227 research outputs found

    An Experimental Evaluation of Datacenter Workloads On Low-Power Embedded Micro Servers

    Get PDF
    This paper presents a comprehensive evaluation of an ultra-low power cluster, built upon the Intel Edison based micro servers. The improved performance and high energy efficiency of micro servers have driven both academia and industry to explore the possibility of replacing conventional brawny servers with a larger swarm of embedded micro servers. Existing attempts mostly focus on mobile-class micro servers, whose capacities are similar to mobile phones. We, on the other hand, target on sensor-class micro servers, which are originally intended for uses in wearable technologies, sensor networks, and Internet-of-Things. Although sensor-class micro servers have much less capacity, they are touted for minimal power consumption (< 1 Watt), which opens new possibilities of achieving higher energy efficiency in datacenter workloads. Our systematic evaluation of the Edison cluster and comparisons to conventional brawny clusters involve careful workload choosing and laborious parameter tuning, which ensures maximum server utilization and thus fair comparisons. Results show that the Edison cluster achieves up to 3.5× improvement on work-done-per-joule for web service applications and data-intensive MapReduce jobs. In terms of scalability, the Edison cluster scales linearly on the throughput of web service workloads, and also shows satisfactory scalability for MapReduce workloads despite coordination overhead.This research was supported in part by NSF grant 13-20209.Ope

    Workload characterization and synthesis for data center optimization

    Get PDF

    SoC-Cluster as an Edge Server: an Application-driven Measurement Study

    Full text link
    Huge electricity consumption is a severe issue for edge data centers. To this end, we propose a new form of edge server, namely SoC-Cluster, that orchestrates many low-power mobile system-on-chips (SoCs) through an on-chip network. For the first time, we have developed a concrete SoC-Cluster server that consists of 60 Qualcomm Snapdragon 865 SoCs in a 2U rack. Such a server has been commercialized successfully and deployed in large scale on edge clouds. The current dominant workload on those deployed SoC-Clusters is cloud gaming, as mobile SoCs can seamlessly run native mobile games. The primary goal of this work is to demystify whether SoC-Cluster can efficiently serve more general-purpose, edge-typical workloads. Therefore, we built a benchmark suite that leverages state-of-the-art libraries for two killer edge workloads, i.e., video transcoding and deep learning inference. The benchmark comprehensively reports the performance, power consumption, and other application-specific metrics. We then performed a thorough measurement study and directly compared SoC-Cluster with traditional edge servers (with Intel CPU and NVIDIA GPU) with respect to physical size, electricity, and billing. The results reveal the advantages of SoC-Cluster, especially its high energy efficiency and the ability to proportionally scale energy consumption with various incoming loads, as well as its limitations. The results also provide insightful implications and valuable guidance to further improve SoC-Cluster and land it in broader edge scenarios

    RackBlox: A Software-Defined Rack-Scale Storage System with Network-Storage Co-Design

    Full text link
    Software-defined networking (SDN) and software-defined flash (SDF) have been serving as the backbone of modern data centers. They are managed separately to handle I/O requests. At first glance, this is a reasonable design by following the rack-scale hierarchical design principles. However, it suffers from suboptimal end-to-end performance, due to the lack of coordination between SDN and SDF. In this paper, we co-design the SDN and SDF stack by redefining the functions of their control plane and data plane, and splitting up them within a new architecture named RackBlox. RackBlox decouples the storage management functions of flash-based solid-state drives (SSDs), and allow the SDN to track and manage the states of SSDs in a rack. Therefore, we can enable the state sharing between SDN and SDF, and facilitate global storage resource management. RackBlox has three major components: (1) coordinated I/O scheduling, in which it dynamically adjusts the I/O scheduling in the storage stack with the measured and predicted network latency, such that it can coordinate the effort of I/O scheduling across the network and storage stack for achieving predictable end-to-end performance; (2) coordinated garbage collection (GC), in which it will coordinate the GC activities across the SSDs in a rack to minimize their impact on incoming I/O requests; (3) rack-scale wear leveling, in which it enables global wear leveling among SSDs in a rack by periodically swapping data, for achieving improved device lifetime for the entire rack. We implement RackBlox using programmable SSDs and switch. Our experiments demonstrate that RackBlox can reduce the tail latency of I/O requests by up to 5.8x over state-of-the-art rack-scale storage systems.Comment: 14 pages. Published in published in ACM SIGOPS 29th Symposium on Operating Systems Principles (SOSP'23
    corecore