192 research outputs found

    Institutional accountability plan and report 2012-2013

    Get PDF

    Fourteenth Biennial Status Report: März 2017 - February 2019

    No full text

    One-Shot Learning for Periocular Recognition: Exploring the Effect of Domain Adaptation and Data Bias on Deep Representations

    Full text link
    One weakness of machine-learning algorithms is the need to train the models for a new task. This presents a specific challenge for biometric recognition due to the dynamic nature of databases and, in some instances, the reliance on subject collaboration for data collection. In this paper, we investigate the behavior of deep representations in widely used CNN models under extreme data scarcity for One-Shot periocular recognition, a biometric recognition task. We analyze the outputs of CNN layers as identity-representing feature vectors. We examine the impact of Domain Adaptation on the network layers' output for unseen data and evaluate the method's robustness concerning data normalization and generalization of the best-performing layer. We improved state-of-the-art results that made use of networks trained with biometric datasets with millions of images and fine-tuned for the target periocular dataset by utilizing out-of-the-box CNNs trained for the ImageNet Recognition Challenge and standard computer vision algorithms. For example, for the Cross-Eyed dataset, we could reduce the EER by 67% and 79% (from 1.70% and 3.41% to 0.56% and 0.71%) in the Close-World and Open-World protocols, respectively, for the periocular case. We also demonstrate that traditional algorithms like SIFT can outperform CNNs in situations with limited data or scenarios where the network has not been trained with the test classes like the Open-World mode. SIFT alone was able to reduce the EER by 64% and 71.6% (from 1.7% and 3.41% to 0.6% and 0.97%) for Cross-Eyed in the Close-World and Open-World protocols, respectively, and a reduction of 4.6% (from 3.94% to 3.76%) in the PolyU database for the Open-World and single biometric case.Comment: Submitted preprint to IEE Acces

    Stag - Vol. 06, No. 12 - March 31, 1955

    Get PDF
    The Stag, the official student newspaper of Fairfield University, was published weekly during the academic year (September - June) and ran from September 23, 1949 (Vol. 1, No. 1) to May 6, 1970 (Vol. 21, No. 20).https://digitalcommons.fairfield.edu/archives-stag/1100/thumbnail.jp

    Structural graph matching using the EM algorithm and singular value decomposition

    Get PDF
    This paper describes an efficient algorithm for inexact graph matching. The method is purely structural, that is, it uses only the edge or connectivity structure of the graph and does not draw on node or edge attributes. We make two contributions: 1) commencing from a probability distribution for matching errors, we show how the problem of graph matching can be posed as maximum-likelihood estimation using the apparatus of the EM algorithm; and 2) we cast the recovery of correspondence matches between the graph nodes in a matrix framework. This allows one to efficiently recover correspondence matches using the singular value decomposition. We experiment with the method on both real-world and synthetic data. Here, we demonstrate that the method offers comparable performance to more computationally demanding method

    Connection, March 1994

    Get PDF

    DeepGlobe 2018: A Challenge to Parse the Earth through Satellite Images

    Full text link
    We present the DeepGlobe 2018 Satellite Image Understanding Challenge, which includes three public competitions for segmentation, detection, and classification tasks on satellite images. Similar to other challenges in computer vision domain such as DAVIS and COCO, DeepGlobe proposes three datasets and corresponding evaluation methodologies, coherently bundled in three competitions with a dedicated workshop co-located with CVPR 2018. We observed that satellite imagery is a rich and structured source of information, yet it is less investigated than everyday images by computer vision researchers. However, bridging modern computer vision with remote sensing data analysis could have critical impact to the way we understand our environment and lead to major breakthroughs in global urban planning or climate change research. Keeping such bridging objective in mind, DeepGlobe aims to bring together researchers from different domains to raise awareness of remote sensing in the computer vision community and vice-versa. We aim to improve and evaluate state-of-the-art satellite image understanding approaches, which can hopefully serve as reference benchmarks for future research in the same topic. In this paper, we analyze characteristics of each dataset, define the evaluation criteria of the competitions, and provide baselines for each task.Comment: Dataset description for DeepGlobe 2018 Challenge at CVPR 201

    Corporate influence and the academic computer science discipline.

    Get PDF
    Prosopography of a major academic center for computer science

    A Coarse to Fine Minutiae-Based Latent Palmprint Matching

    Full text link

    Aggregation signature for small object tracking

    Get PDF
    Small object tracking becomes an increasingly important task, which however has been largely unexplored in computer vision. The great challenges stem from the facts that: 1) small objects show extreme vague and variable appearances, and 2) they tend to be lost easier as compared to normal-sized ones due to the shaking of lens. In this paper, we propose a novel aggregation signature suitable for small object tracking, especially aiming for the challenge of sudden and large drift. We make three-fold contributions in this work. First, technically, we propose a new descriptor, named aggregation signature, based on saliency, able to represent highly distinctive features for small objects. Second, theoretically, we prove that the proposed signature matches the foreground object more accurately with a high probability. Third, experimentally, the aggregation signature achieves a high performance on multiple datasets, outperforming the state-of-the-art methods by large margins. Moreover, we contribute with two newly collected benchmark datasets, i.e., small90 and small112, for visually small object tracking. The datasets will be available in https://github.com/bczhangbczhang/.Comment: IEEE Transactions on Image Processing, 201
    • …
    corecore