
UNIVERSITAT POLITÈCNICA DE CATALUNYA

SOFTWARE DEPARTMENT

PhD in Computing

Solving hard industrial combinatorial
problems with SAT

Ignasi Ab́ıo Roig

Advisors:

Robert Nieuwenhuis

and

Albert Oliveras

and

Enric Rodŕıguez Carbonell

Barcelona, March 2013

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Tesis Doctorals en Xarxa

https://core.ac.uk/display/19934191?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

The topic of this thesis is the development of SAT-based techniques and tools for
solving industrial combinatorial problems. First, it describes the architecture of
state-of-the-art SAT and SMT Solvers based on the classical DPLL procedure. These
systems can be used as black boxes for solving combinatorial problems. However,
sometimes we can increase their efficiency with slight modifications of the basic
algorithm. Therefore, the study and development of techniques for adjusting SAT
Solvers to specific combinatorial problems is the first goal of this thesis.

Namely, SAT Solvers can only deal with propositional logic. For solving general
combinatorial problems, two different approaches are possible:

• Reducing the complex constraints into propositional clauses.

• Enriching the SAT Solver language.

The first approach corresponds to encoding the constraint into SAT. The second
one corresponds to using propagators, the basis for SMT Solvers. Regarding the first
approach, in this document we improve the encoding of two of the most important
combinatorial constraints: cardinality constraints and pseudo-Boolean constraints.
After that, we present a new mixed approach, called Lazy Decomposition, which
combines the advantages of encodings and propagators.

The other part of the thesis consists in uses these theoretical improvements in
industrial combinatorial problems. We give a method for efficiently scheduling some
professional sport leagues with SAT. The results are promising and show that a SAT
approach is valid for these problems.

However, the chaotical behavior of CDCL-based SAT Solvers due to VSIDS
heuristics makes it difficult to obtain a similar solution for two similar problems. This
may be inconvenient in real-world problems, since a user expects similar solutions
when it makes slight modifications to the problem specification. In order to overcome
this limitation, we have studied and solved the close solution problem, i.e., the
problem of quickly finding a close solution when a similar problem is considered.

3

Contents

Abstract 3

1 Introduction 9

1.1 Propositional Satisfiability . 9

1.2 Applications of SAT . 9

1.3 Solving Hard Industrial Combinatorial Problems with SAT 10

1.4 Contributions of this Document . 11

1.5 Outline of this Document . 12

2 SAT Solving 15

2.1 Preliminaries . 15

2.1.1 Basic Notions . 15

2.1.2 Transition Systems . 16

2.2 Classical SAT Solvers: DPLL Procedure 17

2.3 The CDCL Procedure . 19

2.4 Modern SAT Solvers . 24

2.4.1 Decision Heuristics . 24

2.4.2 Restart Policies . 25

2.4.3 Cleanup Policies . 25

2.4.4 Preprocessing Techniques . 26

2.4.5 Efficient Implementation Structures 26

2.4.6 Lemma Shortening . 26

2.5 SMT Solvers . 26

2.5.1 SMT Solvers as Transition Systems 27

2.5.2 SMT Solvers as SAT Solvers + Propagators 28

3 Encoding Cardinality Constraints into SAT 29

3.1 Introduction . 29

3.2 Preliminaries . 31

3.3 Cardinality Networks of Arbitrary Size 31

3.3.1 Merge Networks . 32

3.3.2 Sorting Networks . 34

3.3.3 Simplified Merges . 35

5

6 CONTENTS

3.3.4 m-Cardinality Networks . 37

3.4 Direct Cardinality Networks . 38

3.5 Combining Recursive and Direct Networks 40

3.6 Experimental Evaluation . 41

3.7 Conclusions and Future Work . 44

4 Encoding Pseudo-Boolean Constraints into SAT 45

4.1 Introduction . 45

4.2 Preliminaries . 47

4.3 Exponential ROBDDs for PB Constraints 48

4.3.1 Intervals . 48

4.3.2 Some Families of PB Constraints and their ROBDD Size . . 53

4.3.3 The Subset Sum Problem and the ROBDD size 58

4.4 Avoiding Exponential ROBDDs . 60

4.4.1 BDD Size of Power-of-two PB Constraints 60

4.4.2 A Consistent Encoding for PB Constraints 61

4.4.3 An Arc-consistent Encoding for PB Constraints 62

4.5 An Algorithm for Constructing ROBDDs for PB constraints 63

4.6 Encoding a BDDs for Monotonic Functions into SAT 67

4.7 Related Work . 71

4.8 Experimental Results . 74

4.8.1 The Bergmann Test . 74

4.8.2 Encodings into SAT . 76

4.8.3 SAT vs. PB . 81

4.8.4 Sharing . 84

4.9 Conclusions and Future Work . 84

5 Conflict-Directed Lazy Decomposition 87

5.1 Introduction . 87

5.2 Preliminaries . 89

5.2.1 A Propagator for Cardinality Constraints 89

5.2.2 A Propagator for Pseudo-Boolean Constraints 90

5.3 Lazy Decomposition . 90

5.3.1 LD Propagator for Cardinality Constraints 91

5.3.2 Lazy Decomposition Propagator for PB Constraints 94

5.4 Experimental results . 98

5.4.1 Cardinality Optimization Problems 102

5.4.2 MSU4 . 105

5.4.3 PB Competition Problems . 105

5.4.4 Variables Generated . 106

5.5 Conclusions and Future Work . 107

CONTENTS 7

6 Close Solutions 109
6.1 Introduction . 109
6.2 Problem definition . 110
6.3 Benchmarks . 111
6.4 Chaotic behavior of SAT . 112
6.5 Trying a local search-like solution . 112
6.6 Our Barcelogic approach . 112
6.7 Experimental comparison with Cplex and other tools 115
6.8 Factor analysis of the Barcelogic approach 116
6.9 Related work and conclusions . 116

7 Sport League Scheduling 121
7.1 Introduction . 121
7.2 Terminology . 122
7.3 Constraints of the Schedule . 123

7.3.1 Structural Constraints . 123
7.3.2 Additional Constraints . 124
7.3.3 The Optimization Problem 125

7.4 Variables of the Encoding . 126
7.5 All-Different Constraints . 126

7.5.1 Introduction . 126
7.5.2 Encoding AD and SAD into SAT 127

7.6 Encoding the Constraints of the Schedule 130
7.6.1 Structural Constraints . 130
7.6.2 Additional Constraints . 132
7.6.3 The Optimization Problem 133

7.7 Tuning the SAT Solver . 134
7.7.1 Cleanups Policy . 134
7.7.2 VSIDS Heuristics . 134
7.7.3 Last-Phase in Optimization Problems 135
7.7.4 Handling More Leagues . 135

7.8 Experimental Evaluation . 136
7.8.1 Instances Description . 136
7.8.2 Comparing the Different Encodings for AMOs 136
7.8.3 VSIDS Heuristics Tuning . 138
7.8.4 Phase Selection Tuning . 139
7.8.5 Cleanup Policy Tuning . 140

7.9 Conclusion and Future Work . 141

8 Conclusion and Future Work 143

1
Introduction

1.1 Propositional Satisfiability

The propositional satisfiability problem (SAT) consists in finding a model of a CNF
propositional formula, this is, a set of Boolean clauses. The first steps for solving SAT
were made in the 60’s in the context of automated deduction for proving theorems
of first-order logic [Gil60]. These first systems were hugely improved by, first, Davis
and Putnam [DP60] and, secondly, Loveland and Logemann [DLL62]. The resulting
algorithm is known as DPLL procedure. However, it was only useful for small
problems. Real-world industrial instances, with millions of variables and clauses,
were still far from being solved.

Some years later, SAT was found to be the first NP-complete problem [Coo71].
However, the DPLL method did not significantly improve until the 90’s. The
discovery of VSIDS heuristics [MSS99a, MMZ+01], Restarts [MMZ+01], conflict
analysis [MSS99a] and more efficient structures such as the two-watched literal
lists [MMZ+01] constituted the beginning of modern SAT Solvers. The resulting
algorithm is called Conflict Driven Clause Learning (CDCL) procedure.

The basic CDCL algorithm has been deeply improved over the last few years. For
instance, preprocessing [EB05] and inprocessing [JHB12] methods make the current
SAT Solvers some orders of magnitude faster than ten years ago: problems with
hundreds of thousands of variables and millions of clauses are now routinely solved
in few seconds.

The flowering of SAT Solver procedures has opened some new research fields:
SMT Solvers [NOT06], Lazy Clause Generation [OSC09], MaxSAT [AM06], etc.

1.2 Applications of SAT

The advances of SAT Solving in the last 15 years are closely related with the suc-
cessful application of propositional satisfiability in industrial problems of Electronic
Design Automation (EDA). SAT Solving has efficiently been applied to many EDA

9

10 1. Introduction

areas, some of them explained in the next paragraphs.
One of the most important SAT applications in EDA is the Equivalence Check-

ing problem [KPKG02]. This problem consists in proving that two circuits are
equivalent, this is, they generate the same output for any given input. Bjesse and
Claessen [BC00] improved van Eijk’s algorithm for Sequential Equivalence Check-
ing [vE98] and encoded the problem into SAT.

Another important application of SAT to EDA is the Model Checking prob-
lem [CE82], i.e., testing if a model satisfies the given specification. As an example,
Biere et Al. [BCC+99] described an algorithm for bounded model checking based on
SAT instead of classical BDD-based algorithms [McM92].

Another EDA field where SAT has been applied is Automatic Test Pattern Gen-
eration (ATPG) [JG03]. ATPG problem consists in, given a circuit and an incorrect
model of it, searching for an input (pattern) on which the incorrect model and the
circuit show a different output. Larrabe [Lar92] presented a method for solving
this problem. A related problem is Delay Fault Testing [CG96], which searches for
patterns when the faults of the circuits are caused due to the delays of the logical
gates.

Other important applications in EDA are Logic Synthesis [EC93], this is, the field
that designs a logical circuit that satisfies the given specifications; FPGA routing
(Field-Programmable Gate Arrays Routing) [NSR99], i.e., the problem of finding a
routing of wires in a FPGA; Redundancy Identification [KS+97a], this is, to identify
some redundant parts of a circuit; etc.

However, not only EDA industry has taken advantage of the SAT technology: it
has also been applied to many other areas. An important one is Software Verification,
i.e., to check whether a computer program is correct [DKW08]. Other examples are
Bioinformatics [BJMA06], Statistical Physics [MSL92], etc.

1.3 Solving Hard Industrial Combinatorial Problems

with SAT

Recently, SAT technology has been applied to solve industrial combinatorial prob-
lems. Combinatorial Problems consists in, given a set of variables with finite do-
mains and a set of constraints over them, finding an assignment that satisfies all
constraints. The focus here will be on industrial problems, i.e., coming from real-
world companies, as opposed to random problems, which are randomly generated,
or crafted problems, which are manually cooked.

Examples of hard industrial combinatorial problems include Timetabling Prob-
lems [AAN12], Cumulative Scheduling [SFSW09], Sport Scheduling [RT08], etc.

This thesis deals with the development of SAT-based techniques and tools for
solving industrial combinatorial problems. It includes the first (to our knowledge)
SAT-based method for solving professional sportive scheduling problems.

We start by describing the architecture of any state-of-the-art SAT and SMT
Solver based on the classic DPLL procedure. SAT and SMT Solvers can be used

1.4. Contributions of this Document 11

as black boxes for solving combinatorial problems. However, SAT Solvers need to
be modified for increasing their efficiency in some kind of problems. Therefore,
the study and development of techniques for adjusting SAT Solver to combinatorial
problems is the first goal of this thesis.

Namely, SAT Solvers can only deal with propositional logic. For solving combi-
natorial problems, two different approaches are possible:

• Reduce the complex constraints into propositional clauses.

• Enrich the SAT Solver language.

The first approach corresponds to encoding the constraint into SAT. The second one
corresponds to using propagators, the basis for SMT Solvers.

In this document we improve the encoding of two of the most important combi-
natorial constraints: cardinality constraints and Pseudo-Boolean constraints. After
that, we present a new mixed approach, called Lazy Decomposition, which combines
the advantages of encodings and propagators.

The other part of the thesis consists in using these theoretical improvements in
industrial combinatorial problems. We have given a method for efficiently scheduling
some professional sport leagues with SAT. The results are promising and show that
a SAT approach is valid for these problems.

However, the chaotical behavior of CDCL-based SAT Solvers due to VSIDS
heuristics make it difficult to obtain a similar solution for two similar problems.
This may be inconvenient in real-world problems, since a company expects similar
solutions when it makes slight modifications to the problem specification. In order to
overcome this limitation, we have studied and resolved the close solution problem,
i.e., the problem of quickly finding a similar solution when a similar problem is
considered.

1.4 Contributions of this Document

Contributions are present both in the theoretical and in the applied part. From the
theoretical point of view, the main contributions of this thesis are:

• A new encoding for cardinality constraints that requires approximately half
of the auxiliary variables than the best method know so far. Experimentally,
problems encoded with this method can be solved faster than with the state-
of-the-art encodings.

• A new encoding for Pseudo-Boolean constraints using BDDs. Experimentally,
it has been shown to be the best encoding for these constraints. Moreover,
we have found a new and much simpler proof that some Pseudo-Boolean con-
straints do not admit polynomial BDDs in any order.

• An arc-consistent SAT encoding of BDDs for monotonic functions that uses
one binary and one ternary clauses per node (the standard if-then-else encoding

12 1. Introduction

for BDDs requires six ternary clauses per node). Moreover, this translation
works for any BDD variable ordering.

• A general method for dealing with complex constraints within SAT called
lazy decomposition, which experimentally is nearly as good as the best of the
possible approaches (eager encoding and global propagation approaches), and
often better.

In the applied part, the main contributions are:

• A simple and very efficient approach for solving the close-solution problem:
our method frequently finds the optimal solution in 25% of the time the SAT
solver took in solving the original problem.

• The first (to our knowledge) encoding of the professional sport league schedul-
ing problem into SAT.

• A comparison of the different encodings into SAT for Symmetric-all-different
and All-different constraints with industrial benchmarks.

1.5 Outline of this Document

The thesis is divided into three different parts: Chapter 2 contains a background
section about SAT and SMT Solving. Chapters 3 to 5 conform the mainly-theoretical
part and deal with cardinality and PB constraints. Finally, it contains the applied
part (Chapters 6 and 7) that deals with sport league scheduling and close-solution
problems.

More specifically, this document will be structured as follows:

• In Chapter 2 we describe the classical and modern SAT Solvers designs.

• Chapter 3 contains in first place a description of the best encoding for cardinal-
ity constraints, this is, the encoding of cardinality constraints using cardinality
networks. This encoding is slightly improved by allowing to encode constraints
of any size instead of power-of-two-sized constraints. Next, we show a direct
method for building cardinality networks without auxiliary variables but, usu-
ally, with a huge amount of clauses. Then, a mixed method is presented,
combining both approaches. This method uses many fewer variables than the
original method and fewer clauses. Finally, an experimental section compares
this approach with the previous encoding using cardinality networks.

• In Chapter 4 we study the encoding of Pseudo-Boolean constraints through
Reduced Ordered Binary Decision Diagrams (ROBDDs). This chapter shows
an example of a family of PB constraints whose ROBDD are exponential in
any ordering. Next, it contains a polynomial consistent and a polynomial arc-
consistent BDD-based encodings, using fewer variables and clauses that the

1.5. Outline of this Document 13

state-of-the-art encodings. The chapter explains a better encoding for BDDs
into SAT and a polynomial algorithm for representing a PB constraint into
a BDD. Finally, it contains an experimental section comparing the proposed
encodings with the state-of-the-art ones.

• Chapter 5 contains a new approach for dealing with complex constraints within
SAT. It is similar to an SMT approach, but instead of generating (lazily) a
naive encoding of the constraints, our method can lazily generate an encoding
with auxiliary variables. In this way, our method decomposes only some part
of the most useful constraints, achieving the advantages of the eager encoding
(auxiliary constraints and better reasons) and SMT (fast handling of unused
constraints) approaches.

• Chapter 6 deals with the close-solution problem, this is, given a model of a
Boolean formula, to search for a similar model when few clauses are added to
the formula. First we show that trivial solutions like relaunch the SAT Solver
do not produce satisfactory results. Next, we present our method, and we
experimentally prove that it behaves very well in practice.

• In Chapter 7, we present the problem of sportive league scheduling. We intro-
duce an encoding into SAT for it and some modifications of the SAT Solver
for dealing with it. We show that our method can solve real-world problems
and that the proposed modifications improve the performance.

• Finally, we conclude in Chapter 8.

2
SAT Solving

This chapter summarizes the state-of-the-art methods for solving propositional prob-
lems, this is, SAT solving. Any expert in the area may skip it.

Section 2.1 contains the definitions and nomenclature used throughout all the
document together with some concepts of transition systems, needed to present the
SAT Solver algorithms. Section 2.2 contains the classical DPLL method for solving
propositional problems. This method was largely improved by the CDCL algorithm,
presented in Section 2.3. Section 2.4 outlines the implementation of the state-of-
the-art SAT Solvers. Finally, Section 2.5 presents the structure of a standard SMT
Solver.

2.1 Preliminaries

2.1.1 Basic Notions

Let X = {x1, x2, . . .} be a fixed finite set of propositional variables. If x ∈ X then
x and x are positive and negative literals, respectively. The negation of a literal l,
written l, denotes x if l is x, and x if l is x. A clause is a disjunction of literals
x1 ∨ . . . ∨ xp ∨ xp+1 ∨ . . . ∨ xn, sometimes written as x1 ∧ . . . xp → xp+1 ∨ . . . xn. A
unit clause is a clause consisting of a single literal. The empty clause is the clause
that has no literals and will be denoted by ✷. A (CNF) formula is a conjunction of
one or more clauses C1 ∧ . . . ∧ Cn, which sometimes will be written in set notation
{C1, . . . , Cn}, or simply C1, . . . , Cn.

A (partial) assignment A is a set of literals such that {l, l} ⊆ A for no l, i.e.,
no contradictory literals appear. A literal l is true in A if l ∈ A, is false in A if
l ∈ A, and is undefined in A otherwise. Assignments are sometimes written as a set
of pairs x = v, where v is 1 if x is true in A and 0 if x is false in A. A clause C
is true in A if at least one of its literals is true in A, is false in A if all its literals
are false in A, and is undefined in A otherwise. A formula F is true in A if all its
clauses are true in A. In that case, A is a model of F . A formula F ′ is entailed by
F if all the models of F are models of F ′.

15

16 2. SAT Solving

Given two clauses (called premises) of the form p∨C and ¬p∨D the resolution
inference rule allows us to infer the clause C ∨D (called conclusion):

p ∨ C ¬p ∨ D

C ∨D

The problem we are interested in is the SAT problem: given a formula F , decide
whether there exists a model that satisfies F . Since a polynomial transformation
for any arbitrary formula to an equisatisfiable CNF one exists (see [Tse68]), we will
assume w.l.o.g. that F is in CNF. Systems that solve these problems are called
SAT-solvers, and the main inference rule they implement is unit propagation: given
a CNF formula F and an assignment A, find a clause in F such that all its literals
are false in A except one, say l, which is undefined, add l to A and repeat the process
until reaching a fixpoint.

In what follows, (possibly subscripted or primed) lowercase l always denotes
literals. Similarly C and D always denote clauses, F and G denote formulas, and A
and B denote assignments.

2.1.2 Transition Systems

In what follows, in order to describe a solving procedure for SAT, we will assume that
a state of such procedure will be either the distinguished state FailState or a pair
of the form A || F , where F is a CNF formula and A is, essentially, an assignment.
More precisely, A is a sequence of sequences of literals A0, A1, A2, . . . , Ar, such that

• Ai = ∅ for all 1 � i � r (however, A0 may be empty),

• Ai ∩Aj = ∅ for all 0 � i < j � r; and

• A0 ∪A1 ∪ . . . ∪Ar does not contain a literal and its negation.

If A = (A0, A1, . . . , Ar), the state is said to be at decision level r. Similarly, a
literal l ∈ Ak (with 0 � k � r) is said to be at decision level k. The first literals of
every sequence Ai with i > 0 are called decision literals.

Assume

A = (A0, A1, . . . , Ar), where







A0 = (l1, l2, . . . , ln0),
A1 = (ln0+1, ln0+2, . . . , ln1),
. . . ,
Ar = (lnr−1+1, lnr−1+2, . . . , lnr).

Then A can be represented by

A = l1, l2, . . . , ln0 , l
d

n0+1, ln0+2, . . . , lnr ,

where ld means that l is a decision literal. Notice that since A1, A2, . . . , Ar are not
empty, there are exactly r decision literals, so this notation is not ambiguous. We

2.2. Classical SAT Solvers: DPLL Procedure 17

will frequently consider A just as a partial assignment, or as a set or conjunction of
literals (and hence as a formula).

The concatenation of two sequences A = l1, l2, . . . , lk and B = l′1, l
′
2, . . . , l

′
k′ will

be denoted by simple juxtaposition AB, and is defined by

AB = l1, l2, . . . , lk, l
′
1, l

′
2, . . . , l

′
k′ .

We will denote the empty sequence of literals (or the empty assignment) by ∅. We
say that a clause C is conflicting in a state A || F if A entails ¬C, i.e., if C is false
in the assignment A.

DPLL-based procedures are modeled by means of a set of states together with
a binary relation =⇒ over these states, called the transition relation. As usual, the
infix notation is used, writing S =⇒ S′ instead of (S, S′) ∈ =⇒. If S =⇒ S′ we
say that there is a transition from S to S′. Any sequence of transitions of the form
S0 =⇒ S1, S1 =⇒ S2, . . . , Sn−1 =⇒ Sn is denoted by

S0 =⇒ S1 =⇒ S2 =⇒ . . . =⇒ Sn

and is called a derivation.
In what follows, transition relations will be defined by means of conditional

transition rules. For a given state S, a transition rule precisely defines whether
there is a transition from S by this rule and, if so, to which state S′. Such a
transition is called an application step of the rule.

A transition system is a set of transition rules defined over some given set of
states. Given a transition system R, the transition relation defined by R will be
denoted by =⇒R. If there is no transition from S by =⇒R, we will say that S is
final with respect to R. Examples of a transition system and a final state with
respect to it can be found in Definition 2.1 and Example 2.3, respectively.

2.2 Classical SAT Solvers: DPLL Procedure

A very simple transition system for SAT solving is the classical DPLL algorithm
[DLL62]. We give it here mainly for explanatory and historical reasons. The system
can be defined as follows

Definition 2.1. The Classical DPLL system is the transition system DPLL consisting
of the following five transition rules.

UnitPropagate :

A || F, C ∨ l =⇒ A l || F, C ∨ l if

®

C is false in A,
l is undefined in A.

PureLiteral :

A || F =⇒ A l || F if







l occurs in some clause of F,
l occurs in no clause of F,
l is undefined in A.

18 2. SAT Solving

Decide :

A || F =⇒ A ld || F if

®

l or l occurs in a clause of F,
l is undefined in A.

Fail :

A || F, C =⇒ FailState if

®

C is false in A,
A contains no decision literals.

Backtrack :

A ld B || F, C =⇒ A l || F, C if

®

C is false in A ld B,
B contains no decision literals.

In what follows, we have included a more detailed explanation of each of the
rules:

• UnitPropagate: to satisfy a CNF formula, all its clauses must be true. Hence,
if there is a clause in F consisting of an undefined literal l and false literals
(with respect the assignment A), then A must be extended with l to make that
clause true.

• PureLiteral: a literal l is pure in F if it occurs in F while its negation does not.
In this case, given a model of F either contains l or switching l for l is still a
model of F . Hence, if A does not define l it can be extended to make l true.

• Decide: this rule represents a case split. An undefined literal l is chosen from
F and added to A as a decision literal. This means that if the assignment A l
cannot be extended to a model of F , then the alternative extension A l must
still be considered. This is done by means of the Backtrack rule.

• Fail: this rule detects a conflicting clause C and produces the FailState state
whenever A contains no decision literals.

• Backtrack: this rule detects a conflicting clause C and the most recent decision
literal ld, and backtracks one decision level : ld is replaced by l and any subse-
quent literals in the current assignment are removed. Note that l is annotated
as a non-decision literal, since the other possibility l has already been explored.

The transition system DPLL can be used for deciding the satisfiability of an input
formula F , as shown in this result from [NOT06]:

Theorem 2.2. Let F be a CNF formula. Then, any derivation from the initial state
∅ || F is finite, i.e., there exists n such that ∅ || F =⇒DPLL S1 =⇒DPLL S2 =⇒DPLL

. . . =⇒DPLL Sn; and Sn is a final state with respect to DPLL. Moreover, if F is
unsatisfiable, the final state Sn is FailState, whereas if F is satisfiable the last state
is of the form Sn = A || F , where A is a model of F .

Notice that in most of the situations more than one rule can be applied and,
in virtue of the previous theorem, the system is correct no matter which rules it
applies. However, in terms of efficiency, it is convenient to apply Backtrack and Fail
when possible, and Decide only when no other rule can be applied.

2.3. The CDCL Procedure 19

Example 2.3. The following is a derivation in the Classical DPLL system, with
each transition annotated by the rule that makes it possible. To improve readability
propositional variables are denoted by natural numbers.

∅ || 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒DPLL (Decide)
1d || 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒DPLL (UnitPropagate)

1d 2 || 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒DPLL (UnitPropagate)
1d 2 3 || 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒DPLL (UnitPropagate)

1d 2 3 4 || 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒DPLL (Backtrack)
1 || 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒DPLL (UnitPropagate)

1 4 || 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒DPLL (Decide)
1 4 3 d || 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒DPLL (UnitPropagate)

1 4 3 d 2 || 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4

The last state of this derivation is final. The (total) assignment in it is a model of
the formula.

2.3 The CDCL Procedure

Classical DPLL system can be improved by modifying some of the rules and adding
some more. For example, due to efficiency reasons the pure literal rule is normally
only used as a preprocessing step; hence, this rule will not be considered in the fol-
lowing. Moreover, DPLL system can be largely improved by replacing backtracking
with backjumping, a more general and more powerful non-chronological backtrack-
ing mechanism. Together with some further changes, the resulting system is called
Conflict-Driven-Clause-Learning (CDCL) system.

The usefulness of this more sophisticated backtracking mechanism for CDCL
solvers is perhaps best illustrated with another example of derivation in the Classical
DPLL system.

Example 2.4.

∅ || 1∨2, 3∨4, 5∨6, 6∨5∨2 =⇒DPLL (Decide)
1d || 1∨2, 3∨4, 5∨6, 6∨5∨2 =⇒DPLL (UnitPropagate)

1d 2 || 1∨2, 3∨4, 5∨6, 6∨5∨2 =⇒DPLL (Decide)
1d 2 3d || 1∨2, 3∨4, 5∨6, 6∨5∨2 =⇒DPLL (UnitPropagate)

1d 2 3d 4 || 1∨2, 3∨4, 5∨6, 6∨5∨2 =⇒DPLL (Decide)
1d 2 3d 4 5d || 1∨2, 3∨4, 5∨6, 6∨5∨2 =⇒DPLL (UnitPropagate)

1d 2 3d 4 5d 6 || 1∨2, 3∨4, 5∨6, 6∨5∨2 =⇒DPLL (Backtrack)
1d 2 3d 4 5 || 1∨2, 3∨4, 5∨6, 6∨5∨2 =⇒DPLL . . .

Before the Backtrack step, the clause 6 ∨ 5 ∨ 2 is conflicting: it is false in the
assignment 1d 2 3d 4 5d 6. Backtrack will produce the assignment 1d 2 3d 4 5, this
is, the decisions 1d and 3d imply that 5 must be false. However, a detailed analysis
of the conflict could reveal a more general relation.

20 2. SAT Solving

The conflict is a consequence of the unit propagation 2 of the decision 1d, together
with the decision 5d and its unit propagation 6. Therefore, one can infer that 2 is
incompatible with the decision 5d, i.e., that the given clause set entails 2∨5. Such
entailed clause is called a backjump clause if its presence would have allowed a unit
propagation at an earlier decision level.
This is precisely what backjumping does: given a backjump clause, it goes back to

that level and adds the unit propagated literal. In our case, using 2∨5 as a backjump
clause, Backjump goes to a state with first component 1d 2 5.
Notice that this state is better than the state produced by Backtrack: in the latter

one, we obtained that 5 is consequence of 1d and 3d, whereas in the former one we
obtained that 5 is only consequence of 1d.
Backjumping is modeled with the following Backjump rule, of which Backtrack is

a particular case. In this rule, the clause C ′ ∨ l′ is the backjump clause, where l′ is
the literal that can be unit propagated (in our example, C ′ is 2 and l′ is 5).

Backjump :

A ld B || F, C =⇒ A l′ || F, C if







C is false in A ld B, and
there exists a clause C ′ ∨ l′

entailed by F ∧C such that
C ′ is false in A,
l′ is undefined in A and
l′ or l′ occurs in F ∨A ld B.

At this point, let us explain the method for obtaining a backjump clause. We
will assume that the system holds two properties: first, for every non-decision literal
in the assignment, the system saves the reason why that literal was added to the
assignment (this is, the clause that it propagated if it was added in a UnitPropagate
step or the backjump clause if it was added in a Backjump step). Secondly, we
assume the system does not apply Decide rule if either UnitPropagate, Backjump or
Fail can be applied, which on the other hand is convenient for efficiency reasons.

The backjump clause search process is called conflict analysis. In order to illus-
trate how it works, let us consider this example:

Example 2.5. Let us consider a formula F with, among other, these clauses:

1∨3∨4, 2∨3∨5, 2∨5∨6, 3∨5∨7, 1∨6∨8, 5∨6∨8∨9, 1∨5∨9,

and assume the system is in the state

. . . , 1, . . . , 2, . . . , 3d, 4, 5, 6, 7, 8, 9 || F.

The system, as said, has the reasons why every non-decision literal is in the
assignment. For instance,

4 ❀ 1∨3∨4, 5 ❀ 2∨3∨5, 6 ❀ 2∨5∨6,
7 ❀ 3∨5∨7, 8 ❀ 1∨6∨8, 9 ❀ 5∨6∨8∨9.

2.3. The CDCL Procedure 21

The system has found the conflicting clause 1∨5∨9. The conflict analysis con-
sists of successively applying resolution steps on these reasons until a clause with
only one literal of the current decision level is obtained. In our example, we bold the
literals of the current decision level. We start with the conflicting clause

1∨5∨9.

Since there are two literals from the current decision level (i.e., two bold literals), a
resolution step is needed. The last literal from the assignment is 9, and its reason is
5∨6∨8∨9. Therefore:

1∨5∨9. 5∨6∨8∨9
1∨5∨6∨8

Now there are 3 bold literals, so another resolution step is needed. 8 is the latest
bold literal in the assignment, so we use its reason in the next resolution step:

1∨6∨8
1∨5∨9. 5∨6∨8∨9

1∨5∨6∨8
1∨5∨6

While more than one bold literal appears, the process continue:

2∨5∨6
1∨6∨8

1∨5∨9. 5∨6∨8∨9
1∨5∨6∨8

1∨5∨6
1∨2∨5

Finally, the obtained clause is a backjump clause: 1∨2∨5.

Modern CDCL implementations add the backjump clauses to the formula [MSS99b].
These new clauses are called learned clauses or lemmas. This technique is usually
called conflict-driven clause learning, and prevents reaching similar conflicts in the
future. In Example 2.5, learning the clause 1∨2∨5 will allow the application of
UnitPropagate rule to any state whose assignment contains either 1 and 2, 1 and 5 or 2
and 5, so it will prevent any conflict caused by having 1, 2 and 5 in the assignment.
Reaching such similar conflicts frequently happens in industrial problems having
some regular structure, and learning such lemmas has been shown to be very effective
in improving performance.

Since a lemma is aimed at preventing future similar conflicts, when these conflicts
are not very likely to be found again the lemma can be removed. In practice, a lemma
is removed when its relevance (see, e.g., [BS97]) or its activity level drops below a
certain threshold; the activity can be, e.g., the number of times it becomes a unit
or a conflicting clause [GN02]. Therefore, CDCL systems have two additional rules:

22 2. SAT Solving

Learn and Forget.

Learn :

A || F =⇒ A || F, C if

®

each atom of C occurs in F ∨A,
C is entailed by F.

Forget :

A || F, C =⇒ A || F if C is entailed by F.

The last rule of the CDCL transition system is Restart [GSK98].

Restart :
A || F =⇒ ∅ || F.

It consists in removing the current assignment when the search is not making enough
progress according to some measure. In these cases, the additional clauses added to
the formula (together with the different literals picked by Decide due to the heuristics,
see Section 2.4.1) allow the system to explore the search space in a different way.
In practice, the combination of Learn and Restart has been shown to be a powerful
tool (see [KS97b, MSG99, GSK98, BS00, KSMS11]). Moreover, from a theoretical
point of view, restarts are also important: any Basic DPLL derivation to Fail is
equivalent to a tree-like refutation by resolution; so, for some classes of tree-like
problems, proofs are always exponentially larger than the smallest general, i.e.,
DAG-like, resolution ones [BEGJ00]. However, DPLL with learning and restarts
becomes again equivalent to general resolution with respect to such notions of proof
complexity [BKS03].

Finally, we can define a modern CDCL system as follows:

Definition 2.6. The Modern CDCL system is the transition system CDCL consisting
of the following seven transition rules.

UnitPropagate :

A || F, C ∨ l =⇒ A l || F, C ∨ l if

®

C is false in A,
l is undefined in A.

Decide :

A || F =⇒ A ld || F if

®

l or l occurs in a clause of F,
l is undefined in A.

Fail :

A || F, C =⇒ FailState if

®

C is false in A,
A contains no decision literals.

2.3. The CDCL Procedure 23

Backjump :

A ld B || F, C =⇒ A l′ || F, C if







C is false in A ld B, and
there exists a clause C ′ ∨ l′

entailed by F ∧C such that
C ′ is false in A,
l′ is undefined in A and

l′ or l′ occurs in F ∨A ld B.
Learn :

A || F =⇒ A || F, C if

®

each atom of C occurs in F ∨A,
C is entailed by F.

Forget :

A || F, C =⇒ A || F if C is entailed by F.

Restart :

A || F =⇒ ∅ || F.

CDCL Systems apply Learn after every Backjump in order to learn the backjump
clause. However, notice that Learn can be applied in other situations. For instance,
Siege SAT Solver also learns some of the intermediate clauses in the resolution
derivations of the conflict analysis [Rya04]; Precosat and Lingeling, among others,
periodically use some sophisticate techniques in order to simplify some clauses of
the formula (which corresponds to apply Learn and Forget), etc.

Example 2.7. The same set of clauses of Example 2.4 can now be processed with
the CDCL transition system:

∅ || 1∨2, 3∨4, 5∨6, 6∨5∨2 =⇒CDCL (Decide)
1d || 1∨2, 3∨4, 5∨6, 6∨5∨2 =⇒CDCL (UnitPropagate)

1d 2 || 1∨2, 3∨4, 5∨6, 6∨5∨2 =⇒CDCL (Decide)
1d 2 3d || 1∨2, 3∨4, 5∨6, 6∨5∨2 =⇒CDCL (UnitPropagate)

1d 2 3d 4 || 1∨2, 3∨4, 5∨6, 6∨5∨2 =⇒CDCL (Decide)
1d 2 3d 4 5d || 1∨2, 3∨4, 5∨6, 6∨5∨2 =⇒CDCL (UnitPropagate)

1d 2 3d 4 5d 6 || 1∨2, 3∨4, 5∨6, 6∨5∨2 =⇒CDCL (Backjump)
1d 2 5 || 1∨2, 3∨4, 5∨6, 6∨5∨2 =⇒CDCL (Learn)
1d 2 5 || 1∨2, 3∨4, 5∨6, 6∨5∨2, 2∨5 =⇒CDCL (Decide)

1d 2 5 3d || 1∨2, 3∨4, 5∨6, 6∨5∨2, 2∨5 =⇒CDCL (UnitPropagate)
1d 2 5 3d 4 || 1∨2, 3∨4, 5∨6, 6∨5∨2, 2∨5 =⇒CDCL (Decide)

1d 2 5 3d 4 6d || 1∨2, 3∨4, 5∨6, 6∨5∨2, 2∨5

Note that in the backjump step we have used the backjump clause 2 ∨ 5. Note
also that, before the last Decide step, the partial interpretation was already a model.
However, CDCL SAT-solvers do not check that, since completing a partial model
only requires a polynomial amount of work.

24 2. SAT Solving

Notice that derivations from CDCL may be infinite because of the restarts and
subderivations of learns and forgets. In order to avoid these infinite derivations,
we need to impose two conditions: firstly, infinite subderivations with only Learn
and Forget steps are not allowed. Secondly, let ak be the number of Backjump
rules between the k-th ant the k + 1-th restart. Then, the sequence (ak)k must be
unbounded. The transition system CDCL (with these two additional conditions) can
be used for deciding the satisfiability of an input formula F , as shown in this result
from [NOT06]:

Theorem 2.8. Let F be a CNF formula. Then, any derivation from the initial
state ∅ || F is finite, i.e., there exists n such that ∅ || F =⇒CDCL S1 =⇒CDCL

S2 =⇒CDCL . . . =⇒CDCL Sn; and Sn is a final state with respect to the classic DPLL
system1. Moreover, if F is unsatisfiable, the final state Sn is FailState, whereas if
F is satisfiable the last state is of the form Sn = A || G, where A is a model of F ,
and G is formula with the same models than F .

2.4 Modern SAT Solvers

In this section we sketch the architecture of a typical modern SAT Solvers. Some of
the features are common in practically all the state-of-the-art SAT Solvers, whereas
others are only present in some of the most recent programs.

The core of a modern SAT Solver is the CDCL transition system explained in the
previous section. Fail and Backjump have the maximum priority among the rules.
Learn is always applied after a backjump. UnitPropagate is applied when no conflict
clause has been found. Restart is periodically applied, depending on the heuristics
(see Section 2.4.2). Also periodically, solvers clean up the formula, applying Forget
to every useless learned clause. When no other rule applies, Decide is done.

2.4.1 Decision Heuristics

When Decide takes place, choosing which literal will be added to the current assign-
ment has a huge impact on the solver performance. Naive strategies like choosing
a random literal or the variable with most occurrences in the formula (or variations
of this ideas like BOHM Heuristic [BB92], MOM Heuristics [JT96], etc.) are not
competitive in industrial problems, as was experimentally proven at [Sil99].

Modern SAT Solvers use different variants of the Variable State Independent
Decaying Sum (VSIDS for shortening) heuristic [MMZ+01]. It consists in assigning
a value to every variable and picking the variable with highest value. The value
of a variable is incremented every time it appears in a conflict analysis. In order
to prioritize the variables appearing in the most recent conflicts, this increment
increases geometrically during the search.

1It is not a final state with respect CDCL since, due to Restart, there are not final states in CDCL.

2.4. Modern SAT Solvers 25

VSIDS heuristic is one of the major reasons of the impressive improvement on
performance of the SAT Solvers in the last decade (see [MMZ+01, KSMS11]). How-
ever, Decide does not need to pick a variable but a literal. SAT Solvers usually choose
the polarity of the literal with the last phase technique [PD07], that is, picking the
last value that was assigned to the variable.

2.4.2 Restart Policies

Another important point consists in deciding when the solver must restart. Modern
SAT Solvers use variations of one of these two policies: geometrical restarts and
Luby restarts [Hua07]. In geometrical restarts, the k-th restart takes place when
the solver has made Nrk backjumps since the last restart, where N and r are fixed
parameters. In the Luby restarts, the k-th restart takes place when the solver has
made NLk backjumps since the last restart, where N is a fixed parameter and Lk

is the k-th Luby sequence number [LSZ93].

Recently, other policies have been proposed. In [Bie08] a dynamical adaptive
strategy is explained. In [SI09] and [NMJ09] the authors propose the use of different
restart strategies depending on the problem structure.

2.4.3 Cleanup Policies

A similar important issue consists in deciding the moment when Forget will be
applied and which clauses will be removed. Cleanups take place much less often
than restarts. Distance between cleanups may be geometrical (this is, after Nrk

conflicts, where k is the number of cleanups previously done), linear (i.e., after
N + dk conflicts, where k is again the number of previous cleanups) or follow some
other sequence.

The classical method for deciding which clauses should be removed was similar
to the VSIDS heuristic: each lemma is given a value, which is incremented each time
the clause appears as a reason in a conflict analysis. During the cleanup, clauses
with null value are removed and the other clauses decrement (for instance, dividing
by 2) their value.

Recently, a new method has been presented [AS09]. In this method, lemmas are
given a value corresponding to the number of different decision levels of their literals.
This value may be static (computed when the lemma is created in the conflict
analysis) or dynamic (recomputed any time the clause propagates some literal). In
the cleanup, lemmas with highest values are removed. This new methodology has
widely replaced the previous one in the last years.

Other techniques are possible. For instance, in [ALMS11] another way of com-
puting lemmas’ values is proposed. Moreover, the authors suggest to freeze the
lemmas instead of removing, i.e., when the solver detects some useless lemmas, in-
stead of removing them, they are isolated and not used in the propagation process
until the solver detects they could be useful.

26 2. SAT Solving

2.4.4 Preprocessing Techniques

Before starting the CDCL search for a model, modern SAT Solvers try to simplify
the formula. This step is called preproccess and usually improves the performance
of the solver. A lot of different techniques are possible during the preprocess. See,
for instance, [Bra04, Nov03, EB05, DLF+02, Sil00, BLS11, HJB11].

Recently, some solvers [Bie10a, Bie10b, Soo10] spend periodically some time in
simplifying the formula. In this case, the solver has an inprocess simplification.

2.4.5 Efficient Implementation Structures

State-of-the-art SAT Solvers can solve problems with millions of clauses and vari-
ables. In these problems, it is crucial to efficiently detect if a propagation is possible,
or if a conflict has occurred. Hence, some research has been devoted to study which
data structures can be used in order to make as efficient as possible the processes of
the solver. The most important achievement in this field is the two-watched-literal
structure [MMZ+01], a data structure for the formula which allows a very efficient
unit propagation and conflicting clause detection. Another improvement is the use of
specific structure for representing the clauses of two literals, currently implemented
in most SAT Solvers.

2.4.6 Lemma Shortening

As an improvement of the conflict analysis process explained in Example 2.5, modern
SAT Solvers try to simplify the obtained lemma before learning it. This can be
done in different ways. In [SB09, Ass10] some different methods are experimentally
compared. Recently, Van Gelder presented a new method [VG11].

2.5 SMT Solvers

SAT Solver transition system can only deal with propositional logical problems.
Every NP problem can be reduced to such a problem in polynomial time. However,
pure SAT approaches has been shown to be inefficient for some kind of problems:
SMT, an extension of SAT for first-order logical problems, may be useful in these
cases.

In this section we define a transition system for solving a formula whose clauses
contain not only Boolean literals, but also atoms coming from some Theories. A
theory is a set of closed first-order formulas. A formula F is T -satisfiable if F ∧ T is
satisfiable in the first-order sense. Otherwise, it is called T -unsatisfiable.

As before, a partial assignment A will sometimes also be seen as a conjunction
of literals and hence as a formula. If A is a T -consistent partial assignment and it is
the (propositional) model of a formula F , then we say that A is a T -model of F . If
F and G are formulas, then F entails G in T , if F ∧G is T -inconsistent. If F entails

2.5. SMT Solvers 27

G in T and vice versa, we say that F and G are T -equivalent. A theory lemma is a
clause entailed in T by the empty formula.

The problem consisting of finding a T -model for a formula F is called Satisifabil-
ity Modulo Theories or simply SMT. Programs for solving these problems are called
SMT Solvers.

2.5.1 SMT Solvers as Transition Systems

In this section we describe SMT solvers as a transition system; some of the rules are
equal to the CDCL-solvers case, other rules are slightly modified (T -Learn, T -Forget
and T -Backjump) and a new rule appears: T -Propagate. Let us define the transition
system’s rules:

Definition 2.9. The SMT system is the transition system SMT consisting of the
following eight transition rules.

UnitPropagate :

A || F, C ∨ l =⇒ A l || F, C ∨ l if

®

C is false in A,
l is undefined in A.

T -Propagate :

A || F =⇒ A l || F if







l is entailed in T by A,
l or l occurs in F.
l is undefined in A.

Decide :

A || F =⇒ A ld || F if

®

l or l occurs in a clause of F,
l is undefined in A.

Fail :

A || F, C =⇒ FailState if

®

C is false in A,
A contains no decision literals.

T -Backjump :

A ld B || F, C =⇒ A l′ || F, C if







C is false in A ld B, and
there exists a clause C ′ ∨ l′

entailed in T by F ∧C such that
C ′ is false in A,
l′ is undefined in A and
l′ or l′ occurs in F ∨A ld B.

T -Learn :

A || F =⇒ A || F, C if

®

each atom of C occurs in F ∨A,
C is entailed in T by F.

28 2. SAT Solving

T -Forget :

A || F, C =⇒ A || F if C is entailed in T by F.

Restart :

A || F =⇒ ∅ || F.

T -Learn and T -Forget behaves similarly to the CDCL case: however, the clause
added or removed is now entailed by F in the theory T whereas on CDCL it was
entailed in the propositional sense. Similarly, in T -Backjump, the backjump clause
is entailed in T instead of in the propositional sense.

The new rule, T -Propagate, is similar to the unit propagation in the propositional
context: the solver adds to the assignment the literals that must be true (due to the
theory) in the current assignment.

2.5.2 SMT Solvers as SAT Solvers + Propagators

SMT Solvers considered in this document are composed of a SAT Solver engine that
deals with the propositional part of the problem and some propagators that deals
with the non-propositional part. The SAT Solver engine is very similar to modern
CDCL Solvers explained at Section 2.4. The three differences are listed here:

• The SAT Solver engine sends periodically the current assignment to the propa-
gators, and collect their propagations. If the assignment A is not T -consistent
for some theory, its propagator propagates l for some l ∈ A.

• In the conflict analysis, if some literal was propagated for a propagator, the
solver demands to it an explaination or reason, that is, a theory lemma such
that, if added, the literal would be entailed by unit propagation. This clause
is used in the usual conflict analysis step of the SAT Solver.

• When the SAT Solver backjumps or restarts, the propagator must return to
the previous state.

Therefore, the propagators must perform these actions: T -propagate an assign-
ment and give explainations to the literals previously propagated. T -propagation
must be incrementally done: this means that the propagator must save the current
state, and update it when the SAT solver sends the new assignment due to new
decisions, unit propagations, backjumps or restarts.

There are some theories where T -Propagate is very costly. For efficiency reasons,
the frequency which T -propagations are demanded depends of the cost of this op-
eration: in the easy cases, the SAT Solver will frequently sends the assignment to
the theory, whereas on more complicated (and costly) theories, it will happens with
less frequency. Section 5.2 contains two detailed examples of propagators for SMT
Solvers.

3
Encoding Cardinality

Constraints into SAT

3.1 Introduction

This section1 presents a new encoding into SAT of cardinality constraints, that is,
constraints of the form x1 + · · · + xn # k, where k is a natural number, the xi are
Boolean (0/1) variables, and the relation operator # belongs to {<,>,�,�,=}.

Cardinality constraints are present in many practical SAT applications, such
as cumulative scheduling [SFSW09] or timetabling [AAN12]; or are part of some
SAT technique, such as some encodings of All-Different constraints (see Section
7.5.2). They are also present in MaxSAT problems [AM06], since these problems
can be solved adding a cardinality constraint (see Section 5.4.1); or are part of some
MaxSAT techniques, as in Fu &Malik algorithm [FM06] (and some other algorithms
based on it).

Here we are interested in encoding a cardinality constraint C with a clause set
S (possibly with auxiliary variables) that is not only equisatisfiable, but also arc-
consistent : given a partial assignment A, if xi is true (false) in every extension of
A satisfying C, then unit propagating A on S sets xi to true (false)2. Enforcing
arc-consistency by unit propagation in this way has of course an important positive
impact on the practical efficiency of SAT solvers.

A straightforward encoding of a cardinality constraint x1 + · · · + xn � k is
to state, for each subset Y of {x1, . . . , xn} with |Y | = k + 1, that at least one
variable of Y must be false. This can be done by asserting

 n
k+1

clauses of the form

y1 ∨ . . . ∨ yk+1. This kind of construction frequently works well, although it is of
course not reasonable for large n and k. Therefore, successively more sophisticated

1A paper based on this chapter, named “A Smaller and Better Encoding for Cardinality Con-
straints”, has been submited in the SAT Conference 2013

2Sometimes this notion is called generalized arc-consistency.

29

30 3. Encoding Cardinality Constraints into SAT

encodings using auxiliary variables and requiring fewer clauses have been defined.
But still, for small n and k the straightforward encodings may behave better in
practice. An additional issue is that, for the efficiency of the SAT solver, the choice
of the right trade-off between minimizing either the number of auxiliary variables or
the number of clauses is highly application-dependent.

Here we build upon previous work on Cardinality Networks of [ANORC09,
ANORC11b], although the concepts are applicable as well to, for example, the
Pairwise Cardinality Networks of [CZI10]. The idea is to get the best of several
worlds: we develop an arc-consistent encoding that, by recursively decomposing the
constraint into smaller ones, allows us to decide which encoding to apply to each
sub-constraint. This process minimizes a function λ·num vars+num clauses, where
the parameter λ is user-defined. Our experimental evaluation shows that (e.g., for
λ = 5) this new technique produces much smaller encodings in variables and clauses,
and also strongly improves the performance of SAT solvers.

The starting point is the encoding based on sorting networks [Bat68] for input
variables (x1 . . . xn) and output (y1 . . . yn). It consists of a set of clauses (and auxil-
iary variables) such that the output variables become ordered decreasingly, i.e., an
output variable yk will become true by unit propagation using the clauses if and only
if there are at least k true input variables, and false iff there are at least n − k + 1
false ones. Sorting networks are used in, e.g., MiniSAT+ [ES06] to encode cardinal-
ity constraints: to express x1 + · · ·+ xn � k, it clearly suffices to add a unit clause
yk; similarly, for x1 + · · ·+ xn � k one adds yk+1, and both unit clauses are added
if the relation is =. Sorting networks require O(n log2 n) clauses and auxiliary vari-
ables. The Cardinality Networks of [ANORC09, CZI10, ANORC11b] reduce this to
O(n log2 k), which is important since usually n ≫ k, and moreover, for the relations
� and �, the number of clauses is halved (see Section 3.2 below).

All these networks can be built by recursive combinations of sorting networks and
merging networks, the latter ones performing a sorted merge of two already sorted
lists of variables. However, these constructions assume that the number of outputs
m is a power of two and the number of inputs is a multiple of m, which requires one
to add useless dummy variables and outputs. Here, as a first step, in Section 3.3, we
improve on this by building these components for arbitrary-sized inputs and outputs.
After that, in Section 3.4 different direct encodings for both cardinality networks and
for merging networks are given. Then, in Section 3.5, we show that both types of
encodings can be combined in a flexible way (somewhat similar to the enhancement
of quicksort [Sed78] using insertion sort for short arrays). That combination is done
minimizing a function λ · num vars + num clauses for any value of the user-defined
parameter λ. Finally, extensive experimental evidence for the practical relevance of
our techniques is given in Section 3.6. We conclude in Section 3.7.

3.2. Preliminaries 31

3.2 Preliminaries

In this chapter we describe a method for producing cardinality networks that gen-
eralizes the construction of [ANORC11b]. The core idea of these approaches, which
dates back to [Bat68], consists in encoding a circuit that implements mergesort
by means of a set of clauses. The most basic components of these circuits are
2-comparators.

A 2-comparator is a sorting network of size 2, i.e., it has 2 input variables (x1
and x2) and 2 output variables (y1 and y2) such that y1 is true if and only if at least
one of the input variables is true (i.e., it is the maximum or their disjunction), and
y2 is true if and only if both two input variables are true (i.e., it is the minimum or
their conjunction):

x1 → y1, x2 → y1, x1 ∧ x2 → y2,
x1 → y2, x2 → y2, x1 ∧ x2 → y1.

As pointed out in [ANORC11b], for encoding �-constraints, only the three
clauses on the first row are needed to guarantee arc-consistency. The three clauses on
the second row suffice for �-constraints and all six must be present when encoding
=-constraints.

In the following, 2-comparators are denoted by (y1, y2) = 2-Comp(x1, x2). An
alternative common graphical representation of 2-comparators, from [CSRL01], is
shown in Figure 3.1.

x1
x2

y1
y2

Figure 3.1: A 2-comparator.

3.3 Cardinality Networks of Arbitrary Size

In this section we improve the recursive construction of cardinality networks given
in [ANORC11b] by allowing inputs and outputs of any size, not necessarily a power
of two. Not only does this avoid adding dummy variables that are not actually
needed, but also becomes useful when combining with the direct (non-recursive)
constructions of Section 3.4.

In what follows, we denote by ⌊r⌋ and ⌈r⌉ the floor and ceiling functions respec-
tively. Moreover, for simplicity, we will assume that the constraint to be encoded
is a �-constraint. However, similar constructions for the other constraints can be
devised.

32 3. Encoding Cardinality Constraints into SAT

3.3.1 Merge Networks

A merge network takes as input two (decreasingly) ordered sets of sizes a and b and
produces a (decreasingly) ordered set of size a + b. We can build a merge network
with inputs (x1, . . . , xa) and (x′

1, . . . , x
′
b) in a recursive way as follows3:

• If a = b = 1, a merge network is a 2-comparator:

Merge(x1;x
′
1) := 2-Comp(x1, x

′
1).

• If a = 0, a merge network returns the second input:

Merge(;x′
1, x

′
2, . . . , x

′
b) := (x′

1, x
′
2, . . . , x

′
b).

• If a and b are even, a > 0, b > 0 and either a > 1 or b > 1, let us define

(z1, z3, . . . , za−3, za−1,
za+1, za+3, . . . , za+b−1)

=
Merge(x1, x3, . . . , xa−1;
x′
1, x

′
3, . . . , x

′
b−1),

(z2, z4, . . . , za−2, za,
za+2, za+4, . . . , za+b)

=
Merge(x2, x4, . . . , xa;
x′
2, x

′
4, . . . , x

′
b),

(y2, y3) = 2-Comp(z2, z3),
(y4, y5) = 2-Comp(z4, z5),

. . .
(ya+b−2, ya+b−1) = 2-Comp(za+b−2, za+b−1).

Then,

Merge(x1, x2, . . . , xa;x
′
1, x

′
2, . . . , x

′
b) := (z1, y2, y3, . . . , ya+b−1, za+b).

• If a is even, b is odd, a > 0, b > 0 and either a > 1 or b > 1, let us define

(z1, z3, . . . , za−1,
za+1, za+3, . . . , za+b)

=
Merge(x1, x3, . . . , xa−1;
x′
1, x

′
3, . . . , x

′
b),

(z2, z4, . . . , za, za+2,
za+4, . . . , za+b−1)

=
Merge(x2, x4, . . . , xa;
x′
2, x

′
4, . . . , x

′
b−1),

(y2, y3) = 2-Comp(z2, z3),
(y4, y5) = 2-Comp(z4, z5),

. . .
(ya+b−1, ya+b) = 2-Comp(za+b−1, za+b).

Then,

Merge(x1, x2, . . . , xa;x
′
1, x

′
2, . . . , x

′
b) := (z1, y2, y3, . . . , ya+b−1, ya+b).

3Notice we use the notation Merge(X;X ′) instead of Merge((X), (X ′)) for simplicity.

3.3. Cardinality Networks of Arbitrary Size 33

• If a and b are odd, a > 0, b > 0 and either a > 1 or b > 1, let us define

(z1, z3, . . . , za−2, za,
za+1, za+3, . . . , za+b)

=
Merge(x1, x3, . . . , xa;
x′
1, x

′
3, . . . , x

′
b),

(z2, z4, . . . , za−3, za−1,
za+2, za+4, . . . , za+b−1)

=
Merge(x2, x4, . . . , xa−3, xa−1;
x′
2, x

′
4, . . . , x

′
b−1),

(y2, y3) = 2-Comp(z2, z3),
(y4, y5) = 2-Comp(z4, z5),

. . .
(ya+b−2, ya+b−1) = 2-Comp(za+b−2, za+b−1).

Then,

Merge(x1, x2, . . . , xa;x
′
1, x

′
2, . . . , x

′
b) := (z1, y2, y3, . . . , ya+b−1, za+b).

• The remaining cases are defined thanks to the symmetry of the merge function,
i.e., due to Merge(X;X ′) = Merge(X ′;X).

The base cases do not require any explanation. Regarding the recursive ones,
first notice that the set of values x1, x2, . . . , xa, x

′
1, x

′
2, . . . , x

′
b is always preserved.

Further, the output bits are sorted, as z2i ≥ z2(i+1), z2i ≥ z2(i+1)+1, z2i+1 ≥ z2(i+1)
and z2i+1 ≥ z2(i+1)+1 imply that min(z2i, z2i+1) ≥ max(z2(i+1), z2(i+1)+1).

Figures 3.2, 3.3 and 3.4 show examples of some of these recursive cases. The left
side of these figures contain the recursive definition of the network. On the right,
the recursive networks are substituted for all the 2-comparators. The same pattern
will be followed in the rest of the section.

x′
2

x′
1

x4

x3

x2

x1

z6
z6

z5

z4

z3

z2
z1

z1

y5

y4

y3

y2

Merge2,1Merge2,1

x′
2

x′
1

x4

x3

x2

x1

z6
z6

z5

z4

z3

z2
z1

z1

y5

y4

y3

y2

Figure 3.2: A (2.4)-merge network.

The number of auxiliary variables and clauses of a merge network defined in this
way can be recursively computed. A merge network with inputs of size (1, 1) needs 2
variables and 3 clauses. A merge network with inputs of size (0, b) needs no variables
and clauses. A merge network with inputs of size (a, b) with a > 1 or b > 1 needs

V1 + V2 + 2

õ

a+ b− 1

2

û

34 3. Encoding Cardinality Constraints into SAT

x′
3

x′
2

x′
1

x4

x3

x2

x1

z7

z6

z5

z4

z3

z2
z1

z1

y7

y6

y5

y4

y3

y2

Merge2,1 Merge2,2

x′
3

x′
2

x′
1

x4

x3

x2

x1

z7

z6

z5

z4

z3

z2
z1

z1

y7

y6

y5

y4

y3

y2

Figure 3.3: A (3,4)-merge network.

x5

x′
3

x′
2

x′
1

x4

x3

x2

x1

z8
z8

z7

z6

z5

z4

z3

z2
z1

z1

y7

y6

y5

y4

y3

y2

Merge2,1 Merge3,2

x5

x′
3

x′
2

x′
1

x4

x3

x2

x1

z8
z8

z7

z6

z5

z4

z3

z2
z1

z1

y7

y6

y5

y4

y3

y2

Figure 3.4: A (3,5)-merge network.

variables, and

C1 + C2 + 3

õ

a+ b− 1

2

û

clauses, where V1 and C1 are the number of variables and clauses needed in a merge
network with inputs of size

Äa
2

,
†

b
2

£ä

, and V2, C2 are the number of variables and

clauses needed in a merge network with inputs of size
Äa
2

,
ö

b
2

ùä

.

3.3.2 Sorting Networks

A sorting network takes an input of size n and sorts it. It can be built in a recursive
way as follows, using the same strategy as in mergesort:

• If n = 1, the output of the sorting network is its input:

Sorting(x1) := x1

• If n = 2, a sorting network is a single merge (i.e., a 2-comparator):

Sorting(x1, x2) := Merge(x1;x2).

3.3. Cardinality Networks of Arbitrary Size 35

• For n > 2, take l with 1 � l < n: Let us define

(z1, z2, . . . , zl) = Sorting(x1, x2, . . . , xl),
(zl+1, zl+2, . . . , zn) = Sorting(xl+1, xl+2, . . . , xn),

(y1, y2, . . . , yn) = Merge(z1, z2, zl; zl+1, . . . , zn).

Then,

Sorting(x1, x2, . . . , xn) := (y1, y2, . . . , yn).

In this way, we can build sorting networks of any size in a recursive way. Moreover,
the two recursive sorting networks can be of any size. Note that in [ANORC11b], l
was always chosen to be n/2. Figure 3.5 shows an example of these sorting networks.

x7

x6

x5

x4

x3

x2

x1

z7

z6

z5

z4

z3

z2

z1

y7

y6

y5

y4

y3

y2

y1

SN2

SN5

Merge5,2

x7

x6

x5

x4

x3

x2

x1

z7

z6

z5

z4

z3

z2

z1

y7

y6

y5

y4

y3

y2

y1

Figure 3.5: A sorting network of size 7 composed by sorting networks of size 2 and
5.

As in the previous section, the number of auxiliary variables and clauses needed
in this networks can be recursively computed. A sorting network of size 1 needs no
variables and clauses. A sorting network of size 2 needs 2 variables and 3 clauses.
A sorting network of size n composed by a sorting network of size l and a sorting
network of size n− l needs V1 + V2 + V3 variables and C1 + C2 + C3 clauses, where
(V1, C1), (V2, C2) are the number of variables and clauses used in the sorting networks
of size l and n − l, and (V3, C3) are the number of variables and clauses needed in
the merge network with input of sizes (l, n− l).

3.3.3 Simplified Merges

A simplified merge is a reduced version of a merge, used when we are only interested
in some of the outputs, but not all. Recall that we want to encode a constraint of
the form x1+ . . .+xn � k, and hence we are only interested in the first k+1 bits of
the sorted output. Thus, in a c-simplified merge network, the inputs are two sorted
sequences of variables (x1, x2, . . . , xa;x

′
1, x

′
2, . . . , x

′
b), and the network produces a

sorted output of the desired size, c, (y1, y2, . . . , yc). The network satisfies that yr is

36 3. Encoding Cardinality Constraints into SAT

true if there are at least r true inputs4. We can build a recursive simplified merge
as follows:

• If a = b = c = 1, a simplified merge network can be defined as follows:

SMerge1(x1;x
′
1) := y,

adding the clauses x1 → y, x′
1 → y.

• If a > c, we can ignore the last a− c bits of the first input (the same happens
if b > c):

SMergec(x1, x2, . . . , xa;x
′
1, . . . , x

′
b) = SMergec(x1, x2, . . . , xc;x

′
1, . . . , x

′
b).

• If a+ b � c, the simplified merge is a merge:

SMergec(x1, . . . , xa;x
′
1, . . . , x

′
b) = Merge(x1, . . . , xa;x

′
1, . . . , x

′
b).

• If a, b � c, a+ b > c and c is even: Let us define

(z1, z3, . . . , zc+1) = SMergec/2+1(x1, x3, . . . ;x
′
1, x

′
3, . . .),

(z2, z4, . . . , zc) = SMergec/2(x2, x4, . . . ;x
′
2, x

′
4, . . .),

(y2, y3) = 2-Comp(z2, z3),
(y4, y5) = 2-Comp(z4, z5),

. . .
(yc−2, yc−1) = 2-Comp(zc−2, zc−1).

Then,

SMergec(x1, x2, . . . , xa;x
′
1, x

′
2, . . . , x

′
b) := (z1, y2, y3, . . . , yc),

adding the clauses zc → yc, zc+1 → yc.

• If a, b � c, a+ b > c and c > 1 is odd: Let us define

(z1, z3, . . . , zc) = SMerge c+1
2
(x1, x3, . . . ;x

′
1, x

′
3, . . .),

(z2, z4, . . . , zc−1) = SMerge c−1
2
(x2, x4, . . . ;x

′
2, x

′
4, . . .),

(y2, y3) = 2-Comp(z2, z3),
(y4, y5) = 2-Comp(z4, z5),

. . .
(yc−1, yc) = 2-Comp(zc−1, zc).

Then,

SMergec(x1, x2, . . . , xa;x
′
1, x

′
2, . . . , x

′
b) := (z1, y2, y3, . . . , yc).

3.3. Cardinality Networks of Arbitrary Size 37

x7

x6

x5

x4

x3

x2

x1

z7

z6

z5

z4

z3

z2
z1

z1

y6

y5

y4

y3

y2

3-SMerge2,1 4-SMerge2,2

OR
x7

x6

x5

x4

x3

x2

x1

z7

z6

z5

z4

z3

z2
z1

z1

y6

y5

y4

y3

y2

OR

Figure 3.6: A 6-(4,3) simplified merge network.

x6

x5

x4

x3

x2

x1

z5

z4

z3

z2
z1

z1

y5

y4

y3

y2

2-SMerge2,1 3-SMerge2,1

x6

x5

x4

x3

x2

x1

z5

z4

z3

z2
z1

z1

y5

y4

y3

y2

OR

Figure 3.7: A 5-(4,2) simplified merge network.

Figures 3.6 and 3.7 show two examples of simplified merges: The first one shows
a 6-simplified merge with inputs of sizes 3 and 4. The second one corresponds to a
5-simplified merge with inputs of sizes 2 and 4.

We can recursively compute the auxiliary variables and clauses needed in these
simplified merge networks. In the recursive case, we need V1+V2+c−1 variables and
C1+C2+C3 clauses, where (V1, C1), (V2, C2) are the number of clauses and variables
needed in simplified merge networks of sizes

Äa
2

,
†

b
2

£

,
 c
2

+ 1
ä

,
Äa
2

,
ö

b
2

ù

,
 c
2

ä

,
and

C3 =

3c−3
2 if c is odd,

3c−2
2 + 2 if c is even.

3.3.4 m-Cardinality Networks

An m-cardinality network takes an input of size n and outputs the first m sorted
bits. In a recursive way, an m-cardinality network with input x1, x2, . . . , xn can be
defined as follows:

• If n � m, a cardinality network is a sorting network:

Cardm(x1, x2, . . . , xn) := Sorting(x1, x2, . . . , xn).

4Notice that simplified merges for � constraints satisfy that yr is false if there are at least
a+ b+ 1− r false inputs. The other networks behave similarly.

38 3. Encoding Cardinality Constraints into SAT

• If n > m, take l with 1 � l < n. Let us define

(z1, z2, . . . , zA) = Cardm(x1, x2, . . . , xl),
(z′1, z

′
2, . . . , z

′
B) = Cardm(xl+1, xl+2, . . . , xn),

(y1, y2, . . . , ym) = SMergem(z1, z2, . . . , zA; z
′
1, z

′
2, . . . , z

′
B),

where A = min{l,m} and B = min{n− l,m}. Then,

Cardm(x1, x2, . . . , xn) := (y1, y2, . . . , ym).

x7

x6

x5

x4

x3

x2

x1

z′2

z′1

z3

z2

z1

y3

y2

y1

3-CN2

3-CN5

3-SMerge3,2

x7

x6

x5

x4

x3

x2

x1

z′2

z′1

z3

z2

z1

y3

y2

y1
OR

OR

OR

OR

Figure 3.8: A 3-cardinality network of size n = 7.

Figure 3.8 shows a 3-cardinality network of input size 7, composed by a 3-cardinality
network of input size 5 and a 3-cardinality network of input size 2 (this is, a sorting
network) and a 3-simplified merge.

Again, the number of auxiliary variables and clauses needed in these networks
can be recursively computed. An m-cardinality network of size n composed by an
m-cardinality network of size l and an m-cardinality network of size n − l needs
V1 + V2 + V3 variables and C1 + C2 + C3 clauses, where (V1, C1), (V2, C2) are the
number of variables and clauses used in the m-cardinality networks of sizes l and
n−l, and (V3, C3) are the number of variables and clauses needed in the m-simplified
merge network with inputs of sizes (min{l,m},min{n− l,m}).

With the same techniques used in [ANORC11b], one could easily prove the arc-
consistency of the encoding.

Theorem 3.1. The Recursive Cardinality Network encoding is arc-consistent: con-
sider a cardinality constraint x1+ . . .+xn � k, its corresponding cardinality network
(y1, y2, · · · , yk+1) = Cardk+1(x1, x2, . . . , xn), and the unit clause yk+1. If we now
set to true k input variables, then unit propagation sets to false the remaining n− k
input variables.

3.4 Direct Cardinality Networks

In this section we introduce an alternative technique for building cardinality net-
works which we call direct, as it is non-recursive. This method uses many fewer

3.4. Direct Cardinality Networks 39

auxiliary variables than the recursive approach explained in Section 3.3. On the
other hand, the number of clauses of this construction makes it competitive only
for small sizes. However, this is not a problem as we will see in Section 3.5, since a
combination of the two techniques is possible.

As in the recursive construction described in Section 3.3, the building blocks of
direct cardinality networks are merge, sorting and simplified merge networks:

• Merge Networks. If a or b are 0, they are defined as in Section 3.3.1. If not,
they are defined as follows:

Merge(x1, x2, . . . , xa;x
′
1, x

′
2, . . . , x

′
b) := (y1, y2, y3, . . . , ya+b−1, ya+b),

with clauses

{xi → yi, x′
j → yj , xi ∧ x′

j → yi+j : 1 � i � a, 1 � j � b}.

Notice we need a+ b variables and ab+ a+ b clauses.

• Sorting Networks. The case n = 1 is defined as in Section 3.3.2. The case
n > 1 can be built as follows:

Sorting(x1, x2, . . . , xn) := (y1, y2, . . . , yn),

with clauses

{xi1 ∧ xi2 ∧ · · · ∧ xik → yk : 1 � k � n, 1 � i1 < i2 < · · · < ik � n}.

Therefore, we need n auxiliary variables and 2n − 1 clauses.

• Simplified Merge Networks. The definition of c-simplified merge is the
same as in Section 3.3.3, except for the cases in which a, b � c and a+ b > c,
where:

SMergec(x1, x2, . . . , xa;x
′
1, x

′
2, . . . , x

′
b) := (y1, y2, . . . , yc),

with clauses

{xi → yi, x′
j → yj , xi ∧ x′

j → yi+j : 1 � i � a, 1 � j � b, i+ j � c}.

This approach needs c variables and (a+ b)c− c(c−1)
2 − a(a−1)

2 − b(b−1)
2 clauses.

40 3. Encoding Cardinality Constraints into SAT

• m-Cardinality Networks. The definition is the same as in Section 3.3.4,
except for the case n > m, where:

Cardm(x1, x2, . . . , xn) := (y1, y2, . . . , ym)

with clauses

{xi1 ∧ xi2 ∧ · · · ∧ xik → yk : 1 � k � m, 1 � i1 < i2 < · · · < ik � n}.

This approach needs m variables and
n
1

+

n
2

+ · · ·+ n

m

clauses.

As regards the arc-consistency of the encoding, the following result can be easily
proved:

Theorem 3.2. The Direct Cardinality Network encoding is arc-consistent.

3.5 Combining Recursive and Direct Networks

The recursive approach produces shorter networks than the direct approach when
the input is middle-sized. However, the recursive method for building a network
needs to inductively produce networks for smaller and smaller input sizes. At some
point, the networks we need have a sufficiently small number of inputs such that the
direct method can build them using fewer clauses and variables than the recursive
approach. In this section a mixed encoding is presented: large cardinality networks
are build with the recursive approach but their components are produced with the
direct approach when their size is small enough.

In more detail, assume a merge of input sizes a and b is needed. We can use the
direct approach, which needs VD = a + b auxiliary variables and CD = ab + a + b
clauses; or we could use the recursive approach. With the recursive approach, we
have to built two merge networks of sizes

Äa
2

,
†

b
2

£ä

and
Äa
2

,
ö

b
2

ùä

. These networks
are also built with this mixed approach. Then, we compute the clauses and variables
needed in the recursive approach, VR and CR, with the formula of Section 3.3.1:

VR = V1 + V2 + 2

õ

a+ b− 1

2

û

,

CR = C1 + C2 + 3

õ

a+ b− 1

2

û

,

where (V1, C1) and (V2, C2) are, respectively, the number of variables and clauses
needed in the recursive merge networks.

Finally, we compare the values of VR, VD, CR and CD, and decide which method
is better for building the merge network. Notice that we cannot minimize both
the number of variables and clauses; therefore, here we try to minimize the func-
tion λ · V + C, for some fixed value λ > 0. The parameter λ allows us to adjust
the relative importance of the number of variables with respect to the number of

3.6. Experimental Evaluation 41

clauses of the encoding. Notice that this algorithm for building merge networks (and
similarly, sorting, simplified merge and cardinality networks) can easily be imple-
mented with dynamic programming. See Section 3.6 for an experimental evaluation
of the numbers of variables and clauses in cardinality networks built with this mixed
approach.

3.6 Experimental Evaluation

In previous work [ANORC11b], it was shown that power-of-two (Recursive) Cardi-
nality Networks were superior to other well-known methods such as Sorting Net-
works [ES06], Adders [ES06] and the BDD-based encoding of [BBR06b]. In what
follows we will show that the generalization of Cardinality Networks to arbitrary size
and their combination with Direct Encodings, yielding what we have called here the
Mixed approach, makes them significantly better.

We start the evaluation focusing on the size of the resulting encoding. In Fig-
ure 3.9 we show the size, in terms of variables and clauses, of the encoding of a
cardinality network with input size 100 and varying output size m.

It can be seen that, since we minimize the function λ · V + C, where V is the
number of variables and C the number of clauses, the bigger λ is, the fewer variables
we obtain, at the expense of a slight increase in the number of clauses. Also, it can be
seen that using power-of-two Cardinality Networks, as it was done in [ANORC11b]
is particularly harmful when m is slightly larger than a power of two.

Although having a smaller encoding is beneficial, this should be accompanied
with a reduction in SAT solver runtime. Hence, let us now move to assess how our
new encoding affects the performance of SAT solvers. Since, as we showed, power-of-
two Recursive Cardinality Networks were shown to be superior to other methods we
will only compare Mixed with the former. However, we want to point out that the
ideas underlying our novel encoding could also be applied to the Pairwise Cardinality
Networks of [CZI10], which introduce another variant of Cardinality Networks.

The SAT solver we have used is Lingeling version ala, a state-of-the-art CDCL
(Conflict-Driven Clause Learning) SAT solver that implements several inprocessing
and preprocessing techniques. All experiments were conducted on a 2Ghz Linux
Quad-Core AMD with the three following sets of benchmarks:

1.-MSU4 suite. These benchmarks are intermediate problems generated by an
implementation of the msu4 algorithm [MSP08], which reduces a Max-SAT problem
to a series of SAT problems with cardinality constraints. The msu4 implementation
was run of a variety of problems (filter design, logic synthesis, minimum-size test
pattern generation, haplotype inference and maximum-quartet consistency) from the
Partial Max-SAT division of the Third Max-SAT evaluation5. The suite consists of
about 14000 benchmarks, each of which contains multiple �-cardinality constraints.

5
See http://www.maxsat.udl.cat/08/index.php?disp=submitted-benchmarks.

42 3. Encoding Cardinality Constraints into SAT

Recursive with power-of-two size
Recursive, arbitrary size
Mixed, λ = 0.5
Mixed, λ = 5
Mixed, λ = 30

m

V
a
r
ia
b
le
s

10 20 40

1000

2000

Recursive with power-of-two size
Recursive, arbitrary size
Mixed, λ = 0.5
Mixed, λ = 5
Mixed, λ = 30

m

C
la
u
s
e
s

10 20 40

2000

4000

Figure 3.9: Variables and clauses generated byMixed and the Recursive Cardinality
Networks approaches for encoding cardinality networks of input size 100 and different
output sizes m.

3.6. Experimental Evaluation 43

Speed-up factor of Mixed Slow-down factor of Mixed
Suite TO 4 2 1.5 TOT. 1.5 2 4 TO TOT.

MSU4 43 732 2957 1278 5010 1 23 13 11 48

DES 12 21 265 638 936 6 12 7 46 71

Tomography 121 387 407 174 1089 64 82 159 121 426

Table 3.1: Comparison in terms of SAT solver runtime. Numbers indicate number
of benchmarks in which Mixed showed the corresponding speed-up or slow-down
factor w.r.t. power-of-two Recursive Cardinality Networks.

2.-Discrete-event system diagnosis suite. The second set of benchmarks we
have used is the one introduced in [AG09]. These problems come from discrete-event
system (DES) diagnosis. As it happened with the Max-SAT problems, a single DES
problem produced a family of “SAT + cardinality constraints” problems. This way,
out of the roughly 600 DES problems, we obtained a set of 6000 benchmarks, each
of which contained a single very large �-cardinality constraint.

3.-Tomography suite. The last set of benchmarks we have used is the one in-
troduced in [BB03a]. The idea is to first generate an N × N grid in which some
cells are filled and some others are not. The problem consists in finding out which
are the filled cells using only the information of how many filled cells there are in
each row, column and diagonal. For that purpose, variables xij are used to indicate
whether cell (i, j) is filled and several =-cardinality constraints are used to impose
how many filled cells there are in each row, column and diagonal. We generated
2600 benchmarks (100 instances for each grid size N = 15 . . . 40).

Results are summarized6 in Table 3.1, which presents a comparison of theMixed
(with λ = 5) encoding with respect to the power-of-two Recursive Cardinality Net-
works of [ANORC11b]. The time limit was set to 600 seconds per benchmark and we
only considered benchmarks for which at least one of the methods took more than 5
seconds. Columns indicate in how many benchmarks the Mixed encoding exhibits
the corresponding speed-up or slow-down factor. For example, the TO column for
the MSU4 suite indicates that in 43 benchmarks, Recursive Cardinality Networks
timed out whereas our new encoding did not. The columns next to it indicate that
in 732 benchmarks the novel encoding was at least 4 times faster, in 2957 between
2 and 4 times faster, etc.

We can see from the table that in all three suites the new encoding clearly
outperforms Recursive Cardinality Networks. The difference is larger in the MSU4
and the Tomography suites, which contain benchmarks coming from real-world
application. In the Tomography suite, where benchmarks are more hand-crafted,
the difference is still significant.

6See http://www.lsi.upc.edu/~oliveras/espai/detailed-SAT13.ods for detailed results.

44 3. Encoding Cardinality Constraints into SAT

3.7 Conclusions and Future Work

We have introduced a new method for encoding cardinality constraints. Experimen-
tal results show that the method needs many fewer variables than the state-of-the-art
method for encoding these constraints, while the number of clauses may increase in
a controlled way. This reduction also yields significant speedups in the performance
of SAT solvers.

As regards future work, we plan to combine non-recursive cardinality networks
with other recursive approaches, for example the introduced in [CZI10], and compare
the resulting mixed methods with the one described here.

Another line of research is to develop encoding techniques for cardinality con-
straints that do not process constraints one-at-a-time but simultaneously, in order to
exploit their similarities. We foresee that the flexibility of the recursive cardinality
networks presented here with respect to the original construction in [ANORC11b],
will open the door to sharing the internal networks among the different cardinality
constraints present in a SAT problem.

4
Encoding Pseudo-Boolean

Constraints into SAT

4.1 Introduction

This section1 deals with Pseudo-Boolean constraints (PB constraints for short), that
is, constraints of the form a1x1 + · · · + anxn # K, where the ai and K are integer
coefficients, the xi are Boolean (0/1) variables, and the relation operator # belongs
to {<,>,�,�,=}. We will assume that # is � and the ai and K are positive since
other cases can be easily reduced to this one (see [ES06]).

Such a constraint (� with positive coefficients) is a Boolean function

C : {0, 1}n → {0, 1}

that is monotonic decreasing in the sense that any solution for C remains a solution
after flipping inputs from 1 to 0. Therefore these constraints can be expressed by
a set of clauses with only negative literals. For example, each clause could simply
define a (minimal) subset of variables that cannot be simultaneously true. Note
however that not every such a monotonic function is a PB constraint. For example,
the function expressed by the two clauses x1∨x2 and x3∨x4 has no (single) equivalent
PB constraint a1x1 + · · · + a4x4 � K (since without loss of generality a1 � a2 and
a3 � a4, and then also x1∨x3 is needed). Hence, even among the monotonic Boolean
functions, PB constraints are a rather restricted class [Sma07].

PB constraints are omnipresent in practical SAT applications, not just in typical
0-1 linear integer problems, but also as an ingredient in new SAT approaches to, e.g.,
cumulative scheduling [SFSW09], logic synthesis [ARMS02] or verification [BLS02],

1Based in the paper “BDDs for Pseudo-Boolean Constraints - Revisited” [ANORC11a] from
the SAT 2011 conference and the article “A New Look at BDDs for Pseudo-Boolean Con-
straints” [ANO+] from the JAIR.

45

46 4. Encoding Pseudo-Boolean Constraints into SAT

so it is not surprising that a significant number of SAT encodings for these constraints
have been proposed in the literature. Here we are interested in encoding a PB
constraint C by a clause set S (possibly with auxiliary variables) that is not only
equisatisfiable, but also arc-consistent.

To our knowledge, the only polynomial arc-consistent encoding so far was given
at [BBR09]. Some other existing encodings are based on building (forms of) Binary
Decision Diagrams (BDDs) and translating these into CNF. Although the approach
[BBR09] is not BDD-based, our main motivation to revisit BDD-based encodings is
the following:

Example 4.1. Let us consider two Pseudo-Boolean constraints: 3x1+2x2+4x3 � 5
and 30001x1+19999x2+39998x3 � 50007. Both are clearly equivalent: the Boolean
function they represent can be expressed, for instance, by the clauses x1 ∨ x3 and
x2 ∨x3. However, encodings like the one at [BBR09] heavily depend on the concrete
coefficients of each constraint, and generate a significantly larger SAT encoding for
the second one. Since, given a variable ordering, ROBDDs are a canonical repre-
sentation for Boolean functions [Bry86], i.e., each Boolean function has a unique
ROBDD, a ROBDD-based encoding will treat both constraints equivalently.

Another reason for revisiting BDDs is that in practical problems numerous PB
constraints exist that share variables among each other. Representing them all as a
single ROBDD has the potential of generating a much more compact SAT encoding
that is moreover likely to have better propagation properties.

As we have mentioned, BDD-based approaches have already been studied in the
literature. A good example is the work of MiniSAT+ [ES06], where an arc-consistent
encoding using six three-literals clauses per BDD node is given. However, when it
comes to study the BDD size, they cite at [BBR06a] to say “It is proven that in
general a PB-constraint can generate an exponentially sized BDD [BBR06a]”. In
Section 4.7 we explain why the approach of [BBR06a] does not use ROBDDs, and
prove that the example they use to show the exponentiality of their method turns out
to have polynomial ROBDDs. Somewhat surprisingly, probably due to the different
names that PB constraints receive (0-1 integer linear constraints, linear threshold
functions, weight constraints, knapsack constraints), the work explained at [HTY94]
has remained unknown to our research community. In that paper, it is proved that
there are PB constraints for which no polynomial-sized ROBDDs exist. For self-
containedness, and to bring this interesting result to the knowledge of our research
community, we include this family of PB constraints and prove that, regardless of
the variable ordering, the corresponding ROBDD will always have exponential size.

This chapter is organized as follows: Section 4.2 contains some basic notions
about Pseudo-Boolean constraints and BDDs. In Section 4.3 we introduce the no-
tion of interval of a Pseudo-Boolean constraint and construct the ROBDDs for some
families of constraints. In particular, an exponential example is presented, together
with some intuitive relation of the BDD size and the subset sum problem. Section
4.4 contains a method for avoiding the exponentiality of the BDDs. In Section 4.5

4.2. Preliminaries 47

x1

x2x2

x3x3x3x3

01

11
11

11

1

0
0

00

00

0

x1

x2x2

x3x3x3

01

11
1

11

1

0
0

0

00

0

x1

x2x2

x3

01

1

1
1

1

0

0
0

0

x1

x2

x3

01

1

1

1

0

0

0

Figure 4.1: Construction of a ROBDD for 2x1 + 3x2 + 5x3 � 6

a polynomial algorithm for constructing a ROBDD of a Pseudo-Boolean constraint.
In Section 4.6 a new method for encoding these ROBDDs into SAT is explained.
This method uses only two clauses per node and is valid for any monotonic func-
tion. Section 4.7 contains the related work and Section 4.8 evaluates experimentally
our methods with some other encoding methods and other Pseudo-Boolean Solvers.
Finally, we conclude in Section 4.9.

4.2 Preliminaries

PB constraints are constraints of the form a1x1 + · · · + anxn � K, where the ai
and K are integer coefficients and the xi are propositional variables. A particular
case of Pseudo-Boolean constraints is the one of cardinality constraints, in which all
coefficients ai are equal to 1.

Our main goal is to find CNF encodings for PB constraints. That is, given a
PB-constraint C, construct an equisatisfiable clause set (a CNF) S such that any
model for S restricted to the variables of C is a model of C and viceversa. Two
extra properties are sought: (i) consistency checking by unit propagation or simply
consistency : whenever a partial assignment A cannot be extended to a model for C,
unit propagation on S and A produces a contradiction (a literal l and its negation
l); and (ii) arc-consistency (again by unit propagation): given an assignment A that
can be extended to a model of C, but such that A ∪ {x} cannot, unit propagation
on S and A produces x. More concretely, we will use ROBDDs for finding such
encodings. ROBDDs are introduced by means of the following example.

Example 4.2. Figure 4.1 explains (one method for) the construction of a ROBDD
for the PB constraint 2x1+3x2+5x3 � 6 and the ordering [x1, x2, x3]. The root node
has as selector variable x1. Its false child represents the PB constraint assuming
x1 = 0 (i.e., 3x2 + 5x3 � 6) and its true child represents 2 + 3x2 + 5x3 � 6,
that is, 3x2 + 5x3 � 4. The two children have the next variable in the ordering
(x2) as selector, and the process is repeated until we reach the last variable in the
sequence. Then, a constraint of the form 0 � K is the True node (1 in the figure)
if K � 0 is positive, and the False node (0) if K < 0. This construction (leftmost

48 4. Encoding Pseudo-Boolean Constraints into SAT

in the figure), is known as an Ordered BDD. For obtaining a Reduced Ordered BDD
(ROBDD for short in the rest of the document), two reductions are applied until
fixpoint: removing nodes with identical children (as done with the leftmost x3 node
in the second BDD of the figure), and merging isomorphic subtrees, as done for x3
in the third BDD. The fourth final BDD is a fixpoint. A BDD where only the second
reduction is done is called quasi-reduced BDD. For a given ordering, ROBDDs are
a canonical representation of Boolean functions: each Boolean function has a unique
ROBDD. BDDs can be encoded into CNF by introducing an auxiliary variable a for
every node. If the selector variable of the node is x and the auxiliary variables for
the false and true child are f and t, respectively, add the if-then-else clauses:

x ∧ f → a x ∧ t → a f ∧ t → a
x ∧ f → a x ∧ t → a f ∧ t → a

In what follows, the size of a BDD is its number of nodes. We will say that a
BDD represents a PB constraint if they represent the same Boolean function. Given
an assignment A over the variables of a BDD, we define the path induced by A as
the path that starts at the root of the BDD and at each step, moves to the false
(true) child of a node if and only if its selector variable is false (true) in A.

4.3 Exponential ROBDDs for PB Constraints

In this section we study the size of ROBDDs for PB constraints. We start by defining
the notion of the interval of a PB constraint. Then, in Section 4.3.2 we consider
two families of PB constraints and study their ROBDD size: we first prove that
the example given at [BBR06a] has polynomial ROBDDs, and then we reproduce
the example of [HTY94] that has exponential ROBDDs regardless of the variable
ordering. Finally, we relate the ROBDD size of a PB constraint with the well-known
subset sum problem.

4.3.1 Intervals

Before formally defining the notion of interval of a PB constraint, let us first give
some intuitive explanation.

Example 4.3. Consider the constraint 2x1 + 3x2 + 5x3 � 6. Since no combination
of its coefficients adds to 6, the constraint is equivalent to 2x1 + 3x2 + 5x3 < 6, and
hence to 2x1+ 3x2 + 5x3� 5. This process cannot be repeated again since 5 can be
obtained with the existing coefficients.

Similarly, we could try to increase the right-hand side of the constraint. However,
there is a combination of the coefficients that adds to 7, which implies that the
constraint is not equivalent to 2x1 + 3x2 + 5x3 � 7. All in all, we can state that the
constraint is equivalent to 2x1 + 3x2 + 5x3 � K for any K ∈ [5, 6]. It is trivial to
see that the set of valid K’s is always an interval.

4.3. Exponential ROBDDs for PB Constraints 49

Definition 4.4. Let C be a constraint of the form a1x1 + · · · + anxn � K. The
interval of C consists of all integers M such that a1x1 + · · ·+ anxn � M , seen as a
Boolean function, is equivalent to C.
Similarly, given a ROBDD representing a PB constraint and a node ν with se-

lector variable xi,we will refer to the interval of ν as all the integers M such that
the constraint aixi + · · · anxn � M is represented (as a Boolean function) by the
ROBDD rooted at ν.

In the following, unless stated otherwise, the ordering used in the ROBDD will
be [x1, x2, . . . , xn].

Proposition 4.5. If [β, γ] is the interval of a node ν with selector variable xi then:

1. There is an assignment {xj = vj}nj=i such that aivi + · · ·+ anvn = β.

2. There is an assignment {xj = vj}nj=i such that aivi + · · ·+ anvn = γ + 1.

3. There is an assignment {xj = vj}i−1j=1 such that K−a1v1−a2v2−· · ·−ai−1vi−1 ∈
[β, γ]

4. Take h < β. There exists an assignment {xj = vj}nj=i such that aivi + · · · +
anvn > h and its path goes from ν to True.

5. Take h > γ. There exists an assignment {xj = vj}nj=i such that aivi + · · · +
anvn � h and its path goes from ν to False.

6. The interval of the True node is [0,∞).

7. The interval of the False node is (−∞,−1]. Moreover, it is the only interval
with negative values.

Proof. 1. Since β − 1 does not belong to the interval of ν, the constraints

aixi + ai+1xi+1 + · · ·+ anxn � β − 1
aixi + ai+1xi+1 + · · ·+ anxn � β

are different. This means that there is a partial assignment satisfying the
second one but not the first one.

2. The proof is analogous to the previous one.

3. Take a partial assignment {x1 = v1, . . . , xi−1 = vi−1} whose path goes from
the root to ν. Therefore, by definition of the ROBDD, ν is the ROBDD of the
constraint

aixi + ai+1xi+1 + · · ·+ anxn � K − a1v1 − · · · − ai−1vi−1.

Therefore, by definition of the interval of ν,

K − a1v1 − a2v2 − · · · − ai−1vi−1 ∈ [β, γ].

50 4. Encoding Pseudo-Boolean Constraints into SAT

4. Intuitively, this property states that, if h is not in the interval of ν, there is
an assignment that satisfies the ROBDD rooted at ν but not the constraint
aixi + · · ·+ anxn � h.

Since h does not belong to the interval of ν, the ROBDD of

C ′ : aixi + · · ·+ anxn � h

is not ν. Therefore, there exists an assignment that either

(i) goes from ν to False but satisfies C ′; or

(ii) goes to True but does not satisfy C ′.

We want to prove that the assignment satisfies (ii). Assume that it satisfies
(i). Since it goes from ν to False and β belongs to the interval of ν, it holds

aivi + · · ·+ anvn > β.

Since β > h, the assignment does not satisfy C ′, which is a contradiction.
Therefore, the assignment satisfies (ii).

5. Take the assignment of the second point of this proposition. Since γ + 1 does
not belong to the interval, the path of the assignment goes from ν to False.
Moreover, aivi + · · ·+ anvn = γ + 1 � h.

6. The True node is the ROBDD of the tautology. Therefore, it represents the
PB constraint 0 � h for h ∈ [0,∞).

7. The False node is the ROBDD of the contradiction. Therefore, represents the
PB constraint 0 � h for h ∈ (−∞,−1]. Moreover, aixi+ · · ·+anxn < 0 is also
a contradiction, hence that constraint is also represented by the False node.
Therefore, there is no other node with an interval with negative values.

We now prove that, given a ROBDD for a PB constraint, one can easily compute
the intervals for every node bottom-up. We first start with a motivating example.

Example 4.6. Let us consider again the constraint 2x1+3x2+5x3 � 6. Assume that
all variables appear in every path from the root to the leaves (otherwise, add extra
nodes as in the rightmost BDD of Figure 4.2). Assume now that we have computed
the intervals for the two children of the root (rightmost BDD in Figure 4.2). This
means that the false child of the root is the BDD for 3x2 + 5x3 � [5, 7] and the
true child the BDD for 3x2 + 5x3 � [3, 4]. Assuming x1 to be false, the false child
would also represent the constraint 2x1 + 3x2 + 5x3 � [5, 7], and assuming x1 to be
true, the true child would represent the constraint 2x1 + 3x2 + 5x3 � [5, 6]. Taking
the intersection of the two intervals, we can infer that the root node represents
2x1 + 3x2 + 5x3 � [5, 6].

4.3. Exponential ROBDDs for PB Constraints 51

x1

x2

x3

01

1

1

1

0

0

0

[5, 6]

[5, 7]

[0, 4]

[0,∞) (−∞,−1]

x1

x2x2

x3x3

01

1
1

11

1

0
0

0
0

0

[5, 6]

[5, 7] [3, 4]

[5,∞) [0, 4]

[0,∞) (−∞,−1]

Figure 4.2: Intervals of the ROBDD for 2x1 + 3x2 + 5x3 � 6

More formally, the interval of every node can be computed as follows:

Proposition 4.7. Let a1x1 + a2x2 + · · · + anxn � K be a constraint, and let B be
its ROBDD with the order [x1, x2, . . . , xn]. Consider a node ν with selector variable
xi, false child νf (with selector variable xf and interval [βf , γf]) and true child νt
(with selector variable xt and interval [βt, γt]), as shown in Figure 4.3. The interval
of ν is [β, γ], with:

β = max{βf + ai+1 + · · ·+ af−1, βt + ai + ai+1 + · · ·+ at−1},
γ = min{γf , γt + ai}.

10

xi

xf

[β, γ]

[βf , γf]

. . .

[βt, γt]
xt

Figure 4.3: The interval of a node can be computed from its children’s intervals.

Before moving to the proof, we want to note that if in every path from the root
to the leaves of the ROBDD all variables were present, the definition of β would be
much simpler (β = max{βf , βt+ai}). The other coefficients are necessary to account
for the variables that have been removed due to the ROBDD reduction process.

Proof. Let us assume that [β, γ] is not the interval of ν. One of the following
statements should hold:

1. There exists h ∈ [β, γ] that does not belong to the interval of ν.

2. There exists h < β belonging to the interval of ν.

3. There exists h > γ belonging to the interval of ν.

52 4. Encoding Pseudo-Boolean Constraints into SAT

We will now prove that none of these cases can hold.

1. Let us define

C ′ : aixi + · · ·+ anxn � h.

If h does not belong to the interval, there exists an assignment {xj = vj}nj=i
that either satisfies C ′ and its path goes from ν to False or it does not satisfy C ′

and its path goes to True. Assume that the assignment satisfies C ′ and its path
goes from ν to False (the other case is similar). There are two possibilities:

• The assignment satisfies vi = 0. Since h � β, it holds

h− ai+1vi+1 − · · · − af−1vf−1 � β − ai+1vi+1 − · · · − af−1vf−1
� β − ai+1 − · · · − af−1 � βf .

On the other hand, since h � γ,

h− ai+1vi+1 − · · · − af−1vf−1 � h � γ � γf .

Therefore, h − ai+1vi+1 − · · · − af−1vf−1 belongs to the interval of νf .
Since the assignment {xf = vf , . . . , xn = vn} goes from νf to False, we
have:

afvf + · · ·+ anvn > h− ai+1vi+1 − · · · − af−1vf−1

ai+1vi+1 + · · ·+ afvf + · · · anvn > h

Hence, adding aivi to the sum one can see that the assignment does not
satisfy C ′, which is a contradiction.

• The case vi = 1 gives a similar contradiction.

2. By definition of β, either h < βf + ai+1 + · · · + af−1 or h < βt + ai + ai+1 +
· · ·+ at−1. We will only consider the first case, since the other one is similar.
Therefore, h−ai+1−· · ·−af−1 < βf . Due to point 4 of Proposition 4.5, there
exists an assignment {xf = vf , . . . xn = vn} such that

afvf + · · · anvn > h− ai+1 − · · · − af−1

and its path goes from νf to True. Hence, the assignment

{xi = 0, xi+1 = 1, . . . , xf−1 = 1, xf = vf , . . . , xn = vn}

does not satisfy the constraint aixi + · · ·+ anxn � h and its path goes from ν
to True. By definition of interval, h cannot belong to the interval of ν.

3. This case is very similar to the previous one.

4.3. Exponential ROBDDs for PB Constraints 53

This proposition gives a natural way of computing all intervals of a ROBDD in
a bottom-up fashion. The procedure is initialized by computing the intervals of the
terminal nodes as detailed in Proposition 4.5, points 6 and 7.

Example 4.8. Let us consider again the constraint 2x1+3x2+5x3 � 6. Its ROBDD
is shown in the left-hand side of Figure 4.2, together with its intervals. For their
computation, we first compute the intervals of the True and False nodes, which are
[0,∞) and (−∞,−1] in virtue of Proposition 4.5 (points 6 and 7). Then, we can
compute the interval of the node having x3 as selector variable with the previous
proposition’s formula: β3 = max{0,−∞ + 5} = 0, γ3 = min{∞,−1 + 5} = 4.
Therefore, its interval is [0, 4].
In the next step, we compute the interval for the node with selector variable x2:

β2 = max{0 + 5, 0 + 3} = 5, γ2 = min{∞, 4 + 3} = 7. Thus, it its interval is
[5, 7]. Finally, we can compute the root’s interval: β1 = max{5, 0 + 2 + 3} = 5,
γ1 = min{7, 4 + 2} = 6, that is, [5, 6].

4.3.2 Some Families of PB Constraints and their ROBDD Size

We start by revisiting the family of PB constraints given at [BBR06a], where it
is proved that, for their concrete variable ordering, their non-reduced BDDs grow
exponentially for this family. Here we prove that ROBDDs are polynomial for this
family, and that this is even independent of the variable ordering. The family is
defined by considering a, b and n positive integers such that

n
i=1 b

i < a. The
coefficients are ωi = a+ bi and the right-hand side of the constraint is K = a · n/2.
We will first prove that the constraint C : ω1x1 + · · · + ωnxn � K is equivalent to
the cardinality constraint C ′ : x1 + · · · + xn � n/2 − 1. For simplicity, we assume
that n is even.

• Take an assignment satisfying C ′. In this case, there are at most n/2 − 1
variables xi assigned to true, and the assignment also satisfies C since:

ω1x1 + · · ·+ ωnxn �

n

i=n/2+2

ωi = (n/2− 1)a+
n

i=n/2+2

bi <

K − a+
n

i=1

bi < K.

• Consider now an assignment not satisfying C ′. In this case, there are at least
n/2 true variables in the assignment and it does not satisfy C either:

ω1x1 + · · ·+ ωnxn �

n/2

i=1

ωi = (n/2) · a+
n/2

i=1

bi > (n/2) · a = K.

Since the two constraints are equivalent and ROBDDs are canonical, the ROBDD
representation of C and C ′ are the same. But the ROBDD of C ′ is known to be of
quadratic size because it is a cardinality constraint (see, for instance, [BBR06a]).

54 4. Encoding Pseudo-Boolean Constraints into SAT

In the following, we present a family of PB constraints that only admit exponen-
tial ROBDDs. This example was first given in [HTY94], but a clearer alternative
proof is given next. First of all, we prove a lemma that, under certain technical
conditions, gives a lower bound on the number of nodes of the ROBDD for a PB
constraint.

Lemma 4.9. Let a1x1+ · · ·+ anxn � K be a PB constraint, and let i be an integer
with 1 � i � n. Assume that every assignment {x1 = v1, x2 = v2, . . . , xi = vi}
admits an extension {x1 = v1, . . . , xn = vn} such that a1v1 + · · · + anvn = K.
Let M be the number of different results we can obtain adding some subset of the

coefficients a1, a2, . . . , ai, i.e., M = |{
i

j=1

ajbj : bj ∈ {0, 1}}|. Then, the ROBDD

size with ordering [x1, x2, . . . , xn] is at least M .

Proof. Let us consider a PB constraint that satisfies the conditions of the lemma.
We will prove that its ROBDD has at least M distinct nodes by showing that any
two assignments of the form {x1 = v1, . . . , xi = vi} and {x1 = v′1, . . . , xi = v′i} with
a1v1 + · · ·+ aivi = a1v

′
1 + · · ·+ aiv

′
i lead to different nodes in the ROBDD.

Assume that it is not true: there are two assignments {x1 = v1, . . . , xi = vi} and
{x1 = v′1, . . . , xi = v′i} with a1v1+ · · ·+aivi < a1v

′
1+ · · ·+aiv

′
i such that their paths

end at the same node. Take the extended assignment A = {x1 = v1, . . . , xn = vn}
such that a1v1 + · · · anvn = K. Since A satisfies the PB constraint, the path it
defines ends at the true node. However, the assignment A′ = {x1 = v′1, . . . , xi =
v′i, xi+1 = vi+1, . . . , xn = vn} does not satisfy the constraint, since

a1v
′
1 + · · · aiv′i + ai+1vi+1 + · · · anvn > a1v1 + · · ·+ anvn = K.

However, the nodes defined by {x1 = v1, . . . , xi = vi} and {x1 = v′1, . . . , xi = v′i}
were the same, so the path defined by A′ must also end at the true node, which is
a contradiction.

We can now show a family of PB constraints that only admits exponential ROB-
DDs.

Theorem 4.10. Let n be a positive integer, and let us define ai,j = 2j−1 + 22n+i−1

for all 1 � i, j � 2n; and K = (24n − 1)n. Then, the PB constraint

2n

i=1

2n

j=1

ai,jxi,j � K

has at least 2n nodes in any variable ordering.

Proof. It is convenient to describe the coefficients in binary notation:

4.3. Exponential ROBDDs for PB Constraints 55

2n

2n

a1,1 = 0 0 · · · 0 1 0 0 · · · 0 1
a1,2 = 0 0 · · · 0 1 0 0 · · · 1 0

· · · . .
.

a1,2n−1 = 0 0 · · · 0 1 0 1 · · · 0 0
a1,2n = 0 0 · · · 0 1 1 0 · · · 0 0

a2,1 = 0 0 · · · 1 0 0 0 · · · 0 1
a2,2 = 0 0 · · · 1 0 0 0 · · · 1 0

· · · . .
.

a2,2n−1 = 0 0 · · · 1 0 0 1 · · · 0 0
a2,2n = 0 0 · · · 1 0 1 0 · · · 0 0

· · · . .
.

a2n,2n = 1 0 · · · 0 0 1 0 · · · 0 0

K/n = 1 1 · · · 1 1 1 1 · · · 1 1

First of all, one can see that the sum of all the a’s is 2K.

Let us take an arbitrary bijection

F = (F1, F2) : {1, 2, . . . , 4n2} → {1, 2, . . . , 2n} × {1, 2, . . . , 2n},

and consider the ordering defined by it: [xF (1), xF (2), . . . , xF (4n2)], where xF (k) =
xF1(k),F2(k) for every k. We want to prove that the ROBDD of the PB constraint
with this ordering has at least 2n nodes.

The proof will consist in showing that the hypotheses of Lemma 4.9 hold. That
is, first we show that for this arbitrary ordering, we can find an integer s such that
any assignment to the first s variables can be extended to a full assignment that
adds K. Then, we prove that there are at least 2n different values we can add with
the first s coefficients, as required by Lemma 4.9.

Let us define bk with 1 � k � 2n as the position of the k-th different value of
the tuple (F1(1), F1(2), . . . , F1(4n

2)). More formally,

bk =







1 if k = 1,

min

r : F1(r) ∈ {F1(b1), F1(b2), . . . , F1(bk−1)}

if k > 1.

Analogously, let us define c1, . . . , c2n as

ck =







1 if k = 1,

min

s : F2(s) ∈ {F2(c1), F2(c2), . . . , F2(ck−1)}

if k > 1.

56 4. Encoding Pseudo-Boolean Constraints into SAT

i1 i2 . . . in in+1 in+2 . . . i2n

j1 1 1

j2 0

. . . 1 0

jn 1

jn+1

jn+2

. . .

j2n

Figure 4.4: An arbitrary assignment. There is a 0, 1 or nothing at position (ir, js)
depending on whether xir,js is false, true or unassigned.

Let us denote by ir = F1(br) and js = F2(cs) for all 1 � r, s � 2n. Notice that
{i1, i2, . . . , i2n} and {j1, j2, . . . , j2n} are permutations of {1, 2, . . . , 2n}. Assume that
bn � cn (the other case is analogous), and take an arbitrary assignment {xF (1) =
vF (1), xF (2) = vF (2), . . . , xF (cn) = vF (cn)}. We want to extend it to a complete
assignment such that

4n2

k=1

aF (k)vF (k) = K.

Figure 4.4 represents the initial assignment. All the values are in the top-left
square since the assignment is undefined for all xir,js with r > n or s > n. Extending
the assignment so that the sum is K amounts to completing the table in such a way
that there are exactly n ones in every column and row.

The assignment can be completed in the following way: first, complete the top
left square in any way, for instance, adding zeros to every non-defined cell. Then,
copy that square to the bottom-right square and, finally, add the complementary
square to the other two squares (i.e., write 0 instead of 1 and 1 instead of 0). Figure
4.5 shows the extended assignment for that example.

4.3. Exponential ROBDDs for PB Constraints 57

i1 i2 . . . in in+1 in+2 . . . i2n

j1 1 1 0 0 0 0 1 1

j2 0 0 0 0 1 1 1 1

. . . 0 1 0 0 1 0 1 1

jn 0 0 1 0 1 1 0 1

jn+1 0 0 1 1 1 1 0 0

jn+2 1 1 1 1 0 0 0 0

. . . 1 0 1 1 0 1 0 0

j2n 1 1 0 1 0 0 1 0

Figure 4.5: Extended assignment. There are exactly n ones in every column and
row.

58 4. Encoding Pseudo-Boolean Constraints into SAT

More formally, the assignment is completed as follows:

vir,js =







0 if r, s � n and vir,js was undefined,

¬vir−n,js if r > n and s � n,

¬vir,js−n
if s > n and r � n,

vir−n,js−n
if r, s > n,

where ¬0 = 1 and ¬1 = 0.
Now, let us prove that it satisfies the requirements, i.e., the coefficients corre-

sponding to true variables in the assignment add exactly K. Let us fix r, s � n.
Denote by i = ir, j = js, i

′ = ir+n and j′ = js+n.

• If vi,j = 0, by definition vi′,j = vi,j′ = 1 and vi′,j′ = 0. Therefore,

ai,jvi,j + ai′,jvi′,j + ai,j′vi,j′ + ai′,j′vi′,j′ = ai′,j + ai,j′ =

22n+i
′−1 + 2j−1 + 22n+i−1 + 2j

′−1 = (ai,j + ai′,j + ai,j′ + ai′,j′)/2.

• Analogously, if vi,j = 1,

ai,jvi,j + ai′,jvi′,j + ai,j′vi,j′ + ai′,j′vi′,j′ =
ai,j + ai′,j + ai,j′ + ai′,j′

2
.

Therefore,
4n2

k=1

aF (k)vF (k) =
1

2

4n2

k=1

aF (k) = K.

By Lemma 4.9, the number of nodes of the ROBDD is at least the number of
different results we can obtain by adding some subset of the coefficients aF (1), aF (2),
. . . , aF (cn). Consider the set aF (c1), aF (c2), . . . , aF (cn). We will now see that all its
different subsets add different values, and hence the ROBDD size is at least 2n.

The sum of a subset of {aF (c1), aF (c2), . . . , aF (cn)} is

S = aF (c1)v1 + aF (c2)v2 + · · ·+ aF (cn)vn, vr ∈ {0, 1}.

Let us look at the 2n last bits of S in binary notation: all the digits are 0 except for
the positions F2(c1), F2(c2), . . . , F2(cn), which are v1, v2, . . . , vn. Therefore, if two
subsets add the same, the 2n last digits of the sum are the same. This means that
the values of (v1, . . . , vn) are the same, and thus they are the same subset.

4.3.3 Relation between the Subset Sum Problem and the ROBDD

size

In this section, we study the relationship between the ROBDD size for a PB con-
straint and the subset sum problem. This allows us to, assuming that NP and co-NP
are different, give a much simpler proof that there exist PB constraints that do not
admit polynomial ROBDDs.

4.3. Exponential ROBDDs for PB Constraints 59

Lemma 4.9 and the exponential ROBDD example of Theorem 4.10 suggest that
there is a relationship between the size of ROBDDs and the number of ways we can
obtain K by adding some of the coefficients of the PB. It seems that if K can be
obtained in a lot of different ways, the ROBDD will be large.

In this section we explore another relationship between the problem of adding
K with a subset of the coefficients and the size of the ROBDDs. In a sense, we give
a proof that the converse of the last paragraph is not true: if NP and co-NP are
different, there are exponentially-sized ROBDDs of PB constraints with no subsets
of their coefficients adding K. Let us start by defining one version of the well-known
subset sum problem.

Definition 4.11. Given a set of positive integers S = {a1, . . . , an} and an integer
K, the subset sum problem of (K,S) consists in determining whether there exists a
subset of {a1, . . . , an} that sums to exactly K.

It is well-known that the subset sum problem is NP-complete when K ∼ 2n, but
there are polynomial algorithms in n when K is also a polynomial in n. For a given
subset sum problem (K,S) with S = {a1, . . . , an}, we can construct its associated
PB constraint a1x1 + · · · + anxn � K. In the previous section we have seen one
PB constraint family whose coefficients can add K in an exponential number of
ways, thus generating an exponential ROBDD. Now, assuming that NP and co-NP
are different, we will see that there exists a PB constraint family with exponential
ROBDDs in any ordering such that their coefficients cannot add K. First, we show
how ROBDDs can act as unsatisfiability certificates for the subset sum problem.

Theorem 4.12. Let (K,S) be an UNSAT subset sum problem. Then, if a ROBDD
for its associated PB constraint has polynomial size, it can act as a polynomial
unsatisfiability certificate for (K,S).

Proof. We only need to show how, in polynomial time, we can check whether the
ROBDD is an unsatisfiability certificate for (K,S). For that, we note that the subset
sum problem is UNSAT if and only if the PB constraints

a1x1 + · · ·+ anxn � K, a1x1 + · · ·+ anxn � K − 1

are equivalent, and this happens if and only if their ROBDDs are the same. There-
fore, we have to show, in polynomial time, that the given ROBDD represents both
constraints. It can be done, for instance, by building the ROBDD (using Algorithm
4.1 of Section 4.5) and comparing the ROBDDs.

The key point now is that, if we assume NP to be different from co-NP, there
exists a family of UNSAT subset sum problems with no polynomial-sized unsatisfia-
bility certificate. Hence, the family consisting of the associated PB constraints does
not admit polynomial ROBDDs.

Hence, PB constraints associated with difficult-to-certify UNSAT subset sum
problems will produce exponential ROBDDs. However, subset sum is NP-complete
if K ∼ 2n. In PB constraints from industrial problems usually K ∼ nr for some r,
so we could expect non-exponential ROBDDs for these constraints.

60 4. Encoding Pseudo-Boolean Constraints into SAT

4.4 Avoiding Exponential ROBDDs

In this section we introduce our positive results. We restrict ourselves to a particular
class of PB constraints, where all coefficients are powers of two. As we will show
below, these constraints admit polynomial ROBDDs. Moreover, any PB constraint
can be reduced to this class by means of coefficient decomposition.

Example 4.13. Let us take the PB constraint 9x1 + 8x2 + 3x3 � 10. Considering
the binary representation of the coefficients, this constraint can be rewritten into
(23x3,1 + 20x0,1) + (23x3,2) + (21x1,3 + 20x0,3) � 10 if we add the binary clauses
expressing that xi,r = xr for appropriate i and r.

4.4.1 Power-of-two PB Constraints Do Have Polynomial-size ROB-

DDs

Let us consider a PB constraint of the form:

C : 20 · δ0,1 · x0,1 + 20 · δ0,2 · x0,2 + · · · + 20 · δ0,n · x0,n +
21 · δ1,1 · x1,1 + 21 · δ1,2 · x1,2 + · · · + 21 · δ1,n · x1,n +

. . . +
2m · δm,1 · xm,1 + 2m · δm,2 · xm,2 + · · · + 2m · δm,n · xm,n � K,

where δi,r ∈ {0, 1} for all i and r. Notice that every PB constraint whose coeffi-
cients are powers of 2 can be expressed in this way. Let us consider its ROBDD
representation with the ordering [x0,1, x0,2, . . . , x0,n, x1,1, . . . , xm,n].

Lemma 4.14. Let [β, γ] be the interval of a node with selector variable xi,r. Then
2i divides β and 0 � β < (n+ r − 1) · 2i.

Proof. By Proposition 4.5.1, β can be expressed as a sum of coefficients all of which
are multiples of 2i, and hence β itself is a multiple of 2i. By Proposition 4.5.7,
the only node whose interval contains negative values is the False node, and hence
β � 0. Now, using Proposition 4.5.3, there must be an assignment to the variables
{x0,1, . . . , xi,r−1} such that 20δ0,1x0,1 + · · · + 2iδi,r−1xi,r−1 belongs to the interval.
Therefore:

β � 20δ0,1x0,1 + · · ·+ 2iδi,r−1xi,r−1 � 20 + 20 + · · ·+ 2i

= n20 + n21 + · · ·+ n2i−1 + (r − 1) · 2i = n(2i − 1) + 2i(r − 1)

< 2i(n+ r − 1)

Corollary 4.15. The number of nodes with selector variable xi,r is bounded by
n+ r − 1. In particular, the size of the ROBDD belongs to O(n2m).

4.4. Avoiding Exponential ROBDDs 61

Proof. Let ν1, ν2, . . . , νt be all the nodes with selector variable xi,r. Let [βj , γj] the
interval of νj . Note that such intervals are pair-wise disjoint since a non-empty
intersection would imply that there exists a constraint represented by two different
ROBDDs. Hence we can assume, without loss of generality, that β1 < β2 < · · · < βt.
Due to Lemma 4.14, we know that βj − βj−1 � 2i. Hence 2i(n + r − 1) > βt �

βt−1 + 2i � · · · � β1 + 2i(t− 1) � 2i(t− 1) and we can conclude that t < n+ r.

4.4.2 A Consistent Encoding for PB Constraints

Let us now take an arbitrary PB constraint C : a1x1 + · · · anxn � K and assume
that aM is the largest coefficient. For m = log aM , we can rewrite C splitting the
coefficients into powers of two as shown in Example 4.13:

C̃ : 20 · δ0,1 · x0,1 + 20 · δ0,2 · x0,2 + · · · + 20 · δ0,n · x0,n +
21 · δ1,1 · x1,1 + 21 · δ1,2 · x1,2 + · · · + 21 · δ1,n · x1,n +

. . . +
2m · δm,1 · xm,1 + 2m · δm,2 · xm,2 + · · · + 2m · δm,n · xm,n � K,

where δm,r δm−1,r · · · δ0,r is the binary representation of ar. Notice that C and
C̃ represent the same constraint if we add clauses expressing that xi,r = xr for
appropriate i and r. This process is called coefficient decomposition of the PB
constraint. A similar idea was given at [BB03b].

The important remark is that, using a consistent SAT encoding of the ROBDD
for C̃ (e.g. the one given at [ES06] or the one presented in Section 4.6) and adding
clauses expressing that xi,r = xr for appropriate i and r, we obtain a consistent
encoding for the original constraint C using O(n2 log aM) auxiliary variables and
clauses.

This is not difficult to see. Take an assignment A over the variables of C which
cannot be extended to a model of C. This is because the coefficients corresponding
to the variables true in A add more than K. Using the clauses for xi,r = xr, unit
propagation will produce an assignment to the xi,r’s that cannot be extended to a
model of C̃. Since the encoding for C̃ is consistent, a false clause will be found.
Conversely, if we consider an assignment A over the variables of C that can be
extended to a model of C, this assignment can clearly be extended to a model for C̃
and the clauses expressing xi,r = xr. Hence, unit propagation on those clauses and
the encoding of C̃ will not detect a false clause.

Example 4.16. Consider the PB constraint C : 2x1 + 3x2 + 5x3 � 6. For obtain-
ing the consistent encoding we have presented, we first rewrite C by splitting the
coefficients into powers of two:

C̃ : 1x0,2 + 1x0,3 + 2x1,1 + 2x1,2 + 4x2,3 � 6.

Next, we encode C̃ into a ROBDD and finally encode the ROBDD into SAT and
add clauses for enforcing the relations xi,j = xj. Or, instead of that, we can replace
xi,j by xj into the ROBDD, and encode the result into SAT. Figure 4.6 shows the
decision diagram after the replacement.

62 4. Encoding Pseudo-Boolean Constraints into SAT

x2

x3

x1 x1

x2

x3

01

1

1

1
1

1

1

0

0

0

0

0

0

Figure 4.6: Decision Diagram of 2x1 + 3x2 + 5x3 � 6 after decomposing the coeffi-
cients into powers of two.

4.4.3 An Arc-consistent Encoding for PB Constraints

Unfortunately, the previous approach does not result in an arc-consistent encoding.
The intuitive idea can be seen in the following example:

Example 4.17. Let us consider the constraint 3x1 + 4x2 � 6. After splitting the
coefficients into powers of two, we obtain C̃ : x0,1 + 2x1,1 + 4x2,2 � 6. If we set x2,2
to true, C̃ implies that either x0,1 or x1,1 have to be false, but the encoding cannot
exploit the fact that both variables will receive the same truth value and hence both
should be propagated. Adding clauses stating that x0,1 = x1,1 does not help in this
sense.

In order to overcome this limitation, we follow the method presented at the
papers [BKNW09, BBR09]. Let C : a1x1 + · · · + anxn � K be an arbitrary PB
constraint. We denote as Ci the constraint a1x1 + · · ·+ ai · 1+ · · ·+ anxn � K, i.e.,
the constraint assuming xi to be true. For every i with 1 � i � n, we encode Ci as
in Section 4.4.2 and, in addition, we add the binary clause ri ∨ xi, where ri is the
root of the ROBDD for Ci. This clause helps us to preserve arc-consistency: given
an assignment A such that A ∪ {xi} cannot be extended to a model of C, literal ri
will be propagated using A (because the encoding for Ci is consistent). Hence the
added clause will allow us to propagate xi.

Example 4.18. Consider again the PB constraint C : 2x1 + 3x2 + 5x3 � 6. Let us
define the constraints C1 : 3x2+5x3 � 4, C2 : 2x1+5x3 � 3 and C3 : 2x1+3x2 � 1.
Now, we encode these constraints into ROBDDs as in the previous section, with
coefficient decomposition. Figure 4.7 shows the resulting ROBDDs. Finally, we need
to encode them into SAT consistently, and then add the clauses ri ∨ xi, assuming
that the variable associated with the root of the ROBDD for Ci is ri.

4.5. An Algorithm for Constructing ROBDDs for PB constraints 63

r1 r2 r3

x1

x2

x2

x2 x3

x3

x3

0

0

0

1

1

1

1

1

1

1

1

1

1 0

00

0

0

0

0

Figure 4.7: ROBDDs2 of C1, C2 and C3 with coefficient decomposition.

This encoding is arc-consistent: take for instance the assignment A = {x1 = 1}.
Constraint C3 is not satisfied. Hence, by consistency, r3 is propagated. Therefore,
clause r3 ∨ x3 propagates x3, as wanted. The propagation with other assignments is
similar.

All in all, the suggested encoding is arc-consistent and usesO(n3 log(aM)) clauses
and auxiliary variables, where aM is the largest coefficient.

4.5 An Algorithm for Constructing ROBDDs for

Pseudo-Boolean Constraints

Let us fix a Pseudo-Boolean constraint a1x1+· · ·+anxn � K and a variable ordering
[x1, x2, . . . , xn]. The goal of this section is to prove that one can construct the
ROBDD of this constraint using this ordering in polynomial time with respect to
the ROBDD size and n.

This algorithm builds standard ROBDDs, but it can be used to build ROBDDs
with coefficient decomposition: we just need to first split the coefficients and, sec-
ondly, apply the algorithm. Forthcoming Example 4.21 shows in detail the overall
process.

The key point of the algorithm will be to label each node of the ROBDD with its
interval. In the following, for every i ∈ {1, 2, . . . , n+1}, we will use a set Li consisting
of pairs ([β, γ],B), where B is the ROBDD of the constraint aixi + · · ·+ anxn � K ′

for every K ′ ∈ [β, γ] (i.e., [β, γ] is the interval of B). All these sets will be kept in a
tuple L = (L1, L2, . . . , Ln+1).

2Actually, the diagram after replacing the variables xi,j by xj is not a ROBDD. However, we
will denote them as ROBDDs for simplicity.

64 4. Encoding Pseudo-Boolean Constraints into SAT

Note that by definition of the ROBDD’s intervals, if Li contains ([β1, γ1],B1)
and ([β2, γ2],B2), then either [β1, γ1] = [β2, γ2] or [β1, γ1] ∩ [β2, γ2] = ∅. Moreover,
the first case holds if and only if B1 = B2. Therefore, Li can be represented with a
binary search tree-like data structure, where insertions and searches can be done in
logarithmic time. The function search(K,Li) searches whether there exists a pair
([β, γ],B) ∈ Li with K ∈ [β, γ]. Such a tuple is returned if it exists, otherwise an
empty interval is returned in the first component of the pair. Similarly, we will also
use function insert(([β, γ],B), Li) for insertions. The overall algorithm is detailed
in Algorithm 4.1 and Algorithm 4.2:

Algorithm 4.1 Construction of ROBDD algorithm

Require: Constraint C : a1x1 + . . .+ anxn � K ′.
Ensure: returns B the ROBDD of C.
1: for all i such that 1 � i � n+ 1 do

2: Li ←

Ä

(−∞,−1], False
ä

,
Ä

[ai + ai+1 + · · ·+ an,∞), T rue
ä

.

3: end for
4: L ← (L1, . . . , Ln+1).
5: ([β, γ],B) ← BDDConstruction(1, a1x1 + . . .+ anxn � K ′,L).
6: return B.

Algorithm 4.2 Procedure BDDConstruction

Require: integer i ∈ {1, 2, . . . , n + 1}, constraint C : aixi + . . . + anxn � K ′ and
set L.

Ensure: returns [β, γ] interval of C and B its ROBDD.
1: ([β, γ],B) ← search(K ′, Li).
2: if [β, γ] = ∅ then
3: return ([β, γ],B).
4: else
5: ([βF , γF],BF) := BDDConstruction(i+ 1, ai+1xi+1 + . . .+ anxn � K ′,L).
6: ([βT , γT],BT) := BDDConstruction(i+1, ai+1xi+1+. . .+anxn � K ′−ai,L).
7: if [βT , γT] = [βF , γF] then
8: B ← BT .
9: [β, γ] ← [βT + ai, γT].

10: else
11: B ← ite(xi,BT ,BF) // root xi, true branch BT and false branch BF .
12: [β, γ] ← [βF , γF] ∩ [βT + ai, γT + ai].
13: end if
14: insert(([β, γ],B), Li).
15: return ([β, γ],B).
16: end if

Theorem 4.19. Algorithm 4.1 runs in O(nm logm) time (where m is the size of

4.5. An Algorithm for Constructing ROBDDs for PB constraints 65

the ROBDD) and is correct in the following sense:

1. K ′ belongs to the interval returned by BDDConstruction(aixi+ · · ·+anxn �

K ′,L).

2. The tuple ([β, γ],B) returned by BDDConstruction consist of a BDD B and
its interval [β, γ].

3. If BDDConstruction returns ([β, γ],B), then the BDD B is reduced.

Proof. Let us first start with the three correctness statements:

1. If K ′ is found in Li at line 1 of Algorithm 4.2 the statement is obviously true.
Otherwise let us reason by induction on i. The base case is when i = n + 1,
and since Ln+1 contains the intervals (−∞,−1] and [0,∞], the search call at
line 1 will succeed and hence the result holds. For i < n + 1 we can assume,
by induction hypothesis, that K ′ ∈ [βF , γF] and K ′ − ai ∈ [βT , γT]. If the two
intervals coincide the result is obvious, otherwise it is also easy to see that
K ′ ∈ [βF , γF] ∩ [βT + ai, γT + ai].

2. Let us prove that in every moment all the tuples of L are correct, i.e., they
contain BDDs with their correct interval. Since the returned value is always
an element of some Li, this proves the statement.

By Proposition 4.5.6 and 4.5.7 initial tuples of L are correct. We have to prove
that if all the previously inserted intervals are correct, the current interval is
also correct. It follows in virtue of Proposition 4.7.

3. Let us prove that all the tuples of L contain only reduced BDDs. As before, all
the initial BDDs in L are reduced. Let B be a BDD computed by the algorithm,
with children BT and BF . By induction hypothesis, they are reduced, so B is
reduced if and only if its two children are not equal. The algorithm creates a
node only if its children’s intervals are different. Therefore, BT and BF do not
represent the same Boolean constraint, so they are different BDDs.

Regarding runtime, since the cost of search and insertion in Li is logarithmic in
its size, the cost of the algorithm is O(logm) times the number of calls to BD-
DConstruction. Hence, it only remains to show that there are at most O(nm)
calls.

Every call (but the first one) to BDDConstruction is done when we are ex-
ploring an edge of the ROBDD. Notice that no edge is explored twice, since the
edges are only explored from the parent node and whenever we reach an explored
node there are no recursive calls to BDDConstruction. On the other hand, for
every edge of the ROBDD we make 2k − 1 calls, where k is the length of the edge
(if the nodes joined by the edge have variables xi and xj we say that its length is
|i− j|). Since the ROBDD has O(m) edges and their length is O(n), the number of
calls is O(nm).

66 4. Encoding Pseudo-Boolean Constraints into SAT

x1

x2

x2

x3x3x3

x3

x3

x3

0

000

0

0

0

1

111

1

1

1

1

111

1

1

1

1

1

1

000

0

0

0

0

0

0

[5, 6]

1. BDDConstruction(1, 2x1 + 3x2 + 5x3 ≤ 6, L)

[5, 7]

2. BDDConstruction(2, 3x2 + 5x3 ≤ 6, L)

[2, 4]

7. BDDConstruction(2, 3x2 + 5x3 ≤ 4, L)

[5,∞)

3. BDDConstruction(3, 5x3 ≤ 6, L)

[0, 4][0, 4][0, 4]

4. BDDConstruction(3, 5x3 ≤ 3, L) 8. BDDConstruction(3, 5x3 ≤ 4, L) 9. BDDConstruction(3, 5x3 ≤ 1, L)

[0,∞)

5. BDDConstruction(4, 0 ≤ 3, L)

(−∞,−1]

6. BDDConstruction(4, 0 ≤ −2, L)

Figure 4.8: Recursive calls to BDDConstruction, with the returned values.

Let us illustrate the algorithm with an example:

Example 4.20. Take the constraint C : 2x1 + 3x2 + 5x3 � 6, and let us apply the
algorithm to obtain the ROBDD in the ordering [x1, x2, x3]. Figure 4.8 represents
the recursive calls to BDDConstruction and the returned parameters (the ROBDD
and the interval).

• In calls number 3, 5, 6, 8 and 9, the search function returns true and the
interval and the ROBDD are returned without any other computation.

• In call number 7, the two recursive calls return the same interval (and, there-
fore, the same ROBDD). Hence, that ROBDD is returned.

• In call number 1 the two recursive calls return two different ROBDDs, so it
adds a node to join the two ROBDDs into another one, which is returned. The
same happens in calls number 2 and 4.

The overall process with coefficient decomposition would work as in the following
example:

4.6. Encoding a BDDs for Monotonic Functions into SAT 67

Example 4.21. Let us take the constraint C : 2x1 + 3x2 + 5x3 � 6. If we want to
build the ROBDD with coefficient decomposition using Algorithm 4.1, we proceed as
follows:

1. Split the coefficients and obtain C̃ : 1y1 + 1y2 + 2y3 + 2y4 + 4y5 � 6, where
x1 = y3, x2 = y1 = y4 and x3 = y2 = y5.

2. Apply the algorithm to C̃ and obtain a ROBDD B̃.

3. Replace y1 for x2, y2 for x3, etc. in the nodes of B̃.

4.6 Encoding a BDDs for Monotonic Functions into

SAT

In this section we consider a BDD representing a monotonic function F and we want
to encode it into SAT. As expected, we want the encoding to be as small as possible
and arc-consistent.

The encoding explained here is valid with any type of BDDs, so, in particular,
it is valid with ROBDDs. The main differences with the Minisat+ encoding [ES06]
is the number of clauses generated (6 ternary clauses per node versus one binary
and one ternary clauses per node) and that our encoding is arc-consistent with any
variable ordering.

As usual, the encoding introduces an auxiliary variable for every node. Let ν be
a node with selector variable x and auxiliary variable n. Let f be the variable of
its false child and t be the variable of its true child. Only two clauses per node are
needed:

f → n t ∧ x → n.

Furthermore, we add a unit clause with the variable of the True node and another
one with the negation of the variable of the False node.

Theorem 4.22. The encoding is consistent in the following sense: a partial assign-
ment A cannot be extended to a model of F if and only if r is propagated by unit
propagation, where r is the root of the BDD.

Proof. We prove the theorem by induction on the number of variables of the BDD.
If the BDD has no variables, then the BDD is either the True node or the False node
and the result is trivial.

Assume that the result is true for BDDs with less than k variables, and let F be a
function whose BDD has k variables. Let r be the root node, x1 its selector variable
and f, t respectively its false and true children (note that we abuse the notation and
identify nodes with their auxiliary variable). We denote by F1 the function F|x1=1

(i.e., F after setting x1 to true) and by F0 the function F|x1=0.

• Let A be a partial assignment that cannot be extended to a model of F .

68 4. Encoding Pseudo-Boolean Constraints into SAT

– Assume x1 ∈ A. Since A cannot be extended, the assignment A \ {x1}
cannot be extended to a model of F1. By definition of the BDD, the
function F1 has t as a BDD. By induction hypothesis, t is propagated,
and since x1 ∈ A, r is also propagated.

– Assume x1 ∈ A. Then, the assignment A \ {x1} cannot be extended to
a model of F0. Since F0 has f as a BDD, by induction hypothesis f is
propagated, and hence r also is.

• Let A be a partial assignment, and assume r has been propagated. Then,
either f has also been propagated or t has been propagated and x1 ∈ A (note
that x1 has not been propagated because it only appears in one clause which
is already true).

– Assume that f has been propagated. Since f is the BDD of F0, by
induction hypothesis the assignment A\{x1, x1} cannot be extended to a
model of F0. Since the function is monotonic, neither can A \ {x1, x1} be
extended to a model of F . Therefore, A cannot be extended to a model
of F .

– Assume that t has been propagated and x1 ∈ A. Since t is the BDD of
F1, by induction hypothesis A \ {x1} cannot be extended to a model of
F1, so neither can A be extended to a model of F .

For obtaining an arc-consistent encoding, we only have to add a unit clause.

Theorem 4.23. If we add a unit clause forcing the variable of the root node to be
true, the previous encoding becomes arc-consistent.

Proof. We will prove it by induction on the variables of the BDD. The case with
zero variables is trivial, so let us prove the induction case.

As before, let r be the root node, with x1 its selector variable, and f, t its false
and true children. We denote by F0 and F1 the functions F|x1=0 and F|x1=1.

Let A be a partial assignment that can be extended to a model of F . Assume
that A ∪ {xi} cannot be extended. We want to prove that xi will be propagated.

• Let us assume that x1 ∈ A. In this case, t is propagated due to the clause
t∧x1 → r and the unit clause r. Since x1 ∈ A and A∪{xi} cannot be extended
to a model of F , A \ {x1} ∪ {xi} neither can be extended to an assignment
satisfying F1. By induction hypothesis, since t is the BDD of the function F1,
xi is propagated.

• Let us assume that x1 ∈ A and xi = x1. Since F is monotonic, A∪{xi} cannot
be extended to a model of F if and only if it cannot be extended to a model
of F0. Notice that f is propagated thanks to the clause f → r and the unit
clause r. By induction hypothesis, the method is arc-consistent for F0, so xi

is propagated.

4.6. Encoding a BDDs for Monotonic Functions into SAT 69

• Finally, assume that x1 ∈ A and xi = x1. Since A ∪ {x1} cannot be extended
to a model of F , A cannot be extended to a model of F1. By Theorem 4.22, t
is propagated and, due to t ∧ x1 → r and r, also is x1.

The next result gives an idea of the meaning of the encoding.

Theorem 4.24. Let ν be a node of the BDD with selector variable xi, and A be a
partial assignment. If we add a unit clause forcing the variable of the root node to
be true, then

• ν is propagated by unit propagation if and only if there exists a partial assign-
ment B = {x1 = v1, x2 = v2, . . . , xi−1 = vi−1} such that B defines a path from
the root to the node ν and all xj = 1 of B also belongs to A.

• ν is propagated by unit propagation if and only if there is an assignment B =
{xi = vi, xi+1 = vi+1, . . . , xn = vn} such that B defines a path from ν to the
false terminal node and all xj = 1 of B also belongs to A.

Proof. We prove the first statement of the theorem by induction on the level of the
node; the second one can be similarly proven. If ν is the root node, ν has been
propagated, and we can pick a partial assignment B = ∅ which defines a path to ν.

Assume now that ν is not the root of the BDD.

• Assume that ν has been propagated.

– If it has been propagated by a clause ν → ν ′, then ν is the false child of
ν ′, and ν ′ has been propagated to true. Let xi′ be the selector variable
of ν ′. By induction hypothesis, there exists a partial assignment B′ =
{x1 = v1, x2 = v2, . . . , xi′−1 = vi′−1} such that B′ defines a path to ν ′ and
xj = 1 ∈ A for all xj = 1 ∈ B′. The partial assignment B = B′ ∪ {xi′ =
0, . . . , xi−1 = 0} satisfies the statement.

– If ν has been propagated by a clause ν ∧xi′ → ν ′, then ν is the true child
of ν ′ with selector variable xi′ , ν

′ has been propagated and xi′ = 1 belongs
to A. As before, by induction hypothesis there exists a partial assignment
B′ = {x1 = v1, x2 = v2, . . . , xi′−1 = vi′−1} such that B′ defines a path
to n′ and xj = 1 ∈ A for all xj = 1 ∈ B′. The partial assignment
B = B′ ∪ {xi′ = 1, xi′+1 = 0, . . . , xi−1 = 0} satisfies the statement.

• Assume there exists a partial assignment B = {x1 = v1, x2 = v2, . . . , xi−1 =
vi−1} defining a path to ν and such that all xj = 1 of B also belongs to A. Let
ν ′ be the last node of the path defined by B before ν (i.e., ν′ is the parent of
ν in the path defined by B). Let xi′ be the selector variable of ν

′. Notice that
B′ = {xj = vj ∈ B : j < i′} is an assignment holding the property for ν ′, so,
by induction hypothesis, ν ′ has been propagated. If ν is the true child of ν ′,
then xi′ = 1 belongs to B, so it also belongs to A, so the clause ν ∧ xi′ → ν ′

propagates ν. If ν is the false child of ν ′, the clause ν → ν ′ propagates ν.

70 4. Encoding Pseudo-Boolean Constraints into SAT

Corollary 4.25. Assume the BDD represents a Pseudo-Boolean constraint a1x1 +
a2x2 + · · · + anxn � K. Let A be a partial assignment and ν a node with selector
variable xi and interval [α, β]. Then, ν is propagated if and only if

1�j<i, xj∈A

aj � K − β,

and ν is propagated if and only if

i�j�n, xj∈A

aj > β.

We finish this section with an example illustrating how the suggested encoding of
BDDs into SAT can be used in the different PB encoding methods we have presented
in this section.

Example 4.26. Consider the constraint C : 2x1 + 3x2 + 5x3 � 6. We will encode
this constraint into SAT with three methods: with the usual ROBDD encoding; with
the consistent approach of ROBDDs and splitting of the coefficients, explained in
Section 4.4.2; and with the arc-consistent approach of ROBDDs and splitting of the
coefficients explained in Section 4.4.3.

1. BDD-1: this method builds the ROBDD for C and then encodes it into SAT.
Hence we start by building the ROBDD of C, which can be seen in the last
picture of Figure 4.1. Now, we need to encode it into SAT. Let y1, y2 and
y3 be fresh variables corresponding to the nodes of the ROBDD of C having
respectively x1, x2 and x3 as selector variable.

For node y1, we have to add the clauses y2 → y1 and x1 ∧ y3 → y1.

For y2, we have to add the clauses ⊤ → y2 and x2 ∧ y3 → y2, where ⊤ is the
tautology symbol.

For y3, we have to add the clauses ⊤ → y3 and x3 ∧ ⊥ → y3, where ⊥ is the
contradiction symbol.

Moreover, we have to add the unit clauses ⊤, ⊥ and y1. All in all, after
removing the units and tautologies, the clauses obtained are y1, y2, x1 ∨ y3,
x2 ∨ y3 and x3 ∨ y3.

2. BDD-2: we build the ROBDD of C with coefficient decomposition as in Ex-
ample 4.21. Figure 4.6 shows the resulting ROBDD. We introduce variables
y1, y2, . . . , y6 for every node of the ROBDD. More precisely, the first x2 node
(starting top-down) receives variable y1, the next x2 node gets y5. The first
x3 receives y2 and the other one y6. Finally the leftmost x1 node gets variable
y3 and the other one y4. We have to add the following clauses: y2 → y1,
y4 ∧ x2 → y1, y3 → y2, y4 ∧ x3 → y2, ⊤ → y3, y5 ∧ x1 → y3, y5 → y4,

4.7. Related Work 71

y6 ∧ x1 → y4, ⊤ → y5, y6 ∧ x2 → y5, ⊤ → y6, ⊥ ∧ x3 → y6, and the unit
clauses ⊤, ⊥ and y1.

After removing the units from the clauses and tautologies, we obtain y1, y2,
y3, y4 ∨ x2, y4 ∨ x3, y5 ∨ x1, y5 ∨ y4, y6 ∨ x1 ∨ y4, y6 ∨ x2 ∨ y5 and x3 ∨ y6.

Notice that this encoding is consistent: if we have the assignment A = {x2, x3},
then y4 is propagated by the clause y4 ∨ x2, which in turn propagates y5 due
to clause y5 ∨ y4 and finally y6 is propagated by the clause y6 ∨ x2 ∨ y5. A
contradiction is found with clause x3 ∨ y6.

However, the encoding is not arc-consistent: the partial assignment A = {x1}
can only propagate y5. However, x3 should also be propagated.

3. BDD-3: let C1, C2 and C3 be the constraints setting respectively x1, x2 and
x3 to true. Figure 4.7 shows the ROBDDs of these constraints. We have to
encode these ROBDDs as usual, as in BDD-2, but replacing the unit clause r
of the root by r → xi. In this case the variables associated with the roots of
C1, C2 and C3 will be y1, z1 and w1 respectively.

After removing the units and tautologies, clauses from C1 are y1 ∨ x1, y2 ∨ y1,
y4 ∨ x2 ∨ y1, y3 ∨ y2, y4 ∨ x3 ∨ y2, y4 ∨ x2 ∨ y3 and x3 ∨ y4.

Clauses from C2 are z1 ∨ x2 and x3 ∨ z1.

Finally, clauses from C3 are w1 ∨ x3, w2 ∨ w1, x1 ∨ w1 and x2 ∨ w2.

This encoding is arc-consistent. Take, for instance, the assignment A = {x1}.
In this case, w1 is propagated in virtue of x1 ∨ w1 and x3 is propagated by
clause w1 ∨ x3.

4.7 Related Work

Due to the ubiquity of Pseudo-Boolean constraints and the success of SAT solvers,
the problem of encoding those constraints into SAT has been thoroughly studied in
the literature. In the following we review the most important contributions, paying
special attention to the basic idea on which they are based, the encoding size, and
the propagation properties the encodings fulfill. To ease the presentation, in the
remaining of this section we will always assume that the constraint we want to
encode is a1x1 + . . .+ anxn � k, with maximum coefficient amax.

The first encoding to mention is the one at [War98]. In a nutshell, the encoding
uses several adders for numbers in binary representation. First of all, the left hand
side of the constraint is split into two halves, each of which is recursively treated to
compute the corresponding partial sum. After that, the two partial sums are added
and the final result is compared with k . The encoding uses O(n log(amax)) clauses
and variables and is neither consistent nor arc-consistent. This is not surprising,
since adders for numbers in binary make extensive use of xors, which do not have
good propagation properties.

72 4. Encoding Pseudo-Boolean Constraints into SAT

D12,10

D11,10 D11,4

D10,10 D10,5 D10,4

D10,−1

≡ false

00

0

11

1

A B C

Figure 4.9: Tree-like construction of [BBR06a] for 2x1+ · · ·+2x10+5x11+6x12�10

An encoding “very close to those using a BDD and translating it into clauses”
was introduced at [BBR06a]. In order to understand the differences between their
construction and BDDs let us introduce it in detail. First of all, the coefficients are
ordered from small to large. Then, the root is labeled with variable Dn,k, expressing
that the sum of the first n terms is no more than k. Its two children are Dn−1,k

and Dn−1,k−an , which correspond to setting xn to false and true, respectively. The
process is repeated until nodes corresponding to trivial constraints are reached,
which are encoded as true or false. For each node Di,b with children Di−1,b and
Di−1,b−ai , the following four clauses are added:

Di−1,b−ai → Di,b Di−1,b → Di,b

Di−1,b−ai ∧ xi → Di,b Di−1,b ∧ xi → Di,b

Example 4.27. The encoding of [BBR06a] on 2x1+ · · ·+2x10+5x11+6x12 � 10 is
illustrated in Figure 4.9. Node D10,5 represents 2x1 + 2x2 + · · ·+ 2x10 � 5, whereas
node D10,4 represents 2x1+2x2+· · · 2x10 � 4. The method fails to identify that these
two PB constraints are equivalent and hence subtrees B and C will not be merged,
yielding a much larger representation than with ROBDDs.

The resulting encoding is arc-consistent, but an example of a PB constraint family is
given for which their kind of non-reduced BDDs, with their concrete variable ordering
is exponentially large. However, as we have shown in Section 4.3.2, ROBDDs for
this family are polynomial.

Several important new contributions were presented in the paper by the MiniSAT
team [ES06]. The paper describes three encodings, all of which are implemented in
the MiniSAT+ tool. The first one is a standard ROBDD construction for Pseudo-
Boolean constraints. This is done in two steps: first, they suggest a simple dynamic

4.7. Related Work 73

programming algorithm for constructing a non-reduced BDD, which is later reduced.
The result is a ROBDD, but the first step may take exponential time even if the final
ROBDD is polynomial. Once the ROBDD is constructed, they suggest to encode it
into SAT using 6 ternary clauses per node. The paper showed that, given a concrete
variable ordering, the encoding is arc-consistent. Regarding the ROBDD size, the
authors cite [BBR06a] to state the BDDs are exponential in the worst case. As we
have seen before, the citation is not correct because the method of [BBR06a] do not
construct ROBDDs.

The second method is similar to the one of [War98] in the sense that the con-
struction relies on a network of adders. First of all coefficients are decomposed into
binary representation. For each bit i, a bucket is created with all variables whose
coefficient has bit i set to one. The i-th bit of the left-hand side of the constraint
is computed using a series of full adders and half adders. Finally, the resulting sum
is lexicographically compared to k. The resulting encoding is neither consistent nor
arc-consistent and uses a number of adders linear in the sum of the number of digits
of the coefficients.

The last method they suggest is the use of sorting networks. Numbers are ex-
pressed in unary representation and coefficients are decomposed using a mixed radix
representation. The smaller the number in this representation, the smaller the en-
coding. In this setting, sorting networks are used to play the same role of adders, but
with better propagation properties. If N is smaller than the sum of the digits of all
coefficients in base 2, the size of the encoding is O(N log2N). Whereas this encod-
ing is not arc-consistent for arbitrary Pseudo-Boolean constraints, arc-consistency
is obtained for cardinality constraints.

The first polynomial and arc-consistent encoding for Pseudo-Boolean constraints,
called Watch-Dog, was introduced in [BBR09]. Again, numbers are expressed in
unary representation and totalizers are used to play the role of sorting networks. In
order to make the comparison with the right hand side trivial, the left-hand side
and k are incremented until k becomes a power of two. Then, all coefficients are de-
composed in binary representation and each bit is added independently, taking into
account the corresponding carry. The encoding uses O(n2 logn log amax) variables
and O(n3 logn log amax) clauses. In the same paper, another encoding which is only
consistent and uses O(n logn log amax) variables and O(n2 log n log amax) clauses is
also presented.

Finally, it is worth mentioning the work of [BB03b]. The authors deal with the
more general case in which the variables xi are not Boolean, but bounded integers
0 � xi < 2b. They suggest a BDD-based approach very similar in flavor to our
method of Section 4.4, but instead of decomposing the coefficients as we do, they
decompose the variables xi in binary representation. The BDD ordering starts with
the first bit of x1, then the first bit of the x2, etc... After that, the second bit is
treated in a similar fashion, and so on. The resulting BDD has O(n · b · ai) nodes
and nothing is mentioned about propagation properties. For the case of Pseudo-
Boolean constraints, i.e. b = 1, their approach amounts to standard BDDs.

74 4. Encoding Pseudo-Boolean Constraints into SAT

Encoding Reference Clauses Consist. Arc-Consist.

Warners [War98] O(n log amax) NO NO
Non-reduced BDD [BBR06a] Exponential YES YES
ROBDD [ES06] Exponential (6 per node) YES YES
Adders [ES06] O(

log ai) NO NO

Sorting Networks [ES06] O((

log ai) log
2(

log ai) YES NO
Watch Dog (WD) [BBR09] O(n2 log n log amax) YES NO
Arc-consist. WD [BBR09] O(n3 log n log amax) YES YES

Table 4.1: Summary comparing the different encodings.

Table 4.1 summarizes the different encodings of PB constraints into SAT.

4.8 Experimental Results

The goal of this section is to assess the practical interest of the encodings we have
presented in the paper. Our aim is to evaluate to which extent BDD-based encodings
are interesting from the practical point of view. For us, this means to study whether
they are competitive with existing techniques, whether they show good behavior in
general or are only interesting for very specific types of problems, or whether they
produce smaller encodings.

For that purpose, first of all, we compare our encodings with other SAT encodings
in terms of encoding time, number of clauses and number of variables. After that,
we also consider total runtime (that is, encoding time plus solving time) of these
encodings and we compare it with the runtime of state-of-the-art Pseudo-Boolean
solvers. Finally, we briefly report on some experiments with sharing, that is, trying
to encode several Pseudo-Boolean constraints in a single ROBDD.

All experiments were performed on a 2Ghz Linux Quad-Core AMD with a
time limit of 1800 seconds per benchmark. The benchmarks used for these ex-
periments were obtained from the Pseudo-Boolean Competition 2011 (see http://

www.cril.univ-artois.fr/PB11/), category no optimization, small integers, lin-
ear constraints (DEC-SMALLINT-LIN). For compactness and clarity, benchmarks
that come from the same source into families are grouped. However, individual re-
sults can be found at
http://www.lsi.upc.edu/~iabio/BDDs/results.ods.

4.8.1 The Bergmann Test

In order to summarize the experiments and make it easier to extract conclusions,
every experiment is accompanied with a Bergmann-Hommel non-parametric hypoth-
esis test [BH88] of the results with a confidence level of 0.1.

The Bergmann-Hommel test is a way of comparing the results of n different

4.8. Experimental Results 75

methods over multiple independent data sets. It gives us two interesting pieces
of information. First of all, it sorts the methods by giving them a real number
between 1 and n, such that the lower the number the better the method. Moreover,
it indicates, for each pair of methods, whether one method significatively improves
upon the other. As an example, Figure 4.10 is the output of a Bergmann-Hommel
test. BDD-1 is the best method but there is not significant difference between this
method and BDD-2 (this is illustrated by a thick line connecting the methods). On
the other hand, the Bergmann-Hommel test indicates that BDD-1 is significantly
better than Adder, since there is no thick line connecting BDD-1 and Adder. The
same can be said for BDD-1 and WD-1, BDD-1 and BDD-3, BDD-1 and WD-2,
BDD-2 and Adder, etc.

We will now give a quick overview of how a Bergmann-Hommel test is computed.
The remaining of this section can be skipped if the reader is not interested in the
details of the test. On the other hand, for more detailed information, we refer the
reader to [BH88].

Let us assume we have n methods and m data sets, and let Ci,j be the result
(time, number of variables or any other value) of the i-th method in the j-th bench-
mark. For every data set, we assign a number to every method: the best method in
that data set has a 1, the second has a 2, and so on. Then, for every method, we
compute the average of these values in the different data sets. The obtained value
is denoted by Ri and is called the average rank of the i-th method. A method with
smaller average rank is better than a method with a bigger one.

These average ranks make it possible to rank the different methods. However,
we are also interested in detecting whether the differences between the methods are
significant or not: this is computed in the second part of the test. Before that, we
need some previous definitions.

Given i, j ∈ N = {1, 2, . . . , n}, we denote by pi,j the p-value
3 of zi,j with respect

a normal distribution N(0, 1), where zi,j =
Ri−Rj√

n(n−1)/(6m)
. A partition of N =

{1, 2, . . . , n} is a collection of sets P = {P1, P2, . . . , Pr} such that (i) the Pi’s are
subsets of N , (ii) P1 ∪P2 ∪ · · · ∪Pr = N and (iii) Pi ∩Pj = ∅ for every i = j. Given
P a partition of N , we define

L(P) =
r

i=1

|Pi|(|Pi| − 1)

2

and p(P) as the minimum pi,j such that i and j belong to the same subset Pk ∈ P .
The Bergmann-Hommel test ensures (with a significance level of α) that the

methods i and j are not significantly different if and only if there is a partition P
with p(P) > αL(P) such that i and j belong to the same subset Pk ∈ P . Hence, it
is a time-consuming test since the number of partitions can be very large.

In our case, the data sets are the families of benchmarks. We have to use the
families instead of the benchmarks because the data sets must be independent.

3The p-value of z with respect to a normal distribution N(0, 1) is the probability p[|Z| > |z|],
where the random variable Z ∼ N(0, 1).

76 4. Encoding Pseudo-Boolean Constraints into SAT

4.8.2 Encodings into SAT

We start by comparing different methods for encoding Pseudo-Boolean constraints
into SAT. We have focused on the time spent by the encoding, the number of auxil-
iary variables used and the number of clauses. Moreover, for each benchmark family,
we also report the number of PB-constraints that were encoded into SAT.

The encodings we have included in the experimental evaluation are: the adder
encoding as presented at [ES06] (Adder), the consistent WatchDog encoding of
[BBR09] (WD-1), its arc-consistent version (WD-2), the encoding into ROBDDs
without coefficient decomposition, using Algorithm 4.1 and the encoding from Sec-
tion 4.6 (BDD-1); the encoding into ROBDDs after coefficient decomposition as
explained in Section 4.4.2 (BDD-2), with Algorithm 4.1 and the encoding from Sec-
tion 4.6; and the arc-consistent approach from Section 4.4.3 (BDD-3), also with
Algorithm 4.1 and the encoding from Section 4.6. Notice that BDD-1 method is
very similar to the ROBDDs presented at [ES06]. However, since Algorithm 4.1
produces every node only once, BDD-1 should be faster. Also, the encoding of
Section 4.6 only creates two clauses per BDD node, as opposed to six clauses as
suggested at [ES06].

Table 4.2 shows the number of problems that the different methods could encode
without timing out. The first column corresponds to the family of problems. The
second column shows the number of problems in this family. The third and fourth
columns contain the average number of SAT and Pseudo-Boolean constraints in
the problem. For the experiments, we considered a constraint to be SAT if it is
a clause or has at most 3 variables. Small PB constraints do not benefit from
the above encodings and hence for these constraints a naive encoding into SAT
was always used. The remaining columns correspond to the number of encoded
problems without timing out. Time limit was set to 1800 seconds per benchmark.
Every method but WD-2 and BDD-3 were able to encode all constraints without
timing out.

Table 4.3 shows the time spent to encode the benchmarks by the different meth-
ods. As before, the first columns correspond to the family of problems, the number
of problems in this family and the average number of SAT and Pseudo-Boolean
constraints in the problems. The remaining columns correspond to the average en-
coding time (in seconds) per benchmarks of each method. Timeouts are counted as
1800 seconds in the average computation.

Table 4.4 shows the average number of auxiliary variables required for encoding
the PB constraints (SAT constraints are not counted). The meaning of the first
4 columns is the same as before, and the others contain the average number of
auxiliary variables (in thousands) of the benchmarks that did not time out.

Finally, Table 4.5 contains the average number (in thousands) of clauses needed
to encode the problem. As before, we have only considered the benchmarks that
have not timed out, and clauses due to the encoding of SAT constraints are not
counted.

Figures 4.10, 4.11 and 4.12 represent the Bergmann-Hommel tests of these tables.

4.8. Experimental Results 77

Family Pr SAT PB Adder WD-1 WD-2 BDD-1 BDD-2 BDD-3

lopes 200 502,671 592,715 188 188 118 197 197 188

army 12 192 451 12 12 12 12 12 12

blast 8 6,510 1,253 8 8 8 8 8 8

cache 9 181,100 4,507 9 9 9 9 9 9

chnl 21 0 125 21 21 21 21 21 21

dbstv30 5 326,200 2,701 5 5 0 5 5 0

dbstv40 5 985,200 4,801 5 5 0 5 5 0

dbstv50 5 2,552,000 7501 5 5 0 5 5 0

dlx 3 20,907 857 3 3 3 3 3 3

elf 5 46,446 1,399 5 5 5 5 5 5

fpga 36 0 687 36 36 36 36 36 36

j30 17 13,685 270 17 17 17 17 17 17

j60 18 30,832 309 18 18 18 18 18 18

j90 17 50,553 337 17 17 8 17 17 11

j120 28 104,147 516 28 28 11 28 28 18

neos 4 1,451 3,831 4 4 4 4 4 4

ooo 19 95,217 4,487 19 19 19 19 19 19

pig-card 20 0 113 20 20 18 20 20 20

pig-cl 20 161,150 58 20 20 20 20 20 20

ppp 6 29,846 1,023 6 6 6 6 6 6

robin 6 0 761 6 6 2 6 6 6

13queen 100 8 93 100 100 100 100 100 100

11tsp11 100 2,662 45 100 100 100 100 100 100

vdw 5 8,978 267,840 5 5 5 5 5 5

TOTAL 669 657 657 540 666 666 626

Table 4.2: Number of problems encoded (without timing out) by the different meth-
ods.

6 5 4 3 2 1

WD−2
BDD−3

WD−1 Adder
BDD−2

BDD−1

Figure 4.10: Statistical comparison of the results of Table 4.3, time spent by the
different methods in encoding.

6 5 4 3 2 1

WD−2
BDD−3

WD−1 BDD−2
BDD−1

Adder

Figure 4.11: Statistical comparison of the results of Table 4.4, number of auxiliary
variables used by the different encodings.

78 4. Encoding Pseudo-Boolean Constraints into SAT

Family Pr SAT PB Adder WD-1 WD-2 BDD-1 BDD-2 BDD-3

lopes 200 502,671 592,715 335.23 292.14 996.07 165.75 163.66 316.35

army 12 192 451 0.37 0.43 39.98 0.19 0.19 10.26

blast 8 6,510 1,253 3.89 2.45 40.41 2.20 1.89 23.15

cache 9 181,100 4,507 23.08 18.74 81.65 16.19 15.74 47.78

chnl 21 0 125 0.54 1.05 87.08 0.13 0.13 2.68

dbstv30 5 326,200 2,701 57.77 97.21 — 45.85 83.09 —

dbstv40 5 985,200 4,801 211.51 210.25 — 105.62 165.96 —

dbstv50 5 2,552,000 7,501 547.30 552.99 — 272.02 468.51 —

dlx 3 20,907 857 3.73 3.05 8.41 2.76 2.75 6.19

elf 5 46,446 1,399 7.37 6.53 21.68 5.19 5.90 13.42

fpga 36 0 687 1.90 2.46 69.90 0.30 0.30 3.75

j30 17 13,685 270 3.64 4.62 81.03 3.13 3.67 42.44

j60 18 30,832 309 6.85 10.69 466.07 8.19 8.77 252.69

j90 17 50,553 337 14.81 31.02 1,277.28 28.20 27.76 1,155.18

j120 28 104,147 516 19.25 47.62 1,305.55 21.68 25.50 967.10

neos 4 1,451 3,832 10.43 12.65 257.97 3.46 5.32 77.04

ooo 19 95,217 4,487 13.48 9.67 71.20 7.76 7.88 26.35

pig-card 20 0 113 0.97 3.29 517.51 0.22 0.21 9.52

pig-cl 20 161,150 58 7.73 8.78 284.15 7.35 7.31 10.79

ppp 6 29,846 1,024 6.13 5.09 33.26 3.17 3.23 9.83

robin 6 0 761 12.03 67.41 1,315.96 2.94 2.82 301.11

13queen 100 8 93 0.19 0.45 100.29 0.14 0.17 18.48

11tsp11 100 2,662 45 0.46 0.51 24.42 0.30 0.33 6.30

vdw 5 8,978 267,840 170.33 109.42 441.21 47.15 46.32 125.91

Average 110.57 99.79 510.40 55.90 57.66 223.41

Table 4.3: Average time spent on the encoding by the different methods.

6 5 4 3 2 1

WD−2
BDD−3

WD−1 Adder
BDD−2

BDD−1

Figure 4.12: Statistical comparison of the results of Table 4.5, number of clauses
used by the different methods.

4.8. Experimental Results 79

Family Pr SAT PB Adder WD-1 WD-2 BDD-1 BDD-2 BDD-3

lopes 200 502,671 592,715 1,744 3,566 5,479 2,394 2,394 7,735

army 12 192 451 4.63 10.96 246 6.36 6.36 480

blast 8 6,510 1,253 27.77 62.22 1,394 36.74 39.67 761

cache 9 181,100 4,507 146 339 2,394 201 211 1,503

chnl 21 0 125 8.39 24.55 1,008 6.76 6.76 185

dbstv30 5 326,200 2,701 220 710 — 442 1,696 —

dbstv40 5 985,200 4,801 2,468 6,564 — 4,282 7,226 —

dbstv50 5 2,552,000 7,501 6,135 16,365 — 11,111 19,723 —

dlx 3 20,907 857 10.4 21.62 248 12.40 13.89 127

elf 5 46,446 1,399 20.37 42.78 571 24.62 28.13 307

fpga 36 0 687 21.15 53.96 1,074 13.27 13.27 242

j30 17 13,685 270 18.15 50.8 1,191 44.96 59.82 1,154

j60 18 30,832 309 37.03 112 4,776 158 180 7,286

j90 17 50,553 337 65.4 217 6,544 554 554 19,793

j120 28 104,147 516 159 540 5,714 612 806 22,247

neos 4 1,451 3,832 73.74 186 3,543 79.33 123 2,004

ooo 19 95,217 4,487 118 274 2,248 162 169 1,316

pig-card 20 0 113 15.26 50.75 2,967 11.93 11.93 632

pig-cl 20 161,150 58 7.68 25.25 1,984 4.01 4.01 310

ppp 6 29,846 1,024 57.13 141 624 81.57 82.86 383

robin 6 0 761 171 628 3,634 159 159 16,566

13queen 100 8 93 2.2 6.17 462 5.63 7.08 791

11tsp11 100 2,662 45 3.37 8.83 171 5.71 6.51 221

vdw 5 8,978 267,840 1,895 3,357 12,819 1,392 1,392 5,876

Average 591 1,266 1,876 893 998 3,807

Table 4.4: Average number of auxiliary variables (in thousands) used.

80 4. Encoding Pseudo-Boolean Constraints into SAT

Family Pr SAT PB Adder WD-1 WD-2 BDD-1 BDD-2 BDD-3

lopes 200 502,671 592,715 10,644 7,472 22,082 3,049 3,049 9,746

army 12 192 451 26.09 34.5 2,156 10.87 10.87 925

blast 8 6,510 1,253 185 102 2,108 70.9 65.46 1,265

cache 9 181,100 4,507 981 551 3,652 272 275 2,419

chnl 21 0 125 56.82 117 4,936 11.23 11.23 286

dbstv30 5 326,200 2,701 1,497 3,368 — 857 3,282 —

dbstv40 5 985,200 4,801 17,185 16,917 — 5,527 11,259 —

dbstv50 5 2,552,000 7,501 42,797 44,311 — 14,400 31,279 —

dlx 3 20,907 857 65.25 35.68 378 23.04 22.59 209

elf 5 46,446 1,399 129 71.28 881 46.3 46.07 507

fpga 36 0 687 139 176 3,615 15.65 15.65 278

j30 17 13,685 270 122 165 3,890 89.53 116 2,244

j60 18 30,832 309 253 495 22,843 311 351 14,355

j90 17 50,553 337 450 1,286 34,137 1,106 1,095 39,112

j120 28 104,147 516 1,103 3,803 26,205 1,187 1,571 44,069

neos 4 1,451 3,832 471 595 12,410 139 220 3,681

ooo 19 95,217 4,487 793 442 3,378 219 228 2,126

pig-card 20 0 113 104 367 20,711 19.86 19.86 959

pig-cl 20 161,150 58 52.41 180 14,641 4.07 4.07 314

ppp 6 29,846 1,024 393 272 1,804 101 103 654

robin 6 0 761 1,186 6,916 19,695 281 281 28,876

13queen 100 8 93 14.73 38.91 5,068 10.84 13.73 1,574

11tsp11 100 2,662 45 23.31 25.35 1,336 7.76 9.35 434

vdw 5 8,978 267,840 10,886 6,564 24,274 1,663 1,663 7,263

Average 3,676 2,971 8,297 1,174 1,380 5,844

Table 4.5: Average number of clauses (in thousands) used.

4.8. Experimental Results 81

12 11 10 9 8 7 6 5 4 3 2 1

WD−2
BDD−3

Adder
SAT4J

MiniSAT
bsolo WD−1

BDD−2
BDD−1

borg
Wbo

SMT

Figure 4.13: Statistical comparison of the results of Table 4.7, runtime of the different
methods.

They show that BDD-1, BDD-2 and Adders are the best methods in terms of time,
variables and clauses. It is worth mentioning that BDD-1 and BDD-2 are faster
and use significantly less clauses than Adder. However, Adders uses significantly
less auxiliary variables than BDD-2. Notice that BDD-1 is arc-consistent, BDD-2 is
only consistent and Adder is not consistent, so at least theoretically BDD-1 clauses
have more unit propagation power than BDD-2 clauses, and BDD-2 clauses are
better than Adder clauses. Hence, BDD-1 is the best method using these criteria
and BDD-2 is better than Adder. Regarding the other methods, it seems clear that
encoding n different constraints in order to obtain arc-consistency, as it is done in
WD-2 and BDD-3, is not a good idea in terms of variables and clauses.

4.8.3 SAT vs. PB

In this section we compare the state-of-the-art solvers for Pseudo-Boolean prob-
lems and some encodings into SAT. For the SAT approach, once the encoding has
been done, the SAT formula is given to the SAT Solver Lingeling [Bie10b] version
276. We have considered the same SAT encodings as in the previous section. Re-
garding Pseudo-Boolean solvers, we have considered MiniSAT+ [ES06] and the best
non-parallel solvers in the No optimization, small integers, linear constraints cate-
gory of the Pseudo-Boolean Competition 2010: borg [SM10] version pb-dec-11.04.03,
bsolo [MS06] version 3.2, wbo [MML10] version 1.4 and SAT4J [BP10] version 2.2.1.
We have also included the SMT Solver Barcelogic [BNO+08] for PB constraints,
which couples a SAT solver with a theory solver for PB constraints.

Table 4.6 shows the number of instances solved by each method. Table 4.7 shows
the average time spent by all these methods. For the SAT encodings, times include
both the encoding and SAT solving time. As before, a time limit of 1800 seconds per
benchmark was set, and for the average computation, a timeout is counted as 1800
seconds. Both tables include a column VBS (Virtual Best Solver), which represents
the best solver in every instance. This gives an idea of which speedup we could
obtain with a portfolio approach.

Figure 4.13 shows the result of the Bergmann test: SMT is the best method,
whereas Adder, BDD-3 and WD-2 are the worst ones. There are no significant dif-
ference between the other methods. The main conclusion we can infer is that BDD
encodings are definitely a competitive method. Also, there is no technique that out-

82 4. Encoding Pseudo-Boolean Constraints into SAT

F
a
m
il
y

A
d
d
e
r

W
D
-
1

W
D
-
2

B
D
D
-
1

B
D
D
-
2

B
D
D
-
3

b
s
o
lo

M
in
iS
A
T

S
A
T
4
J

W
b
o

b
o
r
g

S
M
T

V
B
S

lo
p
e
s

4
2

5
4

4
0

5
6

5
7

6
1

3
9

6
6

2
3

6
3

3
7

4
3

7
7

a
r
m
y

9
1
2

7
1
0

1
1

5
6

6
6

6
1
0

5
1
2

b
la
s
t

8
8

8
8

8
8

8
8

8
8

8
8

8

c
a
c
h
e

9
9

9
9

9
9

7
8

6
6

6
9

9

c
h
n
l

3
3

2
5

5
3

2
1

3
1

3
2
1

0
2
1

d
b
s
t
v
3
0

5
5

0
5

5
0

5
5

5
5

5
5

5

d
b
s
t
v
4
0

0
5

0
5

5
0

5
5

5
5

5
5

5

d
b
s
t
v
5
0

0
5

0
5

5
0

5
5

5
5

5
5

5

d
lx

3
3

3
3

3
3

3
3

3
3

3
3

3

e
lf

5
5

5
5

5
5

5
5

5
5

5
5

5

fp
g
a

2
5

3
6

3
6

3
6

3
6

3
6

3
6

3
3

3
6

3
6

3
6

3
6

3
6

j3
0

1
7

1
7

1
7

1
7

1
7

1
7

1
7

1
7

1
7

1
7

1
7

1
7

1
7

j6
0

1
7

1
7

1
7

1
7

1
7

1
7

1
7

1
7

1
7

1
7

1
7

1
7

1
7

j9
0

1
7

1
7

7
1
7

1
7

8
1
7

1
7

1
7

1
7

1
7

1
7

1
7

j1
2
0

1
4

1
6

9
1
6

1
6

1
1

1
3

1
2

1
6

1
6

1
6

1
6

1
7

n
e
o
s

2
2

2
2

2
2

2
2

2
2

2
2

2

o
o
o

1
5

1
9

1
6

1
8

1
9

1
7

1
4

1
5

1
4

1
5

1
4

1
7

1
9

p
ig
-c
a
r
d

2
2

2
2

2
1

1
9

2
2

2
2
0

0
2
0

p
ig
-c
l

2
1

2
1

1
2

3
2

2
2

5
0

5

p
p
p

4
3

4
3

4
4

4
4

4
3

5
4

6

r
o
b
in

3
3

2
3

3
6

3
3

4
3

3
4

6

1
3
q
u
e
e
n

1
0
0

1
0
0

1
0
0

1
0
0

1
0
0

1
0
0

1
0
0

1
0
0

1
0
0

1
0
0

1
0
0

1
0
0

1
0
0

1
1
t
s
p
1
1

1
0
0

1
0
0

9
6

1
0
0

1
0
0

7
5

7
2

9
0

9
3

1
0
0

1
0
0

1
0
0

1
0
0

v
d
w

1
1

1
1

1
1

1
1

1
1

1
1

2

T
O
T
A
L

4
0
3

4
4
3

3
8
5

4
4
4

4
4
8

3
9
1

4
2
2

4
2
9

3
9
2

4
4
0

4
5
8

4
1
9

5
1
4

T
ab

le
4.
6:

N
u
m
b
er

of
p
ro
b
le
m
s
so
lv
ed

b
y
d
iff
er
en
t
m
et
h
o
d
s.

4.8. Experimental Results 83

F
a
m
il
y

A
d
d
e
r

W
D
-
1

W
D
-
2

B
D
D
-
1

B
D
D
-
2

B
D
D
-
3

b
s
o
lo

M
in
iS
A
T

S
A
T
4
J

W
b
o

b
o
r
g

S
M
T

V
B
S

lo
p
e
s

1
,5
1
4
5

1
,4
2
0

1
,5
6
1

1
,4
0
8

1
,4
0
1

1
,4
3
5

1
,5
0
9

1
,3
4
4

1
,6
6
1

1
,3
6
4

1
,5
5
5

1
,4
6
4

1
,2
4
9

a
r
m
y

6
6
0

1
3
9

1
,1
4
1

5
4
3

4
6
9

1
,2
9
8

1
,0
2
8

9
1
3

1
,1
2
7

1
,0
8
4

4
3
8

1
,0
6
6

8
6
.2
9

b
la
s
t

6
.1
2

2
.5
6

4
6
.7
8

2
.4
2

1
.9
9

2
7
.6
3

0
.1
2

0
.5
1

0
.8
4

0
.0
8

2
.1
3

0
.0
3

0
.0
3

c
a
c
h
e

2
5
3

1
2
3

3
9
6

7
5
.4
9

1
1
5

3
7
5

6
5
3

3
9
5

6
7
0

6
0
6

6
3
6

2
6
6

6
3
.9
5

c
h
n
l

1
,5
4
3

1
,5
4
3

1
,7
1
6

1
,5
0
8

1
,5
0
8

1
,6
8
1

0
.5
5

1
,5
5
1

1
,7
5
1

1
,6
7
3

3
.7
8

—
0
.4
7

d
b
s
t
v
3
0

1
,0
4
9

1
2
8

—
9
1
.6
6

1
9
2

—
5
9
.2
8

3
2
.6

9
9
.8
1

1
.5
4

9
.8
7

1
.2
8

1
.2
8

d
b
s
t
v
4
0

—
3
6
6

—
1
9
8

3
2
4

—
1
8
7

7
2
.2
5

9
.7
4

5
.6
9

4
5
.3
3

4
.4
4

4
.4
4

d
b
s
t
v
5
0

—
9
3
5

—
6
2
9

7
9
2

—
2
0
0

4
3
0

2
1
.2
2

1
6
.1
3

1
2
1

1
1
.3
6

1
1
.3
6

d
lx

7
.0
6

4
.8
8

2
5
.7
2

4
.2
9

4
.3
4

1
9
.5
8

3
.4
7

1
.2
9

1
.6

0
.5
5

3
.1
5

0
.1
7

0
.1
7

e
lf

1
3
.8
7

1
0
.1
4

4
4
.0
9

7
.9
7

9
3
0
.0
3

2
8
.5
8

2
.9
7

2
.3
1

1
.4
2

1
1
.6
1

0
.6
9

0
.6
9

fp
g
a

5
8
6

5
.2
7

1
1
3

0
.9
2

0
.9
2

3
7
.6
4

0
.2
7

2
4
2

1
.4
7

5
.1
7

3
.0
4

0
.1

0
.0
7

j3
0

1
6
.7

7
.7
9

1
1
6

5
.9
4

8
.4
2

7
7
.8
8

6
.5
3

4
.6

1
4
.5
7

0
.5
3

1
.9
3

0
.2
8

0
.2
8

j6
0

1
3
7

1
1
4

5
5
1

1
1
3

1
1
6

3
9
8

1
1
0

1
1
5

1
0
5

1
0
1

1
0
4

1
0
1

1
0
1

j9
0

2
4
.1
8

3
6
.6
3

1
,3
0
3

3
9
.7
2

3
9
.4
6

1
,2
3
3

0
.9

3
.9
6

1
.4
2

0
.4
1

3
.3
2

0
.1
5

0
.1
5

j1
2
0

9
7
8

8
5
4

1
,3
6
4

8
3
9

8
5
1

1
,2
6
2

9
6
7

1
,0
3
1

8
4
9

8
3
9

8
4
1

8
1
4

7
5
6

n
e
o
s

1
,0
2
3

9
3
6

1
,4
0
5

9
1
0

9
1
5

1
,0
7
3

1
,1
0
6

1
,2
7
6

1
,0
3
8

9
0
1

9
7
6

9
2
5

9
0
1

o
o
o

4
7
9

1
9
0

4
9
3

1
5
1

1
7
6

4
8
8

6
4
5

4
5
3

5
7
5

4
8
6

5
1
2

2
5
9

1
2
6

p
ig
-c
a
r
d

1
,6
2
0

1
,6
2
0

1
,6
8
0

1
,6
2
0

1
,6
2
0

1
,7
2
5

1
1
4

1
,6
2
6

1
,7
4
9

1
,6
8
5

3
.9
2

—
1
.9
2

p
ig
-c
l

1
,6
2
4

1
,7
1
5

1
,6
9
3

1
,7
1
8

1
,7
1
8

1
,7
2
1

1
,6
5
8

1
,6
2
3

1
,7
0
5

1
,7
4
2

1
,3
6
9

—
1
,3
6
7

p
p
p

6
3
1

1
,0
0
1

6
5
6

9
0
6

8
5
8

6
4
6

6
0
5

9
1
9

6
0
2

9
0
1

3
9
0

6
0
1

2
1
0

r
o
b
in

9
3
8

9
2
1

1
,3
5
3

9
1
3

9
1
3

7
1
9

9
3
6

9
7
1

7
7
8

9
2
0

9
6
3

6
0
5

4
4
4

1
3
q
u
e
e
n

4
7
.5
2

1
.6
4

2
6
4

4
.6
3

4
.5
1

6
4
3

5
4
.8
2

2
3
8

1
8
.9
2

5
.9

2
0
.3
5

1
.9
2

1
.2
8

1
1
t
s
p
1
1

2
8
.3
6

8
.2
9

4
2
9

2
3
.8
6

1
8
.3
2

7
3
1

8
5
5

3
6
9

5
0
3

2
2
9

2
7
.6
4

1
.8
1

1
.5
1

v
d
w

1
,6
4
5

1
,5
6
8

1
,5
4
5

1
,4
9
3

1
,4
9
3

1
,6
1
2

1
,4
7
8

1
,4
4
8

1
,5
9
6

1
,4
4
1

1
,4
5
0

1
,4
4
1

1
,1
8
6

A
v
e
r
a
g
e

7
8
3

6
6
9

9
5
8

6
6
7

6
6
7

1
,0
0
3

7
6
4

7
7
2

8
4
9

7
1
0

6
1
3

6
9
6

4
7
5

T
a
b
le

4.
7:

T
im

e
sp
en
t
b
y
d
iff
er
en
t
m
et
h
o
d
s
on

so
lv
in
g
th
e
p
ro
b
le
m

(i
n
se
co
n
d
s)
.

84 4. Encoding Pseudo-Boolean Constraints into SAT

performs the others in all benchmark families, and hence portfolio strategies would
make a lot of sense in this area, as witnessed by the performance of Borg, which
implements such an approach. Finally, we also want to mention that the possi-
ble exponential explosion of BDDs rarely occurs in practice and hence, coefficient
decomposition does not seem to pay off in practical situations.

Regarding the Best Virtual Solver, the 52% of the problems solved are due to
SMT. In the 25% of the cases the best solution was given by a specific PB solver.
Among them, Wbo contribute with the 10% of the problems and bsolo with the
8%. Finally, the encoding methods give the best solution in the 23% of the cases:
14% of the times due to Watchdog methods and 8% of the times due to BDD-based
methods.

4.8.4 Sharing

One of the possible advantages of using ROBDDs to encode Pseudo-Boolean con-
straints is that ROBDDs allow one to encode a set of constraints, and not just one.
It would seem natural to think that if two constraints are similar enough, the two
individual ROBDDs would be similar in structure, and merging them into a single
one would result in a ROBDD whose size is smaller than the sum of the two individ-
ual ROBDDs. However, the main difficulty is to decide which constraints should be
encoded together, since a bad choice could result in a ROBDD whose size is larger
than the sum of the ROBDDs for the individual constraints.

We performed initial experiments where the criteria of similarity between con-
straints only took into account which variables appeared in the constraints. We first
fixed an integer k and chose the constraint with the largest set of variables. After
that, we looked for a constraint such that all but k variables appeared in the first
constraint. The next step was to look for another constraint such that all but k
variables appeared in any of the two previous constraints and so on, until reaching
a fixpoint. Finally, all selected constraints were encoded together.

We tried this experiment on all benchmarks with different values of k and it rarely
gave any advantage. However, we still believe that there could be a way of encoding
different constraints into a single ROBDD, but different criteria for selecting the
constraints should be studied. We see this as a possible line of future research.

4.9 Conclusions and Future Work

Both theoretical and practical contributions have been made. Regarding the theo-
retical part, we have negatively answered the question of whether all PB constraints
admit polynomial BDDs by citing the work of [HTY94] which, to the best of our
knowledge, is largely unknown in our research community. Moreover, we have given
a simpler proof assuming that NP is different from co-NP, which relates the subset
sum problem and the ROBDDs’ size of PB constraints.

4.9. Conclusions and Future Work 85

At the practical level, we have introduced a ROBDD-based polynomial and arc-
consistent encoding of PB constraints and developed a BDD-based arc-consistent
encoding of monotonic functions that only uses two clauses per BDD node. We have
also presented an algorithm to efficiently construct all these ROBDDs and proved
that the overall method is competitive in practice with state-of-the-art encodings
and tools. As future work at the practical level, we plan to study which type
of Pseudo-Boolean constraints are likely to produce smaller ROBDDs if encoded
together rather than being encoded individually.

5
Conflict-Directed Lazy

Decomposition

5.1 Introduction

Compared with other systematic constraint solving tools, SAT solvers have many ad-
vantages for non-expert users. They are extremely efficient off-the-shelf black boxes
that require no tuning regarding variable (or value) selection heuristics. However,
propositional logic cannot directly deal with complex constraints: we need either
to enrich the language in which the problems are defined, or to reduce the complex
constraints to propositional logic.
Lazy clause generation (LCG) or SAT Modulo Theories (SMT) approaches corre-

spond to an enrichment of the language: the problem can be expressed in first-order
logic instead of propositional logic. A specific theory solver for that (kind of) con-
straint, called a propagator, takes care of the non-propositional part of the problem,
propagating and explaining the propagations, whereas the SAT Solver deals with
the propositional part. On the other hand, reducing the constraints to propositional
logic corresponds to encoding or decomposing the constraints into SAT: the complex
constraints are replaced by an equivalent set of auxiliary variables and clauses.

The advantages of the propagator approach is that the size of the propagator and
its data structures are typically quite small (in the size of the constraint) compared
to the size of an encoding, and we can make use of specific global algorithms for
efficient propagation. The advantages of the encoding approach are that the resulting
decomposition uses efficient SAT data structures and are inherently incremental, and
more importantly, the auxiliary variables give the solver more scope for learning
appropriate reusable nogoods.

In this chapter1 we examine how to get the best of each approach, and illustrate

1Based on the paper “Conflict Directed Lazy Decomposition” from the 18th International Con-

ference on Principles and Practice of Constraint Programming [AS12]

87

88 5. Conflict-Directed Lazy Decomposition

our method on the two fundamental constraints considered in the previous sections:
cardinality and Pseudo-Boolean constraints.

An SMT solver generates lazily an encoding of the constraint. However, this
encoding has no auxiliary variables: this can be a bad option since encodings without
variables needs usually a huge number of clauses and, above all, the SAT Solvers
cannot decide on these auxiliary variables, which usually implies that the search
space is explored in a worse way. Lazy Decomposition allows to lazily generate the
decomposition but introducing the auxiliary variables: in this way, a constraint is
decomposed only when it is useful but the decomposition is done in a better way
than in the SMT case: it also introduces auxiliary variables.

As said, in this chapter we deal with cardinality and Pseudo-Boolean constraints.
Regarding cardinality constraints, the two previously mentioned approaches for solv-
ing complex constraints have been studied. In the literature one can find different
encodings using adders [War98], binary trees [BB03a] or sorting networks [ES06],
among others. The best encoding, to our knowledge, was the cardinality network-
based encoding explained in Section 3.3 [ANORC11b] and improved in Section 3.5.
On the other hand, we can use a propagator to deal with these constraints, either
an SMT Solver [NOT06] or a LCG Solver [OSC09].

Regarding Pseudo-Boolean constraints, in the literature one can find different
encodings for them using adders [War98, ES06], BDDs or similar tree-like struc-
tures [ES06, BBR06a, ANORC11a] (see Chapter 4) or sorting networks [ES06]. As
before, LCG and SMT approaches are also possible.

To see why both approaches, both SMT and encoding, have advantages consider
the following two scenarios:

• Consider a problem with hundreds of large cardinality constraints where all but
1 never cause failure during search. Decomposing each of these constraints will
cause a huge burden on the SAT solver, adding many new variables and clauses,
all of which are actually useless. The propagation approach will propagate
much faster, and indeed just the encoding step could overload the SAT solver.

• Consider the problem with the cardinality constraint x1 + · · · + xn ≤ K and
some propositional clauses implying x1+ · · ·+xn ≥ K+1. The problem is ob-
viously unsatisfiable, but if we use a propagator for the cardinality constraint,
it will need to generate all the

n
k

explanations possible in order to prove the

unsatisfiability. However with a decomposition approach the problem can be
solved in polynomial time due to the auxiliary variables.

In conclusion it seems likely that in every problem there are some auxiliary vari-
ables that will produce more general reasons and will help the SAT solver, and some
other variables that will only increase the search space size, making the problem
more difficult. The intuitive idea of Lazy Decomposition is to try to generate only
the useful auxiliary variables. The solver initially behaves as a basic SMT solver.
If it observes that an auxiliary variable would appear in many reasons, the solver
generates it.

5.2. Preliminaries 89

While there is plenty of research on combining SAT and propagation-based meth-
ods, for example all of SAT modulo theories and lazy clause generation, we are
unaware of any previous work where a complex constraint is partially decomposed.
There is some recent work [MP11] where the authors implement an incremental
method for solving Pseudo-Boolean constraints with SAT, by encoding the Pseudo-
Booleans one by one. However, they do not use propagators for dealing with the
non-decomposed constraints, since in every step they consider the problem involving
only the decomposed ones. Moreover, the decomposition for a single constraint is
done in one step.

The remainder of the chapter is organized as follows. The next section is devoted
to the SMT propagators for cardinality and Pseudo-Boolean constraints: lazy de-
composition propagators are in some sense an extension of SMT propagators, since
they also lazily provide an encoding to the SAT Solver, but they also introduce
auxiliary variables. In Section 5.3 we define a framework for lazy decomposition
propagators, and instantiate it for cardinality and Pseudo-Boolean constraints. In
Section 5.4 we show the results of experiments, and in Section 5.5 we conclude.

5.2 Preliminaries

In this section we present the propagators for cardinality and Pseudo-Boolean con-
straints. As explained in Section 2.5.2, a propagator needs to perform the following
actions: (i) return a set of the inferred literals when the SAT Solver assigns a value to
an undefined literal, (ii) return to the previous state when the SAT Solver unassigns
a literal, and, when the SAT Solver requires it, (iii) give a reason for a propagation
done.

5.2.1 A Propagator for Cardinality Constraints

A cardinality constraint takes the form x1+ · · ·+xn # K, where the K is an integer,
the xi are variables, and the relation operator # belongs to {�,�,=}.

For a � constraint, the propagator keeps a count of the number of literals of
the constraint which are true in the current assignment. The propagator increments
this value every time the SAT solver assigns true a literal of the constraint. The
count is decremented when the SAT solver unassigns one of these literals. When
this value is equal to K, no other literal can be true: the propagator sets to false
all the remaining literals. The reason for setting a literal xj to false can be built by
searching for the K literals {xi1 , . . . , xiK} of the constraint which are true to give
the reason xi1 ∧ xi2 ∧ · · · ∧ xiK → xj .

Similarly, in a � constraint the propagator keeps a count of the literals which are
false in the current assignment. When this value is equal to n−K, the propagator
sets to true the non-propagated literals. A propagator for an equality constraint
keeps track of both values. All these propagators are arc-consistent.

90 5. Conflict-Directed Lazy Decomposition

5.2.2 A Propagator for Pseudo-Boolean Constraints

PB constraints are a generalization of cardinality constraints. They take the form
a1x1+· · ·+anxn #K, whereK and ai are integers, the xi are literals, and the relation
operator # belongs to {�,�,=}. In this chapter we assume that the operator # is
� and the coefficients ai and K are positive. Other cases can be easily reduced to
this one (see [ES06]).

The propagator must keep the current sum s during the search, defined as the
sum of all coefficients ai for which xi is true. This value can be easily incrementally
computed: every time the SAT solver sets a literal xi of the constraint to true, the
propagator adds ai to s, and when the literal is unassigned by the SAT solver it
subtracts ai. For each i ∈ {1, . . . , n} such that xi is unassigned and K − s < ai, the
propagator sets xi to false. The propagator can produce reasons in the same way
as in the cardinality case: if it has propagated xj to false, xi1 ∧ · · · ∧ xir → xj , is
returned as the reason, where xi1 , · · · , xir are all the literals of the constraint with
true polarity. It is easy to see that this propagator is arc-consistent.

As an optimization, the propagator can compute a value A defined as an upper
bound of the coefficients of the unassigned variables. In other words, for every i
with xi unassigned, it holds A � ai. Initially, A = max{ai}. When K − s � A, the
propagator does not need to visit any coefficient for checking if some literal can be
propagated to false. This value A can be updated when the visit to the coefficients
is necessary, i.e., when K − s < A, and when a literal xi is unassigned.

5.3 Lazy Decomposition

The idea of lazy decomposition is quite simple: a Lazy Decomposition (LD) solver is,
in some sense, a combination of a SMT Solver and an eager encoding. LD solvers, as
SMT solvers, are composed of a SAT solver engine (that deals with the propositional
part of the problem) and propagators, each one in charge of a complex constraint.
The difference between SMT and LD solvers lies in the role of the propagators: SMT
propagators only propagate and give explanations. LD propagators, in addition,
detect which variables of the eager encoding would be helpful. These variables and
the clauses from the eager encoding involving them are added to the SAT solver
engine.

Here we design the LD for cardinality and Pseudo-Boolean constraints, but the
idea of LD is not specific to them. Given a complex constraint type and an eager
encoding method for it, we can create a LD solver for them if we can design a LD
propagator able to perform the following actions:

• Identify (dynamically) which parts of the encoding would be helpful
to learning: LD can be seen as a combined methodology that aims at taking
advantage of the most profitable aspects of SMT and eager encoding. This
point assures that the solver moves to the encoding when it is the best option.

5.3. Lazy Decomposition 91

• Propagate the constraint when any subset of the encoding has been
added: The propagator must work either without encoding or with a part of
it.

• Avoid propagation for the constraint which is handled by the cur-
rent encoding: auxiliary variables from the eager encoding have their own
meanings. The propagator must use these meanings in order to efficiently
propagate the constraint when it is partially encoded. For example, if the
entire encoding is added, we want the propagator to do no work at all.

In this chapter we present two examples of LD propagators: the first one, for cardi-
nality constraints, is based on the eager encoding of Cardinality Networks of Section
3.3 [ANORC11b]. The second one is a propagator for Pseudo-Boolean constraints,
is based on the BDD decomposition of Chapter 4 [ANORC11a].

5.3.1 Lazy Decomposition Propagator for Cardinality Constraints

In this section we describe the LD propagator for a cardinality constraint of the
form x1+x2+ . . .+xn � K. LD propagators for � or = cardinality constraints can
be defined similarly.

According to Section 3.2, the encoding of a cardinality constraint based on cardi-
nality networks consists in the encoding of 2-comparators into SAT. A key property
of the 2-comparator (y1, y2) = 2-Comp(x1, x2) of Figure 3.1 is that x1+x2 = y1+y2.
This holds since y1 = x1 ∨ x2 and y2 = x1 ∧ x2. Thus we can define a 2-comparator
decomposition step for the 2-comparator (y1, y2) = 2-Comp(x1, x2) as replacing the
current cardinality constraint x1+x2+x3+. . .+xn � K by y1+y2+x3+. . .+xn � K
and adding a SAT encoding for the 2-comparator. The resulting constraint system
is clearly equivalent. The encoding introduces the new variables y1 and y2.

The propagation of the LD propagator works just as in the SMT case. As
decomposition occurs, the cardinality constraint that is being propagated changes
by substituting newly defined encoding variables for older variables.

x1
x2
x3
x4
x5
x6
x7
x8

z1
z2
z3
z4
z5
z6
z7
z8

z9

z10

z11

z12
z13

z14

z15

z16

z17
z18

z19
z20

z21

z22

z23

z24

z25

z26

z27

z28

z29

z30

z31

z32

z33
z34
z35
z36
z37
z38

Figure 5.1: An 8-cardinality constraint of size 8, as described at Section 3.3. We are
representing the 2-comparators as described at Section 3.2.

92 5. Conflict-Directed Lazy Decomposition

Example 5.1. Figure 5.1 shows an 8-cardinality network with all its auxiliary vari-
ables and 2-comparators. A LD propagator for the constraint x1+. . .+x8 � 5 initially
behaves as an SMT propagator for that constraint. When variables z1, z2, . . . , z12 are
introduced by decomposing the corresponding six 2-comparators, the substitutions re-
sult in the cardinality constraint z5 + z6 + z7 + z8 + z9 + z10 + z11 + z12 � 5.

A LD propagator must determine parts of the decomposition that should be
added to the SAT solver. For simplicity, our LD solver adds variables only when
it performs a restart: restarts occurs often enough for generating the important
variables not too late, but occasionally enough to not significantly affect solver per-
formance. Moreover, it is much easier to add variables and clauses to the solver at
the root node, when the current assignment is empty.

The propagator assigns a natural number act i, the activity, to every literal xi

of the constraint. Every time a reason is constructed, the activity of the literals
belonging to the reason is incremented by one. Each time the solver restarts, the
propagator checks if the activities of the literals of the constraint are greater than
λN , where N is the number of conflicts since the last restart and λ is a parameter
of the LD solver.

If act i < λN then act i := act i/2. This is done in order to focus on the recent
activity. If act i � λN , there are three possibilities:

• If xi is not the input of a 2-comparator (i.e. an output of the cardinality
network) nothing is done.

• If xi is an input of a 2-comparator (y1, y2) = 2-Comp(xi, xj), and its other
input xj has already been generated by the lazy decomposition, we perform a
decomposition step on the comparator.

• If xi is an input of a 2-comparator (y1, y2) = 2-Comp(xi, xj), and its other
input xj has not been generated by the decomposition yet, we proceed as
follows: let S = {xk1 , xk2 , . . . , xks} be the literals in the current constraint that,
after some decomposition steps, can reach xj . We perform a decomposition
step on all the comparators whose inputs both appear in S. Thus xj is “closer”
to being generated by decomposition.

Example 5.2. Assume the LD propagator for the constraint x1 + . . .+ x8 � 5 has
generated some variables so that the current constraint is z9+ z17+ z18+ z12+ z5+
z15 + z7 + z16 � 5. The remaining undecomposed cardinality network is shown in
Figure 5.2(a).
In a restart, if the activity of z12 is greater or equal than λN we decompose

the comparator (z27, z28) = 2-Comp(z12, z16) generating new literals z27 and z28 and
using them to replace z12 and z16 in the constraint.
However, if the activity of z18 is greater or equal than λN , we cannot decom-

pose (z25, z26) = 2-Comp(z18, z20) since z20 has not been generated yet. The literals
reaching z20 are z5, z15 and z7 (see Figure 5.2(b)). Since z5 and z7 are the inputs

5.3. Lazy Decomposition 93

z5

z7

z9

z12
z13

z14
z15

z16

z17
z18

z19
z20

z21

z22

z23

z24

z25

z26

z29

z30

z31

z32

z33
z34
z35
z36
z37
z38

z27

z28

z9

z12
z13

z14

z16

z17

z19
z20

z21

z22

z23

z24

z27

z28

z29

z30

z31

z32

z33
z34
z35
z36
z37
z38

z18

z5

z7

z25

z26
z15

(a) (b)

Figure 5.2: The remaining undecomposed sorting network after decomposing some
2-comparators with (a) (z27, z28) = 2-Comp(z12, z16) shown dotted, and (b) inputs
leading to (z25, z26) = 2-Comp(z18, z20) shown dotted.

of a 2-comparator (z13, z14) = 2-Comp(z5, z7), this comparator is encoded: z13 and

z14 are introduced and they replace z5 and z7 in the constraint.

Notice the variables are only replaced in the cardinality constraints: when a
variable is removed of the constraint, it is not removed from the SAT Solver, so the
lemmas where it appears are still valid.

Algorithms for the LD Propagator

In this section we reproduce in detail the algorithms explained above, i.e., algorithms
that a lazy decomposition propagator for cardinality constraints needs to implement.
In this section, if t is an array, then ti will denote the i-th element of t.

The attributes of a propagator for a �-cardinality constraint are:

• An array of literals x containing the literals of the constraint.

• An integer s containing the number of true literals of the constraint in the
current assignment.

• An array of integers act with the activities of the literals of the constraint.

• An integer K with the bound of the constraint.

• An integer n, the constraint size.

Additionally, another global (not specific for a single constraint but for all of them)
auxiliary structure is needed, in order to associate every literal with the constraints
it appears and the position of it in the constraint. We will assume that functions
assign(y, C, i), that assigns the literal y to the i-th position of the constraint C, and
position(y, C), which returns the position of y in the constraint C if y belongs to
C or -1 if not, are implemented.

Algorithm 5.1 is executed when a cardinality constraint is read from the input.
It creates a propagator for this constraint: the other algorithms are methods of this
object.

94 5. Conflict-Directed Lazy Decomposition

Algorithm 5.1 Initialize the Propagator

Require: Constraint C : x′1 + x′2 + . . .+ x′
n′ � K ′

Ensure: Returns P a LD propagator for C.
1: n ← n′.
2: s ← 0.
3: K ← K ′.
4: for all i such that 1 � i � n′ do

5: xi ← x′
i
.

6: assign(x′
i
, C, i).

7: act i ← 0.
8: end for

9: return P.

Every time the SAT Solver assigns or unassigns a literal, the following methods
5.2 or 5.3 of the propagator P are called, respectively.

Algorithm 5.2 Propagate a literal

Require: A literal y.
Ensure: Returns L a set of the propagated literals.
1: L ← ∅.
2: i ←position(y, C).
3: if i � 0 then
4: s ← s+ 1.
5: if s = K then

6: L ← {x′ : x′ is a non-propagated literal of C }.
7: end if

8: end if

9: return L.

When the SAT Solver needs a reason for a propagation, algorithm 5.4 is called.
Finally, every restart method 5.5 is called.

5.3.2 Lazy Decomposition Propagator for PB Constraints

In this section we describe the LD propagator for a PB constraint of the form
C ≡ a1x1 + · · ·+ anxn � K with ai > 0, since other PB constraints can be reduced
to this one. We also assume a1 � a2 � · · · � an.

Suppose B is the BDD for PB constraint C. For simplicity, we work with quasi-
reduced ordered BDDs, this is, ordered BDDs such that isomorphic trees are merged
but nodes with identical children are NOT removed. The algorithms explained
here can be adapted to ROBDDs, but it requires some technical details that could
compromise the understanding of the section. Moreover, the overhead of using
quasi-reduced ordered BDDs is negligible.

5.3. Lazy Decomposition 95

Algorithm 5.3 Unassign a literal

Require: A literal y.
1: i ←position(y, C).
2: if i � 0 then
3: s ← s− 1.
4: end if

Algorithm 5.4 Give the reason for a propagation

Require: A literal y propagated by P.
Ensure: Returns a clause L representing the reason why y was propagated.
1: L ← {y}.
2: i ←position(y, C). // Notice i > 0 by requirement.
3: act i ← act i + 1.
4: for all xj such that xj is a true propagated literal of C do
5: act j ← actj + 1.
6: L ← L ∪ {xj}.
7: end for
8: return L.

Algorithm 5.5 Generates useful literals

1: Let N be the number of conflicts since the last restart.
2: for all i such that 1 � i � n do
3: if act i � λN then
4: if xi is not an output of the network then
5: Let x′ be the other input of a 2-comparator having xi as input.
6: if x′ has not been generated yet then
7: DefineRecursive(x′).
8: else
9: j ←position(x′, C).

10: Define(i, j).
11: end if
12: end if
13: else
14: act i ← act i/2.
15: end if
16: end for

96 5. Conflict-Directed Lazy Decomposition

Algorithm 5.6 Define

Require: Integers i and j such that xi and xj are the inputs of a 2-comparator.
Ensure: Decompose the 2-comparator having xi and xj as input.
1: Let y, y′ be the outputs of the 2-comparator having (xi, xj) as input.
2: AddVariableToSATSolver(y).
3: AddVariableToSATSolver(y′).
4: AddClauseToSATSolver(xi → y).
5: AddClauseToSATSolver(xj → y).
6: AddClauseToSATSolver(xi ∧ xj → y′).
7: act i ← 0.
8: act j ← 0.
9: assign(xi, C,−1).

10: assign(xj , C,−1).
11: assign(y, C, i).
12: assign(y′, C, j).
13: xi ← y.
14: xj ← y′.

Algorithm 5.7 DefineRecursive

Require: A variable x which has not been generated yet.
1: Let (y, y′) be the input of the 2-comparator having x as an output.
2: if y and y′ have been both generated then
3: i ←position(y, C).
4: j ←position(y′, C).
5: Define(i, j).
6: else
7: if y has not been generated yet then
8: DefineRecursive(y).
9: end if

10: if y′ has not been generated yet then
11: DefineRecursive(y′).
12: end if
13: end if

5.3. Lazy Decomposition 97

According Corollary 4.25, the encoding of the constraint works as follows: if ν
is a node with selector variable xi and interval [α, β], ν is set to true if a1x1 + · · ·+
ai−1xi−1 � K−β. If ν is set to false, the encoding assures that a1x1+· · ·+ai−1xi−1 �

K − β+1. The LD propagator must maintain this property for nodes ν which have
been created as a literal via decomposition.

In our LD propagator, the BDD is lazily encoded from bottom to top: all nodes
with the same selector variable are encoded together, thus removing a layer from
the bottom of the BDD. Therefore, the LD propagator must deal with the nodes ν
at some level i which all represent expressions of the form aixi + · · · + anxn � βν

or equivalently a1x1 + · · · + ai−1xi−1 � K − βν . Suppose ν ′ is the node at level i
with highest βν where ν ′ is currently false. The decomposed part of the original
PB constraint thus requires that a1x1 + · · · + ai−1xi−1 � K − βν′ − 1. Define
Ki = K − βν′ − 1, and nodei = ν ′.

The LD propagator works as follows. The propagator maintains the current sum
(lower bound) of the expression s = a1x1 + · · ·+ ai−1xi−1, just as in the SMT case.
If this value is greater than K − βν for some leaf node ν with selector variable xi

and interval [αν , βν], this node variable ν is set to true. If some leaf node ν (with
selector variable xi and interval [αν , βν]) is set to false, we set

Ki ← min{Ki,K − βν − 1} and nodei ←

ν if Ki = K − βν − 1

nodei otherwise.

If, at some moment, s + aj for some 1 ≤ j < i such that xj is undefined is greater
than Ki, the propagator sets xj to false. The reason is the literals in x1, . . . , xi−1

that are true and nodei. As in the SMT case, the propagator may maintain an upper
bound A � max{aj : j < i, xj is undefined}.

The policy for lazy decomposition is as follows. Every time a reason is generated
that requires explanation from the PB constraint c, an activity actc for the constraint
c is incremented. If at restart actc � µN where N is the number of conflicts since
last restart, and µ is a parameter of the solver, we decompose the bottom layer of c
and set actc = 0. Otherwise actc := actc/2.

Note that the fact that the coefficients ai in c are in increasing order is important.
Big coefficients are more important to the constraint and hence their corresponding
variables are likely to be the most valuable for decomposition.

Algorithms for the LD Propagator

In this section we reproduce in detail the algorithms that a lazy decomposition prop-
agator for Pseudo-Boolean needs to implement, explained in the previous section.

The attributes of a propagator for a � Pseudo-Boolean constraint are:

• An array of literals x containing the literals of the constraint.

• An array of integers a with the coefficients of the literals of the constraint.

98 5. Conflict-Directed Lazy Decomposition

• A set of nodes N containing the leaf nodes.

• An integer s representing the sum of the coefficients of all the true literals of
the constraint in the current assignment.

• An Integer act with the activity of the constraint.

• An integer K with the initial bound of the constraint.

• An integer Kcur with the current bound of the constraint (i.e., the value Ki).

• An integer n, the constraint size.

• An integer A with an upper bound of the non-propagated coefficients’ literals.

• An integer Aini with an upper bound of all the coefficients (for efficiency, it
is better to precompute this value and set A = Aini than recompute A every
time the SAT Solver unassigns a literal of the constraint).

As before, additionally, another global (not specific for a single constraint but for all
of them) auxiliary structure is needed, in order to associate every SAT Solver literal
with the constraints it appears and, either the position of it in the constraint (if it
is a literal xi) or with the interval it has (if it is a leaf node of the constraint).

As before, we will assume that the following functions are implemented:

• assign(y, C, i), which assigns the literal y to the i-th position of the constraint
C.

• assign(y, C, [α, β]), which assigns the literal y to the level n node having in-
terval [α, β].

• position(y, C), which returns the position of y in the constraint C if y is a
literal of C or -1 if not.

• interval(y, C), which returns the interval of the node y if y is a leaf node of
C, or ∅ if not.

Algorithm 5.8 is called to initialize a propagator with a constraint. It creates
a propagator for this constraint: the other algorithms are methods of this object.
When the SAT Solver assigns or unassigns a literal, methods 5.9 and 5.10 are called.
When the SAT Solver needs a reason for a propagation, algorithm 5.11 is called. In
the restarts, SAT Solver calls method 5.12 of every propagator.

5.4 Experimental results

The goals of this section are, firstly, to check that Lazy Decomposition solvers do
in fact significantly reduce the number of auxiliary variables generated and, sec-
ondly, to compare them to the SMT and eager encoding solving approaches. For

5.4. Experimental results 99

Algorithm 5.8 Initialize the Propagator

Require: Constraint C : a′1x
′
1 + a′2x

′
2 + . . .+ a′n′x′

n′ � K ′.
Ensure: Returns P a LD propagator for C.
1: x ← [x′

1, x
′
2, . . . , x

′
n′].

2: a ← [a′1, a
′
2, . . . , a

′
n′].

3: N := ∅.
4: s ← 0.
5: act ← 0.
6: K ← K ′.
7: Kcur ← K ′.
8: n ← n′.
9: A ← max{ai : 1 � i � n′}.

10: Aini ← A.
11: for all i such that 1 � i � n′ do
12: assign(xi, C, i).
13: end for
14: return P.

Algorithm 5.9 Propagate a literal

Require: A literal y.
Ensure: Returns L a set of the propagated literals.
1: L ← ∅.
2: i ←position(y, C).
3: if i � 0 then
4: s ← s+ ai.
5: for all ν ∈ N : s > K − βν and ν is not true do
6: L ← L ∪ {ν}.
7: end for
8: if s+A > Kcur then
9: L ← L ∪ {xj : xj has not been propagated yet and s+ aj > Kcur}.

10: A ← max{aj : xj has not been propagated yet and xj ∈ L}.
11: end if
12: else if y ∈ N then
13: [α, β] ← interval(y, C).
14: if Kcur > K − β − 1 then
15: Kcur ← K − β − 1
16: if s+A > Kcur then
17: L ← L ∪ {xj : xj has not been propagated yet and s+ aj > Kcur}.
18: A ← max{aj : xj has not been propagated yet and xj ∈ L}.
19: end if
20: end if
21: end if
22: return L.

100 5. Conflict-Directed Lazy Decomposition

Algorithm 5.10 Unassign a literal

Require: A literal y.
1: i ←position(y, C).
2: if i � 0 then
3: s ← s− ai.
4: A ← Aini.
5: else if y ∈ N then
6: Kcur ← min{K,K − βν − 1 : ν ∈ N is false }.
7: A ← Aini.
8: end if

Algorithm 5.11 Give the reason for a propagation

Require: A literal y propagated by P.
Ensure: Returns a clause L representing the reason why y was propagated.
1: L ← {y}.
2: act ← act + 1.
3: i ←position(y, C).
4: if i � 0 and Kcur < K then
5: Let ν ∈ N be the node such that Kcur = K − βν − 1.
6: L ← L ∪ {ν}.
7: end if
8: L ← L ∪ {xi : xi is a true propagated literal of P}.
9: return L.

5.4. Experimental results 101

Algorithm 5.12 Generates a level of the BDD if needed

1: Let N be the number of conflicts since the last restart.
2: if act � µN then
3: for all ν ∈ N do
4: remove(ν,N).
5: assign(ν, C, ∅).
6: end for
7: for all Node ν at level n of the BDD of C do
8: Let νf and νt be respectively the false and true children of ν in the BDD.
9: AddVariableToSATSolver(ν).

10: AddClauseToSATSolver(ν → νf).
11: AddClauseToSATSolver(ν ∧ xn → νt).
12: insert(ν,N).
13: Let [α, β] be the interval of ν in the BDD
14: assign(ν, C, [α, β]).
15: end for
16: act ← 0.
17: A ← max{ai : 1 � i � n− 1}.
18: Aini ← A.
19: remove(xn, x).
20: remove(an, a).
21: n ← n− 1.
22: else
23: act ← act/2.
24: end if

102 5. Conflict-Directed Lazy Decomposition

some problems we include other related solving approaches to illustrate we are not
optimizing a very slow system.

All the methods are programmed in the Barcelogic SAT solver [BNO+08]. All
experiments were performed on a 2Ghz Linux Quad-Core AMD. All the experiments
used a value of λ = 0.3 and µ = 0.1. We experimented with different values and
found values for λ between 0.1–0.5 give similar performance, while values for µ
between 0.05–0.5 also give similar performance. While there is more to investigate
here, it is clear that no problem specific tuning of these parameters is required.

5.4.1 Cardinality Optimization Problems

Many of the benchmarks on which we have experimented are pure SAT problems
with an optimal cardinality function (i.e., an objective function x1 + · · · + xn) to
minimize.

These problems can be solved by branch and bound: first, we search for an initial
solution solving the SAT problem. Let Ω be the value of x1+· · ·+xn in this solution.
Then, we include the cardinality constraint x1 + · · · + xn � Ω − 1. We repeatedly
solve replacing the cardinality constraint by x1+ · · ·+xn � Ω−1, where Ω is the last
solution found. The process finishes when the last problem is unsatisfiable, which
means that Ω is the optimal solution.

Notice that this process can be used for all approaches considered. In the car-
dinality network encoding approach, the encoding is not re-generated every time a
new solution is found: we just have to add a unit clause setting the Ω-th output
variable of the network to false. SMT and LD solvers can also easily be adapted as
branch and bound solvers, by modifying the bound on the constraint.

For all the benchmarks of this section we have compared the SMT solver for
cardinality constraints (SMT), the eager cardinality constraint encoding approach
of Section 3.3 (ENC), our Lazy Decomposition solver for cardinality constraints (LD),
and the three best solvers for industrial partial MaxSAT problems in the past Partial
MaxSAT Evaluation 2011: versions 1.1 (QMaxSAT1.1) and 4.0 (QMaxSAT4.0) of
QMaxSAT [KZFH12] and Pwbo solver, version 1.2 (Pwbo) [MML11].

Partial MaxSAT

The first set of benchmarks we used were obtained from the MaxSAT Evaluation
2011 (see http://maxsat.ia.udl.cat/introduction/), industrial partial MaxSAT
category. The benchmarks are encodings of different problems: filter design, logic
synthesis, minimum-size test pattern generation, haplotype inference or maximum-
quartet consistency.

We can easily transform these problems into SAT problems by introducing one
fresh variable to any soft clause. The objective function is the sum of all these new
variables. Time limit was set to 1800 seconds per benchmark as in the Evaluation.
Table 5.1 shows the number of problems (up to 497) solved by the different methods
after, respectively, 15 seconds, 1 minute, etc.

5.4. Experimental results 103

Method 15s 1m 5m 15m 30m

ENC 211 296 367 382 386

SMT 144 209 265 275 279

LD 252 319 375 381 386

QMaxSAT4.0 191 274 352 370 377

Pwbo 141 185 260 325 354

QMaxSAT1.1 185 278 356 373 383

Table 5.1: Number of instances solved of 497 partial MaxSAT benchmarks.

In these problems the eager encoding approach is much better than the SMT
solver. Our LD approach has a similar behavior to the encoding approach, but LD
is faster in the easiest problems. Notice that with these results we would be the best
solver in the evaluation, even though our method for solving these problems (adding
a fresh variable per soft clause) is a very naive one!

Discrete-Event System Diagnosis Suite

The next benchmarks we used are for discrete-event system (DES) diagnosis. In
these problems, we consider a plant modeled by a finite automaton. Its transitions
are labeled by the events that occur when the transition is triggered. A sequence
of states and transitions on the DES is called a trajectory; it models a behavior of
the plant. Some events are observable, that is, an observation is emitted when they
occur. The goal of the problem is, knowing that there is a set of faulty events in the
DES, find a trajectory consistent with the observations that minimizes the number
of faults.

We have considered the problems from [AG09]. These problems consists in a set
of clauses and a cardinality constraint to optimize. The paper, moreover, propose
an encoding for these cardinality constraint which we have included (denoted by
SARA-09). This encoding is specific for these problems: uses the set of input clauses
of the problem in order to simplify it. Table 5.2 shows the number of benchmarks
solved by the different methods after 15 seconds, 1 minute, etc.

The best method is that described in [AG09]. However, ENC and LD methods
are not far from it. This is a strong argument for these methods, since SARA-09 is a
specific method for these problems while eager encoding and lazy decomposition are
general methods. On the other hand, SMT does not perform well in these problems,
and LD performs more or less as ENC. Both versions of QMaxSAT also performs
very well on these problems.

Close Solution Problems

Another type of optimization problems are those considered in Chapter 6. In these
problems, we have a set of SAT clauses and a model, and we want to find the most

104 5. Conflict-Directed Lazy Decomposition

Method 15s 1m 5m 15m

ENC 409 490 530 541

SMT 151 186 206 228

LD 370 482 528 539

QMaxSAT4.0 275 421 534 557

Pwbo 265 361 423 446

QMaxSAT1.1 378 488 537 556

SARA-09 411 501 537 549

Table 5.2: Number of instances solved of 600 DES benchmarks.

Method 15s 1m 5m 15m 60m

ENC 18 24 31 34 34

SMT 16 18 24 27 30

LD 19 26 31 34 36

QMaxSAT4.0 9 14 18 20 22

Pwbo 5 6 7 7 7

QMaxSAT1.1 6 11 16 17 19

Table 5.3: Number of instances solved of the 40 original close-solution problems.

similar solution (with respect to the Hamming distance) to the given model if we
add some few extra clauses. Table 5.3 contains the number of solved instances of
the original paper after different times.

For the original problems LD is slightly better than eager encoding (ENC) and
much better than the other approaches.

Since the number of instances of the original paper was small, we created more
instances. We selected the 55 satisfiable instances from SAT Competition 2011,
industrial division, that we could solve in 10 minutes. These problems have much
more variables than the ones from the original paper. For each of these 55 problems,
we generated 10 close-solution benchmarks adding a single randomly generated new
clause (with at most 5 literals) that falsified the previous model. 100 of the 550
benchmarks were unsatisfiable, so we removed them (searching the closest solution
does not make sense in an unsatisfiable problem). Table 5.4 shows the results on
the remaining 450 instances.

For the new problems SMT and LD are the best methods with similar behavior.
Notice that for these problems the cardinality constraint size involves all the variables
of the problem, so it can be huge. In a few cases, the encoding approach runs out
of memory since the encoding needed more than 225 variables. We considered these
cases as a timeout.

5.4. Experimental results 105

Method 15s 1m 5m 15m 60m

ENC 143 168 208 226 243

SMT 181 223 242 255 268

LD 187 230 252 262 279

QMaxSAT4.0 55 55 63 69 80

Pwbo 102 144 179 204 215

QMaxSAT1.1 54 55 57 57 64

Table 5.4: Number of instances solved of 450 new close-solution problems.

Method 15s 1m 5m 15m

ENC 190 282 352 411

SMT 123 168 212 241

LD 263 336 410 435

Table 5.5: Number of families solved from 479 non-trivial MSU4 problems.

5.4.2 MSU4

Another type of cardinality benchmarks also comes from the MaxSAT Evaluation
2008. In this case we solved them using the msu4 algorithm [MSP09], which trans-
forms a partial MaxSAT problem into a set of SAT problems with multiple cardi-
nality constraints.

We have grouped all the problems that came from the same partial MaxSAT
problem, and we set a timeout of 900 seconds for solving all the family of problems.
We had 1883 families of problems (i.e., there were originally 1883 partial MaxSAT
problems), but in many cases all the problems of the family could be solved by any
method in less than 5 seconds, so we removed them. Table 5.5 contains the results
on the remaining 479 benchmarks.

In these problems the LD approach is clearly the best, particularly in the first
minute. The reason is that for most of the problems, ENC is faster than SMT, and LD
performs similarly to ENC. But there are some problems where SMT is much faster
than ENC: in these cases, LD is also faster than SMT, so in total it beats both other
methods. Moreover, in some problems some constraints are dynamically discovered
to be important. While some constraints should be encoded, others should not.
The LD approach can do this, while ENC and SMT methods either encode all the
constraints or none.

5.4.3 PB Competition Problems

To compare PB propagation approaches we used benchmarks from the Pseudo-
Boolean Competition 2011 (http://www.cril.univ-artois.fr/PB11/), category

106 5. Conflict-Directed Lazy Decomposition

Method 15s 1m 5m 15m 60m

ENC 318 354 390 407 427

SMT 372 387 400 415 433

LD 369 382 401 423 439

borg 280 406 438 445 467

Table 5.6: Number of instances solved from 669 problems PB Competition-2011.

DEC-SMALLINT-LIN (no optimization, small integers, linear constraints). In these
problems we have compared the SMT, ENC and LD approaches for PB constraints
and the winner of the Pseudo-Boolean Competition 2011, the solver borg (borg)
[SM10] version pb-dec-11.04.03. Table 5.6 contains the number of solved instances
(up to 669) after 15 seconds, 1 minute, etc.

In this case, SMT approach is better than ENC, while LD is slightly better than
SMT and much better than ENC since presumably it is worth decomposing some
of the PB constraints to improve learning, but not all of them. The borg solver is
clearly the best, but again it is a tuned portfolio solver specific for Pseudo-Boolean
problems and makes use of techniques (as in linear programming solvers) which treat
all PB constraints simultaneously.

5.4.4 Variables Generated

One of the goals of Lazy Decomposition is to reduce the search space of the problem.
In this section we examine the “raw” search space size in terms of the number of
Boolean variables in the model.

Table 5.7 shows the results of all the problem classes. ENC gives the multiplica-
tion factor of Boolean variables created by eager decomposition. For example if the
original problem has 100 Boolean variables and the decomposition adds 150 auxil-
iary variables, we have 250 Boolean variables in total and the multiplication factor
will be 2.5. LD gives the multiplication factor of Boolean variables resulting from
lazy decomposition. Finally aux. % gives the percentage of auxiliary decomposition
variables actually created using lazy decomposition. The values in the table are the
average over all the problems in that class.

In the optimization problems, there is just one cardinality constraint and most
of the time is devoted to proving the optimality of the best solution. Therefore, the
cardinality constraint appears in most reasons since we require many explanations
to prove the optimality of the solution. For these classes, the number of auxiliary
variables we need is high (35-60 %). Still this reduction is significant.

In the MSU4 and PB problems, on the other hand, there are lots of complex
constraints. Most of them have little impact in the problem (i.e., during the search
they cause few propagations and conflicts). These constraints are not decomposed
in the lazy approach. The LD solver only decomposes part of the most active

5.5. Conclusions and Future Work 107

Class of problems ENC LD aux. %

Partial MaxSAT 7.46 5.41 61.72

DES 1.55 1.16 26.62

Original close-solution 12.21 7.48 45.33

New close-solution 24.55 12.38 35.88

MSU4 1.77 1.01 2.18

PB Competition 44.21 17.52 3.24

Table 5.7: The average variable multiplication factor for (ENC) eager encoding and
(LD) lazy decomposition, and the average percentage of auxiliary decomposition
variables created by lazy decomposition.

constraints, so, the number of auxiliary variables generated in these problems is
highly reduced.

5.5 Conclusions and Future Work

We have introduced a new general approach for dealing with complex constraints
in complete methods for combinatorial optimization, that combines the advantages
of decomposition and global constraint propagation. We illustrate this approach
on two different constraints: cardinality and Pseudo-Boolean constraints. The re-
sults show that, in both cases, our new approach is nearly as good as the best of
the eager encoding and global propagation approaches, and often better. Note that
the strongest results for lazy decomposition arise when we have many complex con-
straints, since many of them will not be important for solving the problem, and hence
encoding is completely wasteful. But we can see that for the important constraints
it is worthwhile to decompose.

There are many directions for future work. First we can clearly improve our
policies for when and what part of a constraint to decompose. We will also investi-
gate how to decide the right form of decomposition for a constraint during execution
rather than fixing on an encoding prior to search. We also plan to create lazy decom-
position propagators for other complex constraints such as linear integer constraints,
and incorporate the technology into a full SMT solver.

6
Close Solutions

6.1 Introduction

For many practical problems, good encodings into propositional logic exist that make
them amenable to be solved with SAT. Due to techniques such as conflict-driven
backjumping, lemma learning and restarts, state-of-the-art SAT solvers can in many
cases efficiently solve large and hard real-world instances. For problems that have no
good or compact direct encodings into propositional logic, several extensions of SAT
are emerging. One of these extensions is SAT Modulo Theories (SMT), where atoms
need not be propositional symbols, but may belong to theories, like, for example,
linear arithmetic, as in the formula x≤2 ∧ (x+y≥10 ∨ 2x+3y≥30) ∧ y≤4. In
SMT, a SAT solver cooperates with theory solvers that can handle conjunctions of
theory atoms (see, for instance, [NOT06] for details). Another extension of SAT is
the Lazy Clause Generation approach of [OSC09], where new propositional clauses
are generated on demand each time a given constraint propagates, thus frequently
reducing the number of clauses needed in comparison with a direct a priori SAT
encoding.

SAT and SAT-like solving approaches almost universally make use of activity-
based search heuristics, which roughly speaking, select the variables that have been
involved in many recent conflicts. A drawback of activity-based heuristics is that
they make the search behave chaotically (explaining why is out of the scope of this
document), i.e., extremely sensitive to the initial conditions, the so-called butterfly
effect.

But in practice it is almost always important that the new solution is “close” to
the original one. For example, analyzing a solution may take time and effort and
include discussions with other people. If someone, inspired by the solution, suggests
adding a few new constraints, it is undesirable that a new solution for the extended
problem has nothing in common with what was analyzed previously. Something
similar happens in the context of rescheduling, where a solution that was intended
to be used for a period of time has to be adapted due to unforeseen circumstances:
changes should be minimal since many resources (people, vehicles, machines) are

109

110 6. Close Solutions

already allocated according to the original solution.

In this chapter1, Section 6.2 gives an accurately definition of the problem and the
distance metrics, e.g., what it means for a solution to be close. Section 6.3 presents
the experimental setting and the large set of real-world benchmarks used along the
chapter. In particular, in Section 6.4 we use them to experimentally demonstrate
the extremely chaotic behavior of SAT Solvers, and in Section 6.5 to evaluate a naive
attempt for finding close solutions inspired by local search methods.

Since this method does not solve the problem, in Section 6.6 we introduce a new
approach. It combines a polarity heuristic, incremental SAT and branch-and-bound.
In Section 6.7 we compare our method with (i) SAT-based optimization and Max-
SAT solvers; (ii) modeling the problem as a 0-1 integer optimization problem and
using CPLEX on it. As we shall see, approaches (i) and (ii) behave very poorly, but
our new approach obtains close solutions very quickly. In fact, it typically finds the
optimal (i.e., closest) solution in only 25% of the time the solver takes in solving the
original problem.

Finally, Section 6.8 gives a factor analysis of our approach: experiments reveal
that all ingredients contribute. Related work is discussed and conclusions are given
in Section 6.9.

6.2 Problem definition

Assume we have found a solution Sol to a problem defined by a formula (a set of
clauses) F and we are given a small set of additional clauses δ. We wish to find a
solution Sol ′ that is close to Sol for the clause set F ∪ δ.

One way for defining solutions’ proximity is by considering their Hamming dis-
tance (the number of variables which take a different value). As many problems
have some hidden auxiliary variables in their SAT encoding F , it is frequently useful
to consider only the visible (i.e., non hidden) variables for the distance definition.

Certain applications can require slightly more involved cost functions instead of
just Hamming distance. For example, a single property of the solution, seen by the
user, may depend on combinations of visible variables. For example, in the sports
scheduling problems we will use later, a property like a match may depend on a
variable mijr saying that these two teams i and j meet on round r, and another two
hir and hjr saying whether team i and j plays at home on round r. A more accurate
cost function to capture “nearness to the existing solution” in this case would count
a distance of 1 if either of mijr or hir differ from their previous values, but not count
2 if both differ.

However, in this section we have only considered Hamming distance cost func-
tions for simplicity in the computations. In the majority of the practical cases, a

1Based on the paper “Reducing Chaos in SAT-Like Search: Finding Solutions Close to a
Given One” from the 14th international conference on Theory and application of satisfiability test-

ing [ADNS11]

6.3. Benchmarks 111

close solution for some distance is also a close solution for the Hamming distance
(see the previous example).

6.3 Benchmarks

We have considered 40 instances of real-world benchmarks coming from five different
families. Each instance consists of a different SAT formula F , the first solution Sol ,
and a number of required additional constraints δ. The first four families are for
scheduling a double round-robin tournament among N (16, 20 or 24) teams:

r16: 10 instances with about 3000 variables and around 55000 clauses each;

r20: 10 instances with around 5000 variables and 180000 clauses each;

R20: 10 instances with around 5000 variables, 140000 clauses each;

r24: 4 instances with around 9000 variables, 270000 clauses each.

All teams meet each other once in the first N − 1 weeks and again in the second
N − 1 weeks, with exactly one match per team each week. A given pair of teams
must play at the home of one team in one half, and at the home of the other in
the other half, and such matches must be spaced at least a certain minimal number
of weeks apart. Additional constraints include, e.g., that no team ever plays at
home (or away) three times in a row, other (public order, sportive, TV revenues)
constraints, blocking given matches on given days, etc. Instances are rather different
among each other, but most of them have around 10% hidden variables. The R20

instances are also different in that their δs contain more constraints and hence the
closest solution is usually not as close (see below).

The fifth family of benchmarks has six problems tt0 - tt5 coming from real-
world hard curriculum-based course timetabling problems, from the International
Timetabling Competition, see the Barcelogic results on formulation 2 at http://

tabu.diegm.uniud.it/ctt. These problems are very different from the r ones.
Their numbers of (visible) variables and clauses are:

instances variables visible variables clauses

tt0 12537 1500 71919
tt1 137688 6314 667470
tt2 60968 3150 305601
tt3 556569 9810 3372803
tt4 125029 4494 1001737
tt5 124330 3381 612475

For each instance, we consider Hamming distance on the visible variables as the cost
function. All experiments were performed on a 2.66MHz Xeon.

112 6. Close Solutions

6.4 Chaotic behavior of SAT

In this section we analyze what happens when simply re-executing the Solver with
the new input F ∪ δ. Table 6.1 contains results on all 40 instances.

Here Time original denotes the time (in seconds) spent to compute the original
solution Sol , Time re-execution denotes the time spent in the computation of Sol ′.
dopt denotes the minimal Hamming distance from the original solution Sol to any
solution of F ∪ δ. Time ratio is defined by the ratio between the re-execution time
and the original time.

The quality of a solution Sol ′ at distance d of Sol is a real number between 0
and 1 defined by dopt/d. For example, if dopt is 10, then a solution at distance 50
has quality 0.2.

These experiments show the chaotic behavior of SAT Solvers: re-running the
same solver with the same set of clauses except one or two added at the end of the
input file causes the solver to perform a completely different search, giving a very
different execution in terms of distance of the solutions and also in computation
time. In particular, qualities are typically below 0.1, that is, ten times more distant
than the optimal solution.

6.5 Trying a local search-like solution

In local search techniques, to find close solutions one usually resumes the search at
the point where the original solution was found with the hope that another solution
is found in the nearby neighborhood. Therefore, at first sight, mimicking local search
might seem a good option for overcoming the chaotic behavior of SAT.

More specifically, we want to re-execute the solver in the region of the search
tree where the original solution was found. A simple way of implementing this
idea is by changing the variable selection heuristics as follows. We remember the
ordered sequence of decision literals of the original solution, and when the solver is
re-launched with the new constraints, it always decides on the first undefined literal
of the sequence, with the same polarity, until the first conflict occurs. After that,
we fall back to the standard decision heuristic. Note that this will always find the
same solution Sol if Sol is also a solution of F ∪ δ.

Unfortunately, the results do not improve significantly upon re-running from
scratch as described in the previous section. Table 6.2 contains the results of this
method. We have obtained similar results with some variations of this method
(keeping the lemmas of the original execution as in the next section, keeping this
heuristic, or a combination of both).

6.6 Our Barcelogic approach

As we have seen in the previous sections, the naive approaches are not effective for
solving this problem in practice. The good news is that an adequate combination of

6.6. Our Barcelogic approach 113

Instance Time original dopt Quality Time re-execution Time ratio

r16-0 0.88 12 0.03 0.93 1.06

r16-1 1.58 14 0.04 1.27 0.80

r16-2 1.66 8 0.02 0.74 0.45

r16-3 0.97 8 0.02 1.63 1.68

r16-4 3.56 64 0.14 7.09 1.99

r16-5 0.03 12 0.22 0.04 1.33

r16-6 0.02 14 0.03 0.05 2.50

r16-7 0.4 18 0.04 0.69 1.72

r16-8 3.55 8 0.02 1.27 0.36

r16-9 1.39 12 0.03 0.61 0.44

r20-0 12.23 24 0.04 12.37 1.01

r20-1 59.6 8 0.01 20.00 0.34

r20-2 9.47 12 0.02 9.65 1.02

r20-3 12.82 14 0.03 2.83 0.22

r20-4 20.15 18 0.19 20.03 0.99

r20-5 20.48 16 0.02 8.82 0.43

r20-6 8.81 18 0.04 2.09 0.24

r20-7 10.88 20 0.03 13.46 1.24

r20-8 13.52 16 0.04 8.95 0.66

r20-9 7.04 12 0.03 12.39 1.76

R20-0 1.77 8 0.02 3.56 2.01

R20-1 2.37 88 0.17 6.30 2.66

R20-2 6.69 96 0.19 9.53 1.42

R20-3 9.46 8 0.01 5.30 0.56

R20-4 5.4 136 0.25 1.14 0.21

R20-5 1.14 1 0.00 7.04 6.18

R20-6 7.71 104 0.19 4.95 0.64

R20-7 5.45 26 0.05 0.62 0.11

R20-8 0.61 82 0.16 7.03 11.52

R20-9 7.49 94 0.16 1.78 0.24

r24-0 227.97 42 0.04 143.51 0.63

r24-1 124.28 58 0.05 315.14 2.54

r24-2 277.49 14 0.01 226.80 0.82

r24-3 200.53 8 0.01 416.14 2.08

tt-0 1.62 10 0.03 0.36 0.22

tt-1 0.96 10 0.07 0.93 0.97

tt-2 0.38 6 0.04 0.28 0.74

tt-3 16.3 8 0.01 14.20 0.87

tt-4 27.42 26 0.04 16.17 0.59

tt-5 1.75 8 0.02 1.73 0.99

Table 6.1: Results of re-execution.

114 6. Close Solutions

Instance Time original dopt Quality Time re-execution Time ratio

r16-0 0.88 12 0.03 0.80 0.91

r16-1 1.58 14 0.03 1.87 1.18

r16-2 1.66 8 0.02 0.66 0.40

r16-3 0.97 8 0.02 2.81 2.90

r16-4 3.56 64 0.13 3.82 1.07

r16-5 0.03 12 0.03 0.08 2.67

r16-6 0.02 14 0.03 0.00 0.00

r16-7 0.4 18 0.04 0.18 0.45

r16-8 3.55 8 0.02 0.85 0.24

r16-9 1.39 12 0.03 1.27 0.91

r20-0 12.23 24 0.04 9.50 0.78

r20-1 59.6 8 0.31 0.03 0.00

r20-2 9.47 12 0.55 0.03 0.00

r20-3 12.82 14 0.03 6.64 0.52

r20-4 20.15 18 0.33 0.03 0.00

r20-5 20.48 16 0.03 21.12 1.03

r20-6 8.81 18 0.03 17.50 1.99

r20-7 10.88 20 0.03 6.69 0.61

r20-8 13.52 16 0.03 2.15 0.16

r20-9 7.04 12 0.02 6.96 0.99

R20-0 1.77 8 0.02 2.43 1.37

R20-1 2.37 88 0.16 5.20 2.19

R20-2 6.69 96 0.15 2.26 0.34

R20-3 9.46 8 0.02 4.77 0.50

R20-4 5.4 136 0.26 6.34 1.17

R20-5 1.14 1 0.00 5.84 5.12

R20-6 7.71 104 0.20 6.18 0.80

R20-7 5.45 26 0.05 11.27 2.07

R20-8 0.61 82 0.16 4.94 8.10

R20-9 7.49 94 0.17 2.82 0.38

r24-0 227.97 42 0.04 134.14 0.59

r24-1 124.28 58 0.05 3574.00 28.76

r24-2 277.49 14 0.01 157.08 0.57

r24-3 200.53 8 0.01 296.43 1.48

tt-0 1.62 10 0.03 0.21 0.13

tt-1 0.96 10 0.29 0.29 0.30

tt-2 0.38 6 0.60 0.13 0.34

tt-3 16.3 8 0.01 18.13 1.11

tt-4 27.42 26 0.04 11.88 0.43

tt-5 1.75 8 0.01 2.36 1.35

Table 6.2: Results of a local-search-like approach.

6.7. Experimental comparison with Cplex and other tools 115

three quite well-known ingredients does obtain close solutions very quickly.

The first ingredient is a polarity selection heuristic: the SAT solver uses its
standard heuristic for picking the next variable to decide upon, but it sets this
variable’s polarity as in the original solution Sol (other optimization tools do this
too for the visible variables: first try those values that minimize the cost function;
however, it is experimentally better to do that in all the variables; it is also related
to, but different from, phase saving [PD10]).

Second, a branch-and-bound wrapper is placed around the standard SAT loop.
Each time the cost of the best solution discovered so far is exceeded by the current
partial assignment, due to literals l1 . . . ln (on visible variables) that disagree with
Sol , a backjump is forced from a conflict analysis on an “explanation” l1 ∨ . . . ∨
ln of why the cost is currently too high. In particular, this is done each time
a better model is found, in order to find, from then on, only lower-cost models.
Here this explanation clause need not be learned. The backjump clause itself is
learned as usual. Eventually this process terminates by discovering unsatisfiability—
that there is no “better” solution to the best already found. As is well-known, it
may require far more time to prove optimality than it does to find an optimal
solution.2 However, good solutions can often be found in a short time. See, e.g.,
[MMS04, LNORC09, LNORC11] and references of these for many more details and
an abstract framework for Boolean optimization. Notice that the branch-and-bound
can be implemented with an SMT, an eager encoding or a Lazy Decomposition
Solver. In the original paper we implemented an SMT, but, as seen in the previous
chapter, the best results are achieved with the LDS approach

Third, the lemmas the SAT Solver generated when finding the original solution
are added; this is sound since there are only additional constraints, no removed
ones; this latter idea is also used in the context of incremental SAT solving for, e.g.,
verification applications.

6.7 Experimental comparison with Cplex and other

tools

In this section we compare experimentally our approach with other tools. We first
encoded F ∪ δ together with the cost function as a Pseudo-Boolean (0-1 Integer
Programming) optimization problem and tried the state-of-the-art Pseudo-Boolean
solver Bsolo [MMS04] and the well-known commercial CPLEX solver.

We also tried several state-of-the-art Max-SAT solvers. MiniMaxSAT Solver
[HLO08] found close solutions only in a few cases. The unsatisfiable-core-based
MaxSAT solvers msuncore [MSP09] and PM2 [ABL09] were not competitive either,
among other reasons because unsat-core-based solvers find no solution before the
optimal one. We do not report here on these MaxSAT solvers’ results: they were
always much worse than the listed ones.

2In fact, for some of the benchmarks in this examples proving optimality took days of CPU time.

116 6. Close Solutions

We also tried Barcelogic omitting its ingredients one by one, i.e., without keeping
the lemmas from the first run or without the modified polarity heuristic. The results
are described in the next section. Bsolo and CPLEX results are without the lemmas:
the number of lemmas was much bigger than the number of original constraints and
these solvers perform much worse if we add them.

The results are given in Table 6.3.
Solution quality: As before, the table lists solution qualities as real numbers
between 0 and 1: dopt denotes the minimal Hamming distance from the original
solution Sol to any solution of F ∪ δ and again we say that a solution Sol ′ at
distance d of Sol has quality dopt/d.

Entries in the table: The table gives results on all 40 instances for Barcelogic,
Bsolo and CPLEX. For each instance, column 2 lists the time T the (Barcelogic)
SAT solver took to compute the initial solution Sol . The third column indicates the
cost of the optimal solution, dopt. For each approach, the table lists the quality of
the solution found after 25% of T , after 50% of T , etc., up to 800% of T . Moreover,
the two average rows show the average of, respectively, the first 20 problems and
the 20 other (harder) ones. The two plots of Figure 6.1 represent graphically these
averages. They also give some intuition about how the approaches scale.

6.8 Factor analysis of the Barcelogic approach

In this section we evaluate separately the different ingredients used in our approach.
More specifically, we show the experimental results of our solver with just a Branch
and Bound (“B&B” in the table; first column), adding the lemmas (“B&B + lem-
mas”; second column), with the modified polarity heuristic (“B&B + polarity”;
third column) and finally “B&B + All” (fourth column). The results are given in
Table 6.4. As in the previous section, the table shows the quality of the solution
found after 25%, 50%, etc. of the time spent in solving the original problem.

Clearly, the polarity decision heuristic hugely improves the method. On the
other hand, keeping the lemmas helps significantly for the hard problems, while on
the easier ones the overhead of reading the additional clauses frequently does not
pay off.

Again, the two plots of Figure 6.2 represent graphically the results of the table
for average solution qualities of, respectively, the first 20 instances, and the other
much harder 20 ones.

6.9 Related work and conclusions

We have studied, from a practical point of view, the problem of, given a SAT formula
F with a model Sol , and a small set of additional clauses δ, finding a model of F ∪ δ
that is close to Sol .

Similar problems were studied before in a more theoretical (complexity) setting.
[HHOW05] examine the problem of finding a set of diverse or similar solutions

6.9. Related work and conclusions 117

Time dopt Barcelogic Bsolo Cplex

25 50 100 200 400 800 25 50 100 200 400 800 25 50 100 200 400 800

r16-0 0.88 12 1 1 1 1 1 1 0 0 .67 .67 1 1 0 0 0 1 1 1

r16-1 1.58 14 1 1 1 1 1 1 0 0 1 1 1 1 0 0 0 0 0 1

r16-2 1.66 8 1 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1

r16-3 0.97 8 1 1 1 1 1 1 0 0 .67 1 1 1 0 0 1 1 1 1

r16-4 3.56 64 .86 .86 .94 1 1 1 .67 .67 .67 .67 .67 .67 0 0 0 0 0 0

r16-5 0.03 12 0 0 .50 .60 1 1 0 0 0 0 0 0 0 0 0 0 0 0

r16-6 0.02 14 0 0 0 0 .12 .64 0 0 0 0 0 0 0 0 0 0 0 0

r16-7 0.4 18 .82 .82 .82 .82 1 1 0 0 0 .36 .36 .36 0 0 0 0 0 0

r16-8 3.55 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

r16-9 1.39 12 1 1 1 1 1 1 0 .60 .60 .60 .60 1 0 0 1 1 1 1

r20-0 12.23 24 1 1 1 1 1 1 .34 .34 .34 .50 1 1 0 0 0 0 0 1

r20-1 59.6 8 1 1 1 1 1 1 .67 1 1 1 1 1 1 1 1 1 1 1

r20-2 9.47 12 1 1 1 1 1 1 .27 .38 .38 .60 .60 .75 0 1 1 1 1 1

r20-3 12.82 14 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1

r20-4 20.15 18 1 1 1 1 1 1 .41 .41 .41 .43 .43 .64 0 0 .38 .38 1 1

r20-5 20.48 16 1 1 1 1 1 1 .57 .57 .57 .89 .89 1 0 0 0 0 .24 1

r20-6 8.81 18 1 1 1 1 1 1 .30 .82 .82 .82 .82 1 0 0 0 .90 .90 1

r20-7 10.88 20 1 1 1 1 1 1 .83 .83 .83 .91 1 1 0 0 .32 .32 .32 1

r20-8 13.52 16 1 1 1 1 1 1 .35 .35 .35 .35 .35 1 0 0 0 0 1 1

r20-9 7.04 12 1 1 1 1 1 1 0 .22 .25 .55 .60 .86 0 1 1 1 1 1

Av. - - .88 .88 .91 .92 .96 .98 .32 .46 .58 .67 .72 .81 .10 .30 .43 .53 .62 .80

R20-0 1.77 8 1 1 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1

R20-1 2.37 88 .57 .57 .57 .57 .72 .75 0 0 0 0 .66 .66 0 0 0 0 0 0

R20-2 6.69 96 .74 .74 .74 .80 .84 .89 0 .53 .53 .55 .55 .70 0 0 0 0 0 0

R20-3 9.46 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

R20-4 5.4 136 .65 .65 .86 .86 .91 .97 0 0 0 0 0 0 0 0 0 0 0 0

R20-5 1.14 1 1 1 1 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1

R20-6 7.71 104 .80 .80 .88 .88 .88 .88 0 0 0 .42 .57 .57 0 0 0 0 0 0

R20-7 5.45 26 .93 .93 1 1 1 1 .68 .68 .68 .68 .68 .68 0 1 1 1 1 1

R20-8 0.61 82 .84 .84 .84 .85 .98 .98 0 0 0 0 .60 .60 0 0 0 0 0 0

R20-9 7.49 94 .64 .77 .77 .84 .90 .90 0 .43 .59 .59 .59 .59 0 0 0 0 0 0

r24-0 227.97 42 1 1 1 1 1 1 0 0 0 0 .57 .57 0 0 0 0 0 0

r24-1 124.28 58 .58 .58 .58 .74 .74 .74 0 .42 .42 .42 .42 .42 0 0 0 0 0 0

r24-2 277.49 14 1 1 1 1 1 1 .37 .37 .37 .37 .37 .37 0 1 1 1 1 1

r24-3 200.53 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

tt-0 1.62 10 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1

tt-1 0.96 10 0 .36 .36 .36 .36 .36 0 0 0 0 0 0 0 0 0 0 0 0

tt-2 0.38 6 0 .60 .60 .60 .75 .75 0 0 0 0 0 0 0 0 0 0 0 0

tt-3 16.3 8 .57 .57 .57 .57 .67 .67 0 0 0 0 0 0 0 0 0 0 0 0

tt-4 27.42 26 .10 .10 .50 .50 .50 .50 0 0 0 0 0 0 0 0 0 0 0 0

tt-5 1.75 8 0 0 0 0 .13 .14 0 0 0 0 0 0 0 0 0 0 0 0

Av. - - .67 .73 .76 .78 .82 .83 .15 .22 .28 .35 .45 .46 .10 .20 .25 .30 .30 .35

Table 6.3: Comparative results of the three most competitive approaches: Barcel-
ogic, Bsolo and CPLEX.

118 6. Close Solutions

Basic B&B B&B + lemmas B&B + polarity B&B + All
25 50 100 200 400 800 25 50 100 200 400 800 25 50 100 200 400 800 25 50 100 200 400 800

r16-0 0 0 0 .04 .04 .04 .03 .03 .03 .04 .04 .04 1 1 1 1 1 1 1 1 1 1 1 1
r16-1 0 0 .04 .04 .04 .04 0 0 .04 .04 .04 .04 1 1 1 1 1 1 1 1 1 1 1 1
r16-2 0 .02 .02 .02 .02 .02 .02 .02 .02 .02 .02 .02 1 1 1 1 1 1 1 1 1 1 1 1
r16-3 0 0 0 .03 .03 .03 0 0 .02 .02 .02 .02 1 1 1 1 1 1 1 1 1 1 1 1
r16-4 0 0 0 .14 .16 .16 0 0 .14 .14 .15 .16 .80 .80 .82 .82 .86 .91 .86 .86 .94 1 1 1
r16-5 0 0 .38 .38 .38 .38 0 0 0 .03 .03 .03 0 0 .24 1 1 1 0 0 .50 .60 1 1
r16-6 0 0 0 .03 .03 .04 0 0 0 0 0 .03 0 .12 1 1 1 1 0 0 0 0 .12 .64
r16-7 0 0 0 .04 .05 .05 0 0 0 .05 .05 .05 .69 .82 .90 .90 1 1 .82 .82 .82 .82 1 1
r16-8 0 .02 .02 .02 .02 .02 0 .02 .02 .02 .02 .02 1 1 1 1 1 1 1 1 1 1 1 1
r16-9 0 .04 .04 .04 .04 .04 0 0 0 .03 .03 .03 1 1 1 1 1 1 1 1 1 1 1 1
r20-0 0 0 0 .05 .05 .06 .04 .04 .05 .05 .05 .05 1 1 1 1 1 1 1 1 1 1 1 1
r20-1 0 .01 .01 .01 .01 .02 .01 .01 .01 .01 .01 .01 1 1 1 1 1 1 1 1 1 1 1 1
r20-2 0 0 0 .02 .02 .02 0 0 .02 .02 .02 .02 1 1 1 1 1 1 1 1 1 1 1 1
r20-3 .03 .03 .03 .03 .03 .03 0 0 .02 .02 .03 .03 1 1 1 1 1 1 1 1 1 1 1 1
r20-4 0 0 0 .20 .20 .20 0 0 .04 .04 .04 .04 1 1 1 1 1 1 1 1 1 1 1 1
r20-5 0 .02 .02 .03 .03 .03 0 .03 .03 .03 .03 .03 1 1 1 1 1 1 1 1 1 1 1 1
r20-6 .04 .04 .04 .04 .04 .04 .04 .04 .04 .04 .04 .04 1 1 1 1 1 1 1 1 1 1 1 1
r20-7 0 0 0 .03 .03 .05 .06 .06 .06 .06 .06 .06 .91 .91 1 1 1 1 1 1 1 1 1 1
r20-8 0 0 .04 .04 .04 .04 0 .03 .03 .03 .03 .03 1 1 1 1 1 1 1 1 1 1 1 1
r20-9 0 0 0 .03 .03 .03 0 0 .02 .02 .02 .02 1 1 1 1 1 1 1 1 1 1 1 1
Av. 0 .01 .03 .06 .06 .07 .01 .01 .03 .04 .04 .04 .87 .88 .95 .99 .99 1 .88 .88 .91 .92 .96 .98
R20-0 0 0 0 0 .02 .02 0 0 0 .02 .02 .02 1 1 1 1 1 1 1 1 1 1 1 1
R20-1 0 0 0 0 .18 .18 0 0 0 .15 .15 .15 0 0 .64 .64 .64 .71 .57 .57 .57 .57 .72 .75
R20-2 0 0 0 .19 .19 .20 0 0 .22 .25 .25 .25 .52 .69 .73 .75 .86 .91 .74 .74 .74 .80 .84 .89
R20-3 0 0 .01 .02 .02 .02 0 .02 .02 .02 .02 .02 1 1 1 1 1 1 1 1 1 1 1 1
R20-4 .25 .25 .25 .25 .26 .26 .23 .25 .25 .25 .25 .27 0 .44 .77 .77 .79 .85 .65 .65 .86 .86 .91 .97
R20-5 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1
R20-6 0 0 .20 .20 .26 .26 0 .16 .16 .23 .23 .23 .81 .81 .87 .87 .90 .91 .80 .80 .88 .88 .88 .88
R20-7 .05 .05 .06 .06 .06 .06 0 .05 .05 .05 .05 .06 .93 .93 1 1 1 1 .93 .93 1 1 1 1
R20-8 0 0 0 0 0 0 0 0 0 0 .13 .13 .50 .50 .50 .59 .72 .93 .84 .84 .84 .85 .98 .98
R20-9 0 .16 .20 .20 .20 .20 .18 .21 .21 .21 .24 .24 .71 .81 .85 .85 .89 .89 .64 .77 .77 .84 .90 .90
r24-0 0 0 .04 .04 .04 .04 0 0 0 .04 .04 .04 1 1 1 1 1 1 1 1 1 1 1 1
r24-1 0 0 0 0 .05 .05 0 .05 .05 .06 .06 .06 .67 .67 .76 .76 .76 .76 .58 .58 .58 .74 .74 .74
r24-2 0 0 .01 .01 .01 .01 0 .01 .01 .01 .01 .01 1 1 1 1 1 1 1 1 1 1 1 1
r24-3 0 0 0 0 .01 .01 .01 .01 .01 .01 .01 .01 1 1 1 1 1 1 1 1 1 1 1 1
tt-0 .03 .03 .03 .03 .04 .04 0 0 0 0 .03 .03 .05 .14 .14 .19 .25 .50 1 1 1 1 1 1
tt-1 0 0 .07 .07 .07 .07 0 0 .04 .04 .04 .04 0 .36 .36 .36 .36 .36 0 .36 .36 .36 .36 .36
tt-2 0 0 .04 .04 .04 .04 0 0 0 .02 .02 .02 0 .60 .60 .60 .60 1 0 .60 .60 .60 .75 .75
tt-3 0 0 .01 .01 .01 .01 0 0 0 .01 .01 .01 0 0 .01 .04 .11 .29 .57 .57 .57 .57 .67 .67
tt-4 0 0 .04 .04 .04 .04 0 .04 .04 .04 .04 .04 0 0 .06 .41 .41 .41 .10 .10 .50 .50 .50 .50
tt-5 0 0 0 .02 .02 .02 0 0 .02 .02 .02 .02 0 0 0 0 .14 .14 0 0 0 0 .13 .14
Av. .02 .02 .05 .06 .08 .08 .02 .04 .05 .07 .08 .08 .51 .60 .66 .69 .72 .78 .67 .73 .76 .78 .82 .83

Table 6.4: Results of the factor analysis.

6.9. Related work and conclusions 119

 0

 0.2

 0.4

 0.6

 0.8

 1

25% 50% 100% 200% 400% 800%

Q
ua

lit
y

Percentage of original runtime

Barcelogic
Bsolo
Cplex

 0

 0.2

 0.4

 0.6

 0.8

 1

25% 50% 100% 200% 400% 800%

Q
ua

lit
y

Percentage of original runtime

Barcelogic
Bsolo
Cplex

Figure 6.1: Average quality of the different approaches on the first 20 problems (top)
and the second 20 harder ones (bottom).

for a single problem using constraint programming. Their MostClose question
is very similar to the problem we examine looking for the closest solution to an
existing solution, but both solutions are for the same problem. They outline two
approaches: a reformulation approach that at least doubles the size of the problem,
and a more efficient heuristic approach which is simply a branch and bound search.
Our results show that this by itself is not enough in the SAT context. Distance-SAT
[BM06] explores the decision problem, given a formula G and an arbitrary partial
interpretation I, is there a model of G that disagrees with I on at most k variables?
[BM06] tries on random and handcrafted problems two algorithms based on the

120 6. Close Solutions

 0

 0.2

 0.4

 0.6

 0.8

 1

25% 50% 100% 200% 400% 800%

Q
ua

lit
y

Percentage of original runtime

Basic B&B
B&B with lemmas

B&B with modified decision heuristic
Barcelogic approach

 0

 0.2

 0.4

 0.6

 0.8

 1

25% 50% 100% 200% 400% 800%

Q
ua

lit
y

Percentage of original runtime

Basic B&B
B&B with lemmas

B&B with modified decision heuristic
Barcelogic approach

Figure 6.2: Average quality of the factor analysis on the first 20 problems (top) and
the second 20 harder ones (bottom).

classical Davis/Logemann/Loveland (DLL) procedure [DLL62], but a translation
into CNF is reported to work better. For our case, where deciding SAT for G is
already hard, such a translation is rather hopeless. One clearly needs to exploit that
in our problem I is a model of a known subformula of G that is almost the same as
G.

Indeed, our experiments reveal that, while state-of-the-art Boolean optimization
solvers behave poorly, our Barcelogic approach behaves very well, frequently finding
the optimal (i.e., closest) solution in only 25% of the time the SAT solver took in
solving the original problem.

7
Sport League Scheduling

7.1 Introduction

This chapter deals with the problem of scheduling a round-robin tournament. This
problem may seem trivial, since a simple round-robin league can be scheduled with
basic combinatorial methods; however, a professional league schedule must satisfy a
lot of additional (non-structural) constraints, which make this problem much harder.

Different approaches have been applied to it: integer programming [DGM+07,
CO06], constraint programming [Rég01, HMT04], tabu search [HH00], simulated
annealing [WT94, AMHV06], mixed approaches using some of the previously de-
scribed [Tri01], among others. See [RT08] for a survey on this field. Here we present
the first (to our knowledge) SAT-based approach for solving this problem.

Its most difficult aspect is the set of combinatorial constraints that define a
compact round-robin league. However, the additional constraints usually make the
problem easier instead of harder: thus, problems with a lot of additional constraints
can easily and quickly be solved with our method whereas pure combinatorial prob-
lems, i.e., problems with few additional constraints, turn out to be hard. This is the
big difference with respect to the other methods, for which it usually holds that the
fewer constraints, the easier the problem. Therefore, we think our approach may be
able to deal with problems that are out of reach for the other methods.

Another convenient aspect of SAT-based technology is that, in optimization
problems, the optimality of the solution is proven. This is also true in IP-like
methods, but it is not the case of local-search-like methods. Local-search methods,
however, can deal with bigger problems than the other methods: they usually are
the only alternative for leagues with more than 24 teams.

Section 7.2 contains the terminology used throughout this chapter. In Section 7.3
we describe the constraints of the problem. Section 7.4 contains the variables needed
in our approach for encoding the problem into SAT. Section 7.5 explains the different
approaches for dealing with All-Different and Symmetric-All-Different constraints in
SAT. Section 7.6 contains our encoding of the problem. In Section 7.7 we describe
some minimal modifications we can make to our SAT Solver for solving more effi-

121

122 7. Sport League Scheduling

ciently these problems. Experimental results are presented in Section 7.8. Finally,
we conclude in Section 7.9.

7.2 Terminology

This section introduces the terminology used throughout the chapter. Unfortunately,
a standard terminology does not exist. We have followed the terminology introduced
in [RT08].

Let n be the number of teams in the considered competition. In this document,
n is assumed to be even. A slot is every period of time when any team can play at
most one match.

Every team is associated to a venue, this is, a location where a match can take
place. When a team plays at its own venue, plays at home, otherwise it plays away.
In the latter case, it must play at the other team’s venue.

A round-robin league is a tournament where all teams meet each other a fixed
number of times. Here we consider double round-robin leagues, this is, teams meet
twice, once at each venue.

A tournament can be compact, when every team plays a match in every slot, or
relaxed, if teams do not play in every slot. Here we only consider compact tour-
naments: Notice that these tournaments require 2n − 2 slots: the first n − 1 slots
correspond to the first half of the competition, whereas the last n−1 ones correspond
to second half slots.

Given a team, the sequence of home and away matches it plays during the league
is known as a home-away pattern or simply pattern. It is represented by a vector of
ones (for home matches) and zeros (for away ones). Two consecutive equal numbers
in the pattern (this is, two consecutive home matches or two consecutive away
matches) is called a break or double. Usually, it is desired to have few breaks in the
patterns. Two patterns are complementary if they differ in all the values, this is,
the first team plays at home when the second plays away and vice versa. The home
away pattern set, or simply pattern set, is the set of patterns of every team. Table
7.1 shows an example of pattern set. Every row is a pattern. Patterns for teams 1
and 5 are complementary. Team 1 (and, of course, team 5) has breaks at slots 4, 6
and 9.

The league schedule can be presented as a timetable. Each row corresponds to a
team and each column correspond to a slot. Entry of row i and column s corresponds
to the opponent of the team i in the slot s; the pattern set corresponds to the signs
in the timetable: the entry of the row i and column s is positive if the team i play
at home, and negative if not. A schedule is mirrored when the first and the second
half are identical except the home matches and away matches are exchanged. Table
7.2 contains a representation of a mirrored double round-robin league schedule.

7.3. Constraints of the Schedule 123

Slots 1 2 3 4 5 6 7 8 9 10

Team 1 0 1 0 0 1 1 0 1 1 0
Team 2 1 0 0 1 0 0 1 1 0 1
Team 3 1 0 1 0 1 0 1 0 1 0
Team 4 0 1 1 0 1 1 0 0 1 0
Team 5 1 0 1 1 0 0 1 0 0 1
Team 6 0 1 0 1 0 1 0 1 0 1

Table 7.1: Example of a pattern set.

Slots 1 2 3 4 5 6 7 8 9 10

Team 1 -2 3 -4 -5 6 2 -3 4 5 -6
Team 2 1 -6 -5 3 -4 -1 6 5 -3 4
Team 3 4 -1 6 -2 5 -4 1 -6 2 -5
Team 4 -3 5 1 -6 2 3 -5 -1 6 -2
Team 5 6 -4 2 1 -3 -6 4 -2 -1 3
Team 6 -5 2 -3 4 -1 5 -2 3 -4 1

Table 7.2: Example of a schedule representation.

7.3 Constraints of the Schedule

In this section we present the usual constraints that can appear in these problems.
However, not all constraints necessarily appear in every league scheduling problem
(as in fact some subsets of them are incompatible). For clarity, we have not included
the most technical constraints, since they can be encoded in a way similar to the
ones explained here.

7.3.1 Structural Constraints

Some of the constraints are needed in order to ensure that the schedule corresponds
to the desired type of tournament: in our case, a compact double round-robin league.
Constraints for defining a mirrored schedule or restrictions in the patterns and in
the breaks are also included in this group of constraints.

Here we list the structural constraints of these problems:

• Double round-robin league: Given a team, it must play once against every
other team in the first half of the tournament and once in the second half.

• Compact schedule: In every slot, all teams must play a match.

• Mirrored tournament: In a mirrored tournament, the slots of the second
half contain the same matches as in the first half, except that the venues are
interchanged.

124 7. Sport League Scheduling

• Minimum distance to return match: In non-mirrored tournaments, a
usual constraint is that if two teams play in a slot s, they cannot play again
against each other in slots s+ 1, s+ 2, . . . , s+ d− 1 for a fixed value of d.

This constraint prevents things like a team playing against another team twice
in a short bad patch (for instance, because its best player is injured): that is
especially important if it involves two popular teams, since the audience of the
matches could decrease if there are injured players.

Notice that the case d = n− 1 corresponds to a mirrored tournament.

• Return per slots: In some leagues, if a match is played at slot s1 and its
return at slot s2, then the returns of all matches played at slot s1 must be
scheduled at slot s2.

• Home and away definition: In a match, one team must play at home and
the other team must play away.

• Every pair of teams meet once at every venue: If a match between
teams t1 and t2 in a slot of the first half of the tournament has been played at
t1’s home, that match has to be played at the t2’s home in the second half.

• Triples are not allowed: Most of the European leagues do not allow two
consecutive breaks for a team.

In this way, supporters can see their teams playing at home with some regu-
larity, increasing ticketing revenues.

• Number of breaks: In some tournaments, the number of breaks in a pattern
is bounded by a fixed value. In some other cases, it is required that every
pattern has exactly a fixed number of breaks.

As in the previous constraint, this is required in order to get matches at each
venue with some regularity, and, in this way, maximizing ticketing revenues.

• Breaks are not allowed in some slots: Some leagues do not allow breaks
in some slots. For instance, in the first two slots (when the supporters have
not seen their team for a long time) all teams want to play once at home;
the same happens in the last two slots. In some tournaments, breaks are not
allowed at Christmas-time.

7.3.2 Additional Constraints

In this section we describe the rest of constraints of the problem. In a professional
sport league, the schedule does not only contain constraints for being a double round-
robin tournament: it also contains a lot of constraints to make the competition more
attractive, fairer, etc. and maximize the revenues. These constraints are imposed
by different sources: TV companies, security forces, the teams themselves...

Here we list the non-structural constraints of these problems:

7.3. Constraints of the Schedule 125

• Match constraints: These constraints forbid a match to take place in some
slots. They are often imposed by TV companies, because they do not want that
higher audience matches take place in days when other events can overshadow
them. They can also be imposed by the teams: for instance, a team that does
not want to travel to far venues after an international match will forbid playing
against teams with distant venues in the corresponding slots.

• Place constraints: A team must play at home (or away) in a certain slot. It
is usually imposed when a venue is unavailable and the team cannot play at
home, or when the slot coincides with a local festivity and the team wants to
play at home.

• Top teams constraints: In some leagues, the teams do not want to play
against two strong teams on two consecutive slots.

• Complementary constraints: This constraint imposes that two teams have
complementary patterns. It is necessary in some leagues where there are teams
sharing their playing grounds (e.g., stadiums).

• Geographical constraints: These constraints are often imposed by the se-
curity forces, transport agencies or similar. It avoids that a lot of matches take
place in a small region, which could bring it to a standstill.

• Top matches constraints: In some leagues, TV companies select n − 1
matches: every slot must contain (exactly) one of these matches. In this
way, the company can broadcast a high-audience match every week and, more
importantly, a top match will not overshadow another one.

7.3.3 The Optimization Problem

In some cases, in addition to the mandatory constraints (called hard constraints),
there are some additional constraints (called soft constraints) that the schedule can
violate. In these cases, it is desired to find the schedule that satisfies the hard
constraints and violates the minimum number of soft constraints.

Additional constraints and structural constraints involving breaks can be turned
into soft constraints. However, the other structural constraints are always hard.

In some problems, the teams can add a fixed number of soft constraints, with
suggestions for the league schedule. In these cases, an additional hard constraint is
usually added:

• Maximum number of soft constraints violated per team: This con-
straint imposes that the number of soft constraints proposed by a team that
can be unsatisfied for the resulting schedule is bounded by a fixed value.

Soft constraints can have associated a weight (or a cost): in this case, we have
to minimize the sum of the weights of unsatisfied soft constraints. The maximum
number of soft constraints violated per team constraint is modified in a similar way.

126 7. Sport League Scheduling

7.4 Variables of the Encoding

In this section we list the variables needed for encoding a sport league scheduling
problem. Some of the variables are only needed if some of the previously described
constraints are present, whereas others are always included.

• Match variables: Given two teams i, j with i < j and a slot s, we define the
variable Gi,j,s, which is true if and only if team i plays against team j in the
slot s.

• Pattern variables: Given a team i and a slot s, we define the variable Hi,s,
which is true if and only if team i plays at home in the slot s.

• Break variables: Given a team i and a slot s > 1, we define the variable
Di,s, which is true if and only if team i has a break in the slot s (i.e., plays at
twice home or twice away in the slots s− 1 and s).

Indeed, we need to add the following clauses for defining them:

®

Hi,s−1 ∧Hi,s → Di,s, Hi,s−1 ∧Hi,s → Di,s, Hi,s−1 ∧Hi,s → Di,s,
Hi,s−1 ∧Hi,s → Di,s, : 1 � i � n, 2 � s � 2n− 2

´

.

• Optimization variables: Given a soft constraint c, we define the variable oc,
which is true if the constraint c is not satisfied. In this way, if the constraint c
can be encoded with the clause C as a hard constraint, we encode it with the
clause C ∨ oc as a soft constraint.

These variables are only needed in optimization problems.

• Auxiliary variables: Besides, some auxiliary variables are needed for encod-
ing some of the constraints. Letter a will denote an auxiliary variable.

7.5 All-Different Constraints

Some of the constraints of the sport league scheduling problem can be casted as
particular cases of the so-called all-different or symmetric-all-different constraints.
In this section, we study these constraints and the different options to deal with
them.

7.5.1 Introduction

This section deals with all-different constraint (AD in the following). This constraint
forces that ui = uj for all i, j ∈ {1, 2, . . . , n} with i = j, where variables ui are finite-
domain variables with domain {1, 2, . . . , n}1.

1In a general version of these constraints, the variables can have an arbitrary finite domain.
However, in this document we deal with this version of the constraint.

7.5. All-Different Constraints 127

All-different constraints appear in many combinatorial problems: some puzzle-
like problems such as Sodokus [LO06], the N -queens problem [ST05], Latin squares
[Ref04]; or some industrial problems such as air traffic management [Grö04] or per-
sonnel scheduling [TFM+07]. In the sport league-scheduling problem, the double
round-robin league structural constraints are AD constraints, as we will see in the
next section.

A generalization of the AD constraint is the symmetric-all-different (SAD in the
following) constraint2. Given variables ui that have the domain {1, 2, . . . , i − 1, i +
1, . . . , n}, this constraint forces that

• ui = uj for all i = j.

• If ui = j, then uj = i.

In the sport league scheduling problem, the compact schedule structural constraints
are SAD constraints, as we will see in the next section.

7.5.2 Encoding AD and SAD into SAT

In this section we present different methods for encoding AD and SAD constraints
into SAT. Unfortunately, arc-consistent encodings for AD and SAD must have an
exponential number of clauses [vH01]: thus, the encodings proposed here are not
arc-consistent.

The structure of the encoding of AD and SAD is similar in all methods. For AD,
the encodings define a set of variables

{xi,j : 1 � i, j � n}.

A variable xi,j is true if and only if ui has been assigned to the value j. The encodings
also have the following constraints:

• No two u’s can take the same value j:

x1,j + x2,j + · · ·+ xn,j � 1, 1 � j � n.

• Every value j must be taken for at least one u:

x1,j + x2,j + · · ·+ xn,j � 1, 1 � j � n.

• Every ui must have assigned at least one value:

xi,1 + xi,2 + · · ·+ xi,n � 1, 1 � i � n.

• Every ui must have assigned at most one value:

xi,1 + xi,2 + · · ·+ xi,n � 1, 1 � i � n.

2This constraint is sometimes called one-factor constraint.

128 7. Sport League Scheduling

Note that some of these constraints are redundant. However, including all of
them has been proved to provide more propagation power. Constraints of this form
are called ALO and AMO. ALO (At least one) constraints are constraints of the
form x1+x2+ · · ·+xn � 1, whereas AMO (at most one) constraints are constraints
of the form x1 + x2 + · · ·+ xn � 1.

An ALO constraint x1 + x2 + · · ·+ xn � 1 can be encoded with a single clause:

x1 ∨ x2 ∨ · · · ∨ xn.

However, AMO constraints can be encoded in several ways: every different method
for encoding AMO defines an encoding of AD constraints.

SAD encodings are similar to AD encodings. In this case, we define a set of
variables

{xi,j : 1 � i < j � n}.

Now, a variable xi,j is true if and only if ui = j and uj = i. The encodings also have
the following constraints:

• AMO constraints:

x1,j + x2,j + · · ·+ xj−1,j + xj,j+1 + · · ·+ xj,n � 1, 1 � j � n.

• ALO constraints:

x1,j + x2,j + · · ·+ xj−1,j + xj,j+1 + · · ·+ xj,n � 1, 1 � j � n.

As before, AMO constraints are encoded with a single clause, whereas AMO con-
straints can be encoded in several ways.

Encoding AMO constraints into SAT

Consider now the AMO constraint x1 + x2 + · · · + xn � 1. We list the different
encodings for this constraint into SAT that we can find in the literature:

• Cardinality Network encoding: AMO constraint is a cardinality con-
straint, so we could encode it as in Chapter 3. We need about n auxiliary
variables and 3n clauses.

• Quadratic encoding: A naive encoding for AMO consists in adding the
clauses

{xi ∨ xj : 1 � i < j � n}.

We need no auxiliary variables, but n(n − 1)/2 clauses. Notice this method
corresponds to the direct cardinality network encoding (see Section 3.4).

7.5. All-Different Constraints 129

• Logarithmic encoding: [FPDN05] Let us definem = log2 n. The logarithmic
encoding consists in adding the variables y1, y2, . . . , ym and, for all i and j with
1 � i � n, 1 � j � m, the clause xi ∨ yj if the j-th digit in binary of i is 1, or
xi ∨ yj if it is 0.

If one variable xi is set to true, for any i′ = i with 1 � i′ � n, the binary
representations of i′ and i differ in at least one digit. For example, let us
assume that the j-th digit of i is 1 whereas the j-th digit of i′ is 0. Therefore,
yj is propagated to true by the clause xi∨yj , and the clause xi′∨yj propagates
xi′ to false.

This encoding needs log n variables and n log n clauses.

• Heule encoding: 3 Let us take an integer k � 2. If k + 1 � n, the k-Heule
encoding is the quadratic encoding. If k + 1 < n, it consists in introduc-
ing an auxiliary variable y and encoding (with k-Heule encoding) the AMO
constraints x1 + x2 + · · ·+ xk + y � 1 and xk+1 + xk+2 + · · ·+ xn + y � 1.

This encoding needs about n
k−1 variables and (k+1)kn

2(k−1) clauses. The following
table shows the encoding size for the first values of k:

k Variables Clauses

2 n 3n
3 n/2 3n
4 n/3 10n/3
5 n/4 15n/4
6 n/5 21n/5

• Ladder encoding: [AM05] It is a particular case of the Heule encoding with
k = 2.

• 2-product encoding: [Che10] Let us define p = ⌈√n⌉ and q = ⌈n/p⌉. This
method introduces the variables u1, u2, . . . , up, v1, v2, . . . , vq, recursively en-
codes the AMOs u1 + · · · + up � 1 and v1 + · · · + vq � 1 and adds the
clauses

{xk ∨ ui, xk ∨ vj : 1 � i � p, 1 � j � q, 1 � k � n, k = (i− 1)q + j}.

Notice that the recursive AMOs can be encoded with this or any other method.
The method uses about 2

√
n + V1,+V2 variables and 2n + C1 + C2 clauses,

where (V1, C1) are the number of variables and clauses needed for encoding the
AMO u1 + · · ·+ up � 1, and (V2, C2) are the number of variables and clauses
needed for encoding the AMO v1 + · · ·+ vq � 1.

In particular, if the AMOs are recursively encoded with the 2-product method,
we need 2

√
n+O (4

√
n) variables and 2n+ 4

√
n+O (4

√
n) clauses.

3Personal communication. We want to thank him for the help with this encoding.

130 7. Sport League Scheduling

• Generalized product encoding: [Che10] Given a positive integer k > 1, let
us define

pk =
†

k
√
n
£

, pk−1 =

¢

k−1

°

n

pk

§

•

, . . . , p1 =

¢

n

pk · pk−1 · · · p2

•

.

This method introduces the variables wi
j , with i = 1, 2, . . . , k and j = 0, 1, . . . ,

pi − 1, recursively (or with any other method) encodes the AMOs wi
0 + wi

1 +
· · ·+ wi

pi−1
� 1 for i = 1, 2, . . . , k and adds the clauses

1�r�n

xr ∨ wi
ji : 1 � i � k, r − 1 = j1 + p1

j2 + p2
Ä

j3 + p3(· · ·)
ä

.

The method uses about

k k
√
n+

k

i=1

Vi variables and nk +
k

i=1

Ci clauses,

where (Vi, Ci) are the number of variables and clauses needed for encoding the
i-th recursive AMO constraint.

7.6 Encoding the Constraints of the Schedule

In this section we show a way for encoding all the constraints from Section 7.3 into
SAT or SMT.

7.6.1 Structural Constraints

• Double round-robin league: Given a team, this constraint consists of two
AD constraints, one per half of the league: the opponents of team i in the
slots of the first half (1, 2, . . . , n − 1) must be different (the same in slots of
the second half). Therefore, these constraints can be encoded into SAT in
different ways as explained in Section 7.5.2; or they can be dealt with by a
propagator [Rég94, GMN08, Kat08].

• Compact schedule: Given a slot, we have to pair up the teams: it consists
of a SAD constraint: any team cannot play with two different teams in the
same slot, and playing a match is a symmetric relation. This SAD constraint
can be encoded into SAT as explained in Section 7.5.2; or it can be dealt with
a propagator [Rég99].

• Mirrored tournament: In a mirrored tournament, we have to add the
clauses

{Gi,j,s → Gi,j,n−1+s, Gi,j,s → Gi,j,n−1+s : 1 � i < j � n, 1 � s � n− 1}.

7.6. Encoding the Constraints of the Schedule 131

However, an easier encoding consists in using only variables for the first n− 1
slots, since the second half slots can be built from them. Nevertheless, the
two methods do not significantly differ with respect to the run-time, so any of
these encodings can be used.

• Return per slots: We have to add the auxiliary variables as,s′ for 1 � s �

n− 1 and n � s′ � 2n− 2 and the clauses:

®

Gi,j,s ∧Gi,j,s′ → as,s′ , Gi,j,s ∧ as,s′ → Gi,j,s′ ,
Gi,j,s′ ∧ as,s′ → Gi,j,s : 1 � i < j � n

´

.

• Minimum distance to return match: Assume a minimum distance d is
demanded to the return matches. In this case, we have to add the clauses

{Gi,j,s → Gi,j,s′ : 1 � i < j � n, 1 � s � n− 1, n � s′ � 2n− 2, s′ − s < d}.

However, if the return-per-slots constraint has been introduced, we can replace
the previous clauses for these ones:

{as,s′ : 1 � s � n− 1, n � s′ � 2n− 2, s′ − s < d}.

• Home and away definition: The following clauses are added:

{Gi,j,s ∧Hi,s → Hj,s, Gi,j,s ∧Hi,s → Hj,s, : 1 � i < j � n, 1 � s � 2n− 2}.

• Every pair of teams meet once at every venue: We add the clauses

®

Gi,j,s ∧Gi,j,s′ ∧Hi,s → Hi,s′ , Gi,j,s ∧Gi,j,s′ ∧Hi,s → Hi,s′ :
1 � i < j � n, 1 � s � n− 1, n � s′ � 2n− 2

´

.

If the return per slots constraint has been added, we can replace the previous
clauses for these ones:

®

as,s′ ∧Hi,s → Hi,s′ , as,s′ ∧Hi,s → Hi,s′ :
1 � i � n, 1 � s � n− 1, n � s′ � 2n− 2

´

.

In a mirrored tournament, we can use these constraints instead of any of the
previous ones:

¶

Hi,s → Hi,s+n−1, Hi,s → Hi,s+n−1 : 1 � i � n, 1 � s � n− 1
©

.

• Triples are not allowed: The following clauses are added:

{Di,s → Di,s+1 : 1 � i � n, 2 � s < 2n− 2}.

132 7. Sport League Scheduling

• Number of breaks: Let k be the maximum number of breaks allowed. In
this case, for every team i, we have to encode the cardinality constraints

Di,2 +Di,3 + · · ·+Di,n−1 � k, Di,n +Di,n+1 + · · ·+Di,2n−1 � k,

which can be done as in Chapter 3.

• Breaks are not allowed in some slots: We have to add the unit clauses

{Di,s : 1 � i � n}
for every slot s where doubles are not allowed.

7.6.2 Additional Constraints

• Match constraints: If a match between teams i and j is not allowed in any
venue in a slot s, then we add a unit clause Gi,j,s.

However, if the constraint does not allow a match from teams i and j at slot
s in one of the venues (let us say, in team i’s venue), the binary clause

Gi,j,s ∨Hj,s

is added.

• Place constraints: If team i must play at home in the slot s, we have to add
the unit clause Hi,s. If it has to play away, we add Hi,s.

• Top teams constraints: Given a team i, let Ti be its set of top teams, this
is, team i cannot consecutively play against two teams of Ti. Then, we have
to add the constraints

{Gi,j,s → Gi,j′,s+1 : j, j′ ∈ Ti, 1 � s < 2n− 2}.

• Complementary constraints: For every pair (i, j) of complementary teams,
we have to add the constraints

{Hi,s → Hj,s, Hi,s → Hj,s, : 1 � s � 2n− 2}.

• Geographical constraints: Let A be the set of teams of a small area, and
assume that at most k can play at home in the same slot. This constraint
consists in encoding the cardinality constraints

i∈A

Hi,s � k : 1 � s � 2n− 2

.

These cardinality constraints can be encoded as explained in Chapter 3.

• Top matches constraints: This constraint is an all-different constraint: the
selected matches must be played in different slots. Therefore, it can be encoded
as in Section 7.5.2 or we can use an SMT solver for dealing with it.

7.6. Encoding the Constraints of the Schedule 133

7.6.3 The Optimization Problem

Non-Weighted Case

• Maximum number of soft constraints violated per team: Let Ci be
the soft constraints proposed by team i, and ki be the maximum number of
constraints from Ci that the schedule can violate. Then, these constraints are
the cardinality constraints







c∈Ci

oc � ki : 1 � i � n






,

which can be encoded as explained in Chapter 3.

To obtain the optimal solution, the solver has to minimize the cardinality objec-
tive function

c∈C1∪C2∪···∪Cn

oc.

Therefore, a Lazy Decomposition Solver can be used, see Section 5.4.1 for more
details.

Weighted Case

• Maximum number of soft constraints violated per team: Let Ci be
the soft constraints proposed by team i, and, for every c ∈ Ci, let wc be its
weight. Let ki be the maximum sum of weights from the violated constraints
of Ci. Then, these constraints are the Pseudo-Boolean constraints







c∈Ci

wcoc � ki : 1 � i � n






,

which can be encoded as explained in Chapter 4. Alternatively, we can use a
propagator for them.

To obtain the optimal solution, the solver has to minimize the Pseudo-Boolean
objective function

c∈C1∪C2∪···∪Cn

wcoc.

Since the encoding of Pseudo-Boolean proposed in Chapter 4 is not incremental
(i.e., if the constraint

aixi � k is replaced by the constraint

aixi � k′ the whole

encoding has to be generated from scratch), the best option for finding the optimal
solution of the problem is an SMT approach.

134 7. Sport League Scheduling

7.7 Tuning the SAT Solver

In this section we present some minimal modifications to the SAT Solver in order
to solve more efficiently sport league scheduling problems.

Notice that these problems are different from typical SAT applications coming
from verification; for instance, the number of variables and clauses is reduced if we
compare with some other SAT application problems (a problem may have about
20.000 variables). Therefore, some techniques that have proven to be useful in some
contexts may work poorly here.

7.7.1 Cleanups Policy

The problems considered here are some orders of magnitude smaller than some other
solvable problems. This means we do not need a very aggressive cleanup policy: the
SAT Solver does not have space issues and the propagation does not become very
slow. Quite the contrary, now keeping important lemmas is more important than
removing the useless ones. Therefore, cleanups can be more spaced than in some
other problems. Some strategies like [AS09] are useful in this context.

7.7.2 VSIDS Heuristics

We have generated the encoding of this problem: thus, we know the meaning of the
distinct variables and we can use this information, for instance, to adapt the VSIDS
policy to our problem.

The idea is splitting the problem into some parts: finding the pattern set, as-
signing matches to slots, assigning the optimization variables... This idea has widely
been used in this context, reported for first time in [Sch92]. Our approach, how-
ever, does not completely decompose the problem, but it guides the SAT Solver on
focusing on some parts of the problem before some others. In this way, we combine
the advantages of solving first a small piece of the problem and the advantages of a
non-decomposed problem.

We can easily do that in a simple way: we assign a coefficient to each variable.
The VSIDS increments of the value of a variable are multiplied by this coefficient. In
this way, variables with higher coefficients tend to be assigned with a higher priority.

We have divided the problem variables in groups as in Section 7.4, and we have
assigned a value to every group. We have experimentally found that the best results
are obtained when the pattern and break variables have the highest coefficients,
then the optimization variables, and, finally, the match and auxiliary variables. An
example of a good assignment of coefficients is:

Match Pattern Break Optimization Auxiliary
1 4 4 2 1

7.7. Tuning the SAT Solver 135

7.7.3 Last-Phase in Optimization Problems

In optimization problems, a variation of the last-phase strategy [PD07] has revealed
to be useful. It consists in choosing always the negative phase of the optimization
variables (this is, the phase that minimizes the objective function). Other variables’
phases are chosen as in the last solution found. When searching for the first solution,
non-optimization variables can be picked with the standard last-phase algorithm.

7.7.4 Handling More Leagues

A common problem consists in finding the schedule of two related leagues, for in-
stance the first and second division league of the same country. In these cases, usually
there are some constraints involving the two leagues (the mixed constraints), while
most of them involve only one league. Usually one of the leagues is more important
than the other one, and it contains a lot of constraints, while the other league is
underconstrained (since the profits of the important league are much higher but it
also requires more constraints from TVs, etc.).

We may try to simultaneously encode the two leagues and solve the SAT problem.
However, this combined problem often requires too much time to be solved. Another
possible approach is an iterative approach. Let X be the set of variables of the first
league that appear in mixed constraints.

1. We solve the problem of the first league.

2. If the problem is UNSAT, we have finished. If not, we have obtained a model
M . Let MX be the assignment defined by M in the variables of X.

3. We assign the variables of MX in the mixed constraints, and try to solve the
second problem.

4. If the second problem is SAT, we have finished. If it is UNSAT, we add the
clause ¬MX to the first problem and repeat the process.

However, this solution cannot deal with the optimization version of the problems.
Moreover, the lemmas and heuristics of the previous iterations cannot be reused in
the following ones.

We can improve this method with a technique similar to the one explained in
Section 7.7.2. Let X1, X2 be the set of variables from the first and second problem
respectively. We can modify the VSIDS heuristic so that no X2 variable is chosen
until all the variables from X1 are assigned. In this way, we are automatically solving
firstly the schedule of the important league and, after that, we solve the other one.
Notice that this method can also be applied in optimization problems. Moreover, all
the lemmas can be reused and, more importantly, if after solving the first problem
the second one is UNSAT, we do not add ¬MX as a lemma: we add a much better
lemma obtained from the usual conflict analysis.

136 7. Sport League Scheduling

7.8 Experimental Evaluation

In this section we evaluate our encoding in some benchmarks based in real-world
sport professional leagues.

7.8.1 Instances Description

We have considered 15 benchmarks based on the French Football League. We have
modified some of the original French Football League constraints in order to obtain
15 different instances with the different possible constraints described in the pre-
vious sections. The first 5 instances are non-optimization problems, the second 5
are optimization problems whose soft constraints have weight 1 and the last 5 prob-
lems are optimization problems with weighted soft constraints. We run 10 different
random seeds for each benchmark.

Non-optimization problems’ results are presented in tables like Table 7.3: they
contain the number of problems solved after 5 seconds, 15 seconds, 1 minute, 5
minutes, etc.

The results of optimization problems are presented in tables like Table 7.4:
columns 2 to 5 contain the number of benchmarks where a solution with cost 1, 2Ω is
found after, respectively, 1, 5, 15 and 60 minutes, being Ω the optimal cost. Columns
6 to 9 contain the number of problems where the optimal solution is found after 1,
5, 15 and 60 minutes. Finally, the last 4 columns contain the number of times the
optimality is proven after 1, 5, 15 and 60 minutes.

All experiments were performed on a 2.66MHz Xeon.

7.8.2 Comparing the Different Encodings for AMOs

In first place, we compare different methods for encoding the AMOs from AD
and SAD constraints (see Section 7.5.2). We compare the k-product encoding for
k = 2, 3, 4, 8 (2-Product, 3-Product, 4-Product and 8-Product), the cardinality net-
work encoding from Chapter 3 (Cardinality), the Heule encoding with k = 3, 4, 5, 6
(Heule-3, Heule-4, Heule-5 and Heule-6), the ladder encoding, which corresponds to
Heule encoding for k = 2 (Ladder), the logarithmic encoding (Logarithmic) and the
quadratic encoding (Quadratic). Table 7.3 contains the results of the different en-
codings in the non-optimization problems. Notice we have considered every random
seed as a different benchmark. Table 7.4 contains the results in the optimization
problems.

In these problems Heule gives the best performance, whereas Quadratic is not a
competitive approach. The other approaches give similar performance: 4-Product
seems slightly better than the other methods, whereas 3-Product seems the worst of
the k--Product encodings.

We picked Heule-6 encoding method as encoding method for the next exper-
iments since it showed the best results. Notice we can solve around the 80% of
non-optimization problems in less than 1 minute, and the remaining in less than

7.8. Experimental Evaluation 137

Method 5s 15s 1m 5m 15m 60m

2-Product 0 10 29 50 50 50
3-Product 0 11 26 48 50 50
4-Product 1 11 36 50 50 50
8-Product 0 12 31 49 50 50
Cardinality 1 8 31 50 50 50
Heule-3 1 14 33 50 50 50
Heule-4 3 17 39 50 50 50
Heule-5 1 14 45 50 50 50
Heule-6 1 16 38 50 50 50
Ladder 0 10 25 48 50 50
Logarithmic 0 8 34 49 50 50
Quadratic 0 1 8 23 30 39

Table 7.3: Number of instances solved of 50 non-optimization benchmarks.

1, 2·Optimal Optimal found Optimal proved

Method 1m 5m 15m 1h 1m 5m 15m 1h 1m 5m 15m 1h

2-Product 3 47 76 95 1 32 69 79 0 10 42 77
3-Product 0 29 78 93 0 22 66 82 0 3 39 80
4-Product 0 51 77 94 0 40 72 83 0 21 70 79
8-Product 1 43 77 94 0 31 70 83 0 12 35 79
Cardinality 3 47 77 93 1 37 68 82 0 5 26 73
Heule-3 3 44 87 97 1 31 75 81 0 19 71 78
Heule-4 0 56 79 96 0 45 72 82 0 37 68 80
Heule-5 1 56 83 95 0 43 74 85 0 35 71 79
Heule-6 3 62 87 97 0 56 78 87 0 49 76 80
Ladder 0 38 73 94 0 26 63 83 0 13 56 80
Logarithmic 2 47 78 92 0 40 68 82 0 12 35 75
Quadratic 2 16 54 84 0 12 46 74 0 3 15 54

Table 7.4: Number of instances solved of 100 optimization benchmarks.

138 7. Sport League Scheduling

Method Match Pattern Break Optimization Auxiliary

App1 1 2 2 1.5 1
App2 1 1 1 1 1
App3 1 1 1 1 2

Table 7.5: VSIDS coefficients used in the different approaches.

Method 5s 15s 1m 5m 15m 60m

App1 1 16 38 50 50 50
App2 0 11 36 48 50 50
App3 0 7 24 43 46 48

Table 7.6: Number of instances solved of 50 non-optimization benchmarks.

5 minutes. Optimization problems are harder since we are not interested in any
solution, but in solutions with good costs. We have considered a solution with a cost
� 1.2 times the optimal one to be a fair enough solution. Using this criterium, we
find a good solution in less than 5 minutes in more than the 60% of the benchmarks,
and in almost all the problems if we run the solver during 1 hour. Optimal solution
is found in around an 80% of the cases in 15 minutes.

We can say, then, that we are able to quickly solve the non-optimization prob-
lems. In optimization problems we usually need more time, but we can find good
solutions in almost all the cases in 1 hour. In most cases, we can find the optimal
one in 15 minutes.

7.8.3 VSIDS Heuristics Tuning

In this section we evaluate the importance of tuning the VSIDS heuristics as ex-
plained in Section 7.7.2. Table 7.5 contains the coefficients used in the different
approaches we have compared:

The first approach (App1) was explained in Section 7.7.2: pattern and break
variables have a higher coefficient so they are assigned in first place. Afterwards,
the solver assigns the optimization variables, and, finally, the rest. In the second ap-
proach (App2) all the coefficients are 1: it corresponds to the classic VSIDS heuristic.
Finally, the third approach (App3) correspond to a different coefficient assignment.
Tables 7.6 and 7.7 show all the related results.

We can see that a suitable VSIDS tuning (App1) improves the results either of
the non-optimization and optimization problems compared to App2, which does not
use VSIDS tuning. However, an inappropriate one (App3) makes the results worse
than App2.

Nonetheless, the suitable VSIDS coefficients depend on the problem itself. De-
pending on the league (the number of teams of the schedule, if it is a mirrored league

7.8. Experimental Evaluation 139

1, 2·Optimal Optimal found Optimal proved

Method 1m 5m 15m 1h 1m 5m 15m 1h 1m 5m 15m 1h

App1 3 62 87 97 0 56 78 87 0 49 76 80
App2 0 49 80 93 0 34 74 81 0 20 66 78
App3 3 35 68 93 0 24 53 79 0 15 52 74

Table 7.7: Number of instances solved of 100 optimization benchmarks.

1, 2·Optimal Optimal found Optimal proved

Method 1m 5m 15m 1h 1m 5m 15m 1h 1m 5m 15m 1h

LP 0 20 68 91 0 14 66 85 0 8 65 80
LP-Opt 0 3 57 93 0 0 52 83 0 0 47 80
LS 1 53 78 91 0 42 71 77 0 34 68 73
LS-Opt 3 62 87 97 0 56 78 87 0 49 76 80

Table 7.8: Number of instances solved of 100 optimization benchmarks.

or a not, etc.) we use different coefficients.

7.8.4 Phase Selection Tuning

In this section we compare several policies of phase selection:

• LP: All the variables are chosen with the last-phase polarity, as explained
at [PD07].

• LP-Opt: Optimization variables are always chosen with the negative polarity
(in order to minimize the cost function), and the other ones are chosen with
the last-phase polarity.

• LS: All the variables are chosen with the polarity of the last solution found.

• LS-Opt: Optimization variables are always chosen with the negative polarity,
the other ones are chosen with the polarity of the last solution found. This
approach has already been explained in Section 7.7.3.

Notice that all these approaches can only be applied in optimization problems,
since in the non-optimization ones there are no previous solution or optimization
variables. Therefore, we only compare them in the optimization benchmarks. Table
7.8 contains the results on these problems:

The results show that the two proposed modifications of last-phase (choosing
the negative phase for optimization variables and the phase from the last solution
for the other variables) improve the results.

140 7. Sport League Scheduling

Method 5s 15s 1m 5m 15m 60m

Conflict-5 10 17 45 49 50 50
Conflict-10 5 20 47 49 50 50
Conflict-15 1 18 45 49 49 50
Conflict-20 0 22 45 48 49 50
Glucose-5 3 17 40 50 50 50
Glucose-10 0 12 40 50 50 50
Glucose-15 0 13 42 49 50 50
Glucose-20 1 16 38 50 50 50

Table 7.9: Number of instances solved of 50 non-optimization benchmarks.

1, 2·Optimal Optimal found Optimal proved

Method 1m 5m 15m 1h 1m 5m 15m 1h 1m 5m 15m 1h

Conflict-5 9 66 83 92 6 54 70 77 1 49 68 74
Conflict-10 5 63 81 91 2 56 71 81 1 49 69 72
Conflict-15 8 64 80 89 6 54 70 76 0 46 69 74
Conflict-20 6 54 78 86 3 46 69 76 1 41 67 72
Glucose-5 4 63 81 99 0 55 71 87 0 50 71 80
Glucose-10 2 57 85 95 2 52 78 84 0 49 77 80
Glucose-15 6 58 82 93 2 48 75 84 0 45 74 80
Glucose-20 3 62 87 97 0 56 78 87 0 49 76 80

Table 7.10: Number of instances solved of 100 optimization benchmarks.

7.8.5 Cleanup Policy Tuning

In this section we show that in this problems a non-aggressive cleanup policy gives
better results than an aggressive policy. We also compare a Glucose-style cleanup
policy [AS09] (i.e., deleting the lemmas with most different decision levels) and the
conflict-based policy (i.e., deleting the lemmas that have not appear in the recent
conflict analysis).

The different strategies considered are Conflict-5, Conflict-10, Conflict-15, Conflict-
20, Glucose-5, Glucose-10, Glucose-15 and Glucose-20, corresponding to conflict-based
and Glucose-style cleanups with the first cleanup after 5, 10, 15 or 20 thousands of
conflicts respectively. See Tables 7.9 and 7.10 for the results.

We can see that Glucose-style cleanups are slightly better than the conflict-based
ones. Regarding the number of cleanups, it seems no significant difference appear
in having more recent cleanups.

7.9. Conclusion and Future Work 141

7.9 Conclusion and Future Work

We have presented a new approach for solving the sport league scheduling problems.
As far as we know, this is the first SAT-based approach for dealing with this problem.
Experimentally, our approach is able to solve real-world non-optimization problems
in less than 5 minutes and find a good solution of optimization problems in at most 1
hour. In most cases, our solution was the optimal, and we found it in 5-15 minutes.

As future work, we want to improve our method to solve problems of leagues
involving more teams. Another interesting future work field is related with the
technique explained at Section 7.7.4: in that section we explained a method for
dealing with the schedule of two related leagues. We think that this method can
be extended in other SAT contexts, when two related problems must be solved and
there are some constraints involving the two problems.

8
Conclusion and Future

Work

In this chapter we review the main contributions of the PhD project and propose
several directions for future work.

The main goal of this work is solving hard industrial combinatorial problems with
SAT. The most challenging part in this field consists in dealing with the complex
combinatorial constraints, this is, constraints which a SAT Solver cannot directly
handle. There were two different approaches for dealing with them: encode these
constraints into SAT or design a propagator for upgrading the SAT Solver into an
SMT Solver.

In this document, we have firstly improved the existent encodings for two of
the most common complex combinatorial constraints: cardinality constraints and
Pseudo-Boolean constraints. Next, we have designed a third approach for dealing
with complex constraints: lazy decomposition, which combines the advantages of the
other two approaches. This new tool has been used for solving two particular real-
world combinatorial problems: the close-solution and the sport league scheduling
problems.

In the next paragraphs we give a more detailed description of the contributions
of this thesis and we list some ideas for future work.

• New encoding for cardinality constraints: Cardinality constraints are
present in many practical SAT applications, such as cumulative scheduling or
timetabling; in this document we have used the cardinality constraints as part
of an encoding for All-Different constraints, and for solving MaxSAT problems
like close-solution.

Our new method for encoding cardinality constraints needs many fewer vari-
ables than the state-of-the-art method, while the number of clauses may in-
crease in a controlled way. Besides, the new encoding reduces the SAT Solver

143

144 8. Conclusion and Future Work

run-time with respect to the state-of-the-art encodings. As future work, we
want to develop encoding techniques for cardinality constraints that do not
process constraints one-at-a-time but simultaneously, in order to exploit their
similarities.

• New encoding for Pseudo-Boolean constraints: Pseudo-Boolean con-
straints are omnipresent in practical SAT applications as cumulative schedul-
ing, logic synthesis or verification. In this document, these constraints appear
in the weighted optimization version of professional sport leagues scheduling
problems.

We have studied the encoding of Pseudo-Boolean constraints through BDDs.
First, we have proven that not all PB constraints admit polynomial BDDs.
However, we have introduced a new BDD-based polynomial and arc-consistent
encoding for these constraints that improves the state-of-the-art methods.
Moreover, we have developed a BDD-based arc-consistent encoding of mono-
tonic functions that only uses two clauses per BDD node instead of six. We
have also presented an algorithm to efficiently construct all these BDDs and
proved that the overall method is competitive in practice with respecto to
state-of-the-art encodings and tools. As future work at the practical level, we
plan to study which type of Pseudo-Boolean constraints are likely to produce
smaller BDDs if encoded together rather than being encoded individually.

• Conflict-directed lazy decomposition: Lazy decomposition is a new gen-
eral method for dealing with complex constraints with SAT. It combines the
advantages of the eager encoding and the SMT approach. We have designed a
lazy decomposition propagator for two different types of constraints: cardinal-
ity and Pseudo-Boolean. The experimental results show that our new approach
is nearly as good as the best of the eager encoding and SMT approaches, and
often better.

As future work, we want to improve our policies for deciding when and which
part of a constraint will be decomposed. In particular, we want to decide the
encoding method during the execution rather than fixing it prior to search.
Finally, we plan to create lazy decomposition propagators for other complex
constraints such as linear integer constraints.

• Close-solution problems: SAT solvers algorithms for finding a model of a
problem use some heuristics that makes the search chaotic, i.e., the solution
is extremely sensitive to the initial conditions. This means that if two similar
problem must be solved, the solution for these problems will be completely
different. However, in real-world problems this is not desirable, since when a
previously-solved problem is slightly modified, a similar solution is expected.
In this document we have proposed a method for dealing with close-solution
problems It is usually able to find the most similar solution in only 25% of the
time the solver took in solving the original problem.

145

As future work, we want to adapt our method for an SMT and Lazy Decom-
position solvers.

• Professional sport leagues scheduling: Finally, we have proposed a new
encoding for solving professional sport leagues scheduling problems. We have
proved that our method can schedule real-world leagues very fast, either with
or without soft constraints.

As future work, we want find better encodings for all-different and symmetric-
all-different constraints for dealing with leagues with more than 24 teams. Ad-
ditionally, we want to solve sport leagues scheduling problems with a (tuned)
SMT Solver for all-different and symmetric-all-different constraints.

Bibliography

[AAN12] Roberto Aśın Achá and Robert Nieuwenhuis. Curriculum-based
course timetabling with SAT and MaxSAT. Annals of Operations
Research, pages 1–21, February 2012.

[ABL09] Carlos Ansótegui, Maria Luisa Bonet, and Jordi Levy. Solving
(Weighted) Partial MaxSAT through Satisfiability Testing. In Int.
Conf. Theory and Applications of Satisfiability Testing (SAT), LNCS
4501, pages 427–440, 2009.

[ADNS11] Ignasi Ab́ıo, Morgan Deters, Robert Nieuwenhuis, and Peter J.
Stuckey. Reducing chaos in sat-like search: Finding solutions close
to a given one. In Proceedings of the 14th international conference on
Theory and application of satisfiability testing, SAT ’11, pages 273–
286, 2011.

[AG09] Anbulagan and Alban Grastien. Importance of Variables Semantic in
CNF Encoding of Cardinality Constraints. In V. Bulitko and J. C.
Beck, editors, Eighth Symposium on Abstraction, Reformulation, and
Approximation, SARA ’09. AAAI, 2009.

[ALMS11] Gilles Audemard, Jean-Marie Lagniez, Bertrand Mazure, and
Lakhdar Säıs. On freezing and reactivating learnt clauses. In Proceed-
ings of the 14th international conference on Theory and application
of satisfiability testing, SAT ’11, pages 188–200, Berlin, Heidelberg,
2011. Springer-Verlag.

[AM05] Carlos Ansótegui and Felip Manyà. Mapping problems with finite-
domain variables to problems with boolean variables. In Proceedings
of the 7th international conference on Theory and Applications of
Satisfiability Testing, SAT ’04, pages 1–15, Berlin, Heidelberg, 2005.
Springer-Verlag.

[AM06] Josep Argelich and Felip Manyà. Exact Max-SAT solvers for
over-constrained problems. Journal of Heuristics, 12(4-5):375–392,
September 2006.

147

148 BIBLIOGRAPHY

[AMHV06] A. Anagnostopoulos, L. Michel, P. Van Hentenryck, and Y. Vergados.
A simulated annealing approach to the traveling tournament problem.
Journal of Scheduling, 9(2):177–193, April 2006.

[ANO+] Ignasi Ab́ıo, Robert Nieuwenhuis, Albert Oliveras, Enric Rodŕıguez-
Carbonell, and Valentin Mayer-Eichberger. A New Look at BDDs for
Pseudo-Boolean Constraints. Journal of Artificial Intelligence Re-
search. To appear.

[ANORC09] Roberto Aśın, Robert Nieuwenhuis, Albert Oliveras, and Enric
Rodŕıguez-Carbonell. Cardinality networks and their applications.
In Int. Conf. Theory and Applications of Satisfiability Testing (SAT),
LNCS 4501, pages 167–180, 2009.

[ANORC11a] Ignasi Ab́ıo, Robert Nieuwenhuis, Albert Oliveras, and Enric
Rodŕıguez-Carbonell. BDDs for pseudo-boolean constraints: revis-
ited. In Proceedings of the 14th international conference on Theory
and application of satisfiability testing, SAT ’11, pages 61–75, Berlin,
Heidelberg, 2011. Springer-Verlag.

[ANORC11b] Roberto Aśın, Robert Nieuwenhuis, Albert Oliveras, and Enric
Rodŕıguez-Carbonell. Cardinality Networks: a theoretical and em-
pirical study. Constraints, 16(2):195–221, 2011.

[ARMS02] Fadi A. Aloul, Arathi Ramani, Igor L. Markov, and Karem A.
Sakallah. Generic ILP versus specialized 0-1 ILP: an update. In
Proceedings of the 2002 IEEE/ACM international conference on
Computer-aided design, ICCAD ’02, pages 450–457, New York, NY,
USA, 2002. ACM.

[AS09] Gilles Audemard and Laurent Simon. Predicting learnt clauses quality
in modern SAT solvers. In Proceedings of the 21st international jont
conference on Artifical intelligence, IJCAI ’09, pages 399–404, San
Francisco, CA, USA, 2009. Morgan Kaufmann Publishers Inc.

[AS12] Ignasi Ab́ıo and Peter J. Stuckey. Conflict-directed lazy decomposi-
tion. In 18th International Conference on Principles and Practice of
Constraint Programming, CP’12, 2012. To appear.

[Ass10] Roberto Asśın. SAT-based Techniques for Combinatorial Optimitza-
tion. PhD thesis, Technical University of Catalonia, 2010.

[Bat68] K. E. Batcher. Sorting Networks and their Applications. In AFIPS
Spring Joint Computing Conference, pages 307–314, 1968.

[BB92] M. Buro and H. Kleine Büning. Report on a SAT Competition. Tech-
nical report, University of Paderborn, Germany, 1992. Technical Re-
port tr-ri-92-110.

BIBLIOGRAPHY 149

[BB03a] Olivier Bailleux and Yacine Boufkhad. Efficient CNF Encoding of
Boolean Cardinality Constraints. In F. Rossi, editor, Principles and
Practice of Constraint Programming, 9th International Conference,
CP ’03, volume 2833 of Lecture Notes in Computer Science, pages
108–122. Springer, 2003.

[BB03b] Constantinos Bartzis and Tevfik Bultan. Construction of efficient
bdds for bounded arithmetic constraints. In Proceedings of the 9th
international conference on Tools and algorithms for the construction
and analysis of systems, TACAS ’03, pages 394–408, Berlin, Heidel-
berg, 2003. Springer-Verlag.

[BBR06a] O. Bailleux, Y. Boufkhad, and O. Roussel. A Translation of Pseudo
Boolean Constraints to SAT. Journal on Satisfiability, Boolean Mod-
eling and Computation, JSAT, 2(1-4):191–200, 2006.

[BBR06b] Olivier Bailleux, Yacine Boufkhad, and Olivier Roussel. A translation
of pseudo boolean constraints to sat. JSAT, 2(1-4):191–200, 2006.

[BBR09] Olivier Bailleux, Yacine Boufkhad, and Olivier Roussel. New En-
codings of Pseudo-Boolean Constraints into CNF. In O. Kullmann,
editor, 12th International Conference on Theory and Applications of
Satisfiability Testing, SAT ’09, volume 5584 of Lecture Notes in Com-
puter Science, pages 181–194. Springer, 2009.

[BC00] Per Bjesse and Koen Claessen. SAT-Based Verification without State
Space Traversal. In Proceedings of the Third International Conference
on Formal Methods in Computer-Aided Design, FMCAD ’00, pages
372–389, London, UK, UK, 2000. Springer-Verlag.

[BCC+99] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, Masahiro Fu-
jita, and Yunshan Zhu. Symbolic Model Checking Using SAT Proce-
dures instead of BDDs. In Proceedings of the 36th annual ACM/IEEE
Design Automation Conference, DAC ’99, pages 317–320, New York,
NY, USA, 1999. ACM.

[BEGJ00] Maria Luisa Bonet, Juan Luis Esteban, Nicola Galesi, and Jan Jo-
hannsen. On the Relative Complexity of Resolution Refinements
and Cutting Planes Proof Systems. SIAM Journal on Computing,
30(5):1462–1484, May 2000.

[BH88] Beate Bergmann and Gerhard Hommel. Improvements of general
multiple test procedures for redundant systems of hypotheses. In
P. Bauer, G. Hommel, and E. Sonnemann, editors, Multiple Hypothe-
senprfung - Multiple Hypotheses Testing, pages 100–115. Springer-
Verlag, 1988.

150 BIBLIOGRAPHY

[Bie08] Armin Biere. Adaptive restart strategies for conflict driven SAT
solvers. In Proceedings of the 11th international conference on Theory
and applications of satisfiability testing, SAT ’08, pages 28–33, Berlin,
Heidelberg, 2008. Springer-Verlag.

[Bie10a] Armin Biere, 2010. Lingeling SAT Solver. Available at
http://fmv.jku.at/lingeling/.

[Bie10b] Armin Biere. Lingeling, Plingeling, PicoSAT and PrecoSAT at SAT
Race 2010. Technical report, Institute for Formal Models and Ver-
ification, Johannes Kepler University, Altenbergerstr. 69, 4040 Linz,
Austria, 2010. Technical Report 10/1, August 2010, FMV Reports
Series.

[BJMA06] Maria Luisa Bonet, Katherine St. John, Ruchi Mahindru, and Nina
Amenta. Approximating subtree distances between phylogenies. Jour-
nal of Computational Biology, 13(8):1419–1434, 2006.

[BKNW09] Christian Bessiere, George Katsirelos, Nina Narodytska, and Toby
Walsh. Circuit complexity and decompositions of global constraints.
In Proceedings of the 21st international jont conference on Artifical
intelligence, IJCAI ’09, pages 412–418, San Francisco, CA, USA, 2009.
Morgan Kaufmann Publishers Inc.

[BKS03] Paul Beame, Henry Kautz, and Ashish Sabharwal. Understanding the
Power of Clause Learning. In G. Gottlob and T. Walsh, editors, In:
Proceedings of the 18th International Joint Conference on Artificial
Intelligence, pages 1194–1201. Morgan Kaufmann, 2003.

[BLS02] Randal E. Bryant, Shuvendu K. Lahiri, and Sanjit A. Seshia. Deciding
CLU Logic Formulas via Boolean and Pseudo-Boolean Encodings. In
Proceedings of the International Workshop on Constraints in Formal
Verification, CFV 02, September 2002. Associated with International
Conference on Principles and Practice of Constraint Programming
(CP ’02).

[BLS11] Armin Biere, Florian Lonsing, and Martina Seidl. Blocked clause
elimination for QBF. In Proceedings of the 23rd International Con-
ference on Automated Deduction, CADE ’11, pages 101–115, Berlin,
Heidelberg, 2011. Springer-Verlag.

[BM06] Olivier Bailleux and Pierre Marquis. Some computational aspects
of distance-sat. Journal of Automated Reasoning, 37(4):231–260,
November 2006.

[BNO+08] Miquel Bofill, Robert Nieuwenhuis, Albert Oliveras, Enric Rodŕıguez-
Carbonell, and Albert Rubio. The Barcelogic SMT Solver. In

BIBLIOGRAPHY 151

Computer-aided Verification (CAV), volume 5123 of Lecture Notes
in Computer Science, pages 294–298, 2008.

[BP10] Daniel Le Berre and Anne Parrain. The Sat4j library, release 2.2.
Journal on Satisfiability, Boolean Modeling and Computation, JSAT,
7(2-3):59–6, 2010.

[Bra04] Ronen I. Brafman. A simplifier for propositional formulas with many
binary clauses. IEEE Transactions on Systems, Man, and Cybernet-
ics, Part B, 34(1):52–59, 2004.

[Bry86] Randal E. Bryant. Graph-Based Algorithms for Boolean Function
Manipulation. IEEE Transactions on Computers, 35(8):677–691,
1986.

[BS97] Roberto J. Jr. Bayardo and Robert C. Schrag. Using CSP look-back
techniques to solve real-world SAT instances. In Proceedings of the
Fourteenth National Conference on Artificial Intelligence (AAAI ’97),
pages 203–208, Providence, Rhode Island, 1997.

[BS00] Lúıs Baptista and João P. Marques Silva. Using randomization and
learning to solve hard real-world instances of satisfiability. In Proceed-
ings of the 6th International Conference on Principles and Practice of
Constraint Programming, CP ’02, pages 489–494, London, UK, UK,
2000. Springer-Verlag.

[CE82] Edmund Clarke and E. Emerson. Design and synthesis of synchro-
nization skeletons using branching time temporal logic. In Dexter
Kozen, editor, Logics of Programs, volume 131 of Lecture Notes in
Computer Science, pages 52–71. Springer Berlin / Heidelberg, 1982.

[CG96] Chih-Ang Chen and Sandeep K. Gupta. A satisfiability-based test
generator for path delay faults in combinational circuits. In Proceed-
ings of the 33rd annual Design Automation Conference, DAC ’96,
pages 209–214, New York, NY, USA, 1996. ACM.

[Che10] Jingchao Chen. A new SAT encoding of the at-most-one constraint.
In Proceedings of the Tenth International Workshop of Constraint
Modelling and Reformulation, 2010.

[CO06] Federico Della Croce and Dario Oliveri. Scheduling the Italian football
league: an ILP-based approach. Computers and Operations Research,
33(7):1963–1974, July 2006.

[Coo71] Stephen A. Cook. The complexity of theorem-proving procedures.
In Proceedings of the third annual ACM symposium on Theory of
computing, STOC ’71, pages 151–158, New York, NY, USA, 1971.
ACM.

152 BIBLIOGRAPHY

[CSRL01] Thomas H. Cormen, Clifford Stein, Ronald L. Rivest, and Charles E.
Leiserson. Introduction to Algorithms. McGraw-Hill Higher Educa-
tion, 2nd edition, 2001.

[CZI10] Michael Codish and Moshe Zazon-Ivry. Pairwise cardinality networks.
In Edmund M. Clarke and Andrei Voronkov, editors, LPAR (Dakar),
volume 6355 of Lecture Notes in Computer Science, pages 154–172.
Springer, 2010.

[DGM+07] Guillermo Durán, Mario Guajardo, Jaime Miranda, Denis Sauré,
Sebastián Souyris, Andres Weintraub, and Rodrigo Wolf. Schedul-
ing the Chilean Soccer League by Integer Programming. Interfaces,
37(6):539–552, November 2007.

[DKW08] Vijay D’Silva, Daniel Kroening, and Georg Weissenbacher. A sur-
vey of automated techniques for formal software verification. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems (TCAD), 27(7):1165–1178, July 2008.

[DLF+02] Lyndon Drake, Inês Lynce, Alan Frisch, João P. Marques Silva, and
Toby Walsh. Comparing SAT Preprocessing Techniques. In T. Walsh,
editor, Proceedings of the Ninth Workshop on Automated Reasoning,
2002.

[DLL62] Martin Davis, George Logemann, and Donald Loveland. A Machine
Program for Theorem-Proving. Communications of the ACM, CACM,
5(7):394–397, July 1962.

[DP60] Martin Davis and Hilary Putnam. A Computing Procedure for Quan-
tification Theory. Journal of the ACM, JACM, 7(3):201–215, July
1960.

[EB05] Niklas Eén and Armin Biere. Effective Preprocessing in SAT Through
Variable and Clause Elimination. In F. Bacchus and T. Walsh, editors,
8th International Conference on Theory and Applications of Satisfi-
ability Testing, SAT ’05, volume 3569 of Lecture Notes in Computer
Science, pages 61–75. Springer, 2005.

[EC93] Luis Entrena and Kwang-Ting Cheng. Sequential logic optimization
by redundancy addition and removal. In Michael R. Lightner and
Jochen A. G. Jess, editors, Proceedings of the 1993 IEEE/ACM Inter-
national Conference on Computer-Aided Design, 1993, Santa Clara,
California, USA, November 7-11, 1993, pages 310–315, 1993.

[ES06] Niklas Eén and Niklas Sörensson. Translating Pseudo-Boolean Con-
straints into SAT. Journal on Satisfiability, Boolean Modeling and
Computation, 2:1–26, 2006.

BIBLIOGRAPHY 153

[FM06] Zhaohui Fu and Sharad Malik. Solving the minimum-cost satisfiability
problem using SAT based branch-and-bound search. In Proceedings
of the 2006 IEEE/ACM international conference on Computer-aided
design, ICCAD ’06, pages 852–859, New York, NY, USA, 2006. ACM.

[FPDN05] Alan M. Frisch, Timothy J. Peugniez, Anthony J. Doggett, and Pe-
ter W. Nightingale. Solving non-boolean satisfiability problems with
stochastic local search: A comparison of encodings. Journal of Auto-
mated Reasoning, 35(1-3):143–179, oct 2005.

[Gil60] P. C. Gilmore. A proof method for quantification theory: its justifi-
cation and realization. IBM Journal of Research and Development,
4(1):28–35, January 1960.

[GMN08] Ian P. Gent, Ian Miguel, and Peter Nightingale. Generalised arc con-
sistency for the alldifferent constraint: An empirical survey. Artificial
Intelligence, 172(18):1973–2000, December 2008.

[GN02] Eugene Goldberg and Yakov Novikov. BerkMin: A Fast and Robust
SAT-Solver. In 2002 Conference on Design, Automation, and Test in
Europe, DATE ’02, pages 142–149. IEEE Computer Society, 2002.

[Grö04] Mattias Grönkvist. A constraint programming model for tail assign-
ment. In Integration of AI and OR Techniques in Constraint Program-
ming for Combinatorial Optimization Problems, First International
Conference (CPAIOR), pages 142–156, 2004.

[GSK98] Carla P. Gomes, Bart Selman, and Henry Kautz. Boosting combina-
torial search through randomization. In Proceedings of the fifteenth
national/tenth conference on Artificial intelligence/Innovative appli-
cations of artificial intelligence, AAAI ’98/IAAI ’98, pages 431–437,
Menlo Park, CA, USA, 1998. American Association for Artificial In-
telligence.

[HH00] Jean-Philippe Hamiez and Jin-Kao Hao. Solving the sports league
scheduling problem with tabu search. In Alexander Nareyek, editor,
Local Search for Planning and Scheduling, volume 2148 of Lecture
Notes in Computer Science, pages 24–36. Springer, 2000.

[HHOW05] Emmanuel Hebrard, Brahim Hnich, Barry O’Sullivan, and Toby
Walsh. Finding diverse and similar solutions in constraint program-
ming. In 20th National Conference on Artificial Intelligence (AAAI),
pages 372–377, 2005.

[HJB11] Marijn J. H. Heule, Matti Järvisalo, and Armin Biere. Efficient CNF
simplification based on binary implication graphs. In Proceedings of

154 BIBLIOGRAPHY

the 14th international conference on Theory and application of sat-
isfiability testing, SAT ’11, pages 201–215, Berlin, Heidelberg, 2011.
Springer-Verlag.

[HLO08] Federico Heras, Javier Larrosa, and Albert Oliveras. MiniMaxSAT:
An efficient Weighted Max-SAT Solver. Journal of Artificial Intelli-
gence Research, 31:1–32, 2008.

[HMT04] Martin Henz, Tobias Müller, and Sven Thiel. Global constraints for
round robin tournament scheduling. European Journal of Operational
Research, 153(1):92–101, 2004.

[HTY94] Kazuhisa Hosaka, Yasuhiko Takenaga, and Shuzo Yajima. On the Size
of Ordered Binary Decision Diagrams Representing Threshold Func-
tions. In Algorithms and Computation, 5th International Symposium,
ISAAC ’94, pages 584–592, 1994.

[Hua07] Jinbo Huang. The effect of restarts on the efficiency of clause learning.
In Proceedings of the 20th international joint conference on Artifical
intelligence, IJCAI ’07, pages 2318–2323, San Francisco, CA, USA,
2007. Morgan Kaufmann Publishers Inc.

[JG03] N. K. Jha and S. Gupta, editors. Testing of Digital Systems. Cam-
bridge University Press, 2003.

[JHB12] Matti Järvisalo, Marijn Heule, and Armin Biere. Inprocessing rules.
In Bernhard Gramlich, Dale Miller, and Uli Sattler, editors, Proceed-
ings of the 6th International Joint Conference on Automated Rea-
soning (IJCAR 2012), volume 7364 of Lecture Notes in Computer
Science, pages 355–370. Springer, 2012.

[JT96] David J. Johnson and Michael A. Trick, editors. Cliques, Color-
ing, and Satisfiability: Second DIMACS Implementation Challenge,
Workshop, October 11-13, 1993. American Mathematical Society,
Boston, MA, USA, 1996.

[Kat08] George Katsirelos. Nogood processing in CSPs. PhD thesis, University
of Toronto, 2008.

[KPKG02] Andreas Kuehlmann, Viresh Paruthi, Florian Krohm, and Malay K.
Ganai. Robust Boolean reasoning for equivalence checking and func-
tional property verification. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 21(12):1377–1394, 2002.

[KS+97a] Joonyoung Kim, João P. Marques Silva, , Hamid Savoj, and Karem A.
Sakallah. Rid-grasp: Redundancy identification and removal using
grasp. In In IEEE/ACM International Workshop on Logic Synthesis,
1997.

BIBLIOGRAPHY 155

[KS97b] W. Kunz and D. Stoffel. Reasoning in Boolean Networks. Kluwer
Academic Publishers, 1997.

[KSMS11] Hadi Katebi, Karem A. Sakallah, and João P. Marques-Silva. Empir-
ical study of the anatomy of modern sat solvers. In Proceedings of
the 14th international conference on Theory and application of satis-
fiability testing, SAT ’11, pages 343–356. Springer-Verlag, 2011.

[KZFH12] Miyuki Koshimura, Tong Zhang, Hiroshi Fujita, and Ryuzo
Hasegawa. QMaxSAT: A Partial Max-SAT Solver. Journal on Sat-
isfiability, Boolean Modeling and Computation, JSAT, 8(1/2):95–100,
2012.

[Lar92] Tracy Larrabee. Test pattern generation using Boolean satisfiability.
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 11(1):4–15, 1992.

[LNORC09] Javier Larrosa, Robert Nieuwenhuis, Albert Oliveras, and Enric
Rodŕıguez-Carbonell. Branch and bound for boolean optimization
and the generation of optimality certificates. In 12th International
Conference on Theory and Applications of Satisfiability Testing, SAT
’09, Lecture Notes in Computer Science 5584, pages 453–466, 2009.

[LNORC11] Javier Larrosa, Robert Nieuwenhuis, Albert Oliveras, and Enric
Rodŕıguez-Carbonell. A framework for certified boolean branch-and-
bound optimization. Journal of Automated Reasoning, 46(1):81–102,
2011.

[LO06] Inês Lynce and Joël Ouaknine. Sudoku as a SAT Problem. In Interna-
tional Symposium on Artificial Intelligence and Mathematics (ISAIM
2006), 2006.

[LSZ93] Michael Luby, Alistair Sinclair, and David Zuckerman. Optimal
speedup of Las Vegas algorithms. Information Processing Letters,
47(4):173–180, September 1993.

[McM92] Kenneth Lauchlin McMillan. Symbolic model checking: an approach
to the state explosion problem. PhD thesis, Pittsburgh, PA, USA,
1992. UMI Order No. GAX92-24209.

[MML10] Vasco M. Manquinho, Ruben Martins, and Inês Lynce. Improv-
ing Unsatisfiability-Based Algorithms for Boolean Optimization. In
O. Strichman and S. Szeider, editors, 13th International Conference
on Theory and Applications of Satisfiability Testing, volume 6175 of
SAT ’10, pages 181–193. Springer, 2010.

156 BIBLIOGRAPHY

[MML11] Ruben Martins, Vasco Manquinho, and Inês Lynce. Parallel Search
for Boolean Optimization. In RCRA International Workshop on Ex-
perimental Evaluation of Algorithms for Solving Problems with Com-
binatorial Explosion, 2011.

[MMS04] Vasco M. Manquinho and João P. Marques-Silva. Satisfiability-based
algorithms for boolean optimization. Annals of Mathematics and Ar-
tificial Intelligence, 40(3-4):353–372, March 2004.

[MMZ+01] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao
Zhang, and Sharad Malik. Chaff: engineering an efficient SAT solver.
In Proceedings of the 38th annual Design Automation Conference,
DAC ’01, pages 530–535, New York, NY, USA, 2001. ACM.

[MP11] Panagiotis Manolios and Vasilis Papavasileiou. Pseudo-Boolean solv-
ing by incremental translation to SAT. In Formal Methods in
Computer-Aided Design, FMCAD ’11, 2011.

[MS06] Vasco M. Manquinho and João P. Marques Silva. On Using Cutting
Planes in Pseudo-Boolean Optimization. Journal on Satisfiability,
Boolean Modeling and Computation, JSAT, 2(1-4):209–219, 2006.

[MSG99] João Marques-Silva and Thomas Glass. Combinational equivalence
checking using satisfiability and recursive learning. In Proceedings of
the conference on Design, automation and test in Europe, DATE ’99,
New York, NY, USA, 1999. ACM.

[MSL92] David Mitchell, Bart Selman, and Hector Levesque. Hard and easy
distributions of sat problems. In Proceedings of the tenth national
conference on Artificial intelligence, AAAI ’92, pages 459–465. AAAI
Press, 1992.

[MSP08] J. Marques-Silva and J. Planes. Algorithms for Maximum Satisfia-
bility using Unsatisfiable Cores. In 2008 Conference on Design, Au-
tomation and Test in Europe Conference, DATE ’08, pages 408–413.
IEEE Computer Society, 2008.

[MSP09] Vasco M. Manquinho, João P. Marques Silva, and Jordi Planes. Algo-
rithms for weighted boolean optimization. In Proceedings of the 12th
international conference on Theory and Applications of Satisfiability
Testing, SAT ’09, pages 495–508, 2009.

[MSS99a] J. Marques-Silva and K. A. Sakallah. GRASP: A Search Algorithm
for Propositional Satisfiability. IEEE Transactions on Computers,
48(5):506–521, 1999.

BIBLIOGRAPHY 157

[MSS99b] J. Marques-Silva and K. A. Sakallah. GRASP: A Search Algorithm
for Propositional Satisfiability. IEEE Transactions on Computers,
48(5):506–521, 1999.

[NMJ09] Mladen Nikolic, Filip Maric, and Predrag Janicic. Instance-Based
Selection of Policies for SAT Solvers. In Proceedings of the 12th In-
ternational Conference on Theory and Applications of Satisfiability
Testing, SAT ’09, pages 326–340, Berlin, Heidelberg, 2009. Springer-
Verlag.

[NOT06] Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. Solving
SAT and SAT Modulo Theories: From an abstract Davis–Putnam–
Logemann–Loveland procedure to DPLL(T). Journal of the ACM,
JACM, 53(6):937–977, 2006.

[Nov03] Yakov Novikov. Local search for boolean relations on the basis of unit
propagation. In Proceedings of the conference on Design, Automation
and Test in Europe - Volume 1, DATE ’03, pages 10810–, Washington,
DC, USA, 2003. IEEE Computer Society.

[NSR99] Gi-Joon Nam, Karem A. Sakallah, and Rob A. Rutenbar.
Satisfiability-based layout revisited: detailed routing of complex
FPGAs via search-based Boolean SAT. In Proceedings of the
1999 ACM/SIGDA seventh international symposium on Field pro-
grammable gate arrays, FPGA ’99, pages 167–175, New York, NY,
USA, 1999. ACM.

[OSC09] Olga Ohrimenko, Peter J. Stuckey, and Michael Codish. Propagation
via lazy clause generation. Constraints, 14(3):357–391, September
2009.

[PD07] Knot Pipatsrisawat and Adnan Darwiche. Rsat 2.0: Sat solver de-
scription. Technical Report D–153, Automated Reasoning Group,
Computer Science Department, UCLA, 2007.

[PD10] Knot Pipatsrisawat and Adnan Darwiche. On modern clause-learning
satisfiability solvers. Journal of Automated Reasoning, 44(3):277–301,
2010.

[Ref04] Philippe Refalo. Impact-Based Search Strategies for Constraint Pro-
gramming. In 10th International Conference on Principles and Prac-
tice of Constraint Programming, CP’04, pages 557–571, 2004.

[Rég94] Jean-Charles Régin. A filtering algorithm for constraints of difference
in csps. In Proceedings of the 12th National Conference on Artificial
Intelligence, pages 362–367, 1994.

158 BIBLIOGRAPHY

[Rég99] Jean-Charles Régin. The symmetric alldiff constraint. In Proceedings
of the Sixteenth International Joint Conference on Artificial Intelli-
gence, IJCAI ’99, pages 420–425, 1999.

[Rég01] Jean-Charles Régin. Minimization of the number of breaks in sports
scheduling problems using constraint programming. In DIMACS
workshop on on Constraint programming and large scale discrete op-
timization, pages 115–130, Boston, MA, USA, 2001. American Math-
ematical Society.

[RT08] Rasmus V. Rasmussen and Michael A. Trick. Round robin scheduling
- a survey. European Journal of Operational Research, 188(3):617–636,
August 2008.

[Rya04] Lawrence Ryan. Efficient Algorithms for Clause-Learning SAT
Solvers. Master’s thesis, School of Computing Science, Simon Fraser
University, 2004.

[SB09] Niklas Sörensson and Armin Biere. Minimizing Learned Clauses. In
Proceedings of the 12th International Conference on Theory and Ap-
plications of Satisfiability Testing, SAT ’09, pages 237–243, Berlin,
Heidelberg, 2009. Springer-Verlag.

[Sch92] Jan A.M. Schreuder. Combinatorial aspects of construction of com-
petition dutch professional football leagues. Discrete Applied Mathe-
matics, 35(3):301–312, 1992.

[Sed78] Robert Sedgewick. Implementing quicksort programs. Commun.
ACM, 21(10):847–857, October 1978.

[SFSW09] Andreas Schutt, Thibaut Feydy, Peter J. Stuckey, and Mark G. Wal-
lace. Why cumulative decomposition is not as bad as it sounds. In
Proceedings of the 15th international conference on Principles and
practice of constraint programming, CP’09, pages 746–761, Berlin,
Heidelberg, 2009. Springer-Verlag.

[SI09] Carsten Sinz and Markus Iser. Problem-Sensitive Restart Heuristics
for the DPLL Procedure. In Proceedings of the 12th International
Conference on Theory and Applications of Satisfiability Testing, SAT
’09, pages 356–362, Berlin, Heidelberg, 2009. Springer-Verlag.

[Sil99] João P. Marques Silva. The impact of branching heuristics in propo-
sitional satisfiability algorithms. In Proceedings of the 9th Portuguese
Conference on Artificial Intelligence: Progress in Artificial Intelli-
gence, EPIA ’99, pages 62–74, London, UK, 1999. Springer-Verlag.

BIBLIOGRAPHY 159

[Sil00] João P. Marques Silva. Algebraic Simplification Techniques for Propo-
sitional Satisfiability. In Proceedings of the 6th International Confer-
ence on Principles and Practice of Constraint Programming, CP ’02,
pages 537–542, London, UK, 2000. Springer-Verlag.

[SM10] Bryan Silverthorn and Risto Miikkulainen. Latent class models for
algorithm portfolio methods. In Proceedings of the Twenty-Fourth
AAAI Conference on Artificial Intelligence, 2010.

[Sma07] J. Smaus. On Boolean Functions Encodable as a Single Linear
Pseudo-Boolean Constraint. In P. Van Hentenryck and L. A. Wolsey,
editors, 4th International Conference on the Integration of AI and OR
Techniques in Constraint Programming, CPAIOR ’07, volume 4510
of Lecture Notes in Computer Science, pages 288–302. Springer, 2007.

[Soo10] Mate Soos, 2010. CryptoMiniSat Solver. Available at
http://www.msoos.org/cryptominisat2/.

[ST05] Christian Schulte and Guido Tack. Views and iterators for generic
constraint implementations. In Principles and Practice of Constraint
Programming (CP), pages 817–821, 2005.

[TFM+07] Edward P. K. Tsang, John A. Ford, Patrick Mills, Richard Bradwell,
Richard Williams, and Paul Scott. Towards a practical engineering
tool for rostering. Annals of Operations Research, 155(1):257–277,
2007.

[Tri01] Michael A. Trick. A schedule-then-break approach to sports
timetabling. In Selected papers from the Third International Confer-
ence on Practice and Theory of Automated Timetabling III, PATAT
’00, pages 242–253, London, UK, UK, 2001. Springer-Verlag.

[Tse68] G. S. Tseitin. On the Complexity of Derivation in the Propositional
Calculus. Zapiski nauchnykh seminarov LOMI, 8:234–259, 1968.

[vE98] C. A. J. van Eijk. Sequential equivalence checking without state space
traversal. In Proceedings of the conference on Design, automation and
test in Europe, DATE ’98, pages 618–623, Washington, DC, USA,
1998. IEEE Computer Society.

[VG11] Allen Van Gelder. Generalized conflict-clause strengthening for sat-
isfiability solvers. In Proceedings of the 14th international conference
on Theory and application of satisfiability testing, SAT ’11, pages
329–342, Berlin, Heidelberg, 2011.

[vH01] Willem Jan van Hoeve. The alldifferent Constraint: A Survey. The
Computing Research Repository (CoRR), 2001.

160 BIBLIOGRAPHY

[War98] Joost P. Warners. A Linear-Time Transformation of Linear Inequal-
ities into Conjunctive Normal Form. Information Processing Letters,
68(2):63–69, 1998.

[WT94] Robert J. Willis and Bernard J. Terril. Scheduling the australian state
cricket season using simulated annealing. Journal of the Operational
Research Society, 45(3):276–280, March 1994.

