86 research outputs found

    Physics-based equivalent circuit model extraction for system level PDN and a novel PDN impedance measurement method

    Get PDF
    “The power distribution network (PDN) plays an important role in the power supply system, especially with the increasing of the working frequency of the integrated circuit (IC). A physics-based circuit modeling methodology is proposed in the first section. The circuit model is extracted by following the current path in the system PDN and the related parameters are calculated based on the cavity model and plane-pair PEEC methods. By extracting the equivalent circuit model, the PDN system will be transformed into RLC element-based circuit. The role of each part of the system will be easily explained and the system behavior could be changed by changing the dominance part accordingly. This methodology makes a good contribution to the system level PDN troubleshooting and layout design optimization. Compared with analytical methodologies, the measurement result is more solid and convincing. The special part of PDN is that the impedance could be as low as several milliohms, and the impedance varies during the frequency, so the accuracy of impedance measurement is challenging. Based on all these requirements, a novel PDN low impedance measurement methodology is proposed, and a probe based on I-V method is designed to support this methodology, which provides a new and practical approach of PDN impedance measurement with easy landing, simple setup, lower frequency, and less instrument quality dependent advantages. This probe could work in a wide frequency range with a relatively sufficient dynamic range”--Abstract, page iii

    NASA Tech Briefs, March 1992

    Get PDF
    Topics include: New Product Ideas; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences

    Quantum Proofs

    Get PDF
    Quantum information and computation provide a fascinating twist on the notion of proofs in computational complexity theory. For instance, one may consider a quantum computational analogue of the complexity class \class{NP}, known as QMA, in which a quantum state plays the role of a proof (also called a certificate or witness), and is checked by a polynomial-time quantum computation. For some problems, the fact that a quantum proof state could be a superposition over exponentially many classical states appears to offer computational advantages over classical proof strings. In the interactive proof system setting, one may consider a verifier and one or more provers that exchange and process quantum information rather than classical information during an interaction for a given input string, giving rise to quantum complexity classes such as QIP, QSZK, and QMIP* that represent natural quantum analogues of IP, SZK, and MIP. While quantum interactive proof systems inherit some properties from their classical counterparts, they also possess distinct and uniquely quantum features that lead to an interesting landscape of complexity classes based on variants of this model. In this survey we provide an overview of many of the known results concerning quantum proofs, computational models based on this concept, and properties of the complexity classes they define. In particular, we discuss non-interactive proofs and the complexity class QMA, single-prover quantum interactive proof systems and the complexity class QIP, statistical zero-knowledge quantum interactive proof systems and the complexity class \class{QSZK}, and multiprover interactive proof systems and the complexity classes QMIP, QMIP*, and MIP*.Comment: Survey published by NOW publisher

    Solving hard industrial combinatorial problems with SAT

    Get PDF
    The topic of this thesis is the development of SAT-based techniques and tools for solving industrial combinatorial problems. First, it describes the architecture of state-of-the-art SAT and SMT Solvers based on the classical DPLL procedure. These systems can be used as black boxes for solving combinatorial problems. However, sometimes we can increase their efficiency with slight modifications of the basic algorithm. Therefore, the study and development of techniques for adjusting SAT Solvers to specific combinatorial problems is the first goal of this thesis. Namely, SAT Solvers can only deal with propositional logic. For solving general combinatorial problems, two different approaches are possible: - Reducing the complex constraints into propositional clauses. - Enriching the SAT Solver language. The first approach corresponds to encoding the constraint into SAT. The second one corresponds to using propagators, the basis for SMT Solvers. Regarding the first approach, in this document we improve the encoding of two of the most important combinatorial constraints: cardinality constraints and pseudo-Boolean constraints. After that, we present a new mixed approach, called lazy decomposition, which combines the advantages of encodings and propagators. The other part of the thesis uses these theoretical improvements in industrial combinatorial problems. We give a method for efficiently scheduling some professional sport leagues with SAT. The results are promising and show that a SAT approach is valid for these problems. However, the chaotical behavior of CDCL-based SAT Solvers due to VSIDS heuristics makes it difficult to obtain a similar solution for two similar problems. This may be inconvenient in real-world problems, since a user expects similar solutions when it makes slight modifications to the problem specification. In order to overcome this limitation, we have studied and solved the close solution problem, i.e., the problem of quickly finding a close solution when a similar problem is considered

    Multicentered computer architecture for real-time data acquisition and display

    Get PDF
    • …
    corecore