS vs. those handled by ACI. So a painting now
partitions V into three subsets VRBS,VACI,VR, where VB = VRBS ∪ VACI.

Assume that such a partition is given. We need a red-black plan relative to the entire set
VB of black variables, i.e., for the red-black planning task ΠRB = 〈VRBS∪VACI,VR,A,I,G〉.
The basic idea is to apply ACI plan repair on the outcome of running red-black state-space
search on the coarser (more relaxed) task ΠRB

+ := 〈VRBS,VR ∪ VACI,A,I,G〉.

ACI plan repair is defined for fully delete-relaxed plans, not red-black plans, so we must
adapt the repair process. We must make sure that the repair (a) is always possible given
the black part VRBS already fixed, and (b) never affects that fixed part.

Let π be the plan found by RBS for ΠRB
+ . Our adapted repair process, RBS+ACI plan

repair, computes a plan without conflicts on the entire set of black variables VRBS ∪VACI,
fixing unsatisfied conditions only on VACI without modifying the conflict-free VRBS.

To ensure (b), an obvious and natural requirement is that there is no action a ∈ A with
V(eff(a))∩ VACI 6= ; and V(eff(a))∩VRBS 6= ;. In other words, the repair actions will never
affect any variables in VRBS.

Ensuring (a) is more tricky. In the red-black state-space search onΠRB
+ , the red completion

F+(sRB) of any state sRB uses only actions whose preconditions are satisfied given the
black variable assignment sRB|VRBS . So one may think (and we did think at first) that no
further restrictions are needed. However, across transitions sRB

a−→ tRB, the fixed repair
context changes from sRB|VRBS to tRB|VRBS . This causes problems because, during RBS, the
values reached for VACI in F+(sRB) are propagated to tRB. But due to the different context
tRB|VRBS , the repair process at tRB is not necessarily able to reach these values.

Similar to Gnad and Hoffmann [2015], we impose that there is no a ∈A with V(eff(a))∩
VACI 6= ; and V(pre(a)) ∩ VRBS 6= ;, i.e., the actions used in the repair process do not
have preconditions on VRBS. We next show that this restriction is sufficient to ensure
(a), and the repair will always work. We then show that the restriction is necessary for
computational reasons.

The conjunction of our two restrictions is equivalent to the absence of a causal graph arc
from VRBS to VACI. In this case, we say that VACI does not depend on VRBS.

Proposition 6.1 (Soundness). Given a red-black planning taskΠRB = 〈VB,VR,A,I,G〉, and
a partition of VB into VRBS and VACI such that the task 〈VACI,VR∪VRBS,A,I,G〉 is in ACI, and

92 Chapter 6 Finding Plans with Red-Black State-Space Search

VACI does not depend on VRBS. Let π be a red-black plan for ΠRB
+ = 〈VRBS,VR∪VACI,A,I,G〉.

Then RBS+ACI plan repair on π succeeds, and its output πRB is a red-black plan for ΠRB.

Proof. Any action a that may be inserted by ACI plan repair, and hence by RBS+ACI plan
repair, affects a variable in VACI. Since we require that VACI does not depend on VRBS,
we know that a has no preconditions or effects on VRBS. Hence, the arguments given by
Domshlak et al. [2015, Theorem 11] remain applicable, i.e., ACI plan repair can be run
on π and generates a valid red-black plan for ΠRB in polynomial time.

Example 6.1. Consider again the task from Example 3.3, where we want to buy two prod-
ucts in the store at location B and return to A (without fuel consumption):

A B

2

Assume we set VRBS = {money} and VACI = {at}. Note that money depends on at: this
dependency direction is allowed (but not the other way around).

RBS is run on the task ΠRB
+ = 〈{money}, {at, have−P1, have−P2},A,I,G〉 (the same task on

which we ran RBS in Example 3.5). The plan returned by RBS is again π = 〈drive(A, B),

buy(P1, 2), buy(P2, 1)〉. Running ACI plan repair on π finds the unsatisfied goal condition
g = {at= A}. This is repaired by appending the action drive(B, A) to the end of π, yielding
the overall plan 〈drive(A, B), buy(P1, 2), buy(P2, 1), drive(B, A)〉, which is a valid plan for the
original task.

Proposition 6.1 shows that our RBS+ACI framework is sound for red-black planning in
ΠRB. This framework is also complete:

Proposition 6.2 (Completeness). Under the prerequisites of Proposition 6.1, a red-black
plan for ΠRB = 〈VRBS ∪ VACI,VR,A,I,G〉 exists iff a red-black plan for ΠRB

+ = 〈VRBS,VR ∪
VACI,A,I,G〉 exists.

Proof. The “if” direction holds by Proposition 6.1. The “only if” direction holds because
ΠRB is a refinement of ΠRB

+ .

So our approach works provided there is no causal graph arc from VRBS to VACI. Let us
show that this restriction is necessary. Consider the decision problem RBS-dependent ACI
PlanGen, defined as follows. Given the red-black planning task ΠRB = 〈VB,VR,A,I,G〉,

Chapter 6 Finding Plans with Red-Black State-Space Search 93

and a partition of VB into VRBS and VACI such that 〈VACI,VR ∪ VRBS,A,I,G〉 is in ACI,
and all causal graph arcs between VRBS and VACI, if any, are directed from VRBS to VACI.
Given a red-black plan π for ΠRB

+ = 〈VRBS,VR ∪ VACI,A,I,G〉. Let π|VRBS the subsequence
of actions in π that have effects on VRBS. Decide whether π|VRBS is a subsequence of a
red-black plan for ΠRB.

Theorem 6.3 (NP-Hardness). RBS-dependent ACI PlanGen is NP-hard.

Proof. We prove the claim by reduction from SAT. Let φ be a CNF formula with propo-
sitions p1, . . . , pn and clauses c1, . . . , cm. Our planning encoding first chooses values for
pi, then satisfies the clauses c j. The construction sets VRBS to contain a single “indicator”
variable, determining whether we can right now set pi to 0 or to 1; VACI represents this
choice of values; and VR represents whether a clause has been satisfied yet.

In detail, we set VRBS = {v} with domain {0,1}, initial value 0, and a single action a[v01]

going from 0 to 1. We set VACI = {vp1
, . . . , vpn

} with domain {⊥, 0, 1}, initial value ⊥,
actions going from ⊥ to 0 with precondition v = 0, actions going from ⊥ to 1 with pre-
condition v = 1, and actions going from either 0 or 1 back to ⊥ with no additional pre-
condition on v. We set VR = {vc1

, . . . , vcm
} with domain {0,1}, initial value 0, goal value 1,

and an action a[vc j
01] setting vc j

from 0 to 1 with precondition {v = 1, vpi
= x} for each

fact (pi = x) ∈ c j.

Observe first that this red-black planning task ΠRB does satisfy the prerequisites: all
vpi
∈ VACI are invertible, and there are no dependencies across these variables; the de-

pendencies between VRBS and VACI consist of the causal graph arcs 〈v, vpi
〉.

Consider now π|VRBS := 〈a[v01]〉. This is a subsequence of a red-black plan π for ΠRB
+ :

We can move each variable vpi
to vpi

= 0 before the application of a[v01], and to vpi
= 1

after that application. Any formula φ can be satisfied that way.

But is π|VRBS a subsequence of a red-black plan for ΠRB? The answer is “yes” iff φ is
satisfiable. This is because π|VRBS is (trivially) a subsequence of any red-black plan for
ΠRB, and a red-black plan for ΠRB exists iff φ is satisfiable. The latter is true because, in
ΠRB, each vpi

can support the clause-satisfying actions a[vc j
01] with only a single truth

value. First, vpi
= 1 can only be reached after a[v01], at which point vpi

= 0 is no longer
reachable. Second, we can set vpi

= 0 before the application of a[v01]. But at that point,
a[vc j

01] is not yet applicable due to its precondition v = 1. So we must apply a[v01], and
afterwards we can no longer reach vpi

= 1.

By Theorem 6.3, given the fixed solution pathπ|VRBS found by red-black state-space search
for ΠRB

+ , augmenting π|VRBS to a red-black plan for ΠRB is hard. In our framework, such

94 Chapter 6 Finding Plans with Red-Black State-Space Search

augmentation is done by red (delete-relaxed) planning in ΠRB
+ alongside π|VRBS , followed

by RBS+ACI plan repair. Hence, one of these steps would need to have worst-case expo-
nential runtime (unless P = NP). In other words, efficient RBS+ACI plan repair is not
possible when allowing causal graph arcs from VRBS to VACI.

In practice, i.e., in our overall planning algorithm introduced next, one can ameliorate
the situation by attempting RBS+ACI plan repair even if VACI does depend on VRBS. If the
repair succeeds, all is fine—we only need to act (by removing the problematic variable(s)
from VACI) in case the repair fails.

6.1.2 Overall Planning Process: Iterated RBS+ACI

We now know how to solve any red-black task ΠRB with an RBS+ACI painting VRBS, VACI,
VR that qualifies for Proposition 6.1. But our aim here is to find real plans, for the original
FDR input task Π. Thus, RBS+ACI becomes a tool within our overall planning process.

That process is a loop around RBS+ACI searches with increasingly refined paintings,
similar to Gnad et al.’s [2016] iterated approach for unsolvable tasks. In a pre-process,
we compute an ACI painting VB

0 ,VR
0 using the default painting strategy of Mercury, which

orders the variables by causal graph level and iteratively paints variables red until the
black causal graph is a DAG [Katz and Hoffmann, 2014]. We then initialize our painting
as VRBS := ;, VACI := VB

0 , VR := VR
0 , and start our iterative planning process. First, we run

RBS+ACI using the current painting. If a red-black plan does not exist, we know that
the original task Π is unsolvable and we stop. Otherwise, we now have a red-black plan
πRB. We check whether πRB is a real plan for Π. If yes, we stop; otherwise, we refine our
painting. In order to refine the painting, we simulate the execution of πRB under the real
planning semantics in Π, and we count the number of flaws (unsatisfied preconditions or
goals) associated with each variable v ∈ VR. We select v ∈ VR with a maximal number of
flaws (a criterion adapted from Mercury) and set VRBS := VRBS ∪ {v} and VR := VR \ {v},
and proceed to the next iteration with the updated painting.

Adding v to VRBS may introduce dependencies of VACI on VRBS. Therefore, as discussed
above, at some point RBS+ACI plan repair may fail. In that case, we move the culprit
variable(s) from VACI to VR, re-establishing the Proposition 6.1 guarantee that repair will
succeed. The red-black relaxation considered is, then, no longer a refinement of the
previous one. However, convergence to VB = V remains intact (in the worst case, VACI

may become empty, but then VRBS eventually converges to V), so the completeness of the
overall planning process is preserved.

Chapter 6 Finding Plans with Red-Black State-Space Search 95

This overall planning process can be seen as a form of counterexample-guided abstraction
refinement—in each iteration, we either find a real plan and are done, or the current
abstraction (painting) is refined based on the flaws encountered when attempting to
execute it.

Whenever checking whether an intermediate red-black plan πRB works under the real
planning semantics in Π, a variant is to commit to the conflict-free prefix of πRB, i.e.,
start the next iteration from the resulting state instead of the initial state; we will refer
to this variant as prefix execution (PE). This saves some search effort if the new start state
is closer to the goal than the original initial state, however, it loses completeness if the
task contains dead ends.

6.2 Adaptive Refinement via Realizability

The iterated refinement loop around RBS, as in our overall RBS+ACI planning frame-
work, is wasteful in that every iteration starts from the initial state, and has to rebuild
the red-black search space from scratch. Prefix execution fixes this, but in a limited way
and at the cost of completeness. Ideally, like other abstraction refinement processes, we
ought to refine in an adaptive manner, only where needed, and do so incrementally within
a single, iteratively refined, relaxed search space.

There is no obvious answer on how to do this effectively in RBS for the purpose of finding
real plans. The straightforward approach would be to search until a red-black plan πRB

is found, execute πRB under the real semantics until the first flaw occurs at the red-black
state sRB, then generate a refined painting which is used to rebuild the search space below
sRB with RBS. Similar to prefix execution, this would save the search effort to reach sRB

again, but we want to be able to continue search into other parts of the state space, and
with different paintings refined to the specific flaws found in those areas.

However, there are some issues with this approach. With many black variables—as
needed to find real plans—finding πRB becomes very expensive so there will be long
time intervals between the local refinement steps. Furthermore, the red-black plan πRB

may already have a flaw close to the root state, so a lot of the search effort that was used
to find the flawed plan has been wasted. To illustrate this point, say that the only action
applicable at the root of an RBS subtree sRB has red preconditions p and q, each of which
is reached in F+(sRB), but which are in conflict so their conjunction is not reachable under
the real semantics. In that case, all search below sRB is obsolete.

Given these observations, here we design an eager approach, refining the painting locally
whenever a transition in ΘRB will not work out under non-relaxed semantics. We first

96 Chapter 6 Finding Plans with Red-Black State-Space Search

show how this can be incorporated into RBS, then we again discuss the combination
with ACI.

6.2.1 Realizability Refinement: X-RBS

Let sRB be any red-black state in ΘRB, and let sRB
a−→ tRB be any outgoing transition of

sRB. By construction, we know that pre(a)|VR ⊆ F+(sRB), i.e., the red preconditions of
a are reachable from sRB in the delete relaxation. Let now π+X be a relaxed plan from
sRB for the goal pre(a)|VR , extracted by some relaxed-plan extraction method X . If π+X
achieves pre(a)|VR under the real semantics, we say that sRB

a−→ tRB is realized by π+X and
is realizable given X.

Definition 6.4 (X-RB State Space). Let ΠRB be a red-black planning task, and let X be a
relaxed-plan extraction method. The X-RB state space is the transition system ΘRB

X , which
is defined like ΘRB, except that:

(a) transitions sRB
a−→ tRB not realizable given X are pruned;

(b) if sRB
a−→ tRB is realized by π+X , then tRB is the outcome state of executing π+X ◦ a in

sRB under the real semantics.

The X-RB state space models a modified version of the original red-black state space,
taking into account the specific relaxed plan generation method X. At each transition
sRB

a−→ tRB, the red preconditions are achieved by inserting a relaxed plan for pre(a)—but
if the specific relaxed plan π+X generated by X to achieve pre(a) does not work under real
semantics, we already know that the final red-black plan will be flawed at that transition.
Hence, the X-RB state space prunes such a transition. It is of course a restriction here to
commit to the plan generation method X. But there is no systematic alternative: short
of a full-scale planning process for pre(a)—giving up on the relaxation altogether—if X
does not find a real plan, then the best one could do is try another relaxed plan extraction
method X’ (which again might not find a real plan, and a real plan for pre(a) may in fact
not exist at all).

That said, Definition 6.4 is only one half of the story. Whenever a transition sRB
a−→ tRB

is pruned by (a), we spawn a refinement option, discussed in detail below. A refinement
option is a refined red-black planning task at sRB, addressing the reason for the non-
realizability of sRB

a−→ tRB.

Point (b) of the X-RB state space definition has the immediate effect that every reachable
state sRB inΘRB

X is in fact a real state. This turns the red part of the search (the relaxed plan

Chapter 6 Finding Plans with Red-Black State-Space Search 97

generation method X) into a fast macro generator to the next applicable black-variable-
affecting action.

Observe that this is a natural match with our realizability check. The realizability check
ensures that we are able to reach pre(a) at sRB under the real semantics of the task by
verifying the relaxed plan π+X , so it only makes sense to consider the state resulting from
that specific plan. In contrast, the over-approximated state transition, without (b), would
pretend that we can reach the entire set F+(sRB). Intuitively, we can check the validity of
sRB

a−→ tRB only in a limited way, because a priori we do not know what the full red goal
might be here at plan extraction time, so we restrict to the known preconditions of the
transition at hand.

We now give the details on the refinement options in the X-RB state space:

Definition 6.5. Let ΠRB = 〈VB,VR,A,I,G〉 be a red-black planning task; let sRB
a−→ tRB be

a non-realizable transition pruned in ΘRB
X , with the corresponding relaxed plan π+X ; and

let v ∈ VR be a red variable such that π+X contains a maximal number of flaws on v. Then
ΠRB
+v(s

RB) := 〈VB ∪ {v},VR \ {v},A, sRB,G〉 is a refinement option for sRB
a−→ tRB.

Whenever a transition sRB
a−→ tRB is pruned in our exploration of ΘRB

X , we generate a
refinement option ΠRB

+v(s
RB), which locally refines the painting based on the variable with

the most conflicts in the relaxed plan for pre(a). The refinement option is inserted as a
search node into the overall (heuristic) search. Thus, the X-RB search process decides
not only which states to explore, but also which refinement is used to explore that state.
We will refer to this overall search framework as X-RBS.

Observe that point (b) in Definition 6.4 is an under-approximation that loses complete-
ness: By committing to π+X , we may exclude solutions, and the resulting X-RB search
space may not contain a plan. As an optional fix, we can also spawn refinement op-
tions at nodes sRB all of whose descendants have been unsuccessfully explored. In such
a case, we do not have a concrete flaw to fix, so we pick a variable v ∈ VR to paint black
arbitrarily. We refer to this variant as refinement explored (RE).

6.2.2 Combination with ACI

The number of refinement options can be a major source of computational overhead in
X-RBS. One way to ameliorate this is to combine X-RBS with ACI (X-RBS+ACI): replacing
delete-relaxed planning with tractable red-black planning will result in fewer flaws, and
in more realizable transitions.

98 Chapter 6 Finding Plans with Red-Black State-Space Search

The combination is simple in X-RBS as relaxed planning occurs only at individual tran-
sitions sRB

a−→ tRB. Relaxed planning is used for two purposes: (1) to generate F+(sRB)

in order to test whether pre(a) is relaxed-reachable, and (2) to extract a specific relaxed
plan using the method X, in order to check realizability and generate the successor.

Using ACI instead, (1) remains unchanged. For (2), we use ACI plan repair on top of
the relaxed plan extraction method X. As before, this again uses separate sets of black
variables VRBS and VACI, but with no constraint on their dependencies: in a realizability
check—against the real semantics—a success guarantee cannot be given anyway.

6.3 Experiments

Our implementation is based on Gnad et al.’s [2016] original implementation of red-
black state-space search, which modifies Fast Downward [Helmert, 2006] in a minimally
intrusive way, exchanging the state and state transition data structures while preserving
all search algorithms. The source code is available at https://github.com/fickert/
fast-downward-redblack-search.

We use the satisficing STRIPS benchmarks from the International Planning Competitions
up to 2014 for the evaluation. All our configurations run greedy best-first search using a
dual queue for preferred operators with Gnad et al.’s [2016] extended hFF heuristic.

We run each of RBS and X-RBS with vs. without ACI. We run RBS with vs. without prefix
execution (PE), and X-RBS with vs. without refinement explored (RE), yielding eight
different configurations. Among these, RBS with neither ACI nor prefix execution is a
baseline easily derived from (though not evaluated by) Gnad et al.’s [2016] original work
in red-black state-space search. We compare against LAMA [Richter andWestphal, 2010]
and Mercury [Katz and Hoffmann, 2014] as representatives of the state of the art. We
also run the best-performing LPG-plan-repair configuration by Gnad et al. [2016]. This
paints 90% of the variables black, uses RBS to find a red-black plan πRB, and then invokes
LPG to repair πRB into a real plan.

6.3.1 Coverage

Consider Table 6.1, and the variants of RBS (leftmost part of the table). Compared to
the baseline, both our techniques (+ACI and +PE) improve performance substantially.
This is clearly visible in overall coverage. Per domain, +PE yields better coverage in
14 domains, +ACI in 12, and the two together in 15. Both techniques also have their
drawbacks, as +PE does not work well if the prefix often leads into dead ends (e.g., in

https://github.com/fickert/fast-downward-redblack-search
https://github.com/fickert/fast-downward-redblack-search

Chapter 6 Finding Plans with Red-Black State-Space Search 99

RBS X-RBS
+ACI +ACI RBS Mer-

+PE +PE +RE +RE +LPG LAMA cury
Airport (50) 27 28 27 28 41 43 41 44 42 32 32
Barman (40) 0 3 0 3 0 7 0 0 24 39 40
Blocksworld (35) 35 35 35 35 35 35 24 33 35 35
Childsnack (20) 5 20 9 10 0 0 0 0 4 5 0
Depots (22) 15 17 16 18 1 9 14 15 21 20 21
DriverLog (20) 19 18 20 19 2 7 3 9 18 20 20
Elevators (50) 45 47 50 50 0 12 50 50 50 50 50
Floortile (40) 3 3 6 7 0 4 0 0 9 8 8
Freecell (80) 71 69 71 69 69 61 69 60 35 79 80
GED (20) 10 9 10 10 20 20 14 0 4 20 20
Grid (5) 4 4 5 4 0 2 4 5 4 5 5
Hiking (20) 20 20 15 17 18 15 18 20 19 18 20
Logistics (63) 62 62 63 63 0 12 63 63 35 63 63
Maintenance (20) 11 7 11 7 0 0 0 0 0 7
Mprime (35) 35 34 35 35 3 18 35 34 35 35 35
Mystery (19) 16 13 17 13 1 8 19 18 16 19 19
Nomystery (20) 19 19 19 17 0 4 1 4 19 11 14
Parcprinter (50) 49 49 49 49 39 48 36 37 35 49 50
Parking (40) 12 13 11 13 0 0 0 0 0 40 40
Pathways (30) 21 28 21 28 27 26 27 26 21 23 30
Pegsol (50) 50 50 50 50 50 50 50 37 16 50 50
Pipes-notank (50) 35 38 36 38 34 25 25 17 39 43 44
Pipes-tank (50) 31 26 28 30 26 20 34 18 24 42 42
PSR (50) 50 50 50 50 0 49 0 49 50 50 50
Rovers (40) 40 40 40 40 2 16 18 20 40 40
Satellite (36) 36 36 36 36 0 5 36 36 36 36
Scanalyzer (50) 42 46 42 50 43 42 44 44 46 50 50
Sokoban (50) 20 15 22 13 44 44 29 9 5 48 42
Storage (30) 18 20 18 18 16 17 28 28 25 19 19
Tetris (20) 0 3 0 2 1 0 3 2 0 13 19
Thoughtful (20) 6 11 6 10 15 13 9 5 16 13
Tidybot (20) 8 6 7 8 0 2 0 0 13 17 15
TPP (30) 30 30 30 30 0 10 30 27 30 30 30
Transport (70) 31 33 70 70 0 20 61 57 45 61 70
Trucks (30) 12 12 12 12 4 10 0 8 20 15 19
VisitAll (40) 3 4 40 40 3 3 40 40 4 40 40
Woodworking (50) 50 49 50 49 17 16 10 13 47 50 50
Zenotravel (20) 20 20 20 20 1 7 20 20 20 20

Sum (1385) 961 987 1047 1061 512 680 855 848 755 1211 1238
Normalized (%) 67.5 70.3 72.5 73.2 32.8 45.7 57.7 57.7 63.4 84.5 86.9

Table 6.1: Coverage results of different configurations of red-black state-space search.
RBS+LPG is RBS followed by LPG plan repair (empty entries could not be run, see text).

Domains where all tested planners have full coverage are omitted.

100 Chapter 6 Finding Plans with Red-Black State-Space Search

Sokoban). Furthermore, +ACI can sometimes introduce more conflicts into the partially
relaxed plan. This happens for example in Childsnack, where otherwise the RBS+PE
configuration only needs to paint the sandwich objects and tray locations black (22–25%
of the total variables) to make the red-black plan a real plan, solving all instances in less
than 5 seconds.

For the X-RBS method (in the middle part of Table 6.1), results are much worse, in many
domains individually and hence overall. A key reason is the overhead from too many
refinement options: On average, 74% of the generated transitions are realizable, in some
domains much fewer (15% in Parking, 18% in Tetris). As expected, the combination with
ACI ameliorates this significantly, boosting overall coverage by 343 without +RE, and
by 168 with +RE. However, X-RBS+ACI is still not competitive with the other methods
overall, and it remains a question for future work how it can be brought to that level of
performance. While the +RE option helps in domains where X-RBS fails frequently, it
also increases the overhead of too many refinement options.

Consider now the RBS+LPG baseline, using LPG plan repair on seed plans obtained
from RBS. The empty entries in Table 6.1 are domains where that architecture did not
run properly, for implementation reasons (these domains are also omitted in Gnad et al.’s
[2016] original RBS paper). Filling in the gaps optimistically—assuming that RBS+LPG
can solve all instances in those missing domains—overall coverage becomes 934. This
still lags behind our RBS methods, even the baseline. On a per-domain level though, the
methods are highly complementary: Of the 32 domains, RBS beats RBS+LPG in 12 and
is inferior in 12; RBS+ACI+RE beats RBS+LPG in 16 and is inferior in 11.

For our X-RBS configurations, the comparison to RBS+LPG is, naturally, less favorable.
Complementarity at per-domain level persists though: X-RBS+ACI beats RBS+LPG in 13
domains, and is inferior in 14.

Consider finally LAMA andMercury. All our configurations are far from their performance
overall. Our best configuration, RBS+ACI+PE, beats LAMA in 5 domains and is inferior
in 20; for Mercury, these numbers are 2 vs. 22.

That said, there are five domains in which at least one of our configurations works ex-
ceptionally well. In Airport, our best method gains +12 coverage over the best of LAMA
and Mercury; in Childsnack, +15; in Maintenance, +4; in Nomystery, +5; in Storage, +9.
Thus, our new methods can potentially contribute in portfolios or per-domain autocon-
figuration.

Chapter 6 Finding Plans with Red-Black State-Space Search 101

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

200

400

600

800

1,000

RBS+ACI+PE
RBS+PE
RBS+ACI

RBS

Figure 6.1: Coverage as a function of the fraction of RBS variables, |VRBS|/|V|, in the
first iteration of RBS that finds a real plan.

6.3.2 Number of Black Variables until Finding a Solution in RBS

The major motivation behind our +ACI and +PE extensions to RBS is to reduce the size
of VRBS required to find a real plan. Figure 6.1 measures this impact directly.

Both extensions clearly help as intended. Without +ACI, few instances can be solved
without search (|VRBS| = 0) as, there, the delete-relaxed plan for the initial state has to
be a real plan. The advantage of our extensions remains strong when allowing larger
VRBS, until about |VRBS|/|V| = 50%, where the gap narrows. After that, the difference is
mainly due to benchmarks that ACI solves in the initial state (like Transport), but that
are beyond reach of RBS search alone.

6.4 Conclusion

We have shown that red-black state-space search can be synergetically combined with ACI
tractable red-black planning, obtaining an overall red-black planning approach with con-
vergence to real planning and low overhead for tractable variables. The overall RBS+ACI
planning framework with iterative refinement significantly improves performance over
the RBS baseline, but is still outperformed by state-of-the-art planners like LAMA and
Mercury on most domains.

102 Chapter 6 Finding Plans with Red-Black State-Space Search

With X-RBS, we also introduced a more flexible RBS approach based on adaptive local
refinement, though its performance is not yet competitive. Alternate choices for the tran-
sitions in the X-RBS might be an interesting topic for future work. For example, instead
of always refining the painting further, it might be beneficial to relax the painting again
to reduce search effort; or when refining the painting, one could attempt to re-use pre-
viously generated paintings to reduce the overhead.

Overall, our work contributes another piece in the puzzle how to tap into the power of
partial delete relaxation without incurring a prohibitive overhead, and how the partial
relaxation can be adaptively refined as needed. This fits into the larger puzzle of how
to use informative but costly approximations. We believe that such research is valuable
to complement the more prominent focus on fast-but-inaccurate approximations, and
we hope that our ideas and insights may be useful for approaches other than red-black
planning as well.

Part II

Adaptive Heuristic Search
Techniques

103

7 Choosing the Initial State for
Online Replanning

Planning and execution are typically viewed separately—a plan is computed by the plan-
ner, which is then executed by an agent. However, it may happen that the execution
does not succeed, and the previously computed plan must be adapted on the fly. This
can happen for various reasons. For example, the plan might have been computed using
an abstract model of the world, and inaccuracy in the model causes the plan to fail in
the real world [Cashmore et al., 2019]. Perhaps the environment or the agent’s goals
have changed in the meantime, or the agent has made new observations which prompt a
reaction [e.g., Stentz and Hebert, 1995; Knight et al., 2001; McGann et al., 2007]. Even
if the original plan could still work, it might be possible to come up with a more efficient
plan to switch to [Likhachev et al., 2005; Ferguson et al., 2008].

If the ensuing replanning process uses forward search, it faces a critical decision: At which
state along the execution should the agent deviate, i.e., which state should be the initial
state for the replanning process? If the current state of the agent is selected, then the
agent must sit idle until the replanning process finishes. Choosing a state further along
the original plan allows the replanning process to proceed in parallel to the execution,
but proceeding too far might also be detrimental and result in less efficient plans. For
example, if an updated goal requires the agent to go back to its original position, any
progress along the original plan must eventually be undone.

One common approach is to select a (hard-coded) fixed time point in advance such that
the replanning process can finish in time before the agent reaches the corresponding
state, and the agent can then continue along the new plan [e.g., Muscettola et al., 2002;
McGann et al., 2007; Ruml et al., 2011]. However, this approach requires hand tuning,
and a constant can be insufficient if the planning time fluctuates, leading to inefficiency.
In this chapter, we introduce the Multiple Initial State Technique (MIST); a planning al-
gorithm that takes a principled approach to make this choice automatically based on
estimations of its own planning time.

105

106 Chapter 7 Choosing the Initial State for Online Replanning

As the name suggests, MIST considers multiple initial states simultaneously in its search,
representing the possible choices at which the agent can deviate from its original plan to
a new one. MIST allows the execution to proceed during the planning process, and uses
estimates of its own planning time in order to judge for which search nodes it will be
able to find a solution before the corresponding initial state is passed. The search nodes
are ranked by an estimate of the goal achievement time, taking into account both the
planning time and the execution time of the overall plan. This allows MIST to adaptively
select the currently most promising search node (and corresponding initial state) at each
expansion, and allows it to remain flexible with regard to the deviation state until the
new plan is finalized.

The basic version of MIST discards search nodes corresponding to initial states that are
already passed by the execution, pessimistically assuming that these states are no longer
reachable (and hence cannot be used as an initial state of the new plan). We additionally
present a variant of MIST that can use a concept of recoverability, which allows it to
assume that passed states can still be reached at some additional cost, avoiding this loss
of progress.

Under suitable conditions on both the heuristic function and the planning time estimate,
we prove that the expansion order of (both variants of) MIST is correct in the sense that
the first returned plan cannot be improved by further search. In order to evaluate MIST
on a set of different domains, we implemented MIST in Fast Downward [Helmert, 2006],
and extended benchmarks from the International Planning Competitions to the online
replanning setting. In our evaluation, we found that MIST reduces the goal achievement
time compared to various baselines, and yields significantly more robust behavior across
different domains and planning-to-execution time ratios.

Papers and Contributions This chapter is based on the paper “Choosing the Initial
State for Online Replanning” [Fickert et al., 2021b]. The paper was principally developed
by the author and Ivan Gavran, in joint work with Ivan Fedotov, Jörg Hoffmann, Rupak
Majumdar, andWheeler Ruml. The algorithms have been co-developed by the author and
Ivan Gavran; the theoretical analysis is due to Ivan Gavran (Section 7.4 and Lemma 7.4);
the implementation and experimental evaluation are the author’s work. Ivan Fedotov
made minor contributions to the translator component and the reference-state-selection
part of the implementation.

Chapter 7 Choosing the Initial State for Online Replanning 107

7.1 Previous Work

Many practical applications naturally require replanning. One typical example are au-
tonomous vehicles used in space missions, where plan execution systems are designed
to be reactive. Whenever the plan execution fails (e.g., by detecting a previously unseen
obstacle), the system reacts and computes a new plan, usually fixing the initial state
of the new plan by imposing a predefined constant as the worst-case replanning bound
[Muscettola et al., 2002; McGann et al., 2007]. Industrial printing systems are another
application for replanning as printing jobs may be scheduled asynchronously. Ruml et al.
[2011] again use a hand-tuned constant as maximum planning time, and use it to de-
cide when the system can switch to the new plan. If the planning process takes longer
than expected, it is interrupted and the replanning process is restarted at a later time. In
the context of navigating robots through partially-known environments, Likhachev et al.
[2003, 2005] also use a constant as prediction for the planning time, and use an anytime
search to dynamically improve robots’ trajectories during their execution of previously
computed (suboptimal) plans. Our work aims to make such hand-tuned constants obso-
lete by integrating the selection of the deviation state into the replanning process itself.

If the planning time is negligible compared to the execution time, a straightforward ap-
proach (and one that we consider as a baseline in our experiments) is to halt the exe-
cution and switch to the new plan as soon as possible [Knight et al., 2001; Ma et al.,
2017; 2019]. Conversely, if the planning process were comparatively slow, then in some
applications finishing the execution can be the best strategy. Our approach is designed to
be applicable to either setting by making explicit estimations on its own planning time.

Continual online planning (COP) is a particular type of online planning where new goals
appear periodically [Benton et al., 2007; Lemons et al., 2010; Burns et al., 2012]. COP
tasks are modeled as Markov Decision Processes, where goals may arrive at each time
step according to some probability distribution. If this distribution is known, it can be
taken into account by the planner to “prepare” for their arrival (we do not make such
assumptions here).

Cashmore et al. [2019] consider similar online replanning scenarios to ours for temporal
planning. Their approach involves a black-box ‘bail-out action generator,’ which has ac-
cess to a more detailed model of the agent’s local state to yield possible ways for how the
agent can interrupt the action that is currently being executed. The overall replanning
process can take different initial states into account in the form of timed initial literals
(a feature of PDDL2.2 [Haslum et al., 2019]), which represent the changes of the world
along the part of the execution that the agent has already committed to. This replan-
ning mechanism is based on situated temporal planning with deadlines [Cashmore et al.,

108 Chapter 7 Choosing the Initial State for Online Replanning

2018; Shperberg et al., 2019] which attempts to maximize the probability of finding a
feasible plan that meets a set of temporal constraints. Our work instead aims to mini-
mize the overall planning and execution time, and is placed in a more generic state-space
search setting.

In addition to the aforementioned works on situated temporal planning [Cashmore et
al., 2018; Shperberg et al., 2019], there are heuristic search algorithms that take the
passing of time during planning into account. Deadline-aware search [Dionne et al.,
2011] attempts to estimate the planning time for each currently open search node in
order to prune those that will lead to failure in meeting a given time bound. Bugsy [Burns
et al., 2013] also reasons about its own planning time in order to maximize a given utility
function (a linear combination of planning time and solution cost). These approaches do
not consider the additional complexity of plan execution during the planning process,
and can thus use a static initial state.

7.2 Continual Online Planning

We formalize our online replanning setting as an extension of FDR tasks where a new
goal appears during the execution of a plan. This also captures the case where an agent
periodically receives additional jobs (by chaining such tasks). However, MIST is appli-
cable to other types of replanning as well, as long as it is possible to proceed with the
execution during the replanning process.

A continual online planning task extends an FDR task by modeling an ongoing execution
along a given plan πs0,Gold

, when a new goal Gnew appears, and action costs are interpreted
as their durations:

Definition 7.1 (COP Task). A continual online planning (COP) task is defined by the tuple
〈V,A, c, s0,Gold,Gnew,πs0,Gold

〉, where

• V, A, and c are the FDR variables, actions, and the cost function (here interpreted
as execution durations of the actions),

• s0 is the current state of the agent (when the new goal Gnew appears),

• Gold is the old goal (partial assignment of V),

• Gnew is the new goal (partial assignment of V), and

• πs0,Gold
= 〈a1, a2, . . . , an〉 is a path from s0 to a state sGold

⊇ Gold (the current plan of
the agent).

Chapter 7 Choosing the Initial State for Online Replanning 109

The plan πs0,Gold
is a suffix of some original plan that the agent is now executing, and s0

is the current state of the agent along it—all actions that the agent may have executed
before are already in the past and hence are no longer of interest. We assume the actions
to be non-interruptible: if Gnew appeared during the execution of an action a, then s0 is
the state resulting from the execution of a.

For simplicity, we assume that there is no direct conflict between Gold and Gnew, i.e., if a
variable is defined in both then its assigned value must be identical. A solution for a COP
task is a plan π that leads from the state s0 to a goal state sG ⊇ (Gold ∪ Gnew). Such a plan
consists of two parts: a (possibly empty) prefix π1 = 〈a1, a2, . . . , a j〉 of πs0,Gold

followed
by a (possibly empty) newly planned extension π2 = 〈b1, b2, . . . , bm〉. If the π2 is not
empty, then the state in which its first action b1 is applied is called the deviation state.
A solution is said to be optimal if it minimizes the total planning and execution time,
i.e., the overall time from the arrival of the new goal Gnew until the execution of π has
terminated and taken the agent to a state sG ⊇ (Gold ∪ Gnew).

In some scenarios it can be useful to deviate from the original plan πs0,Gold
early. For

example, consider a domain where an agent must deliver packages, and new jobs (addi-
tional packages) may appear at any time. Assume that the agent is currently delivering a
package to some location l. If a new goal appears to deliver an additional package from
a location close to the agent’s current position to a location close to l, ideally the agent
should deviate from the original plan as quickly as possible to avoid redundant move-
ment. On the other hand, if the new package should be picked up at l and be delivered
to a location where the agent came from, then first completing the execution of πs0,Gold

would not affect the overall plan quality. This gives the agent more time for the replan-
ning process in parallel to the execution of πs0,Gold

, potentially leading to a cheaper plan
for the second delivery.

Generally, it is not known upfront how much of the original plan πs0,Gold
should be exe-

cuted before deviating to the new plan—the approach we present here aims to make this
trade-off automatically, and in full generality.

7.3 The Multiple Initial State Technique

The pseudocode of the Multiple Initial State Technique (MIST) is shown in Algorithm 9.
MIST is based on A∗ [Hart et al., 1968]; the important differences in the pseudocode are
highlighted in red.

In contrast to A∗’s fixed initial state, MIST considers a set of reference states R. These
reference states are potential deviation states along the original plan πs0,Gold

where the

110 Chapter 7 Choosing the Initial State for Online Replanning

Algorithm 9: MIST
Input: s0, Gold, h, Gnew, πs0,Gold

, R
1 γ := 0
2 Closed := ;
3 Open := {(r, r) | r ∈ R}
4 while Open 6= ; do
5 (s, ref s) := arg min(t,ref t)∈Open f (t, ref t ,γ)
6 if (s, ref s) is not consistent with the state of the execution then
7 continue
8 if (Gold ∪ Gnew) ⊆ s then
9 return path to s

10 Closed := Closed∪ {(s, ref s)}
11 γ := γ+ 1
12 for each successor t of s do
13 ref t := ref s

14 if (t, ref t) 6∈ (Open∪Closed) or gref t
(t)< goldref t

(t) then
15 Open := Open∪ {(t, ref t)}

16 return unsolvable

agent can switch from the old plan to the new one. The specific set R is sampled from
πs0,Gold

and given to the algorithm as a parameter.

In MIST, the open list contains pairs of states and corresponding reference states (rep-
resenting the deviation state for this search node), initialized to the set of all reference
states (paired with themselves, see line 3). When a search node is expanded, the children
inherit the reference state of their parent (line 13).

The core of the algorithm is similar to A∗: MIST maintains an open list based on an
ordering function f , and expands the nodes in best-first order until a goal state is found
(in this case, a state that is compliant with the combined goal Gold∪Gnew, see line 8). If a
state s is already closed, it is only re-inserted into the open list if a cheaper path to s was
found (line 14).

During the planning process in MIST, the execution of πs0,Gold
is ongoing. Hence, some

search nodes become invalid as their path is inconsistent with the state of the execution;
such nodes are pruned lazily in MIST (line 6).

The most important difference to A∗ is that MIST aims to optimize the overall planning
and execution time, not just the plan quality. This is reflected by the design of the open list
ordering function f , which depends not only on the current state s, but also its reference
node ref s, and the number of expansions so far γ:

f (s, ref s,γ) = C(πs0,ref s
) + gref s

(s) + h(s) + os(s, ref s,γ).

Chapter 7 Choosing the Initial State for Online Replanning 111

The first component of this sum, C(πs0,ref s
), represents the time that it takes the agent

to reach the reference state ref s along the ongoing execution of πs0,Gold
. The next part,

gref s
(s)+h(s), corresponds to the f function in A∗, combining the cost—in our interpreta-

tion, the execution time—to reach s from an initial state (here, the reference state ref s)
with an estimate of the cost-to-go h. Finally, the last part is the overshot function os,
which models the case where the planning process takes too long, causing the state s to
become irrelevant once the execution passes the corresponding reference state ref s:

os(s, ref s,γ) =

0 if (γ+η(s)) · texp ≤ C(πs0,ref s
)

∞ otherwise

We model os as a binary function here, evaluating either to 0 if the planning process is
estimated to finish in time, or∞ otherwise. The estimate of the planning time is given
by (γ+ η(s)) · texp, where η(s) is an estimate of the remaining number of expansions to
reach a goal, and texp is the time per expansion—a (constant) factor translating expan-
sions to time such that it can be compared to the execution time until ref s is reached
along πs0,Gold

. The estimate for the remaining planning time can be obtained by adapting
prior work [Thayer and Ruml, 2009; Burns et al., 2013], we explain the details of our
implementation in the evaluation (Section 7.6).

Observe that the f function depends on the number of expansions γ, in other words,
the relative ordering of search nodes in the open list may change at each step. This
would effectively require a full reevaluation of the open list after each expansion, which is
clearly not feasible in practice. Instead, we maintain a separate queue for each reference
state (containing only the corresponding search nodes), and sort them merely by g + h.
Whenever a node is to be selected for expansion, we evaluate the full f function only for
the nodes at the front of each open list, and select the best one among them. Observe that
the term C(πs0,ref s

) is the same among all search nodes in each separate open list and thus
does not affect the ordering. However, this is not the case for the overshot function: Our
approximation pretends that all states in each such open list share the same value for the
planning time estimation η, and thus disregards changes in the relative ordering caused
by different values of the overshot component. In preliminary experiments, we also tried a
reevaluation strategy in exponentially increasing intervals similar to that of Bugsy [Burns
et al., 2013], but found no significant difference in solution quality compared to our
approximation method.

In practice, we can make another small optimization: If the state s of a search node
(s, ref s) is a reference state itself that is further along πs0,Gold

than ref s, it can be safely
pruned if the path to s found by the search is not cheaper than that along πs0,Gold

, i.e., if
C(πs0,ref s

) + gref s
(s)≥ C(πs0,s).

112 Chapter 7 Choosing the Initial State for Online Replanning

7.4 Theoretical Analysis

A∗ is guaranteed to find an optimal solution, provided that the heuristic function is ad-
missible (and nodes can be reopened). A similar guarantee can not be given for MIST:
The essential difference between the two settings (and thus necessarily between the two
algorithms) is that in an offline setting, the exploration of the state space during the plan-
ning phase comes at no cost. On the other hand, in an online setting, exploring a part of
the search space that is not going to be used in the solution can decrease the quality of
the final plan, since that time was not used effectively.

Consider a situation where the only optimal plan deviates at the reference state r, and
expanding all the nodes on that path takes exactly the time that the agent needs to reach
r—so expanding any other node will make this solution unreachable for MIST. Hence,
unless the heuristic functions h and η were perfect, there is no guarantee that MIST will
find an optimal solution.

With optimality out of reach, we can prove a simpler property: the stopping criterion of
MIST is correct. MIST stops when the first goal state (satisfying the combined goal Gold∪
Gnew) is found, returning the path to that state as the solution. We show that continuing
the search afterwards can not result in a better plan, assuming the heuristic functions h

and η are admissible.

Similar to h∗, we use η∗ to denote the perfect version of η, i.e., the true remaining number
of expansions until the end of the planning process; and use f ∗ to denote the f function
computed with h∗ and η∗. We are using the notation γs to indicate the point in time (i.e.,
the value of γ) when the state s was expanded by the search.

Theorem 7.2. Let h be admissible with respect to planned execution time and η admis-
sible with respect to the number of expansions. Let σ1 = s0, s1, . . . , si , p1, p2, . . . , pm be
the sequence of states corresponding to the first solution π1 found by MIST (with the de-
viation state si). Assume the algorithm continued the search and found another solution
with the state sequence σ2 = s0, s1, . . . , s j , q1, q2, . . . , qn (with the deviation state s j). Then
f ∗(pm, si ,γpm

)≤ f ∗(qn, s j ,γqn
).

Chapter 7 Choosing the Initial State for Online Replanning 113

Proof. Our proof follows that of a similar property of Bugsy [Burns et al., 2013].

f ∗(pm, si ,γpm
) = C(πs0,si

) + gsi
(pm) + os∗(pm, si ,γpm

)

≤ f (pm, si ,γpm
) (7.1)

≤ f (ql , s j ,γpm
) (7.2)

= C(πs0,s j
) + gs j

(ql) + h(ql) + os(ql , s j ,γpm
)

≤ C(πs0,s j
) + gs j

(ql) + h∗(ql) + os∗(ql , s j ,γpm
) (7.3)

≤ C(πs0,s j
) + gs j

(ql) + h∗(ql) + os∗(ql , s j ,γql
) (7.4)

≤ C(πs0,s j
) + gs j

(qn) + os∗(qn, s j ,γqn
) (7.5)

= f ∗(qn, s j ,γqn
)

The true cost of the solution π1 is f ∗(pm, si ,γpm
) = C(πs0,si

) + gsi
(pm) + os∗(pm, si ,γpm

).
Following the search structure of MIST, at some point we chose to expand pm. Since pm is
the last state on the path, h∗must be zero (and hence also the admissible h). Furthermore,
since os is admissible due to the admissibility of η, f must be admissible with respect to
f ∗ (inequality 7.1).1 Inequality 7.2 comes from our choice of the state pm over some state
ql from σ2.

Inequality 7.3 again follows from the admissibility of h and os. For the state ql and its
reference state s j, the value os∗(ql , s j ,γ) increases monotonically with the time γ. Since
γpm

< γqn
, we get inequality 7.4.

Finally, consider inequality 7.5. First, note that γqn
+η∗(qn) = γql

+η∗(ql), as both sides of
the equation are equal to the overall planning time. Second, since h∗(ql) is the minimal
cost to reach a goal from ql , we have gs j

(ql)+h∗(ql)≤ gs j
(qn). The inequality comes from

the fact that a different goal state (other than qn) may be cheaper to reach from ql .

7.5 MIST for Recoverable Tasks

In some situations, the replanning approach taken by MIST can incur a large cost com-
pared to an optimal solution.

Example 7.1. Consider the following example of a logistics task:

L
R1 R2

1Here, the two terms are in fact equal since os and os∗ are both zero. We still denote this step as an
inequality such that the proof also applies to the alternative os function introduced in Section 7.5.

114 Chapter 7 Choosing the Initial State for Online Replanning

The truck is currently driving to the location L. During the execution of the current plan,
a new goal appears: a delivery request of a new package, also to the location L. Along the
execution, MIST considers the two reference states R1 and R2 as possible deviation states.
The state R1 is closest to the package, however, it might happen that the replanning process
does not finish before the truck passes R1. In that case, MIST requires the truck to continue
along the original execution to R2, and only there the truck may turn back to pick up the
package. Depending on the distance between R1 and R2, this can incur an arbitrarily large
overhead compared to turning around at some intermediate state between R1 and R2.

Similar scenarios may happen even if the reference states along the original plan are
sampled in smaller intervals if MIST repeatedly misses its predicted planning time.

A simple solution addressing such issues would be to halt the execution at the next refer-
ence state if the planning process is expected to finish computing a plan deviating from
that state soon. However, that would require coming up with a strategy for when to com-
mit the planning process to a given reference state, and would not be a robust solution if
the planning time estimate is unreliable. Instead, we suggest a more principled approach
in the form of MISTrec, a variant of MIST that is adapted for COP tasks that satisfy the
following recoverability property.

Definition 7.3 (Recoverability). For a COP task 〈V,A, c, s0,Gold,Gnew,πs0,Gold
〉, let s0, . . . , sn

be the state sequence induced by πs0,Gold
. We denote the action subsequence taking the

agent from si to s j, with i < j, by ~αi, j. We call the task recoverable if, for every such ~αi, j,
there exists an action sequence ~αi, j such that every fact in si that appears as a precondition
or goal also holds in the state resulting from applying ~αi, j in s j.

This recoverability property gives the planning process some room for error in the plan-
ning time estimation: If the execution passes a reference state r, then search nodes under
r do not need to be discarded immediately. Instead, the planner may finish computing
a plan that uses r as a deviation state because there exists a recovery sequence bringing
the agent from the current state of the execution back to r.

Many applications relating to COP tasks are naturally recoverable, for example, logistics
domains where agents can freely move back and forth. Furthermore, recovery sequences
are often known upfront or can be generated quickly. Recoverability relates to the well-
studied notions of invertibility and undoability [Hoffmann, 2005; Daum et al., 2016]. In
our experiments, we focus on domains where actions have a direct inverse of the same
cost; in that case, the recovery sequence is just the sequence of the inverse actions.

In order to adapt MIST to recoverable tasks, we make two changes. First, search nodes
corresponding to reference states that were already passed by the execution are no longer

Chapter 7 Choosing the Initial State for Online Replanning 115

discarded. Second, we change os to no longer be a binary function. Instead, os should
estimate the additional cost incurred by inserting the recovery sequence to move the
agent back to a passed reference state.

The adapted overshot function for MISTrec is defined as

os(s, ref s,γ) = C(~α) + C(~α) +max((γ+η(s)) · texp − C(πs0,Gold
), 0),

where ~α is the expected execution of πs0,Gold
past the reference state ref s, and ~α is its

recovery sequence. The overshot function now returns the added cost when planning
is estimated to finish after reaching the reference state ref s: The added execution time
is accounted for by C(~α) + C(~α), and the third term of the sum describes the potential
waiting time in the final state of the execution of πs0,Gold

in case the planning process takes
longer than the full execution of πs0,Gold

. As before, os evaluates to zero if the planning
process is estimated to finish before the execution reaches ref s (in that case ~α and ~α are
empty, and the third term of the sum evaluates to zero).

Consider the following illustration of the overshot function:

time
current execution

γ · texp η(s) · texp

snref s

os

The illustration shows a timeline of the replanning process. The red bar below the axis
shows the progress of the execution of πs0,Gold

, leading to the state sn ⊇ Gold. The green
bar shows the progress of the planning process; the solid part labeled by γ · texp shows
the time that has been spent so far, the dashed part labeled by η(s) · texp shows the
estimated time until planning finishes. In this example, planning is estimated to finish
after the execution has already passed the desired deviation state ref s. Thus, the overshot
function yields the additional execution time along πs0,Gold

, plus the time it takes to bring
the agent back to ref s.

Lemma 7.4. Assume that η is admissible, and that for a path ~α that is a prefix of a path
~α′ it holds that C(~α) + C(~α) ≤ C(~α′) + C(~α′) (well-behaved recovery paths). Then os is
admissible, i.e., os(s, ref s,γ)≤ os∗(s, ref s,γ).

Proof. Let ~α be the subsequence of actions on πs0,Gold
taking the agent from the refer-

ence state ref s to the state in which it would be at time γ + η(s) · texp, and let ~α∗ be
the subsequence of actions to the state at time γ + η∗(s) · texp. Since η ≤ η∗, ~α must
be a subsequence of ~α∗. With the assumption of well-behaved recovery paths, we have
C(~α) + C(~α)≤ C(~α∗) + C(~α∗), and thus os≤ os∗.

116 Chapter 7 Choosing the Initial State for Online Replanning

Since os is again admissible, the proof of Theorem 7.2 also applies to MISTrec.

Consider again Example 7.1. While MIST must continue along the plan until reaching R2,
MISTrec will be able to finish computing a new plan from the (already passed) reference
state R1, and can turn around without having to go to R2 first.

7.6 Experiments

As explained in Section 7.3, in our implementation of MIST, we use a standard A∗ open
list for each reference state, using the MIST extensions to the f -function only to select
the open list to be used for the next expansion to avoid having to re-sort the open list.
For MISTrec, our implementation assumes that each action has an inverse action with the
same cost. The source code and benchmarks are available at https://github.com/
fickert/fast-downward-mist.

Like Bugsy, we estimate the remaining number of expansions as η= delay·d [Burns et al.,
2013; Dionne et al., 2011], where delay is the (moving) average number of expansions
between inserting a node into the open list and expanding it, and d is an estimation of
the remaining distance to the goal (i.e., ignoring action costs). The expansion delay is
important to counteract search vacillation [Dionne et al., 2011], referring to the search
fluctuating between different solution paths and, in our case, potentially of different
reference states. For d, we don’t use the distance estimate of the current state, but instead
the minimal distance of any evaluated state that corresponds to the considered reference
state to make the planning time estimations more stable.

Our key performance metric is the goal achievement time (GAT), i.e., overall time for
online planning and execution, measured from the moment when the new goals appear.
We measure this time as a number of expansions to make the experiments more robust.
Action costs are translated into execution time using an instance-specific factor from cost
to expansions (we give more details in the next subsection).

In all experiments, the search is guided by hFF. We use a moving average over the last
100 expansions for the expansion delay.

7.6.1 Benchmarks

We adapted the IPC domains Elevators, Logistics, Rovers, Transport, and VisitAll to our
setting, as representatives of applications where (a) goals are of an additive nature and

https://github.com/fickert/fast-downward-mist
https://github.com/fickert/fast-downward-mist

Chapter 7 Choosing the Initial State for Online Replanning 117

there are no conflicts between them, and (b) all action sequences ~α have a recovery se-
quence ~αwith the same cost. Criterion (b) is required for our implementation of MISTrec.
We furthermore experiment with Tidybot, which we adapted to satisfy (b). In Tidybot,
there are cases where objects are placed behind each other, and the robot cannot reach
behind the object in the front. We added an un-finish action to ensure recoverability.
However, previously finished objects must be picked up again in these cases, necessitat-
ing the planner to falsify and re-achieve previously achieved goals. We assume actions
to be non-interruptible.

In some of our benchmark domains, recovery sequences with lower cost can exist. For
example, there could be shortcuts to inverting the agent’s movements, and in Rovers
photos would not need to be “un-taken”. In such cases, our implementation of MISTrec
is pessimistic and more practical implementations may achieve lower plan costs.

The instances were adapted by splitting the set of goals in two: the first half is available
in the beginning, and the other one becomes available later. The second set of goals is
scheduled to appear during the execution of the first computed plan to obtain interesting
instances.

A run of MIST on one such instance will look as follows:

time

initial planning

initial (planned) execution

reference nodes
new set of goals appears

The initially computed plan is being executed as a new job arrives. Here, the planner
considers 5 reference states as potential initial states for the new plan.

time

initial planning

initial execution

second planning

second execution

selected reference node

The planner has computed an updated plan that starts from the second-to-last reference
state. The initial plan is executed until that point before switching to the new plan. The
goal achievement time is the time from the start of the second planning phase to the end
of the overall execution.

In order to obtain interesting benchmark instances, we tried to ensure that the second
planning phase starts and ends during the first planned execution. Thus, we generated
the instances such that the second set of goals appears after 10% of the initial plan is

118 Chapter 7 Choosing the Initial State for Online Replanning

0 5 10 15 20 25

1.3

1.31

1.32

1.33
·104

MIST
MISTrec

Figure 7.1: GAT as geometric mean over all instances (y-axis) for MIST with different
numbers of reference states (x-axis).

executed. Furthermore, we estimated the length of the second planning phase by running
the planner offline for both goals from the original start state, and used that to generate
different experimental setups where the second planning phase is estimated to end at E =

0.2,0.3, . . . , 0.9 of the initially planned execution. This is achieved by adjusting the factor
for the translation of the action cost to execution time, thereby changing the duration of
the initial execution.

7.6.2 Results

We compare MIST to the following baselines:

finish Finish execution and plan only for the new goals.

stop Stop execution and re-plan from the current state.

approximate Approximate the duration of the re-planning phase, and use the state
where the agent is expected to be at that time as the deviation state. We use the
same estimation for the number of expansions as MIST, i.e., η(m) = delay·d(m), us-
ing the average expansion delay from the initial planning phase and the estimated
distance of the current state.

fixed latency Stop execution at a fixed point in time (we test values of 101, 102, . . . , 107

expansions for this time point). We also consider a theoretical oracle configuration
that chooses the best-performing time point to stop the execution (out of the tested
values) per instance.

Chapter 7 Choosing the Initial State for Online Replanning 119

MIST has one important parameter: the selection of the reference states. In our imple-
mentation, we set a number of reference states nR, which are then selected in uniform
intervals from the current plan. Figure 7.1 shows the goal achievement time (in number
of expansions) for different values of nR across our full benchmark set. If there are too
few reference states, the algorithm does not have the best starting point for the next plan
available. On the other hand, the performance also decreases if too many reference states
are used, as it becomes more difficult to settle on the most promising one quickly (espe-
cially if the planning time estimation is not very accurate). Across the tested numbers of
reference states, MIST chooses nodes for expansion corresponding to the reference state
which is used for the solution 38% of the time on average, more for fewer reference states
(55% for nR = 3), and less the more reference states are used (30% for nR = 24). The
overall best results are obtained with nR = 8 for MIST and nR = 9 for MISTrec, and we
use these settings for the remaining experiments.

Figure 7.2 shows the relative goal achievement time compared to MIST for the consid-
ered algorithms for different expected end points of the second planning phase. If the
planning time is very short compared to the execution time (small values of E), stopping
the execution as soon as possible works well, but loses out compared to MIST if plan-
ning is non-trivial (E > 0.2). As expected, finishing the execution becomes better with
increasing expected planning times, though MIST always performs better. The fixed la-
tency configurations offer some interpolation between the two extremes of stopping or
finishing the execution. Given the diversity of our benchmark set, a fixed latency can
not accurately predict the planning time, and these configurations are outperformed by
MIST. The approximation baseline also works well for short planning times, but is prone
to overestimate. On average, MIST reduces the goal achievement time by 8.6% compared
to stopping and re-planning immediately, by 6.8% compared to finishing the planned ex-
ecution, and by 5.1% compared to approximating the re-planning time.

Figure 7.3 gives more insight into the individual domains. The observations from the
overall results hold across most domains, with minor exceptions. On VisitAll, the approx-
imate baseline comes very close to MIST on average, beating it for some values of E. This
can can be attributed to the planning time estimation being more accurate. While that
also helps MIST to select the correct reference state to expand towards more frequently
(46% of the time compared to 35% on other domains), MIST can still suffer from the
added overhead. In the Rovers domain, MIST and MISTrec outperform all competitors
for all values of E, and may even beat the oracle (which can be inaccurate if the best de-
viation state is between two of the considered time points). Both stop and approximate
perform particularly poorly in that domain, with up to 35% respectively 23% worse goal
achievement time compared to MIST when considering large expected planning times.

120 Chapter 7 Choosing the Initial State for Online Replanning

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.95

1

1.05

1.1

1.15

1.2
MIST
MISTrec
finish
stop

approx.
FL101

FL102

FL103

FL104

FL105

FL106

FL107

oracle

Figure 7.2: GAT as geometric mean over all instances relative to MIST (y-axis) for
E = 0.2, 0.3, . . . , 0.9 (x-axis).

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1

1.1

1.2

1.3

Elevators

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1

1.1

1.2

1.3

Logistics

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1

1.1

1.2

1.3

Rovers

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1

1.1

1.2

1.3

Tidybot

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1

1.1

1.2

1.3

Transport

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1

1.1

1.2

1.3

Visitall

Figure 7.3: GAT relative to MIST (y-axis) for E = 0.2, 0.3, . . . , 0.9 (x-axis).

Conversely, finish comes close to MIST, which indicates that interrupting the execution
while re-planning is particularly costly in that domain.

In these experiments, MISTrec and MIST exhibit similar performance. This suggests two
conclusions. First, the way we generate testing instances averages out the edge cases in
which MISTrec significantly outperforms MIST. Second, even though MISTrec does not
prune reference nodes, it is able to effectively focus its search effort just as well as MIST.

Chapter 7 Choosing the Initial State for Online Replanning 121

7.7 Conclusion

Selecting the initial state for online replanning is a problem that has so far been largely
glossed over and tackled by ad-hoc solutions such has hand-tuned replanning time esti-
mates. With MIST, we introduced a principled technique by considering multiple states
along the ongoing execution as potential initial states for the new plan. This enables
MIST to adaptively select the state that minimizes the overall planning and execution
time. We showed that this approach leads to strong and robust performance in scenarios
with online goal arrival, outperforming several baselines on planning domains adapted
to this setting.

One practical improvement for MIST is to follow an anytime approach [e.g., Likhachev
et al., 2005], i.e., continuing the planning process even after the first plan has been found
in order to find a better plan. While this idea seemingly contradicts Theorem 7.2, the
assumption of an admissible planning time estimate is typically impossible in practice.
Generally, allowing more interaction between the search process and the ongoing execu-
tion can be useful, for example by signaling execution to stop at a reference state that
the search find promising to avoid potentially having to move back.

Another interesting direction for future work would be modeling the uncertainty of the
estimates used by MIST, similar to the work presented in Chapters 8 and 9. In particular,
the basic version of MIST attempts to estimate whether planning will finish before the
execution reaches a certain state, but only uses that information to generate a binary
value (yes or no). Instead, it might be worth attempting to estimate the probability of
meeting that deadline, allowing MIST to take some risk in order to reduce the expected
search time.

8 Exploiting Heuristic Uncer-
tainty in Deterministic Real-
Time Search

Some applications of heuristic search impose real-time constraints, forcing the agent to
select its next action within a fixed time frame, typically before a full plan can be gen-
erated. For example, in video games, players expect characters to move immediately
after giving a corresponding command [e.g., Bulitko et al., 2010; Lawrence and Bulitko,
2013; Kiesel et al., 2015]. Another application is autonomous aircraft control [Bulitko
et al., 2008] or similar situations where an agent must quickly commit to actions while
navigating through unknown terrain or reacting to local observations.

Most real-time search algorithms follow the iterative three-phase paradigm initially de-
scribed in Korf’s [1990] seminal work:

1. Perform a lookahead search with a limited number of expansions from the agent’s
current state.

2. Consider the heuristic values of the frontier nodes and the costs of the transitions
towards them to find the cheapest estimated path to a goal, and commit to the first
action along that path.

3. Update the heuristic values on the local lookahead search space to avoid moving in
circles and ensure progress.

The perhaps most popular instantiation of this concept is LSS-LRTA∗ [Koenig and Sun,
2009], which uses A∗ as the lookahead search algorithm, commits to the action towards
the frontier node with minimal f value, and updates heuristic values using a Dijkstra-like
backup procedure.

While this approach is elegant and often yields good results, it neglects the inherent
uncertainty of being forced to make a commitment without full knowledge about the

123

124 Chapter 8 Exploiting Heuristic Uncertainty in Deterministic Real-Time Search

search space outside the locally explored area. As observed early on [e.g., Mutchler,
1986; Pemberton and Korf, 1994; Pemberton, 1995], the best lookahead search strategy
is thus not necessarily to expand towards the most promising search node. Instead, it
can be useful to collect more information about other areas of the search space in order
to gain confidence that those parts do not lead to potentially better states.

Nancy is a recently developed real-time search algorithm that explicitly reasons about this
kind of uncertainty [Mitchell et al., 2019]. Instead of heuristic values, Nancy considers
beliefs (probability distributions) about the true cost to a goal state, and uses a lookahead
search strategy based on minimizing the risk that the most promising node is not the
correct one. In the update phase, Nancy modifies the beliefs, maintaining its modeling
of the heuristic uncertainty.

While Nancy has shown to be effective in practice, a theoretical analysis has been missing
so far. We close that gap, and prove that Nancy is indeed a complete real-time search
algorithm, giving more insight into its search behavior. Our proof applies to a general
class of real-time search algorithms, including LSS-LRTA∗. Furthermore, we impose fewer
constraints on the heuristic: in contrast to the original completeness proof for LSS-LRTA∗
[Koenig and Sun, 2009], we do not require the heuristic to be consistent or admissible.
We also introduce the notion of persistence, which aims to avoid erratic behavior of the
agent without affecting completeness.

Papers and Contributions This chapter is based on the paper “Beliefs We Can Believe
in: Replacing Assumptions with Data in Real-Time Search” [Fickert et al., 2020]. The
paper was principally developed by the author, Tianyi Gu, and Leonhard Staut, in joint
work with Wheeler Ruml, Jörg Hoffmann, and Marek Petrik. This chapter focuses on the
theoretical analysis, which is the author’s contribution. The generalized Nancy algorithm
(Section 8.2) has been co-developed by the author, Tianyi Gu, and Leonhard Staut, based
on earlier work byMitchell et al. [2019]; Nancy’s persistent action selection is the author’s
work.

8.1 Background

We next give a formal definition of the real-time search framework that we consider in
this work, and briefly summarize the background on LSS-LRTA∗ and Nancy.

Chapter 8 Exploiting Heuristic Uncertainty in Deterministic Real-Time Search 125

8.1.1 Problem Definition

Real-time search is a state-space-search problem where the agent is subject to real-time
constraints. The search may explore a region of the search space starting from the current
state of the agent, andmust provide the next action to apply within a predefined and fixed
time frame. We model this time bound as a number of expansions, and assume the bound
to be greater than zero (i.e., we can always expand at least the agent’s current state).
The goal is to lead the agent to a goal state as quickly as possible.

The real-time search framework naturally leads to algorithms that follow the iterative
three-phase design of a local lookahead search (the lookahead phase), committing to an
action that leads to the most promising state on the search frontier (the action selection),
and updating heuristic values on the lookahead search space to avoid cycles (the learning
phase) [Korf, 1990]. We next give a recap on LSS-LRTA∗ [Koenig and Sun, 2009] as the
most canonical instantiation of this paradigm, and then discuss the Nancy algorithm as
introduced by Mitchell et al. [2019].

8.1.2 LSS-LRTA∗

LSS-LRTA∗ [Koenig and Sun, 2009] instantiates the lookahead phase with an A∗ search.
However, expanding the best nodes according to their f value may not be the best use of
the limited time to explore the local search space [Mutchler, 1986]. A better approach
can be to take the error of the heuristic into account, and use the expected value f̂ (an
estimate of the true cost to a goal f ∗) instead of the lower bound f to guide the lookahead
[Kiesel et al., 2015].

In the action-selection step, the algorithm must decide which action the agent should
execute next, based on the knowledge gained in the lookahead phase. In LSS-LRTA∗, the
action leading to the frontier node with minimal f value is chosen.

Finally, the heuristic values of the local search space are updated in the learning phase.
This is done by backing up the information of the frontier nodes towards the root state of
the lookahead search. LSS-LRTA∗ uses a Dijkstra-like update procedure of the heuristic
values h, improving the estimates of the states in the local search space for future looka-
head phases. This process propagates the heuristic values from the best successor to their
parent:

h(s) := min
a∈A(s)

(h(sJaK) + c(a)).

126 Chapter 8 Exploiting Heuristic Uncertainty in Deterministic Real-Time Search

8.1.3 Real-Time Search as Decision Making Under Uncertainty

Nancy [Mitchell et al., 2019] is a recent real-time search algorithm based on the idea of
casting real-time search as planning under uncertainty. The algorithm replaces the scalar
heuristic estimates by probability distributions over the true cost to the goal. Such beliefs
can be constructed as Gaussian distributions around the expected value f̂ := g+ ĥ, where
ĥ is a potentially inadmissible estimate that corrects the heuristic for online observations
of the observed error [Thayer et al., 2011]. The variance of the distributions is also
derived from the heuristic error. Since the error can be expected to decrease when getting
closer to a goal, so does the variance of the beliefs. As pointed out by Fickert et al. [2020],
the belief distributions obtained this way rely on assumptions on the behavior and error
model of the heuristic, and do not necessarily resemble actual cost-to-goal distributions.
However, they show that Nancy can also be instantiated with distributions generated by
per-domain offline learning, which alleviates some of the assumptions made by Nancy.

We explain the generalized Nancy framework in more detail in the following section, and
then prove its completeness (Section 8.3).

8.2 The Nancy Framework

Like LSS-LRTA∗, Nancy follows the three-phase paradigm of lookahead, action selection,
and heuristic updates. The core of the Nancy algorithm is shown in Algorithm 10; we
explain the details of the three phases in the following.

8.2.1 Risk-Based Lookahead

In the lookahead phase (line 4), Nancy aims to minimize the regret that would be in-
curred in case the selected action for the agent later turns out not to be the best choice.
This is calculated by pairwise considering the best frontier nodes under each top-level ac-
tion, and simulating each expansion to estimate which one will most effectively increase
the confidence in the node that the agent is going to move towards.1 The lookahead
returns the frontier node with minimal expected value f̂ , breaking ties by ĥ.

1More details on the risk-based lookahead can be found in Fickert et al.’s [2020] work. The specifics of
this part are not relevant to our proofs, so we omit them here.

Chapter 8 Exploiting Heuristic Uncertainty in Deterministic Real-Time Search 127

Algorithm 10: Nancy
1 s := sstart
2 πcurr := 〈〉
3 while sJπcurrK is not a goal state do
4 Let t be the best frontier node resulting from a risk-based lookahead from s, and let

π be the path from s to t.
5 πcurr := update_path(s, t,πcurr,π)
6 apply_next(s,πcurr)
7 Perform Nancy backups on the local search space.
8 while s is not a goal state do
9 apply_next(s,πcurr)

10 fn update_path(s, t,πcurr,π)
11 if (sJπcurrK was expanded in the lookahead or
12 t is a goal state or
13 f̂ (t)< f̂ (sJπcurrK) or
14 f̂ (t) = f̂ (sJπcurrK) and ĥ(t)< ĥ(sJπcurrK)) then
15 return π
16 return πcurr

17 fn apply_next(s,πcurr)
18 let a0, . . . , an be the action sequence of πcurr
19 s := sJa0K
20 πcurr := 〈a1, . . . , an〉

8.2.2 Persistent Action Selection

In the original description of Nancy [Mitchell et al., 2019], the search would commit to
the first action on the plan towards the best state t found in the lookahead. However, the
disparity in guidance of the lookahead search (which uses risk) and the action selection
(which uses f̂) can cause the agent to move back and forth between states until the back-
ups sufficiently update the beliefs to allow the agent move on. A slight change from the
original Nancy algorithm can improve this situation—instead of selecting a new course
of action after each lookahead, we follow along the plan towards the best known state so
far (πcurr). Nancy keeps moving along πcurr (line 6) until it reaches the target state, and
only deviates from that plan if a strictly better state (either in terms of being a goal state
or having strictly lower f̂ value) is discovered in the lookahead (see the update_path()
function, line 10). We call this technique persistent action selection. Persistence aims
to improve search performance by preventing Nancy from meandering around; Fickert
et al. [2020] found that it improves performance in classical planning, and is sometimes
slightly better and sometimes slightly worse in other search benchmarks.2

2In the conference paper where we originally introduced persistence [Fickert et al., 2020], we further
assumed that it is necessary for completeness. However, as we show in our updated proofs in Section 8.3,

128 Chapter 8 Exploiting Heuristic Uncertainty in Deterministic Real-Time Search

If the lookahead returns a goal state, πcurr will be updated to a path towards it, and
the agent executes that path without doing further iterations of lookahead (lines 8 and
9). Thus, whenever a goal state is seen the lookahead, the agent will eventually arrive
at that state. We call this property goal-awareness, and it will be important to prove
completeness later on.

8.2.3 Nancy Backups

Nancy’s update procedure (invoked in line 7) is similar to that of LSS-LRTA∗, but adapted
for belief distributions. The belief of a state s is updated to the belief of the best successor,
shifting the expected value of the distribution by the action cost:

B(s) := B(sJa∗K) + c(a∗), where a∗ := arg min
a∈A(s)

(ĥ(sJaK) + c(a)).

The effect on the expected cost ĥ is equivalent to the heuristic update used by LSS-LRTA∗,
i.e., it satisfies the equation

ĥ(s) = min
a∈A(s)

(ĥ(sJaK) + c(a)).

This will become important for our proofs in the following section.

8.3 Theoretical Analysis

In this section, we show that Nancy is complete. We give a completeness proof for a more
general class of real-time search algorithms, and then show that Nancy is a member of this
class. Our proofs use ĥ to denote the updated heuristic, which, for real-time algorithms
based on belief distributions such as Nancy, is the expected value of the (updated) belief
distributions.

Our analysis is based on the following assumptions:

(A1) all action costs are strictly positive;

(A2) for every state, there is a goal reachable from it;

(A3) all initial beliefs have a finite expected value; and

(A4) the state space is finite.
requiring actions to be selected by minimal f̂ value is sufficient. Nancy satisfies this both with and without
using persistence.

Chapter 8 Exploiting Heuristic Uncertainty in Deterministic Real-Time Search 129

Our proof follows the style of Korf’s [1990] proof for RTA∗ and Bulitko and Sampley’s
[2016] proof for Weighted Lateral LRTA∗: We first prove that incompleteness implies
that there must exist a subset of states within which the agent circulates forever. Then
we prove that there cannot exist such a set due to the updates made by the real-time
search algorithm’s learning rule.

Definition 8.1. In a real-time search algorithm, a subset of states S◦ is called a circulating
set if there exists a time t◦ after which the agent will visit only states s ∈ S◦ and visit each
one an infinite number of times.

Lemma 8.2. Under assumptions (A2) and (A4), if a real-time search algorithm is incom-
plete, it must have a circulating set S◦.

Proof. Since a goal is reachable from all states (A2), a real-time search only terminates
when it reaches a goal state, so incompleteness means that the search never terminates.
Because the state space is finite (A4), there must exist a subset of non-goal states S◦ such
that the agent will re-visit each of the states in S◦ an infinite number of times after some
initial time t. Let S be the set of non-goal states. If there exist states s ∈ S that are not
visited an infinite number of times, let the last time such a state s is visited be ts. Then
t◦ :=max(t, ts) as per Definition 8.1 satisfies the claim.

Definition 8.3. A real-time search is called goal aware if, upon generating a goal state in
its lookahead, it commits to the path towards it.

Nancy is goal aware (see Section 8.2.2) and so is LSS-LRTA∗ [Koenig and Sun, 2009,
Figure 5, line 32].

Lemma 8.4. Under assumptions (A2) and (A4), if a goal-aware real-time search algorithm
has a circulating set S◦, then (1) there exists a finite set of non-goal states S∞ ⊇ S◦ that are
expanded infinitely often, (2) every successor state s′ ∈ SF := {sJaK | s ∈ S∞, a ∈A(s)} \ S∞
appears infinitely often in the frontier of lookaheads from states in S◦, (3) there is a time t1

after which no s′ ∈ SF is expanded, and (4) SF is non-empty.

Proof. The lookaheads from all states s ∈ S◦ are performed infinitely often with a fixed
number of expansions, so for each s ∈ S◦ there must be a set of states Ss

∞ ⊇ {s} that are
expanded infinitely often, and so is their union S∞. The set S∞ cannot contain a goal
as a goal-aware search would head towards it, breaking the circulation. The neighbor
states SF are obviously generated infinitely often from S∞; as they are not in S∞, they
are expanded only a finite number of times so the claimed time t1 exists. This set SF is
non-empty because S∞ does not contain a goal state, but the goal is reachable from all
states (A2), so SF must contain at least one state on a path to the goal. All of these sets
must be finite since the state space is finite (A4).

130 Chapter 8 Exploiting Heuristic Uncertainty in Deterministic Real-Time Search

Definition 8.5. A learning algorithm is called dynamic-programming-like if it updates the
heuristic values of the states S expanded in the local search space (and no others) such
that afterwards the heuristic values of all s ∈ S are locally consistent, that is, satisfy

ĥ(s) = min
a∈A(s)

(c(a) + ĥ(sJaK)).

A standard result is that, if updates of the form ĥ(s) :=mina∈A(s)(c(a) + ĥ(sJaK)) are per-
formed infinitely often on a finite state-space graph, then the state values will eventually
converge from arbitrary finite initial values to locally consistent ones (assuming positive
action costs and reachable goals) [Bertsekas and Tsitsiklis, 1996, Proposition 2.3].

Lemma 8.6. Under assumptions (A1)-(A4) with S∞ as in Lemma 8.4, if a goal-aware real-
time search algorithm that performs dynamic-programming-like learning has a circulating
set S◦, then there exists a time t2 after which, for every s ∈ S∞, ĥ(s) will be locally consistent.

Proof. Consider the state space sub-graph S′ induced by S∞ ∪ SF (Lemma 8.4). After
time t1 as per Lemma 8.4, the update operation is performed infinitely often on all states
s ∈ S∞, and only on those states. All update operations are well defined, i.e., consider
successors contained in S′. Due to the convergence of the dynamic-programming-like
learning procedure with positive action costs (A1) and bounded initial ĥ values (A3), the
ĥ values of all states s ∈ S∞ will eventually converge to a solution of the state-update
equation as claimed.

In the following, we will use fs and gs to denote the f value and g value, respectively, of a
state in a lookahead search space with respect to the current root state s of the lookahead.

Lemma 8.7. Under assumptions (A1), (A2), and (A4), if ĥ is locally consistent on all states
Ss

E expanded in a lookahead search space rooted at a state s that does not contain a goal,
then all states s′ on a cheapest path within the lookahead from s to a frontier node with
minimal f̂s have f̂s(s′) = f̂s(s).

Proof. Let Ss
F be the frontier nodes of the lookahead from s. Due to assumption (A2), Ss

F

must be non-empty since Ss
E does not contain a goal state. Let π be a path from s to the

frontier such that each step satisfies the state-update equation (i.e., taking the arg min

according to Definition 8.5). Such a path must exist because the lookahead search space
is finite due to assumption (A4) and the heuristic is locally consistent on each state within
the lookahead. Furthermore, due to positive action costs (A1), the path can not contain
cycles and hence must eventually reach the frontier. Each state s′ on π has f̂s(s′) = f̂s(s)

by construction. This includes the state sJπK ∈ Ss
F , thus f̂s(s) is an upper bound on the

Chapter 8 Exploiting Heuristic Uncertainty in Deterministic Real-Time Search 131

minimal f̂s value among the frontier nodes. Observe that, due to local consistency, f̂s can
only increase on any path from s to the frontier. Therefore, there can not be a state s f ∈ Ss

F

with f̂s(s f)< f̂s(s). Furthermore, for all states s f ∈ Ss
F with f̂s(s f) = f̂s(s), there must be a

path from s to s f such that all states s′ on that path have f̂s(s′) = f̂s(s) as claimed.

In particular, Lemma 8.7 holds in each lookahead search space that does not contain a
goal after the corresponding learning phase of a real-time search algorithm that performs
dynamic-programming-like learning. Furthermore, it holds for every lookahead search
space that only expands states s ∈ S∞ after time t2 as per Lemma 8.6.

Definition 8.8. A real-time search algorithm is called reasonable, if it (1) is goal aware,
(2) uses dynamic-programming-like learning, and (3) performs action selection by f̂ ,
i.e., unless the search already discovered a goal which it is moving towards, after the
lookahead it applies the first action of the cheapest path (within the lookahead) towards
a frontier node with minimal f̂ value.

Lemma 8.9. Under assumptions (A1)-(A4), a reasonable real-time search algorithm cannot
have a circulating set.

Proof. We proceed by contradiction. Assume that the search algorithm does have a cir-
culating set S◦. Then there must be sets S∞ and SF as per Lemma 8.4. After some point
in time t2 as per Lemma 8.6, ĥ converged to locally consistent values on all states s ∈ S∞.
Let s = argmins∈S◦ ĥ(s) be a state from the circulating set with minimal ĥ value after con-
vergence. Since s is visited infinitely often, there must be a time t3 > t2 when a lookahead
originates from s.

Let s f = argmins f ∈Ss
F

f̂s(s f) be a frontier node with minimal f̂s, and let s, s1, . . . , s f be the
states along the cheapest path in the lookahead to s f . According to Lemma 8.7, the
f̂s values on this path must all be equal, i.e., f̂s(s) = f̂s(s1) = · · · = f̂s(s f). Due to the
assumption of positive action costs (A1), this implies ĥ(s)> ĥ(s1)> · · ·> ĥ(s f). Following
action selection by f̂ , the agent will make a step towards s f by moving to s1 after the
lookahead, implying that s1 ∈ S◦. Since s was selected to have minimal ĥ value among all
states in S◦, we have a contradiction with ĥ(s1)< ĥ(s).

Theorem 8.10. Under assumptions (A1)-(A4), a reasonable real-time search algorithm will
eventually reach a goal.

Proof. If the search never reaches a goal it has a circulating set according to Lemma 8.2,
contradicting Lemma 8.9.

132 Chapter 8 Exploiting Heuristic Uncertainty in Deterministic Real-Time Search

We next show that Nancy is a reasonable search algorithm according to Definition 8.8,
which allows us to prove its completeness. However, in order to prove that Nancy does
action selection by f̂ even when using persistence, we first need the following lemma.

Lemma 8.11. Under assumptions (A1), (A2), and (A4), if Nancy does not switch to a
new path after the lookahead from a state s (i.e., does not go into the then branch in the
update_path() function, see Algorithm 10, line 10), then (1) πcurr must lead through the
frontier, (2) the state of πcurr that lies on the frontier has minimal f̂s value among all frontier
nodes, (3) f̂s(s′) = f̂s(s) for all states s′ on πcurr, and (4) the ĥ values of these states remain
unchanged in the learning phase.

Proof. Let sl be the root state of the lookahead when πcurr was set. In that lookahead,
slJπcurrK was a frontier node with minimal f̂sl

value, and, after the learning phase, all
states s′ on πcurr have equal f̂sl

according to Lemma 8.7. When Nancy moves along πcurr

in the action selection phase, the f̂ values relative to the current root state are equally
reduced by the cost of the applied action for all remaining states along πcurr. Thus, only
the heuristic update in the learning phase could invalidate the claim that all states along
the path have equal f̂s value.

If Nancy does not switch to a new path after a lookahead rooted at s, then we know that
(a) sJπcurrK was not expanded, so πcurr must lead through the frontier, and (b) there is
no state s f on the frontier of the lookahead with f̂s(s f)< f̂s(sJπcurrK). Before the learning
phase, all states s′ on πcurr have f̂s(s′) = f̂s(s). Since one such state s′ is on the frontier
(a) and has minimal f̂s value (b), this still holds after the learning phase according to
Lemma 8.7, and the ĥ values can not have changed.

Nowwe can prove that Nancy is reasonable as it performs action selection by f̂ even when
following the path for persistence.

Lemma 8.12. Nancy is a reasonable real-time search algorithm.

Proof. Nancy is goal aware and does dynamic-programming-like learning (Section 8.2.3).
For action selection, Nancy distinguishes two cases: If Nancy does not continue along the
cached path, the new path is selected towards a frontier node with minimal f̂ value. Oth-
erwise, Nancy follows the path cached for persistence, which, according to Lemma 8.11,
also leads to a frontier node with minimal f̂ value. Thus, Nancy does indeed perform
action selection by f̂ in both cases, and satisfies the definition of a reasonable real-time
search algorithm.

Corollary 8.13. Under assumptions (A1)-(A4), Nancy will eventually reach a goal.

Chapter 8 Exploiting Heuristic Uncertainty in Deterministic Real-Time Search 133

Proof. Nancy is a reasonable real-time search algorithm (Lemma 8.12), and is thereby
complete under assumptions (A1)-(A4) via Theorem 8.10.

Theorem 8.10 also implies that LSS-LRTA∗ is complete even for heuristics that are not
consistent or admissible (a consistent heuristic is the only case proven in the original
paper [Koenig and Sun, 2009]):

Lemma 8.14. LSS-LRTA∗ is a reasonable real-time search algorithm.

Proof. LSS-LRTA∗ is goal aware [Koenig and Sun, 2009, Figure 5, line 32], does dynamic-
programming-like learning [Koenig and Sun, 2009, Figure 5, lines 17–26], and does
action selection by f̂ [Koenig and Sun, 2009, Figure 5, line 34].3

Corollary 8.15. Under assumptions (A1)-(A4), LSS-LRTA∗ will eventually reach a goal.

Proof. LSS-LRTA∗ is a reasonable real-time search algorithm as per Lemma 8.14, and is
thereby complete under assumptions (A1)-(A4) via Theorem 8.10.

8.4 Conclusion

We proved that Nancy is complete under minimal assumptions (e.g., that the initial be-
liefs have a finite expected value), complementing its success in practice with theoretical
justification. Our theoretical analysis not only yields completeness for Nancy, but for an
entire class of real-time search algorithms. We were able to show that LSS-LRTA∗ is a
member of this class. In contrast to the original completeness proof of LSS-LRTA∗, our
proof does not require the heuristic to be admissible or consistent, opening up LSS-LRTA∗
for a wider range of heuristics. Our theoretical framework enables future algorithms to
prove completeness by simply arguing that they are reasonable—which is much easier to
do than proving completeness from scratch.

3Koenig and Sun [2009] use a slightly different real-time search setting, allowing the agent to execute
the full path to the frontier node in a single step instead of just the first action. However, our results are not
affected by this difference, as the arguments made in the proof of Lemma 8.9 would still hold if the entire
path were executed.

9 Exploiting Heuristic Uncer-
tainty in Suboptimal Search

Many practical applications are too complex to solve optimally under realistic time and
memory constraints: Proving optimality necessitates exploring all states that could po-
tentially lead to a better solution, which is extremely costly in large state spaces even
if the heuristic is almost perfect [Helmert and Röger, 2008]. If control of the solution
quality is desired, this leaves two options: bounded-cost search, where solutions must
satisfy an absolute cost bound C , and bounded-suboptimal search, where solutions must
be within a factor w of an optimal solution.

In both of these settings, the aim is to find a solution satisfying the given bound as quickly
as possible. In bounded-cost search, a simple approach is to run any suboptimal search
algorithm and prune search nodes that violate the cost bound. However, this does not
account for the likelihood of meeting the bound, and can cause some overhead if the
heuristic is inaccurate and the search explores some branches deeper than necessary.
Hence, specialized bounded-cost search algorithms have been devised that use the bound
in the evaluation function guiding the search, such as potential search (PTS) [Stern et al.,
2011; Stern et al., 2014] and Bounded-Cost Explicit Estimation Search (BEES) [Thayer
et al., 2012].

PTS is based on the idea of prioritizing nodes with a higher probability of leading to
a solution within the bound. This is achieved by sorting the open list according to a
function that is shown to yield the same ordering as the desired probability, assuming
the heuristic satisfies a linear error model. However, this search strategy ignores the “as
fast as possible” aspect of bounded-cost search. BEES takes a different approach, using
a distance estimate in addition to the heuristic in order to guide the search to solutions
faster.

In this chapter, we introduce Expected Effort Search (XES), which combines the prob-
ability of finding a feasible solution as well as the search effort required to find such a
solution into a single estimation function. Specifically, XES uses two estimates: T (n),

135

136 Chapter 9 Exploiting Heuristic Uncertainty in Suboptimal Search

the estimated time until a solution is found under the current node n, and p(n), the
probability that such a solution will be within the bound. XES then performs a best-first
search on the expected effort T (n)/p(n). This idea has previously been proposed by Dob-
son and Haslum [2017] and implemented as an internal objective function for specific
planning heuristics. We generalize that idea to heuristic search with arbitrary underlying
heuristics, and prove its correctness in a simplified formal model.

In contrast to PTS, XES requires a concrete estimate of the probability (where PTS simply
relies on a function that yields the same ordering). We obtain such an estimate by model-
ing the heuristic uncertainty with Nancy-style belief distributions [Mitchell et al., 2019;
Fickert et al., 2020; see also Chapter 8]. We use online observations of the heuristic error
[Thayer et al., 2011] to adaptively obtain more accurate estimates of the expected solu-
tion cost. The probability that a search node leads to a solution within the cost bound is
then derived from the distribution of the expected total cost corrected for the heuristic
error.

Compared to bounded-cost search, bounded-suboptimal search poses the additional chal-
lenge that the exact bound is not known upfront. Hence, typical search algorithms use an
admissible heuristic and keep track of the f values of open nodes, fromwhich information
about the suboptimality bound can be derived [Pearl and Kim, 1982; Gilon et al., 2016].
We show how XES can be adapted to this setting: We first introduce a relatively straight-
forward adaptation called Dynamic Expected Effort Search (DXES), prioritizing nodes
based on their expected effort like XES.While DXES aims to find feasible solutions quickly,
it neglects the implicit secondary objective of bounded-suboptimal search—gathering in-
formation about the suboptimality bound. We therefore design a more complex variant
of DXES called Considerate Dynamic Expected Effort Search (CDXES) that addresses this
issue by explicitly weighing the effort of raising the best known suboptimality bound
against the search effort to find a solution under the current one. Finally, we introduce a
simple round-robin scheme that can be instantiated with different node ordering strate-
gies, including expected search effort.

We evaluate our novel contributions on the IPC benchmarks, in the most comprehensive
comparison of bounded-cost and bounded-suboptimal search algorithms on the planning
benchmarks to date. Our experiments show that XES is vastly superior to the current
state of the art, exhibiting robust behavior across different domains and cost bounds. We
find that our adaptations of XES to bounded-suboptimal search do not yield the same
level of performance. However, our simple round-robin algorithms beat state-of-the-art
bounded-suboptimal search algorithms, showing that there is still room for improvement
for more principled approaches.

Chapter 9 Exploiting Heuristic Uncertainty in Suboptimal Search 137

Papers and Contributions This chapter is based on the papers “Bounded-cost Search
Using Estimates of Uncertainty” [Fickert et al., 2021a] and “New Results in Bounded-
Suboptimal Search” [Fickert et al., 2022]. Both works are principally developed by the
author and Tianyi Gu, in joint work with Wheeler Ruml. This chapter focuses on the au-
thor’s contributions: The XES algorithm and its soundness proof are the author’s work;
the novel BEES variants (Section 9.2.2) and the DXES algorithm (Section 9.3.1.1) have
been co-developed with Tianyi Gu; the CDXES algorithm is the author’s work; the round-
robin algorithms have been co-developed with Tianyi Gu (Section 9.3.2); the implemen-
tation in Fast Downward and evaluation on the IPC domains are the author’s work.

9.1 Background

We first formally describe the bounded-cost and bounded-suboptimal search settings, and
then give a brief overview over the relevant existing work in both areas.

9.1.1 Problem Definition

A bounded-cost planning task extends an FDR task with an absolute cost bound C ∈ R+0 .
The cost of a plan π for such a task may not exceed C; if no such plan exists then the task
is unsolvable. Similarly, a bounded-suboptimal planning task extends an FDR task with a
suboptimality factor w, and the cost of a plan π may not exceed w · C∗, where C∗ is the
cost of an optimal plan.

In addition to a heuristic h and distance estimate d, some search algorithms introduced
in the following make use of potentially inadmissible estimates ĥ and d̂. Similar to f :=

g + h, we use f̂ to denote g + ĥ.

9.1.2 Bounded-Cost Search

A straightforward strategy for bounded-cost search is to run an arbitrary search algorithm
and prune any node n with g(n) > C (or f (n) > C when using an admissible heuristic)
[e.g., Haslum, 2013]. However, this leaves the underlying search insensitive to the cost
bound, and nodes that are close to the bound are treated the same way as ones that leave
some room for error in the heuristic estimates. Hence, specialized bounded-cost search
algorithms have been developed, taking C into account to guide the search.

138 Chapter 9 Exploiting Heuristic Uncertainty in Suboptimal Search

9.1.2.1 Potential Search

Potential search (PTS) [Stern et al., 2011] aims to prioritize nodes that have a higher
probability of leading to a solution within the cost bound C (the node’s potential), which
can be expressed as PC(n) = Pr(h∗(n) ≤ C − g(n)) for a search node n. This probability
value is hard to estimate, and PTS instead constructs a function u(n) := C−g(n)

h(n) that is
used to guide the search. Stern et al. [2011] show that this function results in the same
ordering of search nodes as PC under the assumption that the heuristic follows a linear
error model.

One drawback of the potential-based approach is that it neglects the search effort required
to find a solution—a node close to the goal with similar potential as a node close to the
initial state may not be prioritized. However, PTS has shown to be effective in practice
on a wide range of search domains, even though it does not explicitly follow the main
objective of bounded-cost search.

9.1.2.2 Bounded-Cost Explicit Estimation Search

Bounded-Cost Explicit Estimation Search [Thayer et al., 2012], short BEES, is a bounded-
cost variant of Explicit Estimation Search (summarized in Section 9.1.3.2). BEES is a
search algorithm using two queues: an open list ordered by f , and a focal list sorted by
a distance estimate d̂, containing only nodes with f̂ ≤ C . As such, BEES makes use of
three estimates to guide its search—the heuristics h and ĥ, and the distance estimate d̂.
The focal list contains only nodes that are believed to lead to solutions within the bound
according to the inadmissible estimate f̂ , and is prioritized for expansion over the open
list (falling back on the open list only if the focal list is empty). Sorting the focal list
by the estimated goal distance aims to guide the search to a goal quickly. Thayer et al.
[2012] also introduce a potential-based variant of BEES called BEEPS, where the open
list is ordered by u instead of f .

9.1.2.3 The Expected Work Heuristic

Dobson and Haslum [2017] have introduced the idea of combining a probability estimate
with an estimate of the search effort required to reach a goal from the current state.
Given a probability PC(n) to reach a goal within the cost bound from a search node n,
they observe that, on average, one can expect having to explore 1/PC(n) many n-like
nodes until a solution within the bound is found. In combination with an estimate of the
required search effort T C(n) to explore the C-bounded subtree under n, the expected work

Chapter 9 Exploiting Heuristic Uncertainty in Suboptimal Search 139

to find a feasible solution under n is given by HC := T C(n)/PC(n). Dobson and Haslum
[2017] adapt pattern database heuristics [Culberson and Schaeffer, 1996] to use the
heuristic HC as an internal objective function for plans in the abstraction, and show that
the approach works well on selected planning domains.

To instantiate PC Dobson and Haslum [2017] use the potential u; the search time is
estimated using a distance estimate to a goal state within the bound dC raised to the
power b, where b is the average branching factor of the search tree. They note that the
potential u can be a poor approximation of the probability to reach a goal within the
bound, and speculatively propose that PC could instead be derived from online observa-
tions of the heuristic error. We further study this idea in this chapter, show how it can be
implemented for arbitrary underlying heuristics, and compare it to the state-of-the-art
algorithms for bounded-cost search.

9.1.3 Bounded-Suboptimal Search

The most well-known algorithm for bounded-suboptimal search is weighted A∗ [Pohl,
1970], which performs best-first search on fw = g + w · h. If h is admissible, then the
solution found by weighted A∗ is guaranteed to be within a factor w of optimal.

9.1.3.1 Focal Search

The main difficulty of bounded-suboptimal search in comparison to bounded-cost search
is that the bound is not known in advance (since the cost of an optimal solution C∗ is
not known). However, using an admissible heuristic, the minimal f value among open
nodes, fmin, is an underestimation of C∗. Focal search is a two-queue approach based on
this observation [Pearl and Kim, 1982]. It uses a standard open list sorted by f , and a
focal list containing only nodes n with f (n) ≤ w · fmin, sorted by an arbitrary ordering
function. This way of filtering which nodes qualify for the focal list ensures that any
goal node found in the focal list satisfies the suboptimality bound: for a goal node n, we
have f (n) = g(n) ≤ w · fmin ≤ w · C∗, and hence the path represented by n satisfies the
optimality bound.

Most bounded-suboptimal search algorithms are instantiations or extensions of focal
search, with different ordering functions or queue selection mechanisms. Pearl and Kim
[1982] introduced A∗ε (the first focal search algorithm for bounded-suboptimal search),
which sorts the focal list by a distance estimate d in order to reach a goal more quickly.
However, as observed by Thayer and Ruml [2009], the node with the minimal distance

140 Chapter 9 Exploiting Heuristic Uncertainty in Suboptimal Search

estimate often has a high f value, so its successors frequently fail to qualify for the focal
list. A∗ε thus tends to be outperformed by more recent algorithms.

9.1.3.2 Explicit Estimation Search

Explicit Estimation Search (EES) [Thayer et al., 2012] uses three kinds of estimates to
guide its search: an admissible heuristic h, an inadmissible heuristic ĥ, and a (potentially
inadmissible) distance estimate d̂. EES is an extension to focal search using three queues:
(1) a standard open list sorted by f , giving access to the node best f with the minimal f

value fmin, (2) an open list sorted by f̂ , giving access to the node best f̂ with the minimal f̂

value f̂min, and (3) a focal list sorted by d̂ which contains only nodes n with f̂ (n)≤ w· f̂min,
giving access to the node bestd̂ with minimal d̂ value among the nodes in the focal list.

At each expansion, one of the nodes at the front of these queues is selected according
to the following rules: If f̂ (bestd̂) ≤ w · fmin, then select bestd̂ (this node is deemed to
lead to a solution with in the bound and is close to the goal according to d̂). Otherwise,
if f̂ (best f̂) ≤ fmin, then select best f̂ (this node is expected to lead to the best solution
according to f̂). Finally, if both cases fail, EES expands best f , aiming to increase fmin in
order to allow expanding bestd̂ or best f̂ later.

9.1.3.3 Dynamic Potential Search

Dynamic Potential Search (DPS) [Gilon et al., 2016] is a bounded-suboptimal variant
of Potential Search. The adapted function to sort the open list uses the dynamic bound
w · fmin in place of the fixed cost bound C as in PTS: ud(n) := w· fmin−g(n)

h(n) . In order to
maintain the correct ordering, DPS uses a queue based on buckets of nodes with the same
(g, h) values (and hence the same ud values), and reorders the buckets whenever fmin

changes. DPS does not need to use a focal search approach as the node with minimal ud

value is guaranteed to bewithin the suboptimality bound [Gilon et al., 2016, Section 4.1].
DPSU [Gilon et al., 2017] is a unit-cost variant of DPS that can sometimes improve over
DPS, but is generally outperformed by DPS and EES.

9.2 Exploiting Heuristic Uncertainty in Bounded-Cost Search

In this section, we introduce our bounded-cost search algorithm based on Dobson and
Haslum’s [2017] idea of estimating the expected effort required to find a solution within

Chapter 9 Exploiting Heuristic Uncertainty in Suboptimal Search 141

the bound, and prove that this form of search guidance is optimal under certain assump-
tions. We also present a new variant of BEES that uses explicit probability estimations,
and evaluate our contributions on the IPC benchmarks.

9.2.1 Expected Effort Search

Extending the line of work initiated by Dobson and Haslum [2017], we propose a new
bounded-cost search algorithm called Expected Effort Search (XES). We design a com-
bined expected effort heuristic that accounts for both the probability of finding a solution
within the cost bound and the effort required to do so. We first provide a simplified for-
mal model to give a theoretical justification for this heuristic and then show how the
probability estimate of finding a solution within the bound can be instantiated based
on the belief distributions used by the Nancy algorithm [Mitchell et al., 2019; see also
Chapter 8].

9.2.1.1 A Simple Formal Model

Let p(n) be an estimate of a node n’s potential, i.e., the probability that there is a so-
lution under n within the cost bound. We will model expected search time using three
assumptions:

(A1) We assume that the search procedure works exclusively in one subtree at a time.
Let T (n) be an estimate of the search effort to find a solution under n. Performing
search below a node n can have two possible outcomes: either (a) a solution will be
found under n with expected effort T (n), or (b) the search does not find a solution
under n.

(A2) For case (b), we assume that the search abandons that subtree after having spent
T (n) time, the same as in case (a).

(A3) Finally, we assume that the subtrees are independent: not finding a solution in one
subtree does not affect the probability of finding a solution in any other subtree.

Now, let σ = 〈n0, n1, . . . , nm〉 be the ordering of the search nodes that are currently in
the open list. We first have to consider the case where a solution is found below n0,
spending T (n0) time overall with a probability of p(n0). Otherwise, we need to next
explore the search tree below n1, where we would find a solution with overall probability
(1− p(n0))p(n1) (considering the remaining probability of not finding a solution below
n0) and expected overall search time (T (n0) + T (n1)) since we explore both the search

142 Chapter 9 Exploiting Heuristic Uncertainty in Suboptimal Search

trees below n0 and n1, and so on. Abusing notation, let T (n+m) = T (n) + T (m). Then,
the expected overall search time for this ordering is

E(σ) = p(n0)T (n0) +

(1− p(n0))p(n1)(T (n0 + n1)) +

(1− p(n0))(1− p(n1))p(n2)(T (n0 + n1 + n2)) +

. . .

We note that there will be a final term in this expression representing the time in the case
in which there is no solution; this quantity might be finite or infinite depending on the
search tree and search procedure.

If we want to know whether we should prefer a node n over another node m, we can,
without loss of generality, compare the open list orderings σn = 〈n, m, . . . 〉 and σm =

〈m, n, . . . 〉. Note that all but the first two terms of the corresponding expected search
times are identical. We will use this to show that for ordering the open list, it is sufficient
to use this shortened expression for expected search effort:

xe(n) = T (n)/p(n)

Theorem 9.1. Given two open list orderings σn = 〈n, m, . . . 〉 and σm = 〈m, n, . . . 〉, we
have E(σn)< E(σm)⇔ xe(n)< xe(m).

Proof. We start with E(σn)< E(σm). Removing equal terms from both sides yields

p(n)T (n) + (1− p(n))p(m)(T (n+m))<

p(m)T (m) + (1− p(m))p(n)(T (m+ n)).

Multiplying out, we get

p(n)T (n) + p(m)(T (n+m))− p(n)p(m)(T (n+m))<

p(m)T (m) + p(n)(T (m+ n))− p(m)p(n)(T (m+ n)).

Simplifying by removing equal terms yields

p(n)T (n) + p(m)(T (n+m))<

p(m)T (m) + p(n)(T (m+ n)).

Chapter 9 Exploiting Heuristic Uncertainty in Suboptimal Search 143

Then by multiplying out again we get

p(n)T (n) + p(m)T (n) + p(m)T (m)<

p(m)T (m) + p(n)T (m) + p(n)T (n)

and after removing equal terms again:

p(m)T (n)< p(n)T (m).

Finally, dividing by p(n) and p(m) yields

T (n)/p(n)< T (m)/p(m).

This result is related to the optimal strategy for decision-theoretic troubleshooting, where
a faulty component must be identified through sequential testing, and the best approach
is based on a similar notion of expected effort [Kalagnanam and Henrion, 1988; Hecker-
man et al., 1995].

9.2.1.2 Estimating Expected Search Effort

XES is a best-first search on the expected search effort xe(n) = T (n)/p(n). The key ques-
tion is how to obtain the estimates T (n) and p(n). Here, we instantiate T (n) with the
debiased distance estimate d̂(n) = d(n)

1−εd
, where εd is the mean one-step error in d [Thayer

et al., 2011], and we derive p(n) from Nancy-style probability distributions.

Nancy’s [Mitchell et al., 2019] belief distributions model the true cost to a goal based on
heuristic estimates. For a search node n, it creates a Gaussian distribution around f̂ (n)

with variance (f̂ (n)− f (n)
2)2. The distribution is truncated at a lower bound of g(n) (or f (n)

if h is admissible). The probability of finding a solution under n within the cost bound
C is then just the area below the distribution up to C , as illustrated in Figure 9.1. This
can be calculated directly using the cumulative density function for truncated Gaussian
distributions [Hald, 1952].

XES weighs the potential of a node against its estimated search effort. If the cost bound
is very generous, then p(n) should be close to 1 for most nodes and XES converges to a
best-first search on d̂, effectively guiding the search to a goal as quickly as possible. We
prune nodes with h(n) =∞ (dead ends) and nodes with g(n) > C , but not nodes with
T (n)/p(n) =∞ as this case can occur when the heuristic overestimates significantly (so

144 Chapter 9 Exploiting Heuristic Uncertainty in Suboptimal Search

g(n) C f̂ (n)

Figure 9.1: Estimating p(n).

p(n) is very low and may round to zero). XES satisfies the usual completeness guaran-
tee from a systematic best-first search, as all nodes that may satisfy the cost bound are
eventually expanded until a solution is found.

9.2.2 BEES with Explicit Probability Estimates

BEES and BEEPS maintain a focal list containing search nodes that are deemed likely
to be within the bound. This is tested by comparing the inadmissible estimate f̂ with
the cost bound, i.e., checking whether a node n satisfies f̂ (n) ≤ C . Instead, we can
also use the explicit probability estimate derived from Nancy-style belief distributions as
introduced in the previous subsection. This allows us to introduce new variants of these
algorithms, called BEES95 and BEEPS95, that replace these checks with p(n)≥ 0.95.

9.2.3 Experimental Evaluation

While Theorem 9.1 suggests that the search strategy employed by XES is optimal, it relies
on the strong simplifying assumptions (A1)–(A3), which may not be realistic in practice.

To evaluate XES and our new BEES variants, we use the benchmark set from the bounded-
cost track of the 2018 International Planning Competition, which contains 180 instances
from 9 domains. Furthermore, we consider the instances of the satisficing tracks of all
previous IPCs, where we use the upper bounds from Planning.Domains [Muise, 2016]
as the cost bounds; omitting instances where no bound is available, this leaves 2147
instances from 48 domains. These bounds correspond to best found solutions for these
instances, and 1218 of them are known to be optimal.

We use hFF as the heuristic h and use the length of the relaxed plans as the distance
estimator d. All algorithms use a dual queue for preferred operators.

http://planning.domains/

Chapter 9 Exploiting Heuristic Uncertainty in Suboptimal Search 145

Coverage GB
FS

PT
S

Ô PT
S

BE
ES

BE
EP

S

BE
ES

95

BE
EP

S9
5

XE
S

Agricola (20) 1 0 0 0 0 0 0 0
Caldera (20) 8 10 11 10 10 12 11 13
Caldera-split (20) 4 2 2 2 2 2 2 2
DataNetwork (20) 2 0 0 3 3 3 3 4
Nurikabe (20) 4 10 7 10 10 11 9 9
Settlers (20) 4 5 7 10 10 11 11 11
Snake (20) 4 5 5 4 5 4 5 5
Spider (20) 7 11 9 10 10 10 9 9
Termes (20) 11 9 6 11 10 11 10 13

Sum (180) 45 52 47 60 60 64 60 66

Expansions (∗103) 1.93 3.93 6.75 2.10 2.62 2.25 2.24 1.77
Search time (s) 1.69 4.11 7.20 2.14 2.79 2.32 2.39 1.91

Table 9.1: Coverage on the instances of the IPC’18 bounded-cost track. The last two
rows show the and geometric means of the number of expansions (multiply by 103) and

search time on commonly solved instances.

To compute the debiased heuristic ĥ(n) forÔPTS, BEES, and XES, we use ĥ(n) = h(n) +

εh · d̂(n) where εh is the mean one-step error in h [Thayer et al., 2011]. We initialize εh

with 100 virtual samples to avoid a large fluctuation of ĥ values at the beginning of the
search. The initial value is set to −0.5, making initial ĥ estimates optimistic.

The source code is available at https://github.com/fickert/fast-downward-xes.
This repository also includes the implementations of the bounded-suboptimal search al-
gorithms introduced in Section 9.3.

9.2.3.1 IPC’18 Results

Table 9.1 compares XES, BEES95, and BEEPS95 to previous bounded-cost search algo-
rithms. We also include GBFS (with pruning on g), which was used by most planners in
the 2018 IPC.

XES performs best overall with a coverage of 66, followed by BEES95 (64) and the other
algorithms of the BEES family (60). The potential-based algorithms PTS andÔPTS have
significantly lower coverage, and the statistics on the number of expansions show that
they are not as effective in guiding the search to a goal. GBFS is not competitive with the
specialized bounded-cost search algorithms overall, though it can sometimes beat them
if it quickly finds a cost-effective path to the goal (e.g., in Agricola and Caldera-split).
On five of the nine domains, XES has the highest coverage of the considered algorithms.
Across the commonly solved instances, XES also needs the fewest expansions on average,

https://github.com/fickert/fast-downward-xes

146 Chapter 9 Exploiting Heuristic Uncertainty in Suboptimal Search

1 1.2 1.4 1.6 1.8 2

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

GBFS
PTS
ÔPTS
BEES
BEEPS
BEES95
BEEPS95

XES

Figure 9.2: Normalized coverage as the cost bound is increased.

and its search time is only beaten by GBFS (which solves significantly fewer instances,
but those that it can solve are solved quickly).

9.2.3.2 Satisficing Results

Table 9.2 shows the results on the instances of the satisficing tracks using the cost bounds
from Planning.Domains. Consistent with the results on the IPC’18 bounded-cost in-
stances, XES clearly outperforms the other considered algorithms: on 14 of the 48 do-
mains it solves strictly more instances than any other algorithm, and on further 14 do-
mains XES has the shared best coverage. Our new BEES variants BEES95 and BEEPS95
show small but relatively consistent improvements over their respective base algorithms.
While PTS andÔPTS show good performance in some individual domains (e.g., Floortile
and Freecell), they again lag behind the other bounded-cost search algorithms overall.

Figure 9.2 shows the normalized coverage as the cost bounds are multiplied by increasing
factors. The relative strength of the algorithms remains mostly consistent across the
different bounds, with XES being the best performing algorithm for all considered values,
and the specialized bounded-cost search algorithms still have a significant advantage over
GBFS with pruning even as the cost bound is relaxed.

Chapter 9 Exploiting Heuristic Uncertainty in Suboptimal Search 147

Coverage GB
FS

PT
S

Ô PT
S

BE
ES

BE
EP

S

BE
ES

95

BE
EP

S9
5

XE
S

Airport (49) 26 24 24 31 31 32 32 31
Assembly (30) 17 18 18 25 24 30 29 30
Barman (40) 5 0 0 6 6 9 9 10
Blocksworld (35) 19 26 26 30 26 30 26 31
Cavediving (8) 7 7 7 7 7 7 7 7
Childsnack (6) 1 0 0 0 0 0 0 3
CityCar (13) 1 4 4 4 4 5 5 4
Depot (21) 6 13 13 14 13 12 13 13
DriverLog (20) 10 19 18 18 18 18 19 15
Elevators (39) 7 12 12 22 22 24 24 24
Floortile (27) 6 20 20 8 8 9 8 9
Freecell (80) 20 65 57 37 47 39 58 41
GED (20) 0 1 0 0 0 1 1 1
Grid (5) 1 3 3 3 3 3 3 4
Gripper (20) 7 8 8 7 8 7 8 12
Hiking (18) 8 18 16 15 17 14 17 16
Logistics (63) 33 46 38 51 50 52 53 52
Maintenance (17) 0 0 0 0 0 0 0 0
Miconic (439) 342 362 427 403 426 397 426 437
Movie (30) 30 30 30 30 30 30 30 30
Mprime (35) 29 34 33 33 33 34 33 33
Mystery (19) 17 19 19 19 19 19 19 19
Nomystery (18) 4 16 16 18 14 18 14 17
Openstacks (98) 33 31 41 53 54 56 56 58
Opt. Telegr. (4) 4 2 2 2 2 4 4 4
Parcprinter (40) 26 25 20 29 27 24 20 24
Parking (40) 4 21 10 11 12 16 13 15
Pathways (57) 13 20 27 22 22 25 22 24
Pegsol (35) 32 35 35 34 35 34 35 35
Philosophers (45) 45 11 5 11 11 11 11 14
Pipes-notank (46) 20 41 42 43 43 42 42 43
Pipes-tank (45) 15 29 28 28 32 26 31 33
PSR (116) 107 111 110 111 110 111 110 113
Rovers (40) 12 20 18 25 25 27 25 30
Satellite (36) 20 20 20 23 21 21 23 23
Scanalyzer (28) 20 16 17 20 18 22 17 21
Schedule (150) 36 51 47 62 73 60 75 89
Sokoban (30) 24 29 29 29 29 29 29 29
Storage (28) 14 19 20 20 20 16 18 22
Tetris (18) 7 4 3 4 4 2 2 3
Thoughtful (20) 6 10 10 8 10 9 9 12
Tidybot (17) 3 11 11 12 12 11 11 12
TPP (30) 10 16 13 20 19 15 18 24
Transport (53) 7 9 10 15 15 19 19 17
Trucks (31) 18 30 30 30 29 31 31 30
VisitAll (37) 0 0 0 0 0 0 0 0
Woodworking (31) 18 24 11 19 19 21 19 22
Zenotravel (20) 8 14 13 13 13 16 16 14
Sum (2147) 1098 1344 1361 1425 1461 1438 1490 1550
Normalized (%) 44.8 58.5 55.9 59.9 59.8 61.6 61.9 66.1
Expansions 1961 1135 1787 401 491 365 485 369
Search time (s) 0.53 0.40 0.57 0.19 0.23 0.18 0.24 0.18

Table 9.2: Coverage on the IPC satisficing instances. The last two rows show the geo-
metric means of the expansions and search time on commonly solved instances.

148 Chapter 9 Exploiting Heuristic Uncertainty in Suboptimal Search

9.2.4 Summary

XES performs consistently well across a wide range of domains, and is clearly superior to
previous state-of-the-art algorithms overall. The distributionally-enhanced BEES variants
BEES95 and BEEPS95 also tend to yield small improvements over BEES and BEEPS in
most domains. One advantage of XES over these BEES variants is that it is less reliant on
the probability estimate being accurate: If the probability estimate consistently over- or
underestimates, then the expected effort values are affected equally and the ordering of
the open list does not change much, while the focal list is either over- or underutilized in
the BEES algorithms. PTS andÔPTS perform poorly on most domains; furthermore, they
have worse scaling for larger bounds as they do not use a distance estimate, and thus
have less effective guidance towards a goal state than the other algorithms.

9.3 Exploiting Heuristic Uncertainty in Bounded-Suboptimal
Search

In this section, we explore how the idea behind XES can be transferred to the bounded-
suboptimal search setting. We first introduce a straightforward adaptation, and then
discuss amore sophisticated variant that explicitly considers increasing the bound in favor
of goal-oriented exploration. Additionally, we introduce a simple round-robin scheme
that can be instantiated with different priority functions. We finally evaluate our novel
algorithms on the IPC domains.

9.3.1 Exploiting Expected Effort

Moving from a static cost bound C to the dynamic suboptimality bound w · fmin necessi-
tates a focal search approach, where focal contains only search nodes with f (n)≤ w· fmin,
ordered by the expected effort, and open is ordered by f to track fmin. Following XES’s
paradigm of explicitly taking uncertainty into account, we also model the uncertainty of
the suboptimality bound. We propose two different approaches to adapt XES: a relatively
simple focal-search-like variant called Dynamic Expected Effort Search (DXES), and a
more complex adaptation called Considerate Dynamic Expected Effort Search (CDXES).

9.3.1.1 Dynamic Expected Effort Search

As described in Section 9.2.1.2, XES uses a single normal distribution Bbound centered on
f̂ to estimate the solution cost under a search node n, and thus the probability that it is

Chapter 9 Exploiting Heuristic Uncertainty in Suboptimal Search 149

within the cost bound:

Bcost(n)∼N (f̂ (n), (
f̂ (n)− f (n)

2
)2).

In DXES, we also use a second distribution Bbound to describe our current belief about
the cost bound given by the suboptimality factor w, of which our best guess is w · f̂min.
The value f̂min may change after each expansion—either due to changes in the average
heuristic error (when deriving ĥ from h with online error correction) or due to nodes be-
ing added to or removed from the open list. We record the f̂min value after each expansion
in a collection δ, and use its variance to obtain a belief distribution of the bound:

Bbound ∼N (w · f̂min, var(δ)).

The probability that a node n leads to a solution within the suboptimality bound can now
be expressed as the probability that a sample from Bcost(n) is not greater than a sample
from Bbound. This probability P(Bcost(n)≤ Bbound) is equivalent to P(Bbound −Bcost(n)≥ 0),
and we can construct the distribution B(n) = Bbound − Bcost(n) by subtracting the means
and adding the variances:

B(n)∼N (w · f̂min − f̂ (n), (
f̂ (n)− f (n)

2
)2 + var(δ)).

From this distribution, we can compute the probability mass that is greater or equal to
zero to obtain the probability that n leads to a solution within the bound (similar to XES).

Note that this approach requires fast access to three search nodes at each expansion,
namely the ones with minimal expected effort, f value, and f̂ value respectively. Accord-
ingly, our implementation uses three queues even though DXES always expands the node
bestxe with minimal expected effort xemin, which will always exist as the queue must at
least contain best f .

9.3.1.2 Considerate Dynamic Expected Effort Search

DXES focuses on finding a solution within the current known lower bound, however,
it may be useful to raise the bound as well: expand best f until fmin raises sufficiently
such that more promising nodes (that are currently outside w · fmin) become available in
the focal list. We now introduce Considerate Dynamic Expected Effort Search (CDXES),
which carefully considers the expected effort required to raise fmin through successive
expansions of best f in order to make a node more promising than bestxe available to focal.
For example, consider a node n that is not in focal with xe(n) = 10 expansions when

150 Chapter 9 Exploiting Heuristic Uncertainty in Suboptimal Search

xe(bestxe) = 20. If raising fmin sufficiently to include n in focal takes fewer than 10 expan-
sions, then it would be worth doing that so we can expand n afterwards and still expect
less total search effort.

We estimate the effort to raise fmin to a desired f value f◦ (i.e., the number of required
best f expansions) by

T f◦ =
f◦−1∑

f= fmin

#open f ·
f◦ − f
εh

,

where #open f is the number of open nodes with the given f value, and εh is the mean
one-step error in h [Thayer et al., 2011]. The one-step heuristic error gives us an idea of
how much the f value increases on average for each expansion. For example, if εh = 0.2,
we can expect f to increase by one after five expansions. T f◦ takes into account both
the amount by which fmin must increase to f◦ and the number of open nodes with each
intermediate f value.

In order to express the expected effort in expansions as well, we change the remaining
time estimator in xe(n) from T (n) = d̂(n) to T (n) = d̂(n) · delay, where delay is the av-
erage expansion delay [Dionne et al., 2011]. Now we can consider whether it would be
beneficial to expand best f in order to raise fmin: If there is a node n that is currently not
in the focal list that has xe(n) + T f (n) < xemin, then CDXES expands best f instead of the
usual bestxe.

9.3.2 A Simple Round-Robin Scheme

The main motivation behind CDXES as an improvement over DXES is the observation
that progress in bounded-suboptimal search can mean different things—finding nodes
closer to the goal, but also gathering more information about the cost bound. The cost
bound can be estimated by w· f̂min, and a lower bound is given by w· fmin. Most algorithms
discussed before use at least one of these values in their search strategy, but not all of
them aim to gain more knowledge about them (by expanding the nodes best f̂ or best f

respectively). EES and CDXES do attempt to estimate when raising the bound is useful
through careful metareasoning. However, even if the inference rules are well founded,
this metareasoning is based on online heuristic information which itself may be quite
unreliable. Hence, we also investigate a simpler alternative.

We study a basic round-robin scheme using three queues: a focal list that can be instan-
tiated with any evaluation function, an open list sorted by f̂ , and a cleanup list sorted
by f . In order to guarantee that solutions are within the given suboptimality bound, the
first two queues only contain nodes with f (n) ≤ w · fmin, while the cleanup list contains

Chapter 9 Exploiting Heuristic Uncertainty in Suboptimal Search 151

all open nodes. The search then simply alternates between these queues, expanding the
node at the front of the current queue at each expansion.

We explore three instantiations for the focal list ordering: d, ud, and xe, resembling the
main search strategies of EES, DPS, and DXES respectively. In particular, note that EES
also considers expanding the node with either minimal distance, f , or f̂ , but follows a
more sophisticated selection strategy between those queues.

One drawback of the round-robin scheme is that it does not converge to speedy search
(best-first search on d) with increasing suboptimality bounds. This can be a useful prop-
erty to have since it should lead to a solution the fastest in case the solution quality does
not matter [Wilt and Ruml, 2014]. Both EES and DXES satisfy that property: in both
search algorithms, eventually all nodes are in the focal list, and in DXES all probability
estimates become one with sufficiently large weights. DPS on the other hand does not
converge to speedy search (and does not use a distance estimate at all in its open list
ordering function).

9.3.3 Experimental Evaluation

We compare the search algorithms using all unique STRIPS instances from the optimal
tracks of the International Planning Competitions, for a total of 1652 instances from 48
domains. We use the admissible landmark-cut heuristic [Helmert and Domshlak, 2009]
as both heuristic and distance estimator (using unit action costs for the latter). As before,
the estimates ĥ and d̂ are obtained by correcting for online observations of the one-step
error [Thayer et al., 2011]; we initialize the error with 100 virtual samples of zero.

9.3.3.1 Exploiting Expected Effort

Figure 9.3 shows an overview of the results for various suboptimality bounds ranging
from w = 1 to w = 2. Somewhat surprisingly, the success of XES in bounded-cost search
does not directly transfer to the bounded-suboptimal setting as its adaptation DXES per-
forms poorly here. Amajor reason is that DXES neglects to raise the suboptimality bound:
when looking at its search behavior in comparison to algorithms such as EES, we found
that fmin increases much more slowly throughout the search in DXES. This was the main
motivation behind CDXES and the round-robin strategies, which explicitly aim to raise
fmin by expanding best f . Yet, as Figure 9.3 shows, CDXES performs evenworse than DXES.
By periodically expanding best f , the probability estimates may significantly change due
to fluctuations in fmin (and f̂min), leading to many nodes with outdated values in the open
list. As an attempt to ameliorate this, we tested a variant of CDXES that lazily reevaluates

152 Chapter 9 Exploiting Heuristic Uncertainty in Suboptimal Search

Coverage W
A∗

EE
S

DP
S

DX
ES

CD
XE

S�

RR
-d

RR
-D
PS

RR
-D
XE

S

Airport (50) 31 30 33 29 32 33 32 33
Blocksworld (35) 33 31 34 28 31 34 32 35
DataNetwork (20) 14 14 14 14 14 16 13 16
Depot (22) 9 10 10 8 9 11 8 11
DriverLog (20) 15 15 15 14 15 15 15 15
Elevators (30) 23 21 23 21 22 28 23 28
Floortile (40) 22 17 23 12 16 21 21 22
Freecell (80) 15 16 15 15 17 17 15 19
GED (20) 15 15 19 15 15 15 19 15
Grid (5) 2 2 2 2 2 3 2 3
Gripper (20) 20 15 20 8 9 9 16 18
Hiking (20) 10 10 10 9 10 12 10 11
Logistics (63) 48 42 48 43 42 41 45 44
Mprime (35) 22 22 23 22 21 22 23 23
Mystery (19) 17 17 17 15 15 17 17 17
Nomystery (20) 20 20 20 14 17 20 20 20
Openstacks (80) 36 34 36 33 33 37 31 38
OrgSynth-split (20) 16 16 16 15 16 16 16 16
Parcprinter (30) 30 30 30 30 30 30 28 30
Parking (40) 18 18 20 7 13 22 17 23
Pathways (30) 6 6 6 6 6 6 6 6
Pegsol (36) 35 33 35 33 34 36 35 36
Pipes-notank (50) 23 24 23 17 24 26 24 27
Pipes-tank (50) 13 13 13 14 14 17 13 18
PNetAlignment (20) 11 11 11 8 9 13 10 13
PSR (50) 49 49 50 49 50 50 50 50
Rovers (40) 14 12 13 11 15 14 14 18
Satellite (36) 14 13 14 11 13 13 14 12
Scanalyzer (28) 17 12 20 12 15 16 17 18
Snake (20) 7 7 7 6 8 7 7 7
Sokoban (30) 29 28 29 28 28 29 29 29
Spider (20) 12 11 12 11 11 12 11 12
Storage (30) 16 17 16 15 17 18 16 17
Termes (20) 7 11 9 6 6 10 7 10
Tetris (17) 7 7 8 6 6 8 7 8
Tidybot (30) 21 21 21 19 22 23 20 26
TPP (30) 7 8 8 8 9 9 7 8
Transport (59) 18 19 18 18 20 22 18 23
Trucks (30) 21 18 18 14 18 20 21 19
VisitAll (33) 21 20 21 18 21 23 21 23
Woodworking (30) 26 27 26 26 28 29 27 30
Zenotravel (20) 14 14 15 13 13 14 14 14
Others (274) 191 191 191 191 191 191 191 191
Sum (1652) 995 967 1012 894 957 1025 982 1052
Normalized (%) 58.7 57.0 60.0 51.5 55.6 60.7 57.9 62.5
Expansions 569 558 472 734 511 383 665 371
Search time (s) 0.65 0.91 0.55 1.09 0.83 0.65 1.05 0.65

Table 9.3: Coverage over the IPC instances for w= 1.5.

Chapter 9 Exploiting Heuristic Uncertainty in Suboptimal Search 153

1 1.5 2 3 4
0.45

0.5

0.55

0.6

0.65

0.7

WA∗
A∗ε
DPS
EES
DXES
CDXES
CDXES�
RR-d

RR-DPS
RR-DXES

Figure 9.3: Normalized coverage over increasing suboptimality bounds.

nodes whose xe values change between insertion and expansion: the CDXES� configu-
ration requeues nodes if their updated xe estimate differs by more than 5%. This signifi-
cantly improves results, though it still does not reach the overall performance of WA∗ and
DPS. We tested this approach also for DXES and RR-DXES, but found that the results of
the former remain almost unchanged, and performance degrades for the latter. Similarly,
a bucket-based reordering strategy akin to DPS also did not improve results for DXES.

Table 9.3 shows the per-domain coverage for selected algorithms with a suboptimality
bound of w = 1.5. CDXES� has its merit in a few domains: it has strictly higher cover-
age than the other algorithms in Spider, and has equal (or better) coverage with fewer
expansions in Grid, Miconic, Parcprinter, and TPP on commonly solved instances. Over-
all though, the XES variants for bounded-suboptimal do not carry over the success from
bounded-cost search and are outperformed by the baselines in most domains. It ap-
pears that, even though it is possible to port bounded-cost algorithms to the bounded-
suboptimal setting [Gilon et al., 2016], it is not trivial to achieve high performance.

9.3.3.2 Round-Robin Algorithms

Consider again Figure 9.3 and Table 9.3. The round-robin variants RR-d and RR-DXES
perform best overall, significantly outperforming the other algorithms across most tested
suboptimality bounds. Interestingly, the potential variant of the round-robin algorithms,

154 Chapter 9 Exploiting Heuristic Uncertainty in Suboptimal Search

RR-DPS, does not share the success of RR-d and RR-DXES, and is generally outperformed
by its base version DPS. For example, for w = 1.5 (see Table 9.3), RR-DPS improves cov-
erage over DPS in 4 domains, but lowers it in 18. In contrast, RR-DXES demonstrates ex-
tremely robust performance. In terms of coverage, it is a strict improvement over DXES,
boosting coverage in 38 (!) domains while never falling below DXES for w = 1.5; and
almost halving the number of expansions on average. Excluding domains where all al-
gorithms have the same coverage, RR-DXES is the (at least shared) best algorithm on 28
out of 42 domains. As the suboptimality bound increases, RR-d catches up and surpasses
RR-DXES at w= 3.

In order to test whether periodically expanding both best f and best f̂ is important, we also
tested configurations that alternate the focal queue only with either best f or best f̂ , and
found them to be inferior to the variants presented here. We conclude that both best f

and best f̂ are useful components for bounded-suboptimal search.

9.4 Conclusion

In bounded-cost search, the goal is to find a solution within a user-provided cost bound
as fast as possible. We have introduced a relatively simple algorithm called XES that
explicitly follows that objective. Its evaluation function guides the search based on the
expected search effort to find a feasible solution. This is computed using two estimates:
the effort required to find a solution, and the probability that the cost of such a solution
is within the bound. We have shown that this search strategy is correct in a simplified
formal model. While our proof relies on assumptions that are unrealistic in practice,
XES turns out to be extremely effective: On the IPC benchmarks, XES consistently yields
strong results across a wide range of domains, substantially outperforming other state-
of-the-art bounded-cost search algorithms.

Our experiments with DXES and CDXES show that an adaptation to bounded-suboptimal
search is possible, but achieving the same kind of success as in the bounded-cost setting
remains difficult. In contrast, a simple round-robin scheme can yield state-of-the-art per-
formance with either d or xe for guidance. Its advantage over sophisticated metareason-
ing approaches shows that there is still some room for improvement for more principled
methods, with potentially better trade-offs between aiming to reach a goal quickly and
gaining knowledge about the suboptimality bound.

Overall, our work advances the recent trend of leveraging distributional information to
boost performance in a deterministic search setting [e.g., O’Ceallaigh and Ruml, 2015;

Chapter 9 Exploiting Heuristic Uncertainty in Suboptimal Search 155

Mitchell et al., 2019], highlighting the benefit of explicitly modeling the uncertainty of
the heuristic estimates.

Part III

Conclusion

157

10 Conclusion

This work challenges the traditional view of heuristic search as a static process in which
the heuristic is treated as a black box. The algorithms introduced in this work follow
a more dynamic approach, allowing them to make adjustments to the search strategy
online based on observations such as the behavior of the heuristic.

In the first part of this thesis, we explored adaptive partial delete relaxation methods for
AI planning. We introduced search algorithms that identify weaknesses in the heuristic,
and apply targeted refinement operations on the underlying relaxation. Our algorithms
based on local search use a converging heuristic function as an additional form of making
progress and guaranteeing completeness. Combined with the partial delete relaxation
heuristic hCFF, these methods are exceptionally effective in practice. Our best-performing
variants beat even recent portfolio planners across a wide range of benchmarks, and bring
local search back to the state of the art in satisficing planning.

We explored tie breaking strategies in the refinement procedure of hCFF. Our extensive
evaluation closes a gap of prior research, and results in a better understanding of the
performance of existing strategies. We achieved surprisingly good results with a simple
periodic replacement strategy in greedy best-first search, which can potentially boost
performance of online-refinement search algorithms by reducing their overhead.

For partial delete relaxation with red-black planning, we have shown how to combine
the converging (but computationally expensive) red-black state-space search with the
tractable fragment. We further devised a flexible approach that refines the relaxation
locally where needed. While our methods are not competitive to the state of the art
overall, they yield improvements in some domains, and our ideas can potentially inspire
other adaptive refinement approaches.

In the second part, we investigated more general heuristic search techniques that are not
focused on AI planning. We introduced a principled approach to select the initial state for
online replanning by reasoning about the planning time. As shown by our experiments,

159

160 Chapter 10 Conclusion

this results in superior generality and robustness compared to previous methods such as
deriving the initial state of the new plan from an offline estimate of the planning time.

We proved that the recently introduced real-time search algorithm Nancy is complete.
Our completeness proof applies not only to Nancy, but to a general class of real-time
search algorithms that can be used to simplify completeness proofs for similar algorithms.
As a side effect, our analysis shows that the popular LSS-LRTA∗ is complete under fewer
assumptions than its original proof.

Finally, we proposed novel algorithms for suboptimal search based on explicit estima-
tions of the probability of finding a solution within a given cost bound. Our bounded-
cost search algorithm XES consistently outperforms the current state of the art on the
IPC benchmarks. While its success does not straightforwardly carry over to bounded-
suboptimal search, we have shown how these ideas can be used in a simple round-robin
scheme to achieve state-of-the-art performance.

Given the success of online relaxation refinement in satisficing planning, a natural av-
enue for future work would be to try similar approaches in other settings, such as opti-
mal planning. Initial results of online refinement of Cartesian abstractions [Eifler et al.,
2019] have been promising, but not yet competitive with state-of-the-art planners. How-
ever, more could be tried, e.g., using other types of abstractions [Helmert et al., 2014;
Rovner et al., 2019], testing different approaches for when and how much to refine, or
combining heuristic refinement with orthogonal techniques such as online refinement of
cost partitionings [Seipp, 2021].

The search algorithms discussed in Chapters 8 and 9 make use of belief distributions in-
stead of heuristic functions that provide scalar values. However, the distributions are still
derived from a standard heuristic. One interesting direction for future work would be the
combination with methods that naturally yield distributions. One example are heuristics
based on neural networks [Ferber et al., 2020], whose output can be interpreted as a
distribution over possible heuristic values.

Bibliography

[Alcázar and Torralba, 2015] Vidal Alcázar and Álvaro Torralba. “A Reminder about
the Importance of Computing and Exploiting Invariants in Planning”. In: Proceedings of
the Twenty-Fifth International Conference on Automated Planning and Scheduling, ICAPS
2015, Jerusalem, Israel, June 7-11, 2015. Ed. by Ronen I. Brafman, Carmel Domshlak,
Patrik Haslum, and Shlomo Zilberstein. AAAI Press, 2015, pp. 2–6.

[Allis, 1994] Louis Victor Allis. “Searching for Solutions in Games and Artificial Intelli-
gence”. PhD thesis. Maastricht University, 1994.

[Arfaee et al., 2011] Shahab Jabbari Arfaee, Sandra Zilles, and Robert C. Holte. “Learn-
ing heuristic functions for large state spaces”. In: Artif. Intell. 175.16-17 (2011), pp. 2075–
2098.

[Bäckström and Nebel, 1995] Christer Bäckström and Bernhard Nebel. “Complexity
Results for SAS+ Planning”. In: Comput. Intell. 11 (1995), pp. 625–656.

[Barto et al., 1995] Andrew G. Barto, Steven J. Bradtke, and Satinder P. Singh. “Learn-
ing to Act Using Real-Time Dynamic Programming”. In: Artif. Intell. 72.1-2 (1995),
pp. 81–138.

[Benton et al., 2007] J. Benton, Minh B. Do, and Wheeler Ruml. “A Simple Testbed
for On-line Planning”. In: Proceedings of the ICAPS-07 Workshop on Planning and Plan
Execution for Real-World Systems. 2007.

[Bertsekas and Tsitsiklis, 1996] Dimitri P. Bertsekas and JohnN. Tsitsiklis.Neuro-dynamic
programming. Vol. 3. Optimization and neural computation series. Athena Scientific,
1996.

[Bonet and Geffner, 2001] Blai Bonet andHector Geffner. “Planning as heuristic search”.
In: Artif. Intell. 129.1-2 (2001), pp. 5–33.

[Bonet and Geffner, 2003] Blai Bonet and Hector Geffner. “Labeled RTDP: Improving
the Convergence of Real-Time Dynamic Programming”. In: Proceedings of the Thirteenth
International Conference on Automated Planning and Scheduling (ICAPS 2003), June 9-
13, 2003, Trento, Italy. Ed. by Enrico Giunchiglia, Nicola Muscettola, and Dana S. Nau.
AAAI, 2003, pp. 12–21.

[Brafman and Domshlak, 2003] Ronen I. Brafman and Carmel Domshlak. “Structure
and Complexity in Planning with Unary Operators”. In: J. Artif. Intell. Res. 18 (2003),
pp. 315–349.

[Bulitko and Sampley, 2016] Vadim Bulitko and Alexander Sampley. “Weighted Lateral
Learning in Real-TimeHeuristic Search”. In: Proceedings of the Ninth Annual Symposium
on Combinatorial Search, SOCS 2016, Tarrytown, NY, USA, July 6-8, 2016. Ed. by Jorge
A. Baier and Adi Botea. AAAI Press, 2016, pp. 10–18.

161

162 Bibliography

[Bulitko et al., 2008] Vadim Bulitko, Mitja Lustrek, Jonathan Schaeffer, Yngvi Björns-
son, and Sverrir Sigmundarson. “Dynamic Control in Real-Time Heuristic Search”. In:
J. Artif. Intell. Res. 32 (2008), pp. 419–452.

[Bulitko et al., 2010] Vadim Bulitko, Yngvi Björnsson, and Ramon Lawrence. “Case-
Based Subgoaling in Real-Time Heuristic Search for Video Game Pathfinding”. In: J.
Artif. Intell. Res. 39 (2010), pp. 269–300.

[Burns et al., 2012] Ethan Burns, J. Benton, Wheeler Ruml, SungWook Yoon, and Minh
Binh Do. “Anticipatory On-Line Planning”. In: Proceedings of the Twenty-Second Inter-
national Conference on Automated Planning and Scheduling, ICAPS 2012, Atibaia, São
Paulo, Brazil, June 25-19, 2012. Ed. by Lee McCluskey, Brian Charles Williams, José
Reinaldo Silva, and Blai Bonet. AAAI, 2012.

[Burns et al., 2013] Ethan Burns, Wheeler Ruml, and Minh Binh Do. “Heuristic Search
When Time Matters”. In: J. Artif. Intell. Res. 47 (2013), pp. 697–740.

[Bylander, 1994] TomBylander. “The Computational Complexity of Propositional STRIPS
Planning”. In: Artif. Intell. 69.1-2 (1994), pp. 165–204.

[Campbell et al., 2002] Murray Campbell, A. Joseph Hoane Jr., and Feng-Hsiung Hsu.
“Deep Blue”. In: Artif. Intell. 134.1-2 (2002), pp. 57–83.

[Cashmore et al., 2018] Michael Cashmore, Andrew Coles, Bence Cserna, Erez Karpas,
Daniele Magazzeni, and Wheeler Ruml. “Temporal Planning while the Clock Ticks”.
In: Proceedings of the Twenty-Eighth International Conference on Automated Planning
and Scheduling, ICAPS 2018, Delft, The Netherlands, June 24-29, 2018. Ed. by Mathijs
de Weerdt, Sven Koenig, Gabriele Röger, and Matthijs T. J. Spaan. AAAI Press, 2018,
pp. 39–46.

[Cashmore et al., 2019] Michael Cashmore, Andrew Coles, Bence Cserna, Erez Karpas,
Daniele Magazzeni, and Wheeler Ruml. “Replanning for Situated Robots”. In: Proceed-
ings of the Twenty-Ninth International Conference on Automated Planning and Schedul-
ing, ICAPS 2019, Berkeley, CA, USA, July 11-15, 2019. Ed. by J. Benton, Nir Lipovetzky,
Eva Onaindia, David E. Smith, and Siddharth Srivastava. AAAI Press, 2019, pp. 665–
673.

[Cenamor et al., 2016] Isabel Cenamor, Tomás de la Rosa, and Fernando Fernández.
“The IBaCoP Planning System: Instance-Based Configured Portfolios”. In: J. Artif. Intell.
Res. 56 (2016), pp. 657–691.

[Chinchalkar, 1996] Shirish Chinchalkar. “An Upper Bound for the Number of Reach-
able Positions”. In: J. Int. Comput. Games Assoc. 19.3 (1996), pp. 181–183.

[Clarke et al., 1994] Edmund M. Clarke, Orna Grumberg, and David E. Long. “Model
Checking and Abstraction”. In: ACM Trans. Program. Lang. Syst. 16.5 (1994), pp. 1512–
1542.

Bibliography 163

[Clarke et al., 2003] Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and
Helmut Veith. “Counterexample-guided abstraction refinement for symbolicmodel check-
ing”. In: J. ACM 50.5 (2003), pp. 752–794.

[Culberson and Schaeffer, 1996] Joseph C. Culberson and Jonathan Schaeffer. “Search-
ing with Pattern Databases”. In: Advances in Artificial Intelligence, 11th Biennial Confer-
ence of the Canadian Society for Computational Studies of Intelligence, AI ’96, Toronto,
Ontario, Canada, May 21-24, 1996, Proceedings. Ed. by Gordon I. McCalla. Vol. 1081.
Lecture Notes in Computer Science. Springer, 1996, pp. 402–416.

[Culberson and Schaeffer, 1998] Joseph C. Culberson and Jonathan Schaeffer. “Pattern
Databases”. In: Comput. Intell. 14.3 (1998), pp. 318–334.

[Daum et al., 2016] Jeanette Daum, Álvaro Torralba, Jörg Hoffmann, Patrik Haslum,
and IngoWeber. “Practical Undoability Checking via Contingent Planning”. In: Proceed-
ings of the Twenty-Sixth International Conference on Automated Planning and Scheduling,
ICAPS 2016, London, UK, June 12-17, 2016. Ed. by Amanda Jane Coles, Andrew Coles,
Stefan Edelkamp, Daniele Magazzeni, and Scott Sanner. AAAI Press, 2016, pp. 106–
114.

[Dionne et al., 2011] Austin J. Dionne, Jordan Tyler Thayer, andWheeler Ruml. “Deadline-
Aware Search Using On-Line Measures of Behavior”. In: Proceedings of the Fourth An-
nual Symposium on Combinatorial Search, SOCS 2011, Castell de Cardona, Barcelona,
Spain, July 15.16, 2011. Ed. by Daniel Borrajo, Maxim Likhachev, and Carlos Linares
López. AAAI Press, 2011.

[Dobson and Haslum, 2017] Sean Dobson and Patrik Haslum. “Cost-Length Trade-
off Heuristics for Bounded-Cost Search”. In: Proceedings of the ICAPS-17 Workshop on
Heuristics and Search for Domain-independent Planning (HSDIP 2017). 2017.

[Domshlak et al., 2012] Carmel Domshlak, Erez Karpas, and Shaul Markovitch. “Online
Speedup Learning for Optimal Planning”. In: J. Artif. Intell. Res. 44 (2012), pp. 709–
755.

[Domshlak et al., 2015] Carmel Domshlak, Jörg Hoffmann, and Michael Katz. “Red-
black planning: A new systematic approach to partial delete relaxation”. In: Artif. Intell.
221 (2015), pp. 73–114.

[Doran and Michie, 1966] James E. Doran and Donald Michie. “Experiments with the
graph traverser program”. In: Proceedings of the Royal Society of London. Series A. Math-
ematical and Physical Sciences 294.1437 (1966), pp. 235–259.

[Edelkamp, 2001] Stefan Edelkamp. “Planning with Pattern Databases”. In: Proceedings
of the Sixth European Conference on Planning, September 12-14, 2001, Toledo, Spain. Ed.
by Amedeo Cesta and Daniel Borrajo. AAAI Press, 2001, pp. 13–24.

164 Bibliography

[Eifler and Fickert, 2018] Rebecca Eifler and Maximilian Fickert. “Online Refinement
of Cartesian Abstraction Heuristics”. In: Proceedings of the Eleventh International Sym-
posium on Combinatorial Search, SOCS 2018, Stockholm, Sweden - 14-15 July 2018.
Ed. by Vadim Bulitko and Sabine Storandt. AAAI Press, 2018, pp. 46–54.

[Eifler et al., 2019] Rebecca Eifler, Maximilian Fickert, Jörg Hoffmann, and Wheeler
Ruml. “Refining Abstraction Heuristics during Real-Time Planning”. In: The Thirty-
Third AAAI Conference on Artificial Intelligence, AAAI 2019, The Thirty-First Innovative
Applications of Artificial Intelligence Conference, IAAI 2019, The Ninth AAAI Symposium
on Educational Advances in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA,
January 27 - February 1, 2019. AAAI Press, 2019, pp. 7578–7585.

[Felner et al., 2004] Ariel Felner, Richard E. Korf, and Sarit Hanan. “Additive Pattern
Database Heuristics”. In: J. Artif. Intell. Res. 22 (2004), pp. 279–318.

[Ferber et al., 2020] Patrick Ferber, Malte Helmert, and Jörg Hoffmann. “Neural Net-
work Heuristics for Classical Planning: A Study of Hyperparameter Space”. In: ECAI
2020 - 24th European Conference on Artificial Intelligence, 29 August-8 September 2020,
Santiago de Compostela, Spain, August 29 - September 8, 2020 - Including 10th Confer-
ence on Prestigious Applications of Artificial Intelligence (PAIS 2020). Ed. by Giuseppe
De Giacomo, Alejandro Catalá, Bistra Dilkina, Michela Milano, Senén Barro, Alberto
Bugarín, and Jérôme Lang. Vol. 325. Frontiers in Artificial Intelligence and Applica-
tions. IOS Press, 2020, pp. 2346–2353.

[Ferguson et al., 2008] Dave Ferguson, Thomas M. Howard, and Maxim Likhachev.
“Motion planning in urban environments”. In: J. Field Robotics 25.11-12 (2008), pp. 939–
960.

[Fickert, 2016] Maximilian Fickert. “A Study on Online Generation of Explicit Conjunc-
tions for Partial Delete Relaxation Heuristics”. Master’s Thesis. Saarland University,
2016.

[Fickert, 2018] Maximilian Fickert. “Making Hill-Climbing Great Again through Online
Relaxation Refinement and Novelty Pruning”. In: Proceedings of the Eleventh Interna-
tional Symposium on Combinatorial Search, SOCS 2018, Stockholm, Sweden - 14-15 July
2018. Ed. by Vadim Bulitko and Sabine Storandt. AAAI Press, 2018, pp. 158–162.

[Fickert, 2020] Maximilian Fickert. “A Novel Lookahead Strategy for Delete Relaxation
Heuristics in Greedy Best-First Search”. In: Proceedings of the Thirtieth International
Conference on Automated Planning and Scheduling, Nancy, France, October 26-30, 2020.
Ed. by J. Christopher Beck, Olivier Buffet, Jörg Hoffmann, Erez Karpas, and Shirin
Sohrabi. AAAI Press, 2020, pp. 119–123.

[Fickert and Hoffmann, 2017a] Maximilian Fickert and Jörg Hoffmann. “Complete Lo-
cal Search: Boosting Hill-Climbing through Online Relaxation Refinement”. In: Pro-
ceedings of the Twenty-Seventh International Conference on Automated Planning and
Scheduling, ICAPS 2017, Pittsburgh, Pennsylvania, USA, June 18-23, 2017. Ed. by Laura

Bibliography 165

Barbulescu, Jeremy Frank, Mausam, and Stephen F. Smith. AAAI Press, 2017, pp. 107–
115.

[Fickert and Hoffmann, 2017b] Maximilian Fickert and Jörg Hoffmann. “Ranking Con-
junctions for Partial Delete Relaxation Heuristics in Planning”. In: Proceedings of the
Tenth International Symposium on Combinatorial Search, SOCS 2017, 16-17 June 2017,
Pittsburgh, Pennsylvania, USA. Ed. by Alex Fukunaga and Akihiro Kishimoto. AAAI
Press, 2017, pp. 38–46.

[Fickert and Hoffmann, 2022] Maximilian Fickert and Jörg Hoffmann. “Online Relax-
ation Refinement for Satisficing Planning: On Partial Delete Relaxation, Complete Hill-
Climbing, and Novelty Pruning”. In: J. Artif. Intell. Res. 73 (2022), pp. 67–115.

[Fickert et al., 2016] Maximilian Fickert, Jörg Hoffmann, and Marcel Steinmetz. “Com-
bining the Delete Relaxation with Critical-Path Heuristics: A Direct Characterization”.
In: J. Artif. Intell. Res. 56 (2016), pp. 269–327.

[Fickert et al., 2018a] Maximilian Fickert, Daniel Gnad, Patrick Speicher, and Jörg Hoff-
mann. “SaarPlan: Combining Saarland’s Greatest Planning Techniques”. In: IPC 2018
planner abstracts. 2018, pp. 11–16.

[Fickert et al., 2018b] Maximilian Fickert, Daniel Gnad, and Jörg Hoffmann. “Unchain-
ing the Power of Partial Delete Relaxation, Part II: Finding Plans with Red-Black State
Space Search”. In: Proceedings of the Twenty-Seventh International Joint Conference on
Artificial Intelligence, IJCAI 2018, July 13-19, 2018, Stockholm, Sweden. Ed. by Jérôme
Lang. ijcai.org, 2018, pp. 4750–4756.

[Fickert et al., 2020] Maximilian Fickert, Tianyi Gu, Leonhard Staut, Wheeler Ruml,
Jörg Hoffmann, and Marek Petrik. “Beliefs We Can Believe in: Replacing Assumptions
with Data in Real-Time Search”. In: The Thirty-Fourth AAAI Conference on Artificial In-
telligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence
Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial
Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020. AAAI Press, 2020,
pp. 9827–9834.

[Fickert et al., 2021a] Maximilian Fickert, Tianyi Gu, and Wheeler Ruml. “Bounded-
cost Search Using Estimates of Uncertainty”. In: Proceedings of the Thirtieth Interna-
tional Joint Conference on Artificial Intelligence, IJCAI 2021, Virtual Event / Montreal,
Canada, 19-27 August 2021. Ed. by Zhi-Hua Zhou. ijcai.org, 2021, pp. 1675–1681.

[Fickert et al., 2021b] Maximilian Fickert, Ivan Gavran, Ivan Fedotov, Jörg Hoffmann,
Rupak Majumdar, and Wheeler Ruml. “Choosing the Initial State for Online Replan-
ning”. In: Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Thirty-Third
Conference on Innovative Applications of Artificial Intelligence, IAAI 2021, The Eleventh
Symposium on Educational Advances in Artificial Intelligence, EAAI 2021, Virtual Event,
February 2-9, 2021. AAAI Press, 2021, pp. 12311–12319.

166 Bibliography

[Fickert et al., 2022] Maximilian Fickert, Tianyi Gu, and Wheeler Ruml. “New Results
in Bounded-Suboptimal Search”. In: The Thirty-Sixth AAAI Conference on Artificial In-
telligence, AAAI 2022, Vancouver, BC, Canada, February 22 - March 1, 2022. AAAI Press,
2022. Accepted.

[Fink, 2007] Michael Fink. “Online Learning of Search Heuristics”. In: Proceedings of the
Eleventh International Conference on Artificial Intelligence and Statistics, AISTATS 2007,
San Juan, Puerto Rico, March 21-24, 2007. Ed. by Marina Meila and Xiaotong Shen.
Vol. 2. JMLR Proceedings. JMLR.org, 2007, pp. 114–122.

[Fox et al., 2006] Maria Fox, Alfonso Gerevini, Derek Long, and Ivan Serina. “Plan
Stability: Replanning versus Plan Repair”. In: Proceedings of the Sixteenth International
Conference on Automated Planning and Scheduling, ICAPS 2006, Cumbria, UK, June 6-
10, 2006. Ed. by Derek Long, Stephen F. Smith, Daniel Borrajo, and Lee McCluskey.
AAAI, 2006, pp. 212–221.

[Francès et al., 2018] Guillem Francès, Nir Lipovetzky, Hector Geffner, and Miquel
Ramírez. “Best-First Width Search in the IPC 2018: Complete, Simulated, and Poly-
nomial Variants”. In: IPC 2018 planner abstracts. 2018, pp. 23–27.

[Gerevini et al., 2003] Alfonso Gerevini, Alessandro Saetti, and Ivan Serina. “Planning
Through Stochastic Local Search and Temporal Action Graphs in LPG”. In: J. Artif.
Intell. Res. 20 (2003), pp. 239–290.

[Ghallab et al., 2016] Malik Ghallab, Dana S. Nau, and Paolo Traverso. Automated Plan-
ning and Acting. Cambridge University Press, 2016.

[Gilon et al., 2016] Daniel Gilon, Ariel Felner, and Roni Stern. “Dynamic Potential
Search - A New Bounded Suboptimal Search”. In: Proceedings of the Ninth Annual Sym-
posium on Combinatorial Search, SOCS 2016, Tarrytown, NY, USA, July 6-8, 2016. Ed.
by Jorge A. Baier and Adi Botea. AAAI Press, 2016, pp. 36–44.

[Gilon et al., 2017] Daniel Gilon, Ariel Felner, and Roni Stern. “Dynamic Potential
Search on Weighted Graphs”. In: Proceedings of the Tenth International Symposium on
Combinatorial Search, SOCS 2017, 16-17 June 2017, Pittsburgh, Pennsylvania, USA. Ed.
by Alex Fukunaga and Akihiro Kishimoto. AAAI Press, 2017, pp. 119–123.

[Gnad and Hoffmann, 2015] Daniel Gnad and Jörg Hoffmann. “Red-Black Planning: A
New Tractability Analysis and Heuristic Function”. In: Proceedings of the Eighth Annual
Symposium on Combinatorial Search, SOCS 2015, 11-13 June 2015, Ein Gedi, the Dead
Sea, Israel. Ed. by Levi Lelis and Roni Stern. AAAI Press, 2015, pp. 44–52.

[Gnad and Hoffmann, 2018] Daniel Gnad and Jörg Hoffmann. “Star-topology decou-
pled state space search”. In: Artif. Intell. 257 (2018), pp. 24–60.

[Gnad et al., 2016] Daniel Gnad, Marcel Steinmetz, Mathäus Jany, Jörg Hoffmann, Ivan
Serina, and Alfonso Gerevini. “Partial Delete Relaxation, Unchained: On Intractable

Bibliography 167

Red-Black Planning and Its Applications”. In: Proceedings of the Ninth Annual Sympo-
sium on Combinatorial Search, SOCS 2016, Tarrytown, NY, USA, July 6-8, 2016. Ed. by
Jorge A. Baier and Adi Botea. AAAI Press, 2016, pp. 45–53.

[Gross et al., 2020] Joschka Gross, Álvaro Torralba, and Maximilian Fickert. “Novel Is
Not Always Better: On the Relation between Novelty and Dominance Pruning”. In: The
Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second
Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI
Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY,
USA, February 7-12, 2020. AAAI Press, 2020, pp. 9875–9882.

[Hald, 1952] Anders Hald. Statistical Theory with Engineering Applications. Probability
and Statistics Series. Wiley, 1952.

[Hart et al., 1968] Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. “A Formal Ba-
sis for the Heuristic Determination of Minimum Cost Paths”. In: IEEE Trans. Syst. Sci.
Cybern. 4.2 (1968), pp. 100–107.

[Haslum, 2006] Patrik Haslum. “Improving Heuristics Through Relaxed Search - An
Analysis of TP4 and HSP*a in the 2004 Planning Competition”. In: J. Artif. Intell. Res.
25 (2006), pp. 233–267.

[Haslum, 2012] Patrik Haslum. “Incremental Lower Bounds for Additive Cost Planning
Problems”. In: Proceedings of the Twenty-Second International Conference on Automated
Planning and Scheduling, ICAPS 2012, Atibaia, São Paulo, Brazil, June 25-19, 2012. Ed.
by Lee McCluskey, Brian Charles Williams, José Reinaldo Silva, and Blai Bonet. AAAI,
2012.

[Haslum, 2013] Patrik Haslum. “Heuristics for Bounded-Cost Search”. In: Proceedings
of the Twenty-Third International Conference on Automated Planning and Scheduling,
ICAPS 2013, Rome, Italy, June 10-14, 2013. Ed. by Daniel Borrajo, Subbarao Kamb-
hampati, Angelo Oddi, and Simone Fratini. AAAI, 2013.

[Haslum and Geffner, 2000] Patrik Haslum and Hector Geffner. “Admissible Heuristics
for Optimal Planning”. In: Proceedings of the Fifth International Conference on Artificial
Intelligence Planning Systems, Breckenridge, CO, USA, April 14-17, 2000. Ed. by Steve A.
Chien, Subbarao Kambhampati, and Craig A. Knoblock. AAAI, 2000, pp. 140–149.

[Haslum et al., 2019] Patrik Haslum, Nir Lipovetzky, Daniele Magazzeni, and Christian
Muise. An Introduction to the Planning Domain Definition Language. Synthesis Lectures
on Artificial Intelligence and Machine Learning. Morgan & Claypool Publishers, 2019.

[Heckerman et al., 1995] David Heckerman, John S. Breese, and Koos Rommelse. “Decision-
Theoretic Troubleshooting”. In: Commun. ACM 38.3 (1995), pp. 49–57.

[Helmert, 2006] Malte Helmert. “The Fast Downward Planning System”. In: J. Artif.
Intell. Res. 26 (2006), pp. 191–246.

[Helmert, 2009] Malte Helmert. “Concise finite-domain representations for PDDL plan-
ning tasks”. In: Artif. Intell. 173.5-6 (2009), pp. 503–535.

168 Bibliography

[Helmert and Domshlak, 2009] Malte Helmert and Carmel Domshlak. “Landmarks,
Critical Paths and Abstractions: What’s the Difference Anyway?” In: Proceedings of
the 19th International Conference on Automated Planning and Scheduling, ICAPS 2009,
Thessaloniki, Greece, September 19-23, 2009. Ed. by Alfonso Gerevini, Adele E. Howe,
Amedeo Cesta, and Ioannis Refanidis. AAAI, 2009.

[Helmert and Röger, 2008] Malte Helmert and Gabriele Röger. “How Good is Almost
Perfect?” In: Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence,
AAAI 2008, Chicago, Illinois, USA, July 13-17, 2008. Ed. by Dieter Fox and Carla P.
Gomes. AAAI Press, 2008, pp. 944–949.

[Helmert et al., 2007] Malte Helmert, Patrik Haslum, and Jörg Hoffmann. “Flexible
Abstraction Heuristics for Optimal Sequential Planning”. In: Proceedings of the Seven-
teenth International Conference on Automated Planning and Scheduling, ICAPS 2007,
Providence, Rhode Island, USA, September 22-26, 2007. Ed. by Mark S. Boddy, Maria
Fox, and Sylvie Thiébaux. AAAI, 2007, pp. 176–183.

[Helmert et al., 2011] Malte Helmert, Gabriele Röger, and Erez Karpas. “Fast Down-
ward Stone Soup: A baseline for building planner portfolios”. In: Proceedings of the
ICAPS-11 Workshop on Planning and Learning (PAL 2011). 2011.

[Helmert et al., 2014] Malte Helmert, Patrik Haslum, Jörg Hoffmann, and Raz Nissim.
“Merge-and-Shrink Abstraction: A Method for Generating Lower Bounds in Factored
State Spaces”. In: J. ACM 61.3 (2014), 16:1–16:63.

[Hoffmann, 2005] Jörg Hoffmann. “Where ’Ignoring Delete Lists’ Works: Local Search
Topology in Planning Benchmarks”. In: J. Artif. Intell. Res. 24 (2005), pp. 685–758.

[Hoffmann, 2015] Jörg Hoffmann. “Simulated Penetration Testing: From "Dijkstra" to
"Turing Test++"”. In: Proceedings of the Twenty-Fifth International Conference on Au-
tomated Planning and Scheduling, ICAPS 2015, Jerusalem, Israel, June 7-11, 2015. Ed.
by Ronen I. Brafman, Carmel Domshlak, Patrik Haslum, and Shlomo Zilberstein. AAAI
Press, 2015, pp. 364–372.

[Hoffmann and Fickert, 2015] Jörg Hoffmann and Maximilian Fickert. “Explicit Con-
junctions without Compilation: Computing hFF(ΠC) in Polynomial Time”. In: Proceed-
ings of the Twenty-Fifth International Conference on Automated Planning and Schedul-
ing, ICAPS 2015, Jerusalem, Israel, June 7-11, 2015. Ed. by Ronen I. Brafman, Carmel
Domshlak, Patrik Haslum, and Shlomo Zilberstein. AAAI Press, 2015, pp. 115–119.

[Hoffmann and Nebel, 2001] Jörg Hoffmann and Bernhard Nebel. “The FF Planning
System: Fast Plan Generation Through Heuristic Search”. In: J. Artif. Intell. Res. 14
(2001), pp. 253–302.

Bibliography 169

[Kalagnanam and Henrion, 1988] Jayant Kalagnanam and Max Henrion. “A Compari-
son of Decision Analysis and Expert Rules for Sequential Diagnosis”. In: UAI ’88: Pro-
ceedings of the Fourth Annual Conference on Uncertainty in Artificial Intelligence, Min-
neapolis, MN, USA, July 10-12, 1988. Ed. by Ross D. Shachter, Tod S. Levitt, Laveen N.
Kanal, and John F. Lemmer. North-Holland, 1988, pp. 271–282.

[Karpas et al., 2011] Erez Karpas, Michael Katz, and Shaul Markovitch. “When Opti-
mal Is Just Not Good Enough: Learning Fast Informative Action Cost Partitionings”. In:
Proceedings of the 21st International Conference on Automated Planning and Schedul-
ing, ICAPS 2011, Freiburg, Germany June 11-16, 2011. Ed. by Fahiem Bacchus, Carmel
Domshlak, Stefan Edelkamp, and Malte Helmert. AAAI, 2011.

[Katz and Domshlak, 2010] Michael Katz and Carmel Domshlak. “Optimal admissible
composition of abstraction heuristics”. In: Artif. Intell. 174.12-13 (2010), pp. 767–798.

[Katz and Hoffmann, 2013] Michael Katz and Jörg Hoffmann. “Red-Black Relaxed Plan
Heuristics Reloaded”. In: Proceedings of the Sixth Annual Symposium on Combinatorial
Search, SOCS 2013, Leavenworth, Washington, USA, July 11-13, 2013. Ed. by Malte
Helmert and Gabriele Röger. AAAI Press, 2013.

[Katz and Hoffmann, 2014] Michael Katz and Jörg Hoffmann. “Mercury Planner: Push-
ing the Limits of Partial Delete Relaxation”. In: IPC 2014 planner abstracts. 2014,
pp. 43–47.

[Katz et al., 2013a] Michael Katz, Jörg Hoffmann, and Carmel Domshlak. “Red-Black
Relaxed Plan Heuristics”. In: Proceedings of the Twenty-Seventh AAAI Conference on Arti-
ficial Intelligence, July 14-18, 2013, Bellevue, Washington, USA. Ed. by Marie desJardins
and Michael L. Littman. AAAI Press, 2013.

[Katz et al., 2013b] Michael Katz, Jörg Hoffmann, and Carmel Domshlak. “Who Said
We Need to Relax All Variables?” In: Proceedings of the Twenty-Third International
Conference on Automated Planning and Scheduling, ICAPS 2013, Rome, Italy, June 10-
14, 2013. Ed. by Daniel Borrajo, Subbarao Kambhampati, Angelo Oddi, and Simone
Fratini. AAAI, 2013.

[Katz et al., 2017] Michael Katz, Nir Lipovetzky, Dany Moshkovich, and Alexander Tu-
isov. “Adapting Novelty to Classical Planning as Heuristic Search”. In: Proceedings of
the Twenty-Seventh International Conference on Automated Planning and Scheduling,
ICAPS 2017, Pittsburgh, Pennsylvania, USA, June 18-23, 2017. Ed. by Laura Barbulescu,
Jeremy Frank, Mausam, and Stephen F. Smith. AAAI Press, 2017, pp. 172–180.

[Katz et al., 2018] Michael Katz, Nir Lipovetzky, Dany Moshkovich, and Alexander Tu-
isov. “MERWIN Planner: Mercury Enchanced With Novelty Heuristic”. In: IPC 2018
planner abstracts. 2018, pp. 53–56.

[Keyder et al., 2012] Emil Ragip Keyder, Jörg Hoffmann, and Patrik Haslum. “Semi-
Relaxed Plan Heuristics”. In: Proceedings of the Twenty-Second International Conference
on Automated Planning and Scheduling, ICAPS 2012, Atibaia, São Paulo, Brazil, June

170 Bibliography

25-19, 2012. Ed. by Lee McCluskey, Brian Charles Williams, José Reinaldo Silva, and
Blai Bonet. AAAI, 2012.

[Keyder et al., 2014] Emil Ragip Keyder, Jörg Hoffmann, and Patrik Haslum. “Improv-
ing Delete Relaxation Heuristics Through Explicitly Represented Conjunctions”. In: J.
Artif. Intell. Res. 50 (2014), pp. 487–533.

[Kiesel et al., 2015] Scott Kiesel, Ethan Burns, and Wheeler Ruml. “Achieving Goals
Quickly Using Real-time Search: Experimental Results in Video Games”. In: J. Artif.
Intell. Res. 54 (2015), pp. 123–158.

[Knight et al., 2001] Russell Knight, Gregg Rabideau, Steve A. Chien, Barbara Engel-
hardt, and Rob Sherwood. “Casper: Space Exploration through Continuous Planning”.
In: IEEE Intell. Syst. 16.5 (2001), pp. 70–75.

[Knoblock, 1994] Craig A. Knoblock. “Automatically Generating Abstractions for Plan-
ning”. In: Artif. Intell. 68.2 (1994), pp. 243–302.

[Koehler and Ottiger, 2002] Jana Koehler and Daniel Ottiger. “An AI-Based Approach
to Destination Control in Elevators”. In: AI Mag. 23.3 (2002), pp. 59–78.

[Koenig and Sun, 2009] Sven Koenig and Xiaoxun Sun. “Comparing real-time and in-
cremental heuristic search for real-time situated agents”. In: Auton. Agents Multi Agent
Syst. 18.3 (2009), pp. 313–341.

[Korf, 1990] Richard E. Korf. “Real-TimeHeuristic Search”. In: Artif. Intell. 42.2-3 (1990),
pp. 189–211.

[Korf, 1997] Richard E. Korf. “Finding Optimal Solutions to Rubik’s Cube Using Pat-
tern Databases”. In: Proceedings of the Fourteenth National Conference on Artificial In-
telligence and Ninth Innovative Applications of Artificial Intelligence Conference, AAAI 97,
IAAI 97, July 27-31, 1997, Providence, Rhode Island, USA. Ed. by Benjamin Kuipers and
Bonnie L. Webber. AAAI Press / The MIT Press, 1997, pp. 700–705.

[Korf and Taylor, 1996] Richard E. Korf and Larry A. Taylor. “Finding Optimal Solutions
to the Twenty-Four Puzzle”. In: Proceedings of the Thirteenth National Conference on Ar-
tificial Intelligence and Eighth Innovative Applications of Artificial Intelligence Conference,
AAAI 96, IAAI 96, Portland, Oregon, USA, August 4-8, 1996, Volume 2. Ed. by William J.
Clancey and Daniel S. Weld. AAAI Press / The MIT Press, 1996, pp. 1202–1207.

[Lawrence and Bulitko, 2013] Ramon Lawrence and Vadim Bulitko. “Database-Driven
Real-Time Heuristic Search in Video-Game Pathfinding”. In: IEEE Trans. Comput. Intell.
AI Games 5.3 (2013), pp. 227–241.

[Lemons et al., 2010] Seth Lemons, J. Benton, Wheeler Ruml, Minh Binh Do, and Sung
Wook Yoon. “Continual On-line Planning as Decision-Theoretic Incremental Heuristic
Search”. In: Embedded Reasoning, Papers from the 2010 AAAI Spring Symposium, Tech-
nical Report SS-10-04, Stanford, California, USA, March 22-24, 2010. AAAI, 2010.

[Likhachev et al., 2003] Maxim Likhachev, Geoffrey J. Gordon, and Sebastian Thrun.
“ARA*: Anytime A* with Provable Bounds on Sub-Optimality”. In: Advances in Neural

Bibliography 171

Information Processing Systems 16 [Neural Information Processing Systems, NIPS 2003,
December 8-13, 2003, Vancouver and Whistler, British Columbia, Canada]. Ed. by Se-
bastian Thrun, Lawrence K. Saul, and Bernhard Schölkopf. MIT Press, 2003, pp. 767–
774.

[Likhachev et al., 2005] Maxim Likhachev, David I. Ferguson, Geoffrey J. Gordon, An-
thony Stentz, and Sebastian Thrun. “Anytime Dynamic A*: An Anytime, Replanning
Algorithm”. In: Proceedings of the Fifteenth International Conference on Automated Plan-
ning and Scheduling (ICAPS 2005), June 5-10 2005, Monterey, California, USA. Ed. by
Susanne Biundo, Karen L. Myers, and Kanna Rajan. AAAI, 2005, pp. 262–271.

[Lipovetzky and Geffner, 2012] Nir Lipovetzky and Hector Geffner. “Width and Seri-
alization of Classical Planning Problems”. In: ECAI 2012 - 20th European Conference
on Artificial Intelligence. Including Prestigious Applications of Artificial Intelligence (PAIS-
2012) System Demonstrations Track, Montpellier, France, August 27-31, 2012. Ed. by Luc
De Raedt, Christian Bessiere, Didier Dubois, Patrick Doherty, Paolo Frasconi, Fredrik
Heintz, and Peter J. F. Lucas. Vol. 242. Frontiers in Artificial Intelligence and Applica-
tions. IOS Press, 2012, pp. 540–545.

[Lipovetzky and Geffner, 2014] Nir Lipovetzky and Hector Geffner. “Width-based Algo-
rithms for Classical Planning: New Results”. In: ECAI 2014 - 21st European Conference
on Artificial Intelligence, 18-22 August 2014, Prague, Czech Republic - Including Presti-
gious Applications of Intelligent Systems (PAIS 2014). Ed. by Torsten Schaub, Gerhard
Friedrich, and Barry O’Sullivan. Vol. 263. Frontiers in Artificial Intelligence and Appli-
cations. IOS Press, 2014, pp. 1059–1060.

[Lipovetzky and Geffner, 2017] Nir Lipovetzky and Hector Geffner. “Best-First Width
Search: Exploration and Exploitation in Classical Planning”. In: Proceedings of the Thirty-
First AAAI Conference on Artificial Intelligence, February 4-9, 2017, San Francisco, Cali-
fornia, USA. Ed. by Satinder P. Singh and ShaulMarkovitch. AAAI Press, 2017, pp. 3590–
3596.

[Ma et al., 2017] Hang Ma, Jiaoyang Li, T. K. Satish Kumar, and Sven Koenig. “Lifelong
Multi-Agent Path Finding for Online Pickup and Delivery Tasks”. In: Proceedings of
the 16th Conference on Autonomous Agents and MultiAgent Systems, AAMAS 2017, São
Paulo, Brazil, May 8-12, 2017. Ed. by Kate Larson, Michael Winikoff, Sanmay Das, and
Edmund H. Durfee. ACM, 2017, pp. 837–845.

[Ma et al., 2019] Hang Ma, Wolfgang Hönig, T. K. Satish Kumar, Nora Ayanian, and
Sven Koenig. “Lifelong Path Planningwith Kinematic Constraints forMulti-Agent Pickup
and Delivery”. In: The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI 2019,
The Thirty-First Innovative Applications of Artificial Intelligence Conference, IAAI 2019,
The Ninth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019,
Honolulu, Hawaii, USA, January 27 - February 1, 2019. AAAI Press, 2019, pp. 7651–
7658.

172 Bibliography

[McGann et al., 2007] ConorMcGann, Frederic Py, Kanna Rajan, Hans Thomas, Rrichard
Henthorn, and Rob McEwen. “T-REX: A Model-Based Architecture for AUV Control”.
In: Proceedings of the ICAPS-07 Workshop on Planning and Plan Execution for Real-World
Systems. 2007.

[Mitchell et al., 2019] AndrewMitchell, Wheeler Ruml, Fabian Spaniol, Jörg Hoffmann,
andMarek Petrik. “Real-Time Planning as Decision-Making under Uncertainty”. In: The
Thirty-Third AAAI Conference on Artificial Intelligence, AAAI 2019, The Thirty-First Inno-
vative Applications of Artificial Intelligence Conference, IAAI 2019, The Ninth AAAI Sym-
posium on Educational Advances in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii,
USA, January 27 - February 1, 2019. AAAI Press, 2019, pp. 2338–2345.

[Muise, 2016] Christian Muise. “Planning.Domains”. In: The 26th International Confer-
ence on Automated Planning and Scheduling - Demonstrations. 2016.

[Muscettola et al., 2002] Nicola Muscettola, Gregory A. Dorais, Chuck Fry, Richard
Levinson, and Christian Plaunt. “IDEA: Planning at the Core of Autonomous Reactive
Agents”. In: Proceedings of the AIPS-02 Workshop on On-line Planning and Scheduling.
2002, pp. 49–55.

[Mutchler, 1986] DavidMutchler. “Optimal Allocation of Very Limited Search Resources”.
In: Proceedings of the 5th National Conference on Artificial Intelligence. Philadelphia, PA,
USA, August 11-15, 1986. Volume 1: Science. Ed. by Tom Kehler. Morgan Kaufmann,
1986, pp. 467–471.

[Nakhost and Müller, 2009] Hootan Nakhost and Martin Müller. “Monte-Carlo Explo-
ration for Deterministic Planning”. In: IJCAI 2009, Proceedings of the 21st International
Joint Conference on Artificial Intelligence, Pasadena, California, USA, July 11-17, 2009.
Ed. by Craig Boutilier. 2009, pp. 1766–1771.

[O’Ceallaigh and Ruml, 2015] Dylan O’Ceallaigh and Wheeler Ruml. “Metareasoning
in Real-Time Heuristic Search”. In: Proceedings of the Eighth Annual Symposium on
Combinatorial Search, SOCS 2015, 11-13 June 2015, Ein Gedi, the Dead Sea, Israel. Ed.
by Levi Lelis and Roni Stern. AAAI Press, 2015, pp. 87–95.

[Pearl and Kim, 1982] Judea Pearl and Jin H. Kim. “Studies in Semi-Admissible Heuris-
tics”. In: IEEE Trans. Pattern Anal. Mach. Intell. 4.4 (1982), pp. 392–399.

[Pemberton, 1995] Joseph C. Pemberton. “k-Best: A New Method for Real-Time Deci-
sion Making”. In: Proceedings of the Fourteenth International Joint Conference on Arti-
ficial Intelligence, IJCAI 95, Montréal Québec, Canada, August 20-25 1995, 2 Volumes.
Morgan Kaufmann, 1995, pp. 227–235.

[Pemberton and Korf, 1994] Joseph C. Pemberton and Richard E. Korf. “Incremental
Search Algorithms for Real-time Decision Making”. In: Proceedings of the Second In-
ternational Conference on Artificial Intelligence Planning Systems, University of Chicago,
Chicago, Illinois, USA, June 13-15, 1994. Ed. by Kristian J. Hammond. AAAI, 1994,
pp. 140–145.

Bibliography 173

[Pohl, 1970] Ira Pohl. “Heuristic Search Viewed as Path Finding in a Graph”. In: Artif.
Intell. 1.3 (1970), pp. 193–204.

[Richter and Helmert, 2009] Silvia Richter and Malte Helmert. “Preferred Operators
and Deferred Evaluation in Satisficing Planning”. In: Proceedings of the 19th Inter-
national Conference on Automated Planning and Scheduling, ICAPS 2009, Thessaloniki,
Greece, September 19-23, 2009. Ed. by Alfonso Gerevini, Adele E. Howe, Amedeo Cesta,
and Ioannis Refanidis. AAAI, 2009.

[Richter and Westphal, 2010] Silvia Richter and Matthias Westphal. “The LAMA Plan-
ner: Guiding Cost-Based Anytime Planning with Landmarks”. In: J. Artif. Intell. Res. 39
(2010), pp. 127–177.

[Richter et al., 2008] Silvia Richter, Malte Helmert, and Matthias Westphal. “Land-
marks Revisited”. In: Proceedings of the Twenty-Third AAAI Conference on Artificial In-
telligence, AAAI 2008, Chicago, Illinois, USA, July 13-17, 2008. Ed. by Dieter Fox and
Carla P. Gomes. AAAI Press, 2008, pp. 975–982.

[Rovner et al., 2019] Alexander Rovner, Silvan Sievers, andMalte Helmert. “Counterexample-
Guided Abstraction Refinement for Pattern Selection in Optimal Classical Planning”.
In: Proceedings of the Twenty-Ninth International Conference on Automated Planning
and Scheduling, ICAPS 2018, Berkeley, CA, USA, July 11-15, 2019. Ed. by J. Benton, Nir
Lipovetzky, Eva Onaindia, David E. Smith, and Siddharth Srivastava. AAAI Press, 2019,
pp. 362–367.

[Ruml et al., 2011] Wheeler Ruml,Minh Binh Do, Rong Zhou, andMarkus P. J. Fromherz.
“On-line Planning and Scheduling: An Application to ControllingModular Printers”. In:
J. Artif. Intell. Res. 40 (2011), pp. 415–468.

[Seipp, 2021] Jendrik Seipp. “Online Saturated Cost Partitioning for Classical Plan-
ning”. In: Proceedings of the Thirty-First International Conference on Automated Plan-
ning and Scheduling, ICAPS 2021, Guangzhou, China (virtual), August 2-13, 2021. Ed.
by Susanne Biundo, Minh Do, Robert Goldman, Michael Katz, Qiang Yang, and Hankz
Hankui Zhuo. AAAI Press, 2021, pp. 317–321.

[Seipp andHelmert, 2013] Jendrik Seipp andMalte Helmert. “Counterexample-Guided
Cartesian Abstraction Refinement”. In: Proceedings of the Twenty-Third International
Conference on Automated Planning and Scheduling, ICAPS 2013, Rome, Italy, June 10-
14, 2013. Ed. by Daniel Borrajo, Subbarao Kambhampati, Angelo Oddi, and Simone
Fratini. AAAI, 2013.

[Seipp and Helmert, 2014] Jendrik Seipp and Malte Helmert. “Diverse and Additive
Cartesian Abstraction Heuristics”. In: Proceedings of the Twenty-Fourth International
Conference on Automated Planning and Scheduling, ICAPS 2014, Portsmouth, NewHamp-
shire, USA, June 21-26, 2014. Ed. by Steve A. Chien, Minh Binh Do, Alan Fern, and
Wheeler Ruml. AAAI, 2014.

174 Bibliography

[Seipp andHelmert, 2018] Jendrik Seipp andMalte Helmert. “Counterexample-Guided
Cartesian Abstraction Refinement for Classical Planning”. In: J. Artif. Intell. Res. 62
(2018), pp. 535–577.

[Seipp and Röger, 2018] Jendrik Seipp and Gabriele Röger. “Fast Downward Stone
Soup 2018”. In: IPC 2018 planner abstracts. 2018, pp. 80–82.

[Seipp et al., 2017] Jendrik Seipp, Florian Pommerening, Silvan Sievers, and Malte
Helmert. Downward Lab. https://doi.org/10.5281/zenodo.790461. 2017.

[Seipp et al., 2020] Jendrik Seipp, Thomas Keller, and Malte Helmert. “Saturated Cost
Partitioning for Optimal Classical Planning”. In: J. Artif. Intell. Res. 67 (2020), pp. 129–
167.

[Shperberg et al., 2019] Shahaf S. Shperberg, AndrewColes, Bence Cserna, Erez Karpas,
Wheeler Ruml, and Solomon Eyal Shimony. “Allocating Planning Effort When Actions
Expire”. In: The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI 2019, The
Thirty-First Innovative Applications of Artificial Intelligence Conference, IAAI 2019, The
Ninth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019,
Honolulu, Hawaii, USA, January 27 - February 1, 2019. AAAI Press, 2019, pp. 2371–
2378.

[Sievers et al., 2019] Silvan Sievers, Michael Katz, Shirin Sohrabi, Horst Samulowitz,
and Patrick Ferber. “Deep Learning for Cost-Optimal Planning: Task-Dependent Planner
Selection”. In: The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI 2019,
The Thirty-First Innovative Applications of Artificial Intelligence Conference, IAAI 2019,
The Ninth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019,
Honolulu, Hawaii, USA, January 27 - February 1, 2019. AAAI Press, 2019, pp. 7715–
7723.

[Silver et al., 2016] David Silver et al. “Mastering the game of Go with deep neural
networks and tree search”. In: Nat. 529.7587 (2016), pp. 484–489.

[Silver et al., 2017] David Silver et al. “Mastering Chess and Shogi by Self-Play with a
General Reinforcement Learning Algorithm”. In: CoRR abs/1712.01815 (2017).

[Speicher et al., 2017] Patrick Speicher, Marcel Steinmetz, Daniel Gnad, Jörg Hoff-
mann, and Alfonso Gerevini. “Beyond Red-Black Planning: Limited-Memory State Vari-
ables”. In: Proceedings of the Twenty-Seventh International Conference on Automated
Planning and Scheduling, ICAPS 2017, Pittsburgh, Pennsylvania, USA, June 18-23, 2017.
Ed. by Laura Barbulescu, Jeremy Frank, Mausam, and Stephen F. Smith. AAAI Press,
2017, pp. 269–273.

[Steinmetz and Hoffmann, 2017a] Marcel Steinmetz and Jörg Hoffmann. “Critical-Path
Dead-End Detection versus NoGoods: Offline Equivalence and Online Learning”. In:
Proceedings of the Twenty-Seventh International Conference on Automated Planning and
Scheduling, ICAPS 2017, Pittsburgh, Pennsylvania, USA, June 18-23, 2017. Ed. by Laura

https://doi.org/10.5281/zenodo.790461

Bibliography 175

Barbulescu, Jeremy Frank, Mausam, and Stephen F. Smith. AAAI Press, 2017, pp. 283–
287.

[Steinmetz and Hoffmann, 2017b] Marcel Steinmetz and Jörg Hoffmann. “State space
search nogood learning: Online refinement of critical-path dead-end detectors in plan-
ning”. In: Artif. Intell. 245 (2017), pp. 1–37.

[Steinmetz and Hoffmann, 2018] Marcel Steinmetz and Jörg Hoffmann. “LP Heuristics
over Conjunctions: Compilation, Convergence, Nogood Learning”. In: Proceedings of
the Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI 2018,
July 13-19, 2018, Stockholm, Sweden. Ed. by Jérôme Lang. ijcai.org, 2018, pp. 4837–
4843.

[Stentz and Hebert, 1995] Anthony Stentz and Martial Hebert. “A complete navigation
system for goal acquisition in unknown environments”. In: Auton. Robots 2.2 (1995),
pp. 127–145.

[Stern et al., 2014] Roni Stern, Ariel Felner, Jur van den Berg, Rami Puzis, Rajat Shah,
and Ken Goldberg. “Potential-based bounded-cost search and Anytime Non-Parametric
A*”. In: Artif. Intell. 214 (2014), pp. 1–25.

[Stern et al., 2011] Roni Tzvi Stern, Rami Puzis, and Ariel Felner. “Potential Search: A
Bounded-Cost Search Algorithm”. In: Proceedings of the 21st International Conference on
Automated Planning and Scheduling, ICAPS 2011, Freiburg, Germany June 11-16, 2011.
Ed. by Fahiem Bacchus, Carmel Domshlak, Stefan Edelkamp, andMalte Helmert. AAAI,
2011.

[Thayer and Ruml, 2009] Jordan Tyler Thayer and Wheeler Ruml. “Using Distance Es-
timates in Heuristic Search”. In: Proceedings of the 19th International Conference on Au-
tomated Planning and Scheduling, ICAPS 2009, Thessaloniki, Greece, September 19-23,
2009. Ed. by Alfonso Gerevini, Adele E. Howe, Amedeo Cesta, and Ioannis Refanidis.
AAAI, 2009.

[Thayer et al., 2011] Jordan Tyler Thayer, Austin J. Dionne, andWheeler Ruml. “Learn-
ing Inadmissible Heuristics During Search”. In: Proceedings of the 21st International
Conference on Automated Planning and Scheduling, ICAPS 2011, Freiburg, Germany June
11-16, 2011. Ed. by Fahiem Bacchus, Carmel Domshlak, Stefan Edelkamp, and Malte
Helmert. AAAI, 2011.

[Thayer et al., 2012] Jordan Tyler Thayer, Roni Stern, Ariel Felner, and Wheeler Ruml.
“Faster Bounded-Cost Search Using Inadmissible Estimates”. In: Proceedings of the Twenty-
Second International Conference on Automated Planning and Scheduling, ICAPS 2012,
Atibaia, São Paulo, Brazil, June 25-19, 2012. Ed. by Lee McCluskey, Brian Charles
Williams, José Reinaldo Silva, and Blai Bonet. AAAI, 2012.

[Torralba et al., 2021] Álvaro Torralba, Jendrik Seipp, and Silvan Sievers. “Automatic
Instance Generation for Classical Planning”. In: Proceedings of the Thirty-First Inter-
national Conference on Automated Planning and Scheduling, ICAPS 2021, Guangzhou,

176 Bibliography

China (virtual), August 2-13, 2021. Ed. by Susanne Biundo, Minh Do, Robert Goldman,
Michael Katz, Qiang Yang, and Hankz Hankui Zhuo. AAAI Press, 2021, pp. 376–384.

[Vidal, 2004] Vincent Vidal. “A Lookahead Strategy for Heuristic Search Planning”.
In: Proceedings of the Fourteenth International Conference on Automated Planning and
Scheduling (ICAPS 2004), June 3-7 2004, Whistler, British Columbia, Canada. Ed. by
Shlomo Zilberstein, Jana Koehler, and Sven Koenig. AAAI, 2004, pp. 150–160.

[Vidal, 2011] Vincent Vidal. “YAHSP2: Keep It Simple, Stupid”. In: IPC 2011 planner
abstracts. 2011, pp. 83–90.

[Wilt and Ruml, 2013] Christopher Makoto Wilt and Wheeler Ruml. “Robust Bidirec-
tional Search via Heuristic Improvement”. In: Proceedings of the Twenty-Seventh AAAI
Conference on Artificial Intelligence, July 14-18, 2013, Bellevue, Washington, USA. Ed. by
Marie desJardins and Michael L. Littman. AAAI Press, 2013.

[Wilt and Ruml, 2014] Christopher Makoto Wilt and Wheeler Ruml. “Speedy Versus
Greedy Search”. In: Proceedings of the Seventh Annual Symposium on Combinatorial
Search, SOCS 2014, Prague, Czech Republic, 15-17 August 2014. Ed. by Stefan Edelkamp
and Roman Barták. AAAI Press, 2014.

[Wilt and Ruml, 2016] Christopher Makoto Wilt and Wheeler Ruml. “Effective Heuris-
tics for Suboptimal Best-First Search”. In: J. Artif. Intell. Res. 57 (2016), pp. 273–306.

[Xie et al., 2014] Fan Xie, Martin Müller, and Robert Holte. “Adding Local Exploration
to Greedy Best-First Search in Satisficing Planning”. In: Proceedings of the Twenty-
Eighth AAAI Conference on Artificial Intelligence, July 27 -31, 2014, Québec City, Québec,
Canada. Ed. by Carla E. Brodley and Peter Stone. AAAI Press, 2014, pp. 2388–2394.

	Abstract
	Zusammenfassung
	Acknowledgements
	Contents
	1 Introduction
	1.1 Contributions
	1.2 Experiments Setup
	1.3 Publications

	2 Background
	2.1 Transition Systems
	2.2 Heuristic Search
	2.3 Classical AI Planning
	2.3.1 Induced Transition System
	2.3.2 Planning Heuristics

	I Adaptive Partial Delete Relaxation
	3 Partial Delete Relaxation
	3.1 Delete Relaxation
	3.2 Partial Delete Relaxation through Explicit Conjunctions
	3.2.1 hCFF in Practice
	3.2.2 The Refinement Operation of hCFF

	3.3 Red-Black Planning
	3.3.1 Tractable Fragment (ACI)
	3.3.2 Red-Black State-Space Search (RBS)

	4 Online Relaxation Refinement for Satisficing Planning
	4.1 Background: Techniques We Build On
	4.1.1 Novelty Pruning
	4.1.2 Subgoal Counting

	4.2 Experiments Setup
	4.3 Converging Heuristic Functions
	4.4 Online-Refinement Hill-Climbing
	4.4.1 Episode-EHC
	4.4.2 Refinement-HC
	4.4.3 Completeness
	4.4.4 Experiments

	4.5 Refinement-HC with Novelty Pruning
	4.5.1 Replacing the Depth Bound with Novelty Pruning
	4.5.2 Novelty Pruning over Conjunctions
	4.5.3 Experiments

	4.6 Refinement-HC with Relaxed Subgoal Counting
	4.6.1 Method
	4.6.2 Experiments

	4.7 Greedy Best-First Search
	4.7.1 Online Refinement in GBFS
	4.7.2 GBFS with Subgoal-Counting Lookahead and Online Refinement
	4.7.3 Experiments

	4.8 Experiments
	4.8.1 Comparison to Baselines without Online Refinement
	4.8.2 Online vs. Offline Conjunctions Quality
	4.8.3 Comparison to the State of the Art

	4.9 Related Work
	4.10 Conclusion

	5 Ranking Conjunctions for Partial Delete Relaxation Heuristics
	5.1 Candidate Ranking Strategies
	5.1.1 Ranking Strategies
	5.1.2 Motivation
	5.1.3 Practical Remarks

	5.2 Online Ranking Strategies
	5.2.1 Strategies
	5.2.2 Motivation

	5.3 Conflict Extraction Algorithm
	5.4 Experiments
	5.4.1 Conflict Extraction Algorithm
	5.4.2 Candidate Ranking Strategies
	5.4.3 Online Ranking Strategies

	5.5 Conclusion

	6 Finding Plans with Red-Black State-Space Search
	6.1 Combining RBS with ACI
	6.1.1 The RBS+ACI Framework
	6.1.2 Overall Planning Process: Iterated RBS+ACI

	6.2 Adaptive Refinement via Realizability
	6.2.1 Realizability Refinement: X-RBS
	6.2.2 Combination with ACI

	6.3 Experiments
	6.3.1 Coverage
	6.3.2 Number of Black Variables until Finding a Solution in RBS

	6.4 Conclusion

	II Adaptive Heuristic Search Techniques
	7 Choosing the Initial State for Online Replanning
	7.1 Previous Work
	7.2 Continual Online Planning
	7.3 The Multiple Initial State Technique
	7.4 Theoretical Analysis
	7.5 MIST for Recoverable Tasks
	7.6 Experiments
	7.6.1 Benchmarks
	7.6.2 Results

	7.7 Conclusion

	8 Exploiting Heuristic Uncertainty in Deterministic Real-Time Search
	8.1 Background
	8.1.1 Problem Definition
	8.1.2 LSS-LRTA*
	8.1.3 Real-Time Search as Decision Making Under Uncertainty

	8.2 The Nancy Framework
	8.2.1 Risk-Based Lookahead
	8.2.2 Persistent Action Selection
	8.2.3 Nancy Backups

	8.3 Theoretical Analysis
	8.4 Conclusion

	9 Exploiting Heuristic Uncertainty in Suboptimal Search
	9.1 Background
	9.1.1 Problem Definition
	9.1.2 Bounded-Cost Search
	9.1.3 Bounded-Suboptimal Search

	9.2 Exploiting Heuristic Uncertainty in Bounded-Cost Search
	9.2.1 Expected Effort Search
	9.2.2 BEES with Explicit Probability Estimates
	9.2.3 Experimental Evaluation
	9.2.4 Summary

	9.3 Exploiting Heuristic Uncertainty in Bounded-Suboptimal Search
	9.3.1 Exploiting Expected Effort
	9.3.2 A Simple Round-Robin Scheme
	9.3.3 Experimental Evaluation

	9.4 Conclusion

	III Conclusion
	10 Conclusion

	Bibliography

