

Karakterisering en synthese van werklasten voor datacenteroptimalisatie

Workload Characterization and Synthesis for Data Center Optimization

Stijn Polfliet

Promotor: prof. dr. ir. L. Eeckhout
Proefschrift ingediend tot het behalen van de graad van
Doctor in de Ingenieurswetenschappen: Computerwetenschappen

Vakgroep Elektronica en Informatiesystemen
Voorzitter: prof. dr. ir. J. Van Campenhout
Faculteit Ingenieurswetenschappen en Architectuur
Academiejaar 2012 - 2013

ISBN 978-90-8578-588-0
NUR 980
Wettelijk depot: D/2013/10.500/21

Acknowledgements

Several people have contributed in one way or another to the creation of
this dissertation. I wish to thank them for their supportive help. Specific
thanks go out to:

• My advisor prof. Lieven Eeckhout for giving me the opportunity to
be part of the Performance Lab team, for supporting me in the best
possible way and still leaving room to find my own way.

• The members of the examination commission of this dissertation: prof.
Luc Taerwe, prof. Koen De Bosschere, prof. Filip De Turck, dr. Stijn
Eyerman and dr. Rudy Van Hoe for their valuable suggestions to im-
prove this dissertation. Special thanks to prof. Benjamin C. Lee and
prof. Yiannakis Sazeides for taking the time to visit our University
and being part of the commission.

• Frederick Ryckbosch, colleague and friend, for the past decade of
joining forces.

• Nicolas Eenaeme, and the other people from MassiveMedia, who
were so enthusiastic to help us bridging the gap between research
and industry.

• My colleagues from the Computer Systems Lab for the wonderful,
funny and inspiring moments, during work, lunch or other events.

• My parents, my brother and sister, my family, for giving me the op-
portunity to realize my dreams.

• And, of course, Kaat, for always being there for me.

i

ii

Examination commission

Prof. Luc Taerwe, chairman
Prodean Faculty of Engineering and Architecture
Ghent University

Prof. Koen De Bosschere, secretary
ELIS Department
Faculty of Engineering and Architecture
Ghent University

Prof. Lieven Eeckhout, advisor
ELIS Department
Faculty of Engineering and Architecture
Ghent University

Prof. Filip De Turck
INTEC Department
Faculty of Engineering and Architecture
Ghent University

Prof. Benjamin C. Lee
Electrical and Computer Engineering
Duke University
USA

Prof. Yiannakis Sazeides
Department of Computer Science
University of Cyprus
Cyprus

Dr. Stijn Eyerman
ELIS Department
Faculty of Engineering and Architecture
Ghent University

Dr. Rudy Van Hoe
Server and Cloud Platform
Microsoft Benelux

iii

iv

Samenvatting

Het wereldwijde web is geëvolueerd van één statische webpagina in 1990
tot een uitdeinend universum van 40 miljard webpagina’s. In de beginda-
gen van het internet werden er vooral statische, informatieve webpagina’s
aangeboden. Vandaag bieden de meeste webapplicaties complexe dien-
sten aan zoals e-mail, e-handel, mediatoepassingen, kantoortoepassingen
en sociale netwerkdiensten. Dit heeft voor een grondige verschuiving van
computergebruik aan de klantzijde naar computergebruik aan de server-
zijde gezorgd — men noemt dit vaak ‘cloud computing’.

Deze uiteenlopende internetdiensten hebben samen met de opkomst
van smartphones en tablets tot de snelle evolutie van het wereldwijde web
geleid. Het aantal personen dat gebruikmaakt van tal van internetdiensten
is de laatste decennia zeer snel gestegen. Om dit groot aantal gebruikers
te ondersteunen is er een degelijke infrastructuur nodig. De dimensione-
ring van deze infrastructuur, servers en datacenters, zorgt voor een aantal
uitdagingen, omwille van de volgende redenen.

1. Hedendaagse webapplicaties hebben duizenden tot miljoenen gebrui-
kers. Om een groot aantal gebruikers te kunnen ondersteunen wor-
den grootschalige datacenters gebouwd. Deze datacenters zijn zeer
kostgevoelig: indien we de kostprijs van een server kunnen verla-
gen met slechts enkele tientallen euro’s, kan dit een grote kostbe-
sparing betekenen op het niveau van het datacenter. Er zijn verschil-
lende factoren die de totale kostprijs van een datacenter beı̈nvloeden,
bv. hardware-infrastructuur, voeding- en koelinginfrastructuur, soft-
ware, operationele kosten, herstellingen, personeel en gebouwen.

2. Een ander belangrijk aspect dat de rendabiliteit van een webappli-
catie bepaalt, is klantentevredenheid. Dit wordt meestal uitgedrukt
in responstijd en service-niveauovereenkomst1. Deze maatstaven wor-
den gebruikt om uit te drukken hoe lang een gebruiker moet wachten
alvorens de webpagina geladen is. Eerder onderzoek heeft aange-
toond dat er een rechtstreeks verband is tussen de laadtijd van een
webpagina en verkoopsomzet.

1Eng.: Service-Level Agreement (SLA)

v

vi

Het doel van deze thesis is om de prestatie en totale kostprijs van een
datacenter waarin hedendaagse webapplicaties draaien zoveel mogelijk te
reduceren, terwijl er voldaan wordt aan service-niveauovereenkomsten en
terwijl de responstijd binnen aanvaardbare grenzen blijft. Om dit te be-
werkstelligen is er een gedetailleerde karakterisering nodig van de werk-
lasten die draaien binnen het datacenter. Bovendien is het belangrijk om
de impact te schatten van deze werklasten op de totale kostprijs van het
datacenter.

Het dimensioneren van de energiedistributie en de koelinginfrastruc-
tuur in een datacenter gebeurt standaard op basis van het vermogenver-
bruik dat wordt aangegeven door de technische fiche van de server. Deze
waarden worden door de hardwarefabrikanten met een ruime marge mee-
gegeven, wat echter leidt tot een overgeprovisioneerd datacenter. Een meer
kostenefficiënte manier is om een datacenter te dimensioneren op basis van
het maximale vermogenverbruik dat effectief ooit verbruikt zal worden. In
dit onderzoek stellen we een methodologie voor om op een automatische
manier zogenaamde vermogenvirussen te genereren, dit zijn werklasten
die het vermogenverbruik voor een bepaald platform maximaliseren.

Door rekening te houden met het soort werklast dat effectief in het data-
center zal gebruikt worden, is het mogelijk om extra winst te boeken op het
vlak van prestatie en kostenbesparingen. We presenteren in dit onderzoek
een studie van een aantal datacentrische werklasten en hun impact op de
totale kostprijs van een datacenter.

We gaan vervolgens nog een stap verder door een datacenter te opti-
maliseren voor één specifieke werklast. Omdat sociale-netwerksites tegen-
woordig zeer populair zijn, werd er gekozen om een grote sociale-netwerk-
site te analyseren en te bekijken hoe de totale kostprijs en de prestatie
worden beı̈nvloed door verschillende keuzes in de dimensionering van de
serverhardware. Omdat sociale-netwerksites zeer interactief zijn, wordt er
extra aandacht besteed aan de prestatie, in functie van de responstijd zoals
die ervaren wordt door de eindgebruiker.

Tijdens het optimaliseren van bovenvermelde webapplicatie is het dui-
delijk geworden dat het dupliceren van de volledige werklast een moeilijke
taak is. In het bijzonder is het belangrijk om privacy en bedrijfsgevoelige
informatie te beschermen. Daarom stellen we tenslotte in deze thesis een
raamwerk voor om op een automatische manier een synthetische kloon van
een databank op te stellen.

We onderscheiden de volgende bijdragen in deze thesis.

Multi-kern vermogenvirussen. Het energie- en vermogenverbruik zijn
belangrijke factoren bij de dimensionering van grootschalige datacenters.
Het energieverbruik is van groot belang voor het uitbouwen van het ener-
giedistributienetwerk en voor het voorzien van de nodige koelinginfra-

vii

structuur. Traditioneel wordt data uit de technische fiche van een server
gebruikt om te bepalen hoeveel vermogen maximaal verbruikt zal wor-
den door het betreffende platform. Deze gegevens zijn echter overschat
en komen niet overeen met wat het serverplatform effectief maximaal zal
verbruiken.

In deze thesis stellen we een raamwerk voor om op een automatische
manier vermogenvirussen te genereren. Deze vermogenvirussen zijn pro-
gramma’s die het vermogenverbruik van een multi-kern serverplatform
proberen maximaliseren. We gebruiken dit raamwerk om de impact te
bestuderen van het dimensioneren van een datacenter op basis van een
maximaal vermogenvirus in plaats van op basis van wat de fabrikant ons
meegeeft. Onze resultaten tonen aan dat het vermogenverbruik drastisch
kan verminderd worden.

Datacentrische werklasten. De hoeveelheid data die op het internet wordt
geproduceerd, groeit zeer snel. Daarom richten we ons vervolgens op data-
explosie en datadiversiteit. Er zijn een groot aantal verschillende data-
centrische werklasten die in de achtergrond van een datacenter kunnen
draaien, zoals bv. indexering, compressie, encryptie, audio- en videoma-
nipulatie, enz. Het is belangrijk om deze datacentrische werklasten te karak-
teriseren en het datacenter te optimaliseren zodat we een zo hoog mogelijke
prestatie per dollar kunnen behalen.

In dit werk bestuderen we hoe de opkomende klasse van datacentrische
werklasten de dimensionering van een datacenter beı̈nvloedt. Via archi-
tecturale simulatie in een gevalideerde simulator leiden we enkele interes-
sante inzichten af. De belangrijkste conclusie is dat het meest optimale plat-
form afhankelijk is van het type werklast. Deze observatie suggereert dat
heterogeniteit een oplossing kan bieden bij het verhogen van de efficiëntie.
In een heterogeen datacenter wordt een bepaalde werklast uitgevoerd op
het hardwareplatform dat het meest geschikt is. Onze resultaten tonen
een verbetering van respectievelijk 88%, 24% and 17% in kostefficiëntie ten
opzichte van een homogeen datacenter met high-end, standaard of low-
end hardware.

Karakterisering van sociale-netwerksite. Omwille van het grote aantal
gebruikers en de grootschaligheid van de infrastructuur is het dimensioneren
van een datacenter voor hedendaagse sociale-netwerksites een grote uitda-
ging.

In deze thesis presenteren we een casestudie waarbij we een groot-
schalige sociale-netwerksite karakteriseren en waarbij we verschillende hard-
ware- en softwarekeuzes maken. De werklast wordt zowel in de tijd als in
de ruimte bemonsterd om een werklast te bekomen waarvan het haalbaar is
om een aantal experimenten mee te doen. De gereduceerde werklast bevat

viii

alle belangrijke diensten (en hun interacties) en laat toe om verschillende
hardwarekeuzes af te wegen en hun impact op de prestatie te meten.

We beschouwen de Netlog werklast, een populaire commerciële sociale-
netwerksite met een groot aantal gebruikers. We verkennen verschillende
hardware-opties met betrekking tot het aantal processorkernen, processor-
klokfrequentie, traditionele harde schijven versus flashgebaseerde schij-
ven, enz. Onze resultaten tonen bv. dat het gebruik van een flash-gebaseerde
harde schijf in de databankserver de langste responstijden met 30% ver-
laagt.

Synthetische databanken. Het databanksysteem is een belangrijk onder-
deel van een hedendaagse Web 2.0 werklast. De prestatie ervan verbeteren
is een grote uitdaging. Het is niet eenvoudig om hardware- en software-
alternatieven te vergelijken in een productieomgeving en bovendien is het
niet altijd mogelijk om een databank volledig of deels te kopiëren omwille
van privacyredenen of omwille van bedrijfsgevoelige informatie.

Daarom stellen we een raamwerk voor om op een automatische manier
een synthetische kloon van een databank te maken. Dit wordt gerealiseerd
door eerst een statistisch profiel op te stellen van de originele databank.
Vervolgens wordt er een synthetische databank geconstrueerd op basis van
dit statistisch profiel. De synthetische variant vertoont dezelfde statisti-
sche eigenschappen als de originele databank, maar verbergt gebruikers-
en bedrijfsgevoelige informatie. Deze techniek laat toe om de prestatie te
analyseren in een aparte omgeving, eventueel zelfs door andere partijen.

We evalueren het voorgestelde raamwerk gebruikmakend van de data-
bank van de sociale-netwerksite Netlog. We tonen aan dat het statistisch
profiel en de synthetische databankkloon in beperkte tijd gegenereerd kun-
nen worden. Bovendien valideren we de nauwkeurigheid ten opzichte van
de originele databank en concluderen we dat er een fout is van 0.95% en
1.38% respectievelijk voor het gemiddelde en 90-percentiel van de respons-
tijden. De techniek kan gebruikt worden om zowel hardware- als soft-
warekeuzes te bestuderen, bv. het effect van de processorklokfrequentie,
het gebruik van traditionele harde schijven versus flashgebaseerde schij-
ven, enz.

Summary

The World Wide Web has evolved from a single static Web page in 1990 into
a growing universe of 40 billion Web pages as of today. Early Internet ser-
vices provided mostly static, informational Web pages. Today, most Web
applications offer complex services like e-mail, e-commerce, rich media ap-
plications, office applications and social networking, leading to a dramatic
shift from client-side computing to server-side computing, often referred to
as cloud computing.

These various novel Internet services that are being offered, along with
ubiquitous Internet access possibilities through various devices including
mobile devices such as smartphones and tablets, have led to this fast growth
of the World Wide Web. In particular, smartphones enable their users to be
permanently in touch with e-mail, the Internet, social networking sites such
as Facebook and Twitter, e-commerce, etc.

Hence, the number of people using Internet services of various kinds
is increasing rapidly and demonstrates the large scale of applications and
systems behind these services. Designing the servers and data centers to
support contemporary Internet services is challenging, for a number of rea-
sons.

1. Current Web applications have thousands and up to millions of users,
which requires distributed applications running in large data centers.
The ensemble of servers is often referred to as a warehouse-scale com-
puter and scaling out to this large a scale clearly is a major design
challenge. Because of their scale, data centers are very much cost
driven — optimizing the cost per server even by only a couple tens of
dollars results in substantial cost savings and proportional increases
in profit. There are various factors affecting the cost of a data cen-
ter, such as the hardware infrastructure (servers, racks and switches),
power and cooling infrastructure, software, operational expenses, re-
pairs, management personnel, and real estate. Hence, data centers
are very cost-sensitive and need to be optimized for the ensemble. As
a result, operators drive their data center design decisions towards a
sweet spot that optimizes performance per dollar.

2. Another important aspect that determines the profitability of a Web

ix

x

application, is customer satisfaction. This is usually expressed in end-
user response time and service-level agreements, i.e., how long a user
has to wait before the Web page is loaded. Previous research has
shown that every increase in page load time is directly related to sales
revenue.

The central focus of this dissertation is to optimize the total cost of own-
ership (TCO) of a data center running contemporary Internet applications.
Our goal is to reduce TCO of the data center as much as possible while
delivering service-level agreements and keeping response times within ac-
ceptable bounds, thus securing company profit. This involves a detailed
characterization of the workloads in the data center, and their impact on
TCO.

Common practice is to (over-)provision the power and cooling infras-
tructure of a data center by using nameplate power consumption, as pro-
vided by hardware vendors, which leads to severe cost-inefficiency. A
more cost-efficient approach is to consider achievable maximum power
consumption numbers and dimension the data center towards this num-
ber rather than nameplate power. We therefore present a methodology
for automatically generating so-called power viruses that maximize power
consumption.

There is an additional opportunity to optimize both cost and perfor-
mance by dimensioning the data center for the Internet services that are
actually running in the data center. We present a case study with an emerg-
ing class of data-centric workloads and evaluate how these workloads af-
fect design decisions in the data center.

We then go yet one step further and optimize the data center for a single
workload. Since social networking applications are prevalent these days,
we focus on a large networking application and analyze how data center
design decisions affect cost and application performance. Because social
networking applications are highly interactive, we focus on how data cen-
ter design decisions affect user-perceived performance in terms of response
times.

One particular challenge we faced when optimizing the data center for
one Web application is the ability to duplicate the entire workload to a test-
ing environment, including databases, web server software, etc. One im-
portant concern with this approach is to guarantee security and privacy
while anonymizing the data in the duplicated database. We address these
issues in our final research work on synthetic databases by presenting a
framework for automatically generating a synthetic clone of an existing
database.

More specifically, this dissertation makes the following contributions.

xi

Multi-core power viruses. Energy and power usage are key design con-
cerns in servers and large-scale data centers, for several reasons. Energy-
related costs, for both empowering and cooling the servers, have become
an important component in the total cost of ownership of this class of sys-
tems. To improve the energy and cost efficiency of servers and data centers,
we need appropriate tools to understand power usage at the system level.

This work proposes a framework for automatically generating full-sys-
tem multi-core powermarks, or power viruses, which are synthetic pro-
grams with desired power characteristics on multi-core server platforms.
We use this framework to study the impact on the total energy cost of di-
mensioning the power supply units at the power usage determined by a
max powermark rather than the nameplate power consumption which po-
tentially leads to a significant reduction in power consumption.

Data-centric workloads. The amount of data produced on the Internet is
growing rapidly. We therefore next focus on data explosion and the trend
towards more and more diverse data, including rich media such as audio
and video. Data explosion and diversity leads to the emergence of data-
centric workloads to manipulate, manage and analyze the vast amounts of
data. These data-centric workloads are likely to run in the background and
include application domains such as data mining, indexing, compression,
encryption, audio/video manipulation, data warehousing, etc.

Given that data centers are very much cost-sensitive, reducing the cost
of a single component by a small fraction immediately translates into huge
cost savings because of the large scale. Hence, when designing a data cen-
ter, it is important to understand data-centric workloads and optimize the
ensemble for these workloads so that the best possible performance per
dollar is achieved.

This work studies how the emerging class of data-centric workloads af-
fects design decisions in the data center. Through the architectural simula-
tion of minutes of run time on a validated full-system x86 simulator, we de-
rive the insight that for some data-centric workloads, a high-end server op-
timizes performance per total cost of ownership (TCO), whereas for other
workloads, a low-end server is the winner. This observation suggests het-
erogeneity in the data center, in which a job is run on the most cost-efficient
server. Our experimental results report that a heterogeneous data center
achieves an up to 88%, 24% and 17% improvement in cost-efficiency over a
homogeneous data center with high-end, commodity and low-end servers,
respectively.

Real-life Web 2.0 workload characterization. Designing data centers for
Web 2.0 social networking applications is a major challenge because of the
large number of users, the large scale of the data centers, the distributed ap-

xii

plication base, and the cost sensitivity of a data center facility. Optimizing
the data center for performance per dollar is far from trivial.

In this dissertation, we present a case study characterizing and evaluat-
ing hardware/software design choices for a real-life Web 2.0 workload. We
sample the Web 2.0 workload both in space and in time to obtain a reduced
workload that can be replayed, driven by input data captured from a real
data center. The reduced workload captures the important services (and
their interactions) and allows for evaluating how hardware choices affect
end-user experience (as measured by response times).

We consider the Netlog workload, a popular and commercially deployed
social networking site with a large user base, and we explore hardware
trade-offs in terms of core count, clock frequency, traditional hard disks
versus solid-state disks (SSD), etc., for the different servers, and we obtain
several interesting insights.2 For example, our experiments show that us-
ing an SSD reduces the longest response times by 30% over a regular HDD
in the database servers.

Synthetic database cloning. The database management system is an im-
portant component of a contemporary Web 2.0 workload, yet improving
its performance is challenging. Evaluating hardware and software alterna-
tives and trade-offs in a production environment is complicated and might
not always be possible; copying (part of) a database to an offline environ-
ment might not be feasible either, particularly because of intellectual prop-
erty and privacy issues.

In the fourth contribution, we propose a framework for generating syn-
thetic but representative database clone workloads. This is done by com-
puting a statistical profile of the original database, and by subsequently
generating a synthetic database from this statistical profile. The synthetic
database exhibits the same statistical properties as the original database but
obfuscates and anonymizes business and user information. The key benefit
of this approach is that it enables performance analyses of a representative,
yet anonymized database workload in an offline environment. Syntheti-
cally generated database workloads even allow for running performance
analyses at third-party sites, and answering what-if questions regarding
database scalability with respect to user count and/or novel service fea-
tures.

We evaluate the proposed framework using the database from the real-
life Web 2.0 Netlog workload. We demonstrate that a statistical profile and
synthetic database workload can be generated in limited time, and we val-
idate the synthetic clone to be representative for the original workload, i.e.,
we report a 0.95% and 1.38% error for predicting the mean and the 90%
percentile of the response time distribution, respectively, using the syn-

2http://www.netlog.com

xiii

thetic workload compared to the original workload. The synthetic clone
is anonymized by construction. We illustrate the usefulness of syntheti-
cally generated database clones for driving both hardware and software
trade-offs, including exploring the effect on response time of CPU clock
frequency, hardware prefetching, hard drive versus solid-state disk, alter-
native database storage engines, and database size scaling.

xiv

Contents

1 Introduction 1
1.1 Key challenges . 2
1.2 Thesis Contributions . 2
1.3 Overview . 6

2 Powermark Benchmarks 9
2.1 Introduction . 9
2.2 Powermark framework . 10

2.2.1 Framework overview 13
2.2.2 Powermark generator 13
2.2.3 Power monitoring . 16
2.2.4 Automated exploration 16

2.3 Powermark evaluation . 17
2.4 Full-system power modeling 22
2.5 Data center dimensioning . 24
2.6 Related work . 26
2.7 Conclusion . 27

3 Data-centric Workloads 29
3.1 Introduction . 29

3.1.1 Data-centric workloads 30
3.1.2 Contributions and outline 32

3.2 Data-Centric Workloads . 33
3.2.1 Data explosion and diversity in the cloud 33
3.2.2 A data-centric benchmark suite 33

3.3 Data center Modeling . 37
3.3.1 TCO modeling . 37
3.3.2 Performance modeling 38

3.4 Optimizing the data center . 39
3.4.1 Which server type is optimal? 39
3.4.2 Where does the benefit come from? 41
3.4.3 Does multi-threading help? 42
3.4.4 The case for a heterogeneous data center 43

xv

xvi CONTENTS

3.5 Sensitivity analyses . 45
3.5.1 Varying the cost ratio 46
3.5.2 Varying energy cost 47
3.5.3 Discussion . 48

3.6 Related Work . 48
3.7 Conclusion . 51

4 Web 2.0 Workload Characterization 53
4.1 Introduction . 53
4.2 Netlog Web 2.0 Workload . 56
4.3 Case Study Goals . 57
4.4 Methodology . 58

4.4.1 Sampling in space . 60
4.4.2 Validating the setup 60
4.4.3 Replaying user requests 60
4.4.4 Sampling in time . 62
4.4.5 Warmup . 65

4.5 Experimental Setup . 67
4.6 Results and Discussion . 68

4.6.1 Web server . 68
4.6.2 Database server . 71
4.6.3 Memcached server . 72
4.6.4 Fixed-rate experiments 72

4.7 Use Cases . 73
4.7.1 Hardware purchasing 74
4.7.2 Software optimizations 77

4.8 Related Work . 79
4.8.1 Data center workloads 79
4.8.2 Sampling . 80

4.9 Conclusion . 81

5 Database Cloning 83
5.1 Introduction . 83
5.2 Relational Databases . 86

5.2.1 Column attributes . 87
5.2.2 Data types . 88

5.3 Statistical Database Profile . 89
5.3.1 Database scheme . 89
5.3.2 Statistical profile of column data 89
5.3.3 Statistical profile of table relationships 90

5.4 Synthetic Database Generation 93
5.4.1 Overview . 93
5.4.2 Primary key generation 94
5.4.3 Foreign key generation 95

CONTENTS xvii

5.4.4 Anonymized data value generation 95
5.4.5 Satisfying unique constraints 96
5.4.6 Fragmentation . 96

5.5 Generating Synthetic Query Log 97
5.6 Validation . 98

5.6.1 Experimental setup . 98
5.6.2 Results . 100

5.7 Hardware Tuning . 100
5.7.1 Clock frequency . 101
5.7.2 Hardware prefetcher 102
5.7.3 Solid-state disk . 103
5.7.4 Comparing hardware platforms 104

5.8 Software Tuning . 105
5.8.1 Database scaling . 106
5.8.2 Query cache . 106
5.8.3 Storage engine: InnoDB vs MyISAM 107

5.9 Pitfalls in Using Simple Database Benchmarks 109
5.10 Related Work . 110

5.10.1 Web 2.0 and cloud performance analysis 110
5.10.2 Synthetic workload generation 112
5.10.3 Database performance analysis 113

5.11 Conclusion . 114

6 Conclusions and Future Work 117
6.1 Summary . 117

6.1.1 Power-hungry workloads 118
6.1.2 Data-centric workloads 118
6.1.3 Web 2.0 workload characterization 119
6.1.4 Synthetic database cloning 119

6.2 Future Work . 120
6.2.1 Power and energy efficiency 120
6.2.2 Workload cloning . 121
6.2.3 Analytical workload modeling 121
6.2.4 New workloads: Web 3.0? 122

xviii CONTENTS

List of Figures

2.1 Average power consumption as a function of the number
of co-run instances for the SPEC CPU2006 mcf and povray
benchmarks on the AMD quad-core processor system. 11

2.2 The powermark framework. 12
2.3 The loop body of the CPU-intensive thread(s). 15
2.4 Power consumption for the torture tests versus SPEC CPU

and PARSEC (labeled ‘others’) on six hardware platforms. . 19
2.5 Power consumption of the powermarks versus the max tor-

ture test and performance benchmarks. 19
2.6 Average and maximum power consumption for the pow-

ermark compared to the top-5 power-hungry performance
benchmarks on the AMD quad-core Opteron processor plat-
form. 20

2.7 Convergence of the genetic algorithm on the AMD quad-
core Opteron system. 21

2.8 Validating the power model on the Intel Core i7 system. . . . 22
2.9 Validating the power model considering disk I/O intensive

workloads: scp on the top and tar on the bottom on the AMD
quad-core Opteron system. 23

2.10 Normalized energy cost for a server dimensioned for the
nameplate power consumption versus the max power con-
sumption derived from a system-level powermark. 24

2.11 Dimensioning the server on a threshold power consumption
10% below the max powermark. 25

3.1 Normalized performance per TCO efficiency (lower is bet-
ter) for the high-end, the middle-of-the-road and the low-
end servers. 40

3.2 Performance per TCO stacks for quantifying the different
factors; high-end versus low-end processors. 40

3.3 Normalized cost for iso-throughput homogeneous data cen-
ters with high-end, middle-of-the-road and low-end servers
only, versus a heterogeneous data center. 43

xix

xx LIST OF FIGURES

3.4 Cost reduction for a heterogeneous data center relative to
homogeneous data center configurations across all possible
two-benchmark workloads. 44

3.5 Configuration of the optimum heterogeneous data center:
the fraction of low-end and commodity servers; the fraction
of high-end servers equals one minus the fraction of low-end
and commodity servers. 45

3.6 Cost reduction through heterogeneity as a function of the
cost ratio between the high-end vs. low-end servers. 46

3.7 Cost reduction for a heterogeneous data center relative to the
best possible homogeneous data center as a function of en-
ergy cost. 47

4.1 Netlog’s architecture. 57
4.2 Distribution of response sizes when comparing real versus

replayed requests. 61
4.3 Netlog traffic profile for four days to the Slovene language

domain. 63
4.4 Identifying representative samples based on traffic intensity. 64
4.5 Traffic classified by its type. 64
4.6 Quantifying PHP cache warmup behavior. Replay speed is

set to a fixed rate of 10 requests/s. 65
4.7 Quantifying how long one needs to warmup the database

and memcached servers: I/O wait time on the database server
is shown as a function of time when replaying the first day. . 66

4.8 Using the Kolmogorov-Smirnov test to verify whether the
system is sufficiently warmed up by comparing the distribu-
tion of response times under full versus no warmup. 67

4.9 Cumulative distribution of user response times while chang-
ing the Web server’s CPU frequency under (a) low-traffic
load and (b) high-traffic load. 69

4.10 Web server CPU load as a function of CPU clock frequency
for the high-traffic load scenario. 70

4.11 Percentile response times as a function of Web server CPU
clock frequency. 70

4.12 Web server CPU load as a function of the number of nodes
and cores per node: m × n means m nodes and n cores per
node. 71

4.13 Trading off HDD versus SSD and CPU clock frequency for
the database servers. 72

4.14 CPU time versus network time for memcached requests of
different size. 73

4.15 CPU load and average response time as a function of the
number of requests per second under a fixed-rate experiment. 73

LIST OF FIGURES xxi

4.16 Several performance trade-offs for different hardware sug-
gestions compared to the hardware vendor suggestion. . . . 76

4.17 Increase in number of requests handled under 300 ms for dif-
ferent NGINX configurations, compared to the Apache Web
server. 78

5.1 Overview of the synthetic database generation framework. . 84
5.2 Clustering example: Based on the name and data type, we

can detect that the columns userId and owner userId are re-
lated to each other. Column albumId of table PICTURES and
column id of table ALBUMS are of the same type and their
data range is similar; hence we conclude that these columns
are also related. 92

5.3 Example illustrating anonymization and foreign key gener-
ation. In this example we show two tables, USERS (left)
and PICTURES (right). In the original database there is one
user with three pictures, one user with one picture, and two
users with no pictures. In the first step of the anonymiza-
tion process, we anonymize the Username, UserId and File-
name columns. We subsequently need to make sure that the
foreign key distribution in the synthetic clone matches the
histogram in the statistical profile. This is done by assigning
three pictures to a single random user, one picture to another
random user, and leave the other users without pictures. . . 94

5.4 In this example, a primary key containing multiple columns
is defined. This makes it hard to determine values, because
the combination of all three fields has to be unique. There are
10,000,000 possible unique combinations and if the number
of required unique values is close to 10,000,000, it will be
hard for a naive implementation to generate the final few
values. 96

5.5 Validation of the database workload cloning. Comparing re-
sponse time distributions (in microseconds) on the original
versus cloned database. 101

5.6 Validation of the database workload cloning. Comparing cu-
mulative response time distributions (in microseconds) on
the original versus cloned database. Entire cumulative dis-
tribution is shown on top; graph at the bottom is zoomed
in. 102

5.7 Average query performance as a function of CPU clock fre-
quency for both the original and synthetic databases. 103

5.8 90% percentile query performance as a function of CPU clock
frequency for both the original and synthetic databases. . . 103

xxii LIST OF FIGURES

5.9 Impact on average query performance from hardware prefetch-
ing for both the original and synthetic databases. 104

5.10 Impact on performance for a spinning hard drive versus a
solid-state disk for both the synthetic and original databases. 105

5.11 Comparing two hardware platforms: The Intel Xeon outper-
forms the AMD Opteron platform by more than 10% accord-
ing to both the original and synthetic databases. 105

5.12 Scaling the database size by a factor of two introduces more
queries with higher response times. 107

5.13 Impact on performance (query response time) for the MySQL
built-in query cache as a function of its size. 108

5.14 Comparing the performance impact of InnoDB versus My-
ISAM as a storage engine as a function of query response
times. InnoDB introduces more overhead for insert opera-
tions, which leads to long-taking queries to take even longer. 109

5.15 Evaluating how CPU clock frequency affects average response
time for the OSDB and synthetic database workloads. 111

5.16 Evaluating how processor families affect average response
time for the OSDB and synthetic database workloads. 112

List of Abbreviations

ACID Atomicity, Consistency, Isolation, Durability
AMD Advanced Micro Devices
API Application Programming Interface
BBV Basic Block Vector
BIC Bayesian Information Criterion
CMP Chip-level Multiprocessing
CPU Central Processing Unit
DBMS Database Management System
DRAM Dynamic random-access memory
DSS Decision Support Systems
ERP Enterprise Resource Planning
FAWN Fast Array of Wimpy Nodes
GNU GNU’s not Unix!
HDD Hard Disk Drive
HTTP Hypertext Transfer Protocol
HW Hardware
ILP Instruction-Level Parallelism
I/O Input/output
ISA Instruction-set architecture
IT Information Technology
JVM Java Virtual Machine
L1 Level-1 Cache
L2 Level-2 Cache
L3 Level-3 Cache
LLC Last Level Cache
MIPS Millions of Instructions Per Second
NIC Network Interface Card
OLTP Online Transaction Processing
OOO Out-of-order
OSDB Open Source Database Benchmark
PARSEC Princeton Application Repository for Shared-Memory Computers
PCAP Packet Capture
PCI Peripheral Component Interconnect

xxiii

xxiv CHAPTER 0. LIST OF ABBREVIATIONS

PHP Hypertext Preprocessor
RDBMS Relational Database Management System
ROB Reorder Buffer
SIMD Single Instruction Multiple Data
SMT Simultaneous multithreading
SPEC Standard Performance Evaluation Corporation
SQL Structured Query Language
SSD Solid State Disk
SSE Streaming SIMD Extensions
TCO Total Cost of Ownership
TDP Thermal Design Power
TPC Transaction Processing Performance Council
URL Uniform Resource Locator

Chapter 1

Introduction

The World Wide Web is moving to its 25th anniversary. Over time, the
Web has evolved from a single static Web page in 1990, over 26 Web pages
by the end of 1992 into a growing universe of 40 billion Web pages as of
today.1 Internet usage has grown by a factor of 6.6x over the past twelve
years worldwide according to a recent study by Internet World Stats.2 The
Internet-sector server market is growing at a steady pace as well, i.e., IDC
studies show that the high-performance computing server market is ex-
pected to grow 8% yearly until 2015.3 As another example, worldwide rev-
enue from public IT cloud services is expected to grow by 27.6% by 2015.4

Early Internet services provided mostly static, informational Web pages.
Today, most Web applications offer complex services like e-mail, e-com-
merce, rich media applications, office applications and social networking,
leading to a dramatic shift from client-side computing to server-side com-
puting, often referred to as cloud computing.

These various novel Internet services that are being offered, along with
ubiquitous Internet access possibilities through various devices includ-
ing mobile devices such as smartphones and tablets, have led to this fast
growth of the World Wide Web. In particular, smartphones enable their
users to be permanently in touch with e-mail, the Internet, social network-
ing sites such as Facebook and Twitter, e-commerce, etc. There are over
one billion smartphones worldwide today, and the next billion is expected
to be achieved by 2015.5

Hence, the number of people using Internet services of various kinds
is increasing rapidly and demonstrates the large scale of applications and

1http://www.worldwidewebsize.com/
2http://internetworldstats.com/stats.htm
3http://www.idc.com/getdoc.jsp?containerId=prUS23386912
4http://www.idc.com/prodserv/idc cloud.jsp
5http://blogs.strategyanalytics.com/WDS/post/2012/10/17/Worldwide-

Smartphone-Population-Tops-1-Billion-in-Q3-2012.aspx

1

2 CHAPTER 1. INTRODUCTION

systems behind these services. For example, there are more than 1 billion
people using Facebook actively each month; 600 million Facebook users
use mobile devices and these users are twice as active as non-mobile users
— according to Facebook’s statistics as of November 2012.6 As another ex-
ample, there are more than 500 million registered Twitter users generating
more than 100 million Twitter messages a day, as of July 2012.7

1.1 Key challenges

Designing the servers and data centers to support contemporary Internet
services is challenging, for a number of reasons. As mentioned above, cur-
rent Web applications have thousands and up to millions of users, which
requires distributed applications running in large data centers [5]. The en-
semble of servers is often referred to as a warehouse-scale computer [6]
and scaling out to this large a scale clearly is a major design challenge. Be-
cause of their scale, data centers are very much cost driven — optimizing
the cost per server even by only a couple tens of dollars results in sub-
stantial cost savings and proportional increases in profit. There are various
factors affecting the cost of a data center, such as the hardware infrastruc-
ture (servers, racks and switches), power and cooling infrastructure, soft-
ware, operational expenses, repairs, management personnel, and real es-
tate. Hence, data centers are very cost-sensitive and need to be optimized
for the ensemble. As a result, operators drive their data center design deci-
sions towards a sweet spot that optimizes performance per dollar.

Another important aspect that determines the profitability of a Web ap-
plication, is customer satisfaction. This is usually expressed in end-user re-
sponse time and service-level agreements i.e., how long a user has to wait
before the Web page is loaded. Previous research at Amazon has shown
that every increase in page load time of 100 ms decreases sales by 1% [42].
Similarly, Google has reported that moving from a 10-result page loading
in 0.4 seconds to a 30-result page loading in 0.9 seconds decreased traffic
and ad revenues by 20%.8

1.2 Thesis Contributions

The central focus of this dissertation is to optimize the total cost of own-
ership (TCO) of a data center running contemporary Internet applications.
Our goal is to reduce TCO of the data center as much as possible while

6http://newsroom.fb.com/
7http://semiocast.com/publications/2012 07 30 Twitter reaches half a billion

accounts 140m in the US
8http://glinden.blogspot.be/2006/11/marissa-mayer-at-web-20.html

1.2. THESIS CONTRIBUTIONS 3

delivering service-level agreements and keeping response times within ac-
ceptable bounds, thus securing company profit. This involves a detailed
characterization of the workloads running in the data center, and their im-
pact on TCO.

Common practice is to (over-)provision the power and cooling infras-
tructure of a data center by using nameplate power consumption, as pro-
vided by hardware vendors, which leads to severe cost-inefficiency. A
more cost-efficient approach is to consider achievable maximum power
consumption numbers and dimension the data center towards this num-
ber rather than nameplate power. We therefore present a methodology
for automatically generating so-called power viruses that maximize power
consumption.

There is an additional opportunity to optimize both cost and perfor-
mance by dimensioning the data center for the Internet services that are
actually running in the data center. We present a case study with an emerg-
ing class of data-centric workloads and evaluate how these workloads af-
fect design decisions in the data center.

We then go yet one step further and optimize the data center for a single
workload. Since social networking applications are prevalent these days,
we focus on a large networking application and analyze how data center
design decisions affect cost and application performance. Because social
networking applications are highly interactive, we focus on how data cen-
ter design decisions affect user-perceived performance in terms of response
times.

One particular challenge we faced when optimizing the data center for
one Web application is the ability to duplicate the entire workload to a test-
ing environment, including databases, web server software, etc. One im-
portant concern with this approach is to guarantee security and privacy
while anonymizing the data in the duplicated database. We address these
issues in our final research work on synthetic databases by presenting a
framework for automatically generating a synthetic clone of an existing
database.

More specifically, this dissertation makes the following contributions.

Contribution 1: Multi-core power viruses

Energy and power usage are key design concerns in servers and large-scale
data centers, for several reasons. Energy-related costs, for both empower-
ing and cooling the servers, have become an important component in the
total cost of ownership of this class of systems. To improve the energy and
cost efficiency of servers and data centers, we need appropriate tools to
understand power usage at the system level.

4 CHAPTER 1. INTRODUCTION

This work proposes a framework for automatically generating full-
system multi-core powermarks, or power viruses, which are synthetic
programs with desired power characteristics on multi-core server plat-
forms. We use this framework to study the impact on the total energy cost
of dimensioning the power supply units at the power usage determined by
a max powermark rather than the nameplate power consumption which
potentially leads to a 63% reduction in power consumption. The frame-
work is additionally used to construct full-system power models with error
bounds on the power estimates, and to guide the design of energy-efficient
and cost-efficient server and data center infrastructures.

This work on power viruses has been published in:

Stijn Polfliet, Frederick Ryckbosch and Lieven Eeckhout, “Automated
Full-System Power Characterization”, In IEEE Micro, Vol. 31, No. 3,
46-59, May/June 2011.

Contribution 2: Data-centric workloads

The amount of data produced on the Internet is growing rapidly. We
therefore focus next on data explosion and the trend towards more and
more diverse data, including rich media such as audio and video. Data
explosion and diversity leads to the emergence of data-centric workloads
to manipulate, manage and analyze the vast amounts of data. These data-
centric workloads are likely to run in the background and include appli-
cation domains such as data mining, indexing, compression, encryption,
audio/video manipulation, data warehousing, etc.

Given that data centers are very much cost-sensitive, reducing the cost
of a single component by a small fraction immediately translates into huge
cost savings because of the large scale. Hence, when designing a data cen-
ter, it is important to understand data-centric workloads and optimize the
ensemble for these workloads so that the best possible performance per
dollar is achieved.

This work studies how the emerging class of data-centric workloads af-
fects design decisions in the data center. Through the architectural simula-
tion of minutes of run time on a validated full-system x86 simulator, we de-
rive the insight that for some data-centric workloads, a high-end server op-
timizes performance per total cost of ownership (TCO), whereas for other
workloads, a low-end server is the winner. This observation suggests het-
erogeneity in the data center, in which a job is run on the most cost-efficient
server. Our experimental results report that a heterogeneous data center
achieves an up to 88%, 24% and 17% improvement in cost-efficiency over a
homogeneous data center with high-end, commodity and low-end servers,
respectively.

1.2. THESIS CONTRIBUTIONS 5

This work on data-centric workloads has been published in:

Stijn Polfliet, Frederick Ryckbosch and Lieven Eeckhout, “Optimiz-
ing the Data Center for Data-Centric Workloads”, In Proceedings of the
International Conference on Supercomputing (ICS), 182-191, June 2011.

Contribution 3: Real-life Web 2.0 workload characterization

Designing data centers for Web 2.0 social networking applications is a ma-
jor challenge because of the large number of users, the large scale of the
data centers, the distributed application base, and the cost sensitivity of a
data center facility. Optimizing the data center for performance per dollar
is far from trivial.

In this work, we present a case study characterizing and evaluating
hardware/software design choices for a real-life Web 2.0 workload. We
sample the Web 2.0 workload both in space and in time to obtain a reduced
workload that can be replayed, driven by input data captured from a real
data center. The reduced workload captures the important services (and
their interactions) and allows for evaluating how hardware choices affect
end-user experience (as measured by response times).

We consider the Netlog9 workload, a popular and commercially de-
ployed social networking site with a large user base, and we explore hard-
ware trade-offs in terms of core count, clock frequency, traditional hard
disks versus solid-state disks (SSD), etc., for the different servers, and we
obtain several interesting insights. For example, our experiments show that
using an SSD reduces the longest response times by 30% over a regular
HDD in the database servers. Further, we present two use cases illustrat-
ing how our characterization method can be used for guiding hardware
purchasing decisions as well as software optimizations.

This work on a real-life Web 2.0 workload has been published in [61]:

Stijn Polfliet, Frederick Ryckbosch and Lieven Eeckhout, “Studying
Hardware and Software Trade-Offs for a Real-Life Web 2.0 Work-
load”, In Proceedings of the Third Joint WOSP/SIPEW International Con-
ference on Performance Engineering (ICPE), 181-192, 2012.

Contribution 4: Synthetic database cloning

The database management system is an important component of a contem-
porary Web 2.0 workload, yet improving its performance is challenging.
Evaluating hardware and software alternatives and trade-offs in a produc-
tion environment is complicated and might not always be possible; copying

9http://www.netlog.com

6 CHAPTER 1. INTRODUCTION

(part of) a database to an offline environment might not be feasible either,
particularly because of intellectual property and privacy issues.

In this work, we propose a framework for generating synthetic but rep-
resentative database clone workloads. This is done by computing a sta-
tistical profile of the original database, and by subsequently generating
a synthetic database from this statistical profile. The synthetic database
exhibits the same statistical properties as the original database but obfus-
cates and anonymizes business and user information. The key benefit of
this approach is that it enables performance analysis of a representative,
yet anonymized database workload in an offline environment. Syntheti-
cally generated database workloads even allow for running performance
analyses at third-party sites, and answering what-if questions regarding
database scalability with respect to user count and/or novel service fea-
tures.

We evaluate the proposed framework using the database from the real-
life Web 2.0 Netlog workload. We demonstrate that a statistical profile and
synthetic database workload can be generated in limited time, and we val-
idate the synthetic clone to be representative for the original workload, i.e.,
we report a 0.95% and 1.38% error for predicting the mean and the 90%
percentile of the response time distribution, respectively, using the syn-
thetic workload compared to the original workload. The synthetic clone
is anonymized by construction. We illustrate the usefulness of syntheti-
cally generated database clones for driving both hardware and software
trade-offs, including exploring the effect on response time of CPU clock
frequency, hardware prefetching, hard drive versus solid-state disk, alter-
native database storage engines, and database size scaling.

This work on synthetic databases is described in:

Stijn Polfliet, Frederick Ryckbosch and Lieven Eeckhout, “Perfor-
mance Analysis through Database Workload Cloning”, In ACM
Transactions on Architecture and Code Optimization (TACO), Accepted
(under revision) for publication.

1.3 Overview

This dissertation is organized as follows.
We present a framework for automatically generating full-system

multi-core powermarks in Chapter 2. We use this framework to construct
full-system power models with error bounds on the power estimates, and
to guide the design of energy-efficient and cost-efficient server and data
center infrastructures.

In Chapter 3, we characterize data-centric workloads running as back-

1.3. OVERVIEW 7

ground tasks in the data center. Through the architectural simulation of
minutes of run time on a validated full-system x86 simulator, we derive the
insight that the optimal hardware platform depends on the specific data-
centric workload setting.

In Chapter 4, we present a case study on a real-life Web 2.0 workload.
We sample the Web 2.0 workload both in space and in time to obtain a
reduced workload that can be replayed, driven by input data captured from
a real data center. We present some insights in how the data center should
be optimized for this particular workload.

In Chapter 5, we present a framework for generating synthetic but rep-
resentative database clone workloads. The key benefit of this approach is
that it enables performance analyses of a representative, yet anonymized
database workload in an offline environment.

Chapter 6 concludes this dissertation with a summary and discussion
of future research directions.

8 CHAPTER 1. INTRODUCTION

Chapter 2

Powermark Benchmarks

Energy and power usage are key design concerns in servers and large-scale data
centers. Current practice in data center design is to dimension the power grid and
cooling based on the server’s nameplate power. However, nameplate power is typi-
cally overestimated by hardware vendors, leading to a highly overprovisioned data
center. Determining maximum achievable power consumption is challenging. We
therefore present a framework for automatically characterizing maximum achiev-
able power consumption in the data center by constructing full-system multi-core
powermarks, or synthetic programs which maximize power consumption on multi-
core server platforms.

2.1 Introduction

Energy and power usage are key design concerns in servers and large-scale
data centers, for a number of reasons. Energy-related costs, for both em-
powering and cooling servers, have become an important component in
the total cost of ownership (TCO) of this class of systems. In fact, with elec-
tricity costs trending up, energy-related costs will become an increasingly
larger part of the total cost [6]. In addition, as we become more and more
environmentally conscious, improving the energy efficiency of computer
systems is key for reducing carbon dioxide emissions by the IT industry.
Finally, increased power density and temperature may lead to reduced re-
liability of the hardware. In order to improve the energy-efficiency and
cost-efficiency of servers and data centers, we need appropriate tools to
understand power usage at the system level.

We present a framework to automatically characterize power consump-
tion at the system level in server hardware. The proposed framework al-
lows for automatically generating so-called powermarks, or synthetic pro-
grams with specific power characteristics. For example, particular pow-
ermarks may strive to maximize power consumption at a given CPU uti-

9

10 CHAPTER 2. POWERMARK BENCHMARKS

lization level through a realizable program. In contrast to prior work in
this area which built CPU-centric single-threaded stressmarks [23] [38], the
proposed framework constructs full-system multi-core powermarks: next
to stressing the CPU, the powermarks also stress main memory, network
I/O as well as disk I/O. Further, the framework is versatile to the hard-
ware platform of interest as it generates powermarks in a high-level pro-
gramming language. An evaluation on six hardware platforms illustrates
the ability to generate powermarks that exceed the power consumed by a
large set of performance benchmarks and existing so-called torture tests.

In a subsequent step, we explore two applications for the powermarks
framework. First, we use it to automatically construct full-system power
models that provide an estimate for a server’s total power consumption at
a given utilization level. The model’s key asset is that it provides meaning-
ful error bounds on the predicted power consumption. The error bounds
are determined by powermarks that maximize and minimize power usage
through a realizable program. We demonstrate the model’s accuracy and
applicability on six hardware platforms, and we show that the models can
handle both Simultaneous Multithreading (SMT) and Chip Multiproces-
sors (CMP) architectures.

Second, we use powermarks to guide data center design and dimen-
sioning. In one case study, we study the impact on the total energy cost of
dimensioning the power supply units at the power usage determined by a
max powermark rather than the ‘nameplate’ power consumption. Depend-
ing on the hardware platform, we report savings in energy cost ranging be-
tween 34% and 63%. Going one step further, we evaluate the idea of power
capping at a pre-set power usage level below the max powermark. This
is done by monitoring the power consumption at the server’s power outlet
and feeding this back to the power manager running on the server. If power
consumption is about to exceed the pre-set power cap, the power man-
ager artificially reduces the server’s utilization level by putting the server
to sleep at regular intervals so that the effective power usage stays below
the power cap. We demonstrate a case study illustrating the effectiveness
of power capping with limited impact on overall performance.

This chapter is organized as follows. We first elaborate on the pow-
ermark generation framework, followed by a description of two potential
applications, automated power modeling and server/data center dimen-
sioning. Finally, we discuss related work and conclude.

2.2 Powermark framework

There exists substantial prior work in stressmark generation. Several
sources [21] [25] [76] report how industry builds stressmarks, often called

2.2. POWERMARK FRAMEWORK 11

! " # $

!"%

!#%

!$%

!&%

!'%

!(%

!)%

!*%

+,-

./0123

456789:;<2:,=;

5
/
>
=
18
?
;
2
@
=
8A
B
C

Figure 2.1: Average power consumption as a function of the number of co-
run instances for the SPEC CPU2006 mcf and povray benchmarks on the
AMD quad-core processor system.

power viruses, that maximize CPU power consumption, temperature,
dI/dt, etc. Building stressmarks is typically done manually, and is there-
fore very time-consuming, tedious and error-prone. To speed up the time-
consuming process of stressmark generation, recent work proposed frame-
works for automatically generating stressmarks while focusing on the
CPU [38], both the CPU and memory [23] and multi-core CPUs [9] [41].
None of these approaches provide full-system stressmarks though, as they
focus on the CPU and memory only. Our powermark framework aims at
generating powermarks that stress the entire system, including the net-
work interface and the disk alongside the CPU and memory. In addition,
our framework targets multi-core systems.

In order to illustrate that generating multi-core stressmarks is a non-
trivial extension to single-core stressmarks, we first make a number of ob-
servations before describing our framework in more detail. A first obser-
vation is that a benchmark that yields higher power consumption than an-
other benchmark when run in isolation does not necessarily yield higher
power consumption when multiple instances co-run; see Figure 2.1 for
the example benchmarks mcf and povray on our baseline AMD quad-core
Opteron system. We observed similar results for other benchmarks. (See
later for a detailed description of the experimental setup.) This suggests
that a powermark that is optimized for a single core does not necessarily
imply max power consumption for a multi-core processor, and hence, a
powermark generator needs to co-optimize per-core power consumption
and overall chip power consumption. The reason is that contention in
shared multi-core resources affects per-core performance and power con-

12 CHAPTER 2. POWERMARK BENCHMARKS

workload profile
workload
generator synthetic

benchmark

run synthetic
benchmark on
real hardware

and collect
power stats

optimize
workload profile
using genetic

algorithm

does it
achieve

desired power
stats?

powermark

Figure 2.2: The powermark framework.

sumption.
A second observation worth noting is that running multiple copies of

the same workload does not yield maximum power consumption. Memory
accesses to shared state by co-executing threads yield substantially higher
power consumption due to cache coherency traffic. In our framework, we
found that memory accesses to shared state increase power consumption
substantially, up to 4.5 Watt (or 1.9% relative to max power) when compar-
ing powermarks that include versus exclude shared state memory accesses
on our baseline system. These two observations imply that a multi-core
powermark is not achieved by simply co-executing multiple instances of
a single-core powermark, and, in addition, there are complex interactions
among co-executing threads through shared memory and through shared
resources. Further, powermarks are platform-specific, hence, an automated
approach to constructing powermarks is desirable. This motivates for a
framework that can explore this space effectively and efficiently.

2.2. POWERMARK FRAMEWORK 13

2.2.1 Framework overview

Figure 2.2 illustrates our powermark framework. The central piece in the
framework is a workload generator that generates a synthetic benchmark
from a set of workload characteristics. The synthetic benchmark is built
from a program skeleton; the workload characteristics give the synthetic
benchmark its behavioral characteristics of interest. Because finding the
workload characteristics that maximize or minimize power consumption
is non-trivial because of complex interactions between workload behavior
and the target hardware, we employ a genetic algorithm to automatically
evolve towards a powermark with desired power characteristics. The ge-
netic algorithm starts off with a number of randomly generated workload
profiles, each of which collects a number of workload characteristics. Each
workload profile serves as input to a workload generator, which in its turn
generates a synthetic benchmark from it with the desired workload charac-
teristics. Each synthetic benchmark is then run on real hardware (or a sim-
ulator) and power statistics are collected. If the measured power statistics
match the desired power statistics for at least one of the synthetic bench-
marks, we have found our powermark and the optimization process ends
— the synthetic benchmark is our powermark. If not, we yield to the ge-
netic algorithm to explore the workload space and try out new workload
profiles.

We now discuss the three steps in the framework: workload generator,
collection of power stats, and automated exploration.

2.2.2 Powermark generator

The workload generator takes a workload profile as input and generates a
synthetic benchmark. The synthetic benchmark follows a particular skele-
ton with a number of parameterized workload characteristics. The goal of
the genetic algorithm then is to search the set of parameterized character-
istics that make the resulting powermark satisfy the desired power charac-
teristics.

The synthetic benchmark skeleton consists of a number of compute-
intensive threads along with one disk thread and one network thread. The
network thread sends out network packets with a parameterized sleep time
between packets. The disk thread similarly reads at random locations on
the disk with parameterized sleep time between disk reads. The compute-
intensive threads can be configured through a number of parameters, such
as the number of threads, the size of memory accessed by an individual
thread only, the size of memory accessed by all threads to invoke cache co-
herency traffic, the strides with which the program traverses these regions
of memory, the instruction mix, and the inter-instruction dependencies to

14 CHAPTER 2. POWERMARK BENCHMARKS

Characteristic Description
network thread sleep time time between network packets
disk sleep time time between disk reads
no. of threads number of CPU-intensive threads
loop size number of instructions in the main loop of the

CPU-intensive thread
size of thread-local memory size of memory region accessed by an individual thread
size of thread-shared memory size of memory region accessed by all threads
memory stride profile stride and probability for traversing memory regions
dependency distance minimum dependency distance

counted as the number of dynamically executed instructions
between two dependent instructions

program instruction mix percentage arithmetic, memory and branch operations
memory mix profile percentage load-local, load-shared, store-local, store-shared
arithmetic mix profile percentage instruction type out of 18 types including

integer, floating-point (single-precision, double-precision),
SSE instructions

branch transition rate transition rate and probability

Table 2.1: Workload characteristics that serve as input to the synthetic
benchmark generator.

control Instruction-Level Parallelism (ILP). The reason for having separate
disk and network threads is to be able to stress both the disk and the net-
work while stressing the CPU and memory at the same time. We run the
powermark for 30 seconds at least.

A CPU thread consists of a loop of instructions over which it iterates,
see also Figure 2.3. The instructions in the loop are determined by the char-
acteristic dimensions, as we explain below. For each instruction in the loop,
we determine its type, its dependencies, its memory stride access pattern
(in case of a load or store) and its branch behavior (in case of a branch).
There are 43 characteristics in total, subdivided in 12 categories, see also
Table 2.1. The workload generator uses so-called characteristic dimensions
for the CPU threads. Each of these dimensions consists of a number of
value-probability pairs, and the sum of these pairs equals one within a di-
mension. We explain each of these dimensions in more detail now.

• The program mix dimension consists of three value-probability pairs:
one set for the probability of arithmetic operations, one for memory
operations, and one for branch operations. This dimension lays out
the instruction mix of a CPU thread.

• The arithmetic mix dimension holds 18 value-probability pairs, each
representing one type of arithmetic instruction, i.e., integer addition,
floating-point multiplication, SIMD, division, etc.

• The dependency distance dimension represents what the likelihood
is for observing a particular inter-instruction dependency distance in
the synthetic benchmark; dependency distance is defined as the num-
ber of dynamically executed instructions between a write and a read

2.2. POWERMARK FRAMEWORK 15

add/sub/SSE

branch

load/store

load/store
branch

branch

jump

lo
op

_s
ize

 in
sn

s

instruction type
& dependencies

thread-local or thread-
shared memory access

branch transition rate

memory stride pattern

Figure 2.3: The loop body of the CPU-intensive thread(s).

to a register or memory location. We keep track of 20 dependency
distances.

• The memory mix dimension holds 4 value-probability pairs, with
each pair representing one of the following: load operations on
thread-local memory, store operations on thread-local memory, load
operations on thread-shared memory, or store operations on thread-
shared memory.

• The memory stride dimension determines the stride value with
which (local or shared) memory is traversed, i.e., a stride value of
s means that if memory is read at location A, the next read will be at
location A+s. Multiple stride values can be specified with respective
likelihoods of occurrence.

• The branch dimension represents the branch transition rate [32], or
the number of times a branch switches between taken and not-taken,
divided by the number of times the branch is executed. Multiple tran-
sition rates can be specified with corresponding likelihoods of occur-
rence.

As mentioned before, we generate synthetic benchmarks in a high-level
programming language (C in our case), and not assembly. The reason for

16 CHAPTER 2. POWERMARK BENCHMARKS

doing so is to be able to more easily deploy our framework across plat-
forms. Generating synthetic benchmarks with specific behavioral charac-
teristics comes with a number of challenges that one would not encounter
when generating synthetic benchmarks at the assembly level. One issue re-
lates to generating SIMD instructions such as SSE and its further enhance-
ments in the x86 architecture. In order to force the compiler to generate
SIMD instructions — which we found to be a significant contributor to the
overall CPU power consumption (1.9 Watt per core on our baseline) — we
make use of vectorizable data types. Further, we generate C code such that
the compiler cannot optimize the code away through dead code elimina-
tion or copy propagation. This is done by letting each thread return a value
to the main thread that it computes based on all the computed values in
the thread. Finally, we want the desired code and branch characteristics
as we generate the synthetic benchmark to be preserved after compilation.
Therefore, we force the compiler to allocate variables in registers (by using
the -O1 flag and not -O0), and not to do loop hoisting or if-conversion —
this is done by using specific compiler flags when compiling the power-
marks. For the same reason, we randomize all variables at the start of the
execution of the synthetic benchmark in order to avoid constant folding
and copy propagation by the compiler.

2.2.3 Power monitoring

The next step is to run the synthetic benchmark on real hardware or on a
simulator. In our setup, we run the synthetic benchmark on real hardware
platforms and we measure power consumption at the power outlet. This
is done using the Racktivity RC0816 device [62], which measures power
usage in real-time. Since the power measurement device is connected to
a server’s power outlet, it measures full-system power consumption. The
Racktivity power monitoring device measures power consumption at a one
second time granularity within 0.1 Watt of accuracy. We measure maximum
(or minimum) power consumption observed during the course of the en-
tire program execution. Room temperature is kept constant at 24 degrees
Celsius. We measured measurement variability across multiple runs, and
we found the variability to be less than 0.1%.

2.2.4 Automated exploration

To drive the search process we employ a genetic algorithm, which is well
known to be effective in avoiding local optima. The genetic algorithm
searches the workload space by varying the workload characteristics in the
abstract workload description, and optimizes these characteristics towards
a powermark. As mentioned before, the genetic algorithm starts from a

2.3. POWERMARK EVALUATION 17

random set of so-called workload profiles. A workload profile character-
izes a workload through its characteristic dimensions. The collection of
these workload profiles is called a generation; there are 20 workload pro-
files in our setup. These workload profiles are evaluated according to the
objective function, also called the fitness function, i.e., a synthetic bench-
mark is generated and is run on real hardware and power stats are col-
lected. A new population, an offspring, which is a subset of these workload
profiles, is probabilistically selected. The likelihood for a workload profile
to be selected is determined by the workload profiles fitness functions, i.e.,
a fitter workload profile is more likely to be selected. The offspring consists
of 10 workload profiles. We also retain the single-best workload profile
across generations. Selection alone cannot introduce new workload pro-
files in the search space, therefore mutation and crossover are performed
to build the next generation of 20 workload profiles. Crossover is per-
formed, with probability pcross, by randomly exchanging parts of two se-
lected workload profiles from the current offspring. This means that we
exchange a number of characteristic dimensions among two workload pro-
files to create new workload profiles. The mutation operator prevents pre-
mature convergence to local optima by randomly altering parts of a work-
load profile, with probability pmut. Mutation changes some characteristic
dimensions in a workload profile to create a new one. The generational pro-
cess is continued until a specified termination condition has been reached.
In our experiments we specify the termination condition as the point when
there is little or no improvement in the objective function across succes-
sive generations or we have iterated 50 generations. In our setup, we set
pcross and pmut to 0.4 and 0.2, respectively; these parameters were deter-
mined experimentally. The end result of the genetic algorithm is an abstract
workload configuration for which the corresponding synthetic benchmark
stresses the objective function the most — this is our powermark. In this
work, we consider two objective functions, max power and min power.

2.3 Powermark evaluation

Evaluating powermarks is troublesome. The main difficulty is that one
cannot prove that a powermark that is optimized to maximize power con-
sumption effectively maximizes power consumption. In other words, one
cannot prove that there does not exist some other program that consumes
even more power than the powermark. This is true for both manually and
automatically generated powermarks.

Nevertheless, to assess our framework, we compare the power con-
sumed by the generated powermarks against a broad range of existing per-
formance benchmarks (SPEC CPU2006 and PARSEC) as well as a set of

18 CHAPTER 2. POWERMARK BENCHMARKS

Torture test Optimized for Language
burnBX stressing cache/memory interfaces x86 assembly
burnK6 AMD K6 x86 assembly
burnK7 AMD K7 x86 assembly
burnMMX stressing cache/memory interfaces x86 assembly
burnP5 Intel Pentium x86 assembly
burnP6 Intel Pentium Pro, II, II, Celeron x86 assembly
MPrime All CPUs, all ISAs C

Table 2.2: Torture tests.

Processor Full description Nameplate power
Opteron Quad-Core AMD Opteron Quad-Core 2350 2.0 GHz 380 W
Opteron Dual-Core 2x Dual-Core AMD Opteron 2212 HE 600 W
Athlon AMD Athlon XP 3000+ 350 W
Core i7 Intel Core i7 CPU 920 @ 2.67 GHz 500 W
Pentium 4 Intel Pentium 4 CPU @ 3.20 GHz 230 W
Atom Intel Atom CPU 330 @ 1.60 GHz 60 W

Table 2.3: Hardware platforms.

so-called torture tests. When running the single-threaded SPEC CPU2006
benchmarks, we run as many copies of a benchmark as there are hardware
thread contexts on the hardware platform. For the multi-threaded PARSEC
benchmarks, we run as many threads as there are hardware contexts. The
torture tests are single-threaded synthetic benchmarks designed to ‘torture’
or stress the hardware platform, see Table 2.2. We also run as many copies
of a torture test as there are hardware thread contexts on the platform.
We consider six hardware platforms in our evaluation, see Table 2.3. Fig-
ure 2.4 shows the power consumed by the various torture tests along with
the maximum power consumed by one of the SPEC CPU2006 and PAR-
SEC benchmarks (called ‘others’ in the legend). The torture tests generate
the largest power consumption for four out of the six hardware platforms,
albeit by a small margin only compared to the performance benchmarks.
For the Intel Atom and Pentium 4, two SPEC CPU benchmarks (dealII and
libquantum) exceed the torture tests.

Figure 2.5 quantifies by how much the powermarks exceed the max-
imum power consumed by the torture tests and the performance bench-
marks shown earlier (labeled ‘best power virus’). We consider two flavors
of powermarks: (i) a CPU powermark that maximizes CPU and memory
power but does not stress the other system components, and (ii) a full-
system powermark that maximizes power consumption of the entire sys-
tem (including the disk and the network). The CPU powermark increases
maximum system power consumed by up to 4% for the Intel Core i7 and
Atom platforms. The full-system powermark increases maximum power
consumed over the CPU powermark by up to slightly less than 3% for the
dual-socket AMD Opteron system. It is interesting to note that the largest

2.3. POWERMARK EVALUATION 19

AMD
Opteron
Quad Core

AMD
Opteron 2x
Dual Core

AMD
Athlon XP

Intel
Core i7

Intel
Pentium 4

Intel
Atom

0

50

100

150

200

250
burnBX
burnK6
burnK7
burnMMX
burnP5
burnP6
mprime
others

M
ax

 P
ow

er
 (

W
)

Figure 2.4: Power consumption for the torture tests versus SPEC CPU and
PARSEC (labeled ‘others’) on six hardware platforms.

AMD
Opteron
Quad Core

AMD
Opteron 2x
Dual Core

AMD
Athlon XP

Intel
Core i7

Intel
Pentium 4

Intel
Atom

94%

96%

98%

100%

102%

104%

106%

108%

110%

Best power virus Powermark (cpu-only) Powermark (full-system)

M
ax

 P
ow

er
(%

)

Figure 2.5: Power consumption of the powermarks versus the max torture
test and performance benchmarks.

20 CHAPTER 2. POWERMARK BENCHMARKS

powermark dealII tonto wrf sphinx3 perlbench
175

180

185

190

195

200

Maximum
Average

P
ow

er
 u

sa
g e

 (
W

)

Figure 2.6: Average and maximum power consumption for the power-
mark compared to the top-5 power-hungry performance benchmarks on
the AMD quad-core Opteron processor platform.

max power deltas are obtained for the most recent processors, namely the
AMD Opteron, Intel Core i7 and Intel Atom. This is most likely due to
aggressive clock gating in these processors: the workload has a significant
impact on what logic is active at a given point in time, and hence maximiz-
ing processor activity maximizes power consumption. The older proces-
sors, the AMD Athlon XP and Intel Pentium 4, presumably do not imple-
ment such aggressive clock gating, and hence a program might not have as
much impact on the amount of power the processor consumes. Although
the increase in max power consumption may seem small in absolute terms
between a CPU-centric powermark and a full-system powermark, we be-
lieve it is significant because the disk and network are powered on while
running a CPU powermark, and reading from a disk increases power con-
sumption by 3.1 Watts only in our setup.

It is insightful to take a look at how the average and maximum power
consumption of the powermark compares to the top-5 power-hungry per-
formance benchmarks, see Figure 2.6. Recall that our power monitor quan-
tifies power consumption at a one-second time granularity. The maximum
power consumption reported in this graph is the maximum power con-
sumption observed at a one-second granularity over the course of a bench-
mark’s entire execution; the average number is the average power con-
sumption over the entire benchmark execution. The gap between the max-
imum and average power consumption is smaller for the powermark than
for the performance benchmarks. This means that the powermark achieves
a high power consumption over a long period of time whereas the per-
formance benchmarks exhibits power peaks only (and the peaks are lower

2.3. POWERMARK EVALUATION 21

1 5 10 15 20 25 30 35 40 45 50
170

175

180

185

190

195

200

Generation

M
ax

 P
ow

er
 (

W
)

Figure 2.7: Convergence of the genetic algorithm on the AMD quad-core
Opteron system.

than for the max powermark).
The powermark framework also provides an opportunity to study how

workload characteristics affect power consumption. For illustrative pur-
poses, we now compare the characteristics of the powermarks generated
for the low-end Intel Atom versus the high-end Intel Core i7 processor sys-
tem. We find that the Core i7 powermark exhibits 5 times more ILP com-
pared to the Atom powermark, this means that the average dependency
distance between instructions is 5 times larger. Furthermore, the Core i7
powermark accesses much larger thread-local and thread-shared spaces.
This reflects the fact that the Core i7 is a wide superscalar out-of-order pro-
cessor with large caches whereas the Atom is a narrow in-order processor
with much smaller caches. Further, we observe a larger fraction of branches
for the Core i7 powermark, whereas the Atom powermark exhibits a larger
fraction of arithmetic and memory operations. Remarkably, the majority
of the arithmetic operations are SIMD (SSE) operations: 70% on the Core
i7 and 55% on the Atom. Further, the loads executed in the Core i7 pow-
ermark issue independent parallel memory accesses to stress the memory
hierarchy to the fullest.

Finally, Figure 2.7 illustrates how fast the genetic algorithm converges.
The randomly generated synthetic benchmarks at startup consume 179.2
Watt, whereas the powermark consumes 196.3 Watt, an increase by 17.1
Watt. The genetic algorithm converges to this maximum power consump-
tion relatively fast in 30 generations. This evolutionary search took 10 hours
of wall clock time.

22 CHAPTER 2. POWERMARK BENCHMARKS

0 10 20 30 40 50 60 70 80 90 100
120

140

160

180

200

220

240

260

Min model Max model Avg model
Max benchmarks Min benchmarks

CPU usage (%)

P
ow

er
 u

sa
g e

 (
W

)

Figure 2.8: Validating the power model on the Intel Core i7 system.

2.4 Full-system power modeling

A first application that we explore for the powermark framework is to build
system-level power models in an automated way. The idea is to generate
two powermarks, one that maximizes power consumption and one that
minimizes power consumption. We conjecture that the average between
the maximum powermark and the minimum powermark corresponds to
the average power consumption one would see across a large set of work-
loads. We found this to be true within 2.8%, see Figure 2.8. The vertical
axis shows power consumption and the horizontal axis shows CPU usage.
We consider both SPEC CPU2006 and PARSEC as our performance bench-
marks. For SPEC CPU, we run 1-core, 2-core, 3-core and 4-core workloads
by running multiple copies concurrently. For PARSEC, we run up to eight
threads: we run each thread on an individual core for up to four cores, and
beyond four threads, we schedule up to two threads per core through SMT
execution. We report the maximum and minimum power consumption (at
a one-second granularity) observed across those benchmarks. The perfor-
mance benchmarks all fall within the bounds reported by the system-level
power model. It is interesting to note that there is a knee in the curves
at 50% CPU usage, or at 4 cores. This is because the Intel Core i7 has four
cores with each core running two hardware SMT threads. Power consump-
tion increases at a faster pace during multi-core execution relative to SMT
execution.

Figure 2.9 shows similar results for two disk I/O intensive workloads,
namely scp and tar: power consumption never exceeds the error bounds
determined by the model. The key feature of this approach is that the
model was constructed in an automated way and is easily applied on

2.4. FULL-SYSTEM POWER MODELING 23

0 10 20 30 40 50 60
100

110

120

130

140

150

160

170

scp
Power model minimum
Power model maximum

CPU usage (%)

P
ow

er
 u

sa
g e

 (
W

)

0 10 20 30 40 50 60
100

110

120

130

140

150

160

170

tar
Power model minimum
Power model maximum

CPU usage (%)

P
ow

er
 u

sa
g e

 (
W

)

Figure 2.9: Validating the power model considering disk I/O intensive
workloads: scp on the top and tar on the bottom on the AMD quad-core
Opteron system.

24 CHAPTER 2. POWERMARK BENCHMARKS

AMD
Opteron
Quad Core

AMD
Opteron 2x
Dual Core

AMD
Athlon XP

Intel
Core i7

Intel
Pentium 4

Intel
Atom

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Cost overhead
Actual cost

N
or

m
al

iz
ed

 c
os

t (
%

)

Figure 2.10: Normalized energy cost for a server dimensioned for the name-
plate power consumption versus the max power consumption derived
from a system-level powermark.

different platforms. In addition, the power model provides bounds that
are determined in a systematic way using powermarks, in contrast to
prior work which obtains error bounds through statistics on a set of work-
loads [20] [66].

2.5 Data center dimensioning

A second application that we explore is to dimension the data center using
powermarks. The ‘nameplate’ power consumption of a server is typically
overly high (worst case) compared to what the server is really consuming,
e.g., the nameplate power consumption typically mentions what the server
might consume with all the options installed, such as maximum memory,
disk, PCI cards, etc. [6]. For example, the nameplate power consumption
for the Intel Core i7 is rated 500 Watt, however, our system-level power-
mark consumes around 250 Watt. (See Table 2.3 for the nameplate power
consumption for all of the hardware platforms.) This suggests that dimen-
sioning the data center for the system-level powermark’s power consump-
tion rather than the nameplate power consumption can lead to significant
cost reductions. In fact, some data center infrastructure providers charge
their clients based on the nameplate power consumption and not the maxi-
mum realizable power consumption. The energy cost reduction by dimen-
sioning on the maximum realizable power consumption is shown in Fig-
ure 2.10: normalized energy cost is shown as the normalized ratio of the
nameplate power consumption to the powermark’s power consumption.
Dimensioning using the max powermark can reduce total energy cost be-
tween 34% and 63% depending on the hardware platform.

Going one step further, we realize that only a minority of the programs

2.5. DATA CENTER DIMENSIONING 25

100

110

120

130

140

150

160

170

180

190

200

1h 2h 3h 4h 5h 6h 7h 8h 9h 10h 11h 12h 13h

Po
we

r u
sa

ge
 (W

)
Max stressmark

Threshold
Benchmarks

Figure 2.11: Dimensioning the server on a threshold power consumption
10% below the max powermark.

ever reach a power consumption level close to the max powermark. This
suggests that it might be cost-efficient to dimension the system for a power
consumption level below its max powermark, and have a monitoring and
feedback system in place that lowers processor activity if actual power con-
sumption exceeds the designed power level, so that in practice the system
(almost) never exceeds the designed lower level. This reduces cost signifi-
cantly while penalizing performance by a small margin only. We evaluated
this idea using the user-space Linux cpulimit tool which allows for con-
trolling the CPU usage of a process. In our experiment, we consider the
AMD quad-core Opteron and we run all of the SPEC CPU2006 and PAR-
SEC benchmarks one after another, and we set the threshold 10% below the
max powermark, see Figure 2.11. The policy is such that if the actual power
consumption exceeds the threshold — which it can for a short period of
time given current power supplies — we run the processor at a usage level
of 80% for 5 minutes. (Tuning the various parameters in this scheme is out
of scope of this work.) The performance penalty is limited to 5.3%, while
reducing cost by 10% compared to dimensioning with respect to the max
powermark, or 58% in total compared to the nameplate power.

26 CHAPTER 2. POWERMARK BENCHMARKS

2.6 Related work

There are a number of research topics that the powermark framework re-
lates to, which we discuss now.

Power viruses. Several sources report about power viruses for maximiz-
ing CPU power consumption [21] [25] [76]. These power viruses are de-
veloped manually which is time-consuming, tedious and error-prone. Re-
cently, Joshi et al. [38] proposed a framework for automatically generating
synthetic CPU power viruses from an abstract description of the workload;
Ganesan et al. [23] generate power viruses that stress the CPU and mem-
ory. All of these approaches focus on the CPU and memory only, generate
single-threaded power viruses, and do not stress the entire system. Fur-
ther, transferring these power viruses from one platform to another is hard
given that they are written in assembly. Our powermark environment on
the other hand generates multi-threaded full-system powermarks and the
framework is easily portable across platforms.

After publication of our original paper in IEEE Micro in 2011, several
works continued along this line of research towards power viruses. More
recently, Bertran et al. [9] and Kim et al. [41] focus on automatically build-
ing stressmarks for multi-core CPUs. This recent work only focuses on
stressing the CPU, while our framework generates full-system powermarks
that also stress other components like disks and network interfaces. Both
papers present a framework that generates powermarks at assembly lan-
guage level, while our framework generates powermarks in a high-level
programming language. Generating powermarks in a high-level language
makes it easier to use the framework on a wide range of hardware plat-
forms.

Power benchmarking. Power benchmarking has received increased in-
terest recently. In particular, SPEC released SPECpower ssj2008 [45] which
is a system-level, server-side Java workload that quantifies energy effi-
ciency under varying loads. SPECpower generates and completes a mix
of transactions and the reported throughput is the number of transactions
completed per second over a fixed period of time; the workload considers
11 levels of load. Rivoire et al. [67] present JouleSort, a sort benchmark that
reads its input from a file and writes its output to a file on a non-volatile de-
vice. There are three scale categories with 10 GB, 100 GB and 1 TB records,
and the benchmark aims at covering multiple domains, from embedded, to
mobile, as well as to the server domain. These power benchmarks do not
strive at maximizing power consumption as we do with the powermark
framework.

2.7. CONCLUSION 27

Power modeling. Power modeling has gotten significant interest over the
past decade. Some efforts focus on simulation approaches for design explo-
ration purposes, such as Wattch [13] and SimplePower [80]. Others have
proposed power modeling approaches for real hardware. Isci et al. [35]
for example use hardware performance counters for constructing a CPU-
component power model. Fan et al. [20] use a more coarse-grain power
model that builds on CPU utilization as the basis for modeling CPU power
consumption. Rivoire et al. [66] proposed a framework for estimating full-
system power consumption using CPU performance counters. The full-
system power model developed in this work fits in the category of coarse-
grain full-system models, and provides bounds on the power estimates.
Meisner et al. [53] note that for the purpose of accurately predicting peak
power consumption it is not sufficient to use average CPU utilization. The
authors demonstrate that they can more accurately model peak power con-
sumption by characterizing the relationship between server utilization and
power supply behavior.

Synthetic benchmarks. Synthetic benchmarks have a long history, going
back to Whetstone and Dhrystone which are manually crafted benchmarks
that aimed at representing real workloads. Manually building benchmarks
though is both tedious and time-consuming. More recent work focused on
automatically generating synthetic benchmarks from an abstract workload
description [8] [19] [37], the primary motivation being to speed up simula-
tion by generating short-running synthetic benchmarks that are represen-
tative for long-running performance benchmarks. The powermark frame-
work presented in this work builds on this body of work and generates
synthetic benchmarks with specific power characteristics.

2.7 Conclusion

Power modeling is vital given today’s focus on energy-efficiency. This
work proposed a framework for automatically generating full-system pow-
ermarks, or synthetic benchmarks with specific power characteristics. The
key novelty of the proposed framework is that it targets multi-core server
hardware and that the powermarks stress the entire system; prior work
focused on the CPU (and memory) only. The powermarks exceed power
consumption of existing performance benchmarks and torture tests by a
significant margin. Powermarks can be used for constructing full-system
power models that are reasonably accurate, easy to develop and use, and
provide error bounds; in addition, the powermarks can be used for dimen-
sioning power provisioning in server and data center infrastructures.

28 CHAPTER 2. POWERMARK BENCHMARKS

Chapter 3

Data-centric Workloads

The amount of data produced on the Internet is growing rapidly, often referred to
as ‘big data’. Along with data explosion comes the trend towards more and more
diverse data, including rich media such as audio and video. Data explosion and
diversity leads to the emergence of data-centric workloads to manipulate, manage
and analyze the vast amounts of data. These data-centric workloads are likely
to run in the background and include application domains such as data mining,
indexing, compression, encryption, audio/video manipulation, data warehousing,
etc. Instead of only optimizing the data center for maximum power, we now focus
on optimizing the data center for typical data-intensive applications, which enables
further reductions in TCO.

3.1 Introduction

In this chapter we study how the emerging class of data-centric workloads
affects design decisions in the data center. Through the architectural sim-
ulation of minutes of run time on a validated full-system x86 simulator,
we derive the insight that for some data-centric workloads, a high-end
server optimizes performance per total cost of ownership (TCO), whereas
for other workloads, a low-end server is the winner. This observation sug-
gests heterogeneity in the data center, in which a job is run on the most cost-
efficient server. Our experimental results report that a heterogeneous data
center achieves an up to 88%, 24% and 17% improvement in cost-efficiency
over a homogeneous high-end, commodity and low-end server data center,
respectively.

There are various factors affecting the cost of a data center, such as the
hardware infrastructure (the servers as well as the rack and switch infras-
tructure), power and cooling infrastructure as well as operating expendi-
ture, and real estate. Hence, warehouse-sized computers are very cost-
sensitive, need to be optimized for the ensemble, and operators drive their

29

30 CHAPTER 3. DATA-CENTRIC WORKLOADS

data center design decisions towards a sweet spot that optimizes perfor-
mance per dollar. For example, commercial offerings by companies such as
SeaMicro as well as ongoing research and advanced development projects
such as the EuroCloud project, target low-end servers to optimize data cen-
ter cost-efficiency.1,2

The emergence of warehouse-scale computers also leads to a dramatic
shift in the workloads run on today’s data centers. Whereas traditional data
center workloads include commercial workloads such as database man-
agement systems (DBMS) and enterprise resource planning (ERP), the data
centers in the cloud now run a new set of emerging workloads for online
web services, e.g., e-commerce, webmail, video hosting, social networks.
Users accessing these online Web services generate huge amounts of data,
both text and rich media (i.e., images, audio and video). The workloads
running on a warehouse-scale computer not only include the interactive
interface with the end user but also distributed data processing and stor-
age infrastructure. In addition, data analytics workloads need to run in the
data center ‘behind the scenes’ to manage, manipulate, and extract trends
from the vast amounts of online data. For example, an e-commerce appli-
cation will feature a data mining workload running in the background to
collect user profiles and make suggestions to its end users for future pur-
chases. Similarly, web search engines feature indexing workloads running
in the background to build up indices. Whereas traditional data center
workloads are well studied historically, see for example [39] [49] [64], and
online interactive workloads have emerged as a workload of interest in
recent research efforts [1] [47] [65], data-centric workloads have received
limited attention so far.

3.1.1 Data-centric workloads

We focus on the data-centric workloads that are likely to run as background
processes in data centers in the cloud, i.e., workloads such as data mining,
indexing, compression, encryption, rich media applications and data ware-
housing. We study how these data-centric workloads affect some of the
design decisions in the data center. Through full-system simulations using
a validated x86 simulator while simulating minutes of run time, we ex-
plore which server type optimizes the performance per dollar target metric
for this set of emerging workloads. We conclude that there is no clear win-
ner: for some workloads, a high-end server yields the best performance per
cost ratio, whereas for others, a middle-of-the-road server is a winner, and
for yet other workloads, a low-end server yields the best performance-cost
efficiency.

1http://www.seamicro.com/
2http://www.eurocloudserver.com/

3.1. INTRODUCTION 31

This result suggests the case for heterogeneous data centers in which
a workload is run on its most performance-cost efficient server. For our
set of workloads and experimental setup (which assumes equal weight
for all workloads), a homogeneous low-end server data center improves
performance-cost efficiency by 14% compared to a homogeneous high-end
server data center; we report an 18% better performance-cost efficiency for
a heterogeneous data center relative to a homogeneous data center with
high-end servers only. We also observe that a heterogeneous data center
with a collection of high-end servers and low-end servers achieves most of
the benefits that can be achieved through heterogeneity; adding middle-of-
the-road servers does not contribute much.

Obviously, the improvement achieved through heterogeneity very
much depends on the workloads that co-execute in the data center. Con-
sidering a wide range of workload mixes, we report performance-cost
efficiency improvements for a heterogeneous data center up to 88%, 24%
and 17% compared to homogeneous high-end, commodity and low-end
server data centers, respectively. Because estimating a data center’s to-
tal cost of ownership is non-trivial, we also report results quantifying the
performance-cost efficiency as a function of the cost ratio between the
various server types, and by doing so, we determine the sweet spot for het-
erogeneous data centers. Finally, we present a comprehensive analysis to
gain insight into where the benefit comes from. In the cases where the high-
end server achieves a better performance-cost efficiency, the higher cost is
offset by the higher throughput achieved through higher clock frequency,
lower execution cycle counts and larger core counts. For the benchmarks
for which the low-end processor is more performance-cost beneficial, the
higher throughput achieved on the server is not offset by its higher cost.

We believe this is an interesting result given the current debate in the
community on high-end versus commodity (middle-of-the-road) versus
low-end servers for the data center [55] [59]. In particular, Lim et al. [47]
conclude that lower-end consumer platforms and low-cost, low-power
components from the high-volume embedded/mobile space may lead
to a 2× improvement in performance per dollar. Reddi et al. [65] sim-
ilarly conclude that a low-end Atom processor is more favorable than
a high-end Intel Xeon for an industry-strength online web search en-
gine, although these processors would benefit from better performance
to achieve better quality-of-service and service-level agreements. In spite
of these recent studies pointing towards low-end embedded servers for
performance-cost efficient data centers, there is no consensus as to whether
contemporary data centers should consider high-end versus low-end ver-
sus middle-of-the-road server nodes [55] [59]. Some argue for low-end
‘wimpy’ servers (see T. Mudge’s statement in [55]) whereas others argue
for high-end servers, and yet others argue for middle-of-the-road ‘brawny’

32 CHAPTER 3. DATA-CENTRIC WORKLOADS

servers (see U. Hölzle’s statement in [55]). We conclude there is no single
answer. For some workloads, high-end servers are most performance-cost
efficient, whereas for other workloads, low-end embedded processors are
most efficient.

3.1.2 Contributions and outline

This work makes the following contributions.

• We collect a set of data-centric workloads and we study how these
workloads affect design decisions in the data center. Recent work in
architectural studies for the data center considered online interactive
workloads for the most part, and did not consider data-centric work-
loads. Running data-centric workloads requires minutes of run time
on large data sets. We employ full-system simulation for doing so
using a validated architectural simulator.

• We obtain the result that high-end and middle-of-the-road servers
can be more cost-efficient than low-end servers for running data-
centric workloads. This is in contrast to recent work, see for ex-
ample [1] [47] [65], which argues for lower-end servers to optimize
cost-efficiency and/or energy-efficiency in the data center. The rea-
son for this outcome is that data-centric workloads are computation-
intensive and frequency-sensitive, hence, high-end and middle-of-
the-road servers yield a substantially better performance per cost
ratio.

• We demonstrate that for some sets of data-centric workloads, a het-
erogeneous data center in which each workload runs on its most cost-
efficient server, can yield significant cost savings.

• We provide detailed sensitivity analyses to gain insight in the bene-
fits of heterogeneity and how it varies with workload mixes, server
infrastructure cost and energy cost. In particular, we demonstrate
that heterogeneity is beneficial for a range of cost ratios between a
high-end versus a low-end server. Further, we demonstrate that the
benefit from heterogeneity is higher at lower energy costs.

The remainder of this chapter is organized as follows. We first describe
the data-centric workloads that we consider in this study (Section 3.2). We
subsequently detail on the data center modeling aspects and our experi-
mental setup (Section 3.3). We then describe our results (Section 3.4) and
provide sensitivity analyses (Section 3.5). Finally, we discuss related work
(Section 3.6) and conclude (Section 3.7).

3.2. DATA-CENTRIC WORKLOADS 33

3.2 Data-Centric Workloads

3.2.1 Data explosion and diversity in the cloud

A prominent trend that we observe in the cloud is data explosion, also re-
ferred to as ‘big data’. The amount of online data has grown by a factor
of 56× over 7 years, from 5 exabytes of online data in 2002 to 281 exabytes
in 2009 — a substantially larger increase compared to Moore’s law (16×
over 7 years) [63]. The reason comes from the emergence of interactive In-
ternet services (e.g., e-commerce, web mail) and Web 2.0 applications such
as social networking (e.g., Facebook, Twitter), blogs, wikis, etc., as well as
ubiquitous access to online data through various mobile devices such as
netbooks and smartphones.

Along with data explosion comes the trend of increasingly diverse data,
including structured data, unstructured data and semi-structured data. In
addition, the data stored in Web 2.0 applications is increasingly rich media,
including images, audio and video.

Data explosion and diversity preludes a novel area of data-centric
workloads in the cloud to manipulate the data, manage this huge data
volume, extract useful information from it, derive insight from it, and
eventually act on it. Hence, it is important to study these workloads and
understand how this emerging class of workloads may change how data
centers are optimized for performance-cost efficiency.

3.2.2 A data-centric benchmark suite

Motivated by this observation, we collected a number of benchmarks to
represent the emerging application domain of data-centric workloads. We
identify a number of categories such as data mining, indexing, security,
rich media, compression, and data warehousing. Each of these categories
prelude important emerging applications in data-centric workloads. We
select benchmarks for each of these categories, see also Table 3.1.

Data mining. Analyzing the data is absolutely crucial to gain insight from
it and eventually act on it. This requires data mining, statistical analysis
and machine learning to extract and understand the underlying phenom-
ena. We include three data mining benchmarks, namely kmeans, eclat and
hmmer. The kmeans benchmark is a clustering workload that discovers
groups of similar objects in a database to characterize the underlying data
distribution. Clustering algorithms are often used in customer segmenta-
tion, pattern recognition, spatial data analysis, etc. Our dataset includes
100 K data points in an 18-dimensional space and groups these points in 50
clusters. The eclat benchmark is a typical Association Rule Mining (ARM)

34 CHAPTER 3. DATA-CENTRIC WORKLOADS

workload to find interesting relationships in large data sets (466 MB in our
case). The benchmark tries to find all subsets of items that occur frequently
in a database. The hmmer benchmark involves the pfam collection of mul-
tiple sequence alignments and hidden Markov models (HMM) covering
many common protein domains and families. It is used for running the
hmmpfam executable, part of the HMMER package. Its input is a sequence
of 9,000 residues that is being compared against 2,000 HMMs.

Indexing. Analyzing the data often requires indexing the data to enable
efficient searching. We include the Apache lucene text search engine. In our
case, the lucene crawler builds an index for 50 K Wikipedia pages (647 MB
in total). The lucene benchmark is a Java workload and runs on the Open
JDK JVM v6.

Data compression. Storing huge volumes of data requires compression
and decompression in order to be able to store the data on disk in an effi-
cient way. Our benchmark suite includes the tarz application which con-
sists of the standard GNU tar utility to create an archive from, in our case,
a set of PDF and text files. The archive is compressed using gzip (GNU
zip). Gzip reduces the size of the archive using Lempel-Ziv (LZ77) encod-
ing. The uncompressed input equals 1.2 GB in size and is compressed to
273 MB.

Data security. Data stored in the cloud may be proprietary or personal,
and third parties should not access this data. Data encryption is thus re-
quired to secure the data. We consider gpg (GNU Privacy Guard) as part of
our benchmark suite. We sign and encrypt the same 1.2 GB archive as for
the compression benchmark.

Rich media applications. As mentioned before, the data stored online is
becoming more and more rich media, including audio (e.g., iTunes, MyS-
pace, Spotify), images (e.g., flickr), video (e.g., YouTube), as well as vir-
tual reality (e.g., online games). We include three benchmarks to cover
rich media applications, namely blender, bodytrack and x264. The blender
benchmark is a 3D graphics rendering application for creating 3D games,
animated film and visual effects. We render 40 frames from a 3D scene
including objects, and shadow, lightning and mirroring effects. The body-
track benchmark is a computer vision application that tracks a human body
with multiple cameras through an image sequence. As input data we con-
sider 200 frames from 4 cameras with 4,000 particles in 5 annealing layers
(input data set of 477 MB). The x264 benchmark is an application for en-
coding video streams in H.264 format. Its input is a 1.5 GB video file.

3.2. DATA-CENTRIC WORKLOADS 35

Classical business logic. Next to these emerging workloads, classical
business logic will remain to be an important workload. We include Pseu-
doSPECjbb2005, a modified version of SPECjbb2005 that executes a fixed
amount of work rather than for a fixed amount of time. SPECjbb models
the middle tier (the business logic) of a three-tier business system contain-
ing a number of warehouses that serve a number of districts. There are
a set of operations that customers can initiate, such as placing orders or
requesting the status of an existing order. PseudoSPECjbb, in our setup,
processes 4 M operations in total.

Both multi-threaded as single-threaded workloads. As mentioned in Ta-
ble 3.1, we gathered these benchmarks from various sources. Some bench-
marks come from existing benchmark suites (PARSEC [10], MineBench [56],
BioPerf [4]), while others were derived from real-life applications (Apache
lucene, blender, GNU gpg, GNU tarz). Half the benchmarks are multi-
threaded workloads (blender, bodytrack, kmeans, specjbb, x264); the oth-
ers are single-threaded (hmmer, eclat, gpg, lucene, tarz). The inputs for
these workloads were chosen such that the run time on a dual-processor
dual-core AMD Opteron 2212 machine is on the order of minutes, see also
Table 3.1. We simulate these workloads to completion.

Workload data set sizes. All the workloads run on data sets with hun-
dreds of MBs or on the order of GBs of data. Although the data sets may
be even bigger in real setups, we believe this is a reasonable assumption
for our purpose, because these data sets do not fit in the processor’s caches
anyway. Hence, simulating even larger data sets is unlikely to change the
overall conclusions. We simulate these workloads for minutes of real time,
see also Table 3.1, or hundreds of billions of instructions, which is unusual
for architecture simulation studies.

36 CHAPTER 3. DATA-CENTRIC WORKLOADS

C
at

eg
or

y
Be

nc
hm

ar
k

So
ur

ce
D

es
cr

ip
ti

on
R

un
ti

m
e

da
ta

co
m

pr
es

si
on

ta
rz

G
N

U
C

re
at

e
an

ar
ch

iv
e

an
d

co
m

pr
es

s
th

e
fil

es
1m

10
s

da
ta

m
in

in
g

km
ea

ns
M

in
eB

en
ch

M
ea

n-
ba

se
d

da
ta

cl
us

te
ri

ng
1m

50
s

ec
la

t
M

in
eB

en
ch

A
ss

oc
ia

ti
on

ru
le

m
in

in
g

to
fin

d
in

te
re

st
in

g
re

la
ti

on
sh

ip
s

in
1m

56
s

la
rg

e
da

ta
se

ts
hm

m
er

Bi
oP

er
f

C
om

pa
re

s
se

qu
en

ce
al

ig
nm

en
ts

ag
ai

ns
th

id
de

n
M

ar
ko

v
m

od
el

s
3m

30
s

da
ta

in
de

xi
ng

lu
ce

ne
A

pa
ch

e
A

pa
ch

e
te

xt
se

ar
ch

in
de

xe
r

lib
ra

ry
w

ri
tt

en
in

Ja
va

1m
59

s
da

ta
se

cu
ri

ty
gp

g
G

N
U

Si
gn

an
d

en
cr

yp
tfi

le
s

1m
30

s

ri
ch

m
ed

ia
bl

en
de

r
Bl

en
de

r
Fo

un
da

ti
on

3D
gr

ap
hi

cs
re

nd
er

in
g

fo
r

cr
ea

ti
ng

3D
ga

m
es

,a
ni

m
at

ed
fil

m
2m

15
s

or
vi

su
al

ef
fe

ct
s

bo
dy

tr
ac

k
PA

R
SE

C
Bo

dy
tr

ac
ki

ng
us

in
g

m
ul

ti
pl

e
ca

m
er

as
1m

38
s

x2
64

PA
R

SE
C

En
co

di
ng

vi
de

o
st

re
am

s
in

H
.2

64
fo

rm
at

1m
15

s
bu

si
ne

ss
SP

EC
jb

b2
00

5
SP

EC
M

id
dl

e-
ti

er
of

se
rv

er
-s

id
e

Ja
va

pe
rf

or
m

an
ce

2m
09

s

Ta
bl

e
3.

1:
O

ur
se

t
of

da
ta

-c
en

tr
ic

be
nc

hm
ar

ks
:

th
ei

r
ca

te
go

ry
,s

ou
rc

e,
de

sc
ri

pt
io

n
an

d
ru

n
ti

m
e

on
a

du
al

-s
oc

ke
t

du
al

-c
or

e
A

M
D

O
pt

er
on

22
12

m
ac

hi
ne

.

3.3. DATA CENTER MODELING 37

3.3 Data center Modeling

Data center design is very much cost driven, and design decisions are
driven by two key metrics, namely performance and cost [6]. Cost is not
limited to hardware cost, but also includes power and cooling as well as
data center infrastructure cost. A recently proposed metric for Internet-
sector environments is performance divided by total cost of ownership
(TCO) and quantifies the performance achieved per dollar [47]. We now
describe how we quantify cost and performance in the following two sub-
sections, respectively.

3.3.1 TCO modeling

We build on the work by Lim et al. [47] to quantify data center cost. A
three-year depreciation cycle is assumed and cost models are provided for
hardware cost, as well as power and cooling costs. Hardware cost includes
the individual components (CPU, memory, disk, board, power and cool-
ing supplies, etc.) per server. Power and cooling cost includes the power
consumption of the various server and rack components. The cooling cost
includes infrastructure cost for power delivery, infrastructure cost for cool-
ing, and the electricity cost for cooling.

We consider three server types: a high-end server, a low-end embedded
processor and a middle-of-the-road (commodity) server. Table 3.2 describes
their configurations and their cost models. The high-end server that we
simulate is modeled after the Intel Xeon X5570; we assume an eight-core
machine running at 3 GHz with a fairly aggressive out-of-order processor
core along with an aggressive memory hierarchy.3 The low-end processor
is a dual-core embedded processor running at 1.2 GHz with a modest core
and memory hierarchy, and is modeled after the Intel Atom Z515 processor.
The commodity system is somewhat in the middle of the road between
the high-end and low-end systems. We assume 4 cores at 2 GHz and we
model it after the Intel Core 2 Quad. The cost for each of the components
is derived from a variety of sources.4,5,6 We use these default costs for
reporting a reasonable design point given today’s technology. Note that we
do account for the server Network Interface Card (NIC) cost as part of the
‘board and management’ cost. We do not account for the network itself; we
basically assume that network cost is constant across different data center
configurations. We believe this is a reasonable first-order approximation,

3The Intel Xeon X5570 implements 4 cores and 2 hardware threads per core
4http://ark.intel.com/Product.aspx?id=40740
5http://www.newegg.com/Product/Product.aspx?Item=N82E16813131358
6http://ark.intel.com/Product.aspx?id=40816&processor=Q8200S&spec-

codes=SLG9T

38 CHAPTER 3. DATA-CENTRIC WORKLOADS

Processor configuration
high-end middle low-end

frequency 3 GHz 2 GHz 1.2 GHz
#cores 8 4 2
OOO core 4-wide 3-wide 2-wide
ROB size (#insns) 160 90 40
mem latency (cycles) 120 80 40
private L1 caches 64 KB 32 KB 32 KB
L1 prefetching yes yes no
private L2 caches 256 KB NA NA
shared LLC cache 8 MB 2 MB 1 MB
LLC prefetching yes no no
branch predictor 4 KB, 14 b hist 2 KB, 10 b hist 1 KB, 8 b hist

Cost model
high-end middle low-end

CPU 1,386 213 45
board and mngmnt 330 145 50
memory 265 113 98
total hardware cost 1,981 471 193
CPU power (TDP) 95 65 1.4
server & rack power 300 100 22
cooling 300 100 22
total power (Watt) 600 200 44
power cost 3-year 2,680 894 197
total cost 3-year 4,662 1,365 390

Table 3.2: Processor configurations and their cost models (in Euro).

given that networking accounts for 8% of the total data center cost only [29].
Further, because cost depends on many sources and varies over time, we
vary the relative cost ratios across platforms in order to understand cost
sensitivity in Section 3.5. In other words, if server cost and/or network
cost were to differ across data center configurations, this can be accounted
for through these cost ratios.

We consider a default energy cost of 17 Eurocent per kWh, unless men-
tioned otherwise. This is a typical private tariff rate; industry tariff rate may
be as low as 10 Eurocent per kWh and below, hence, we explore a range of
electricity costs in the evaluation section of this chapter.

3.3.2 Performance modeling

We use HP Labs’ COTSon simulation infrastructure [2] which uses AMD’s
SimNow [7] as its functional simulator to feed a trace of instructions into a
timing model. COTSon can simulate full-system workloads, including the
operating system, middleware (e.g., Java virtual machine) and the applica-
tion stack. In this study, we use the COTSon-based simulator by Ryckbosch

3.4. OPTIMIZING THE DATA CENTER 39

et al. [68], which has been validated against real hardware and which runs
at a simulation speed of 37 MIPS with sampling enabled. This high simula-
tion speed enables us to run the data-centric workloads on sufficiently large
datasets for minutes of real time. The sampling strategy assumed is peri-
odic sampling: we consider 100 K instruction sampling units every 100 M
instructions and 1 M instructions prior to each sampling unit for warming
the caches and predictors.

We quantify performance as throughput or the number of jobs that can
be completed per unit of time. Because the workloads that we consider
are supposed to run as background processes in the cloud — these work-
loads are non-interactive with the end users — we believe throughput is
the right performance metric. For each platform we compute the best pos-
sible throughput that can be achieved. For the single-threaded benchmarks
this means we run multiple copies of the same benchmark concurrently on
the multi-core processor and we vary the number of copies (e.g., for the
high-end server, from one copy up to eight copies), and we then report the
best possible throughput that was achieved (for the same input set). For
the multi-threaded benchmarks, we vary both the number of copies and
the number of threads (e.g., on an 8-core system we consider 1 copy with
8 threads, 2 copies with 4 threads, etc.), and we report the best possible
throughput.

3.4 Optimizing the data center

3.4.1 Which server type is optimal?

Figure 3.1 quantifies performance per TCO efficiency for the high-end,
middle-of-the-road and low-end servers, normalized to the high-end server.
Performance per TCO efficiency is defined as TCO divided by perfor-
mance, or the reciprocal of performance per TCO. Hence, performance per
TCO efficiency is a lower-is-better metric. The interesting observation from
Figure 3.1 is that there is no single winner: there is no single server that
yields the best performance per TCO across all the workloads. For most
workloads, the low-end server results in the lowest performance per TCO
efficiency, however, for a couple workloads, the high-end server is the most
performance per TCO efficient system, see for example kmeans and x264.

40 CHAPTER 3. DATA-CENTRIC WORKLOADS

0
%

2
0
%

4
0
%

6
0
%

8
0
%

1
0
0
%

1
2
0
%

1
4
0
%

b
le

n
d
e
r

b
o
d
y
tr

a
c
k

e
c
la

t
g
p
g

h
m

m
e
r

k
m

e
a
n
s

lu
c
e
n
e

s
p
e
c
jb

b

ta
rz

x
2
6
4

N
o

rm
a

liz
e

d
 T

C
O

 /
 J

o
b

h
ig

h
-e

n
d

c
o
m

m
o
d
it
y

lo
w

-e
n
d

Fi
gu

re
3.

1:
N

or
m

al
iz

ed
pe

rf
or

m
an

ce
pe

r
TC

O
ef

fic
ie

nc
y

(l
ow

er
is

be
tt

er
)

fo
r

th
e

hi
gh

-e
nd

,t
he

m
id

dl
e-

of
-t

he
-r

oa
d

an
d

th
e

lo
w

-e
nd

se
rv

er
s.

-1
.5

0

-1
.0

0

-0
.5

0

0
.0

0

0
.5

0

1
.0

0

1
.5

0

b
le

n
d

e
r

b
o

d
y
tr

a
c
k

e
c
la

t
g

p
g

h

m
m

e
r

k
m

e
a

n
s

lu
c
e

n
e

s
p

e
c
jb

b

ta
rz

x
2

6
4

delta (logarithmic scale)

T
C

O

fr
e

q
u

e
n

c
y

#
c
y
c
le

s

n
o

.
p

a
ra

lle
l
jo

b
s

Fi
gu

re
3.

2:
Pe

rf
or

m
an

ce
pe

r
TC

O
st

ac
ks

fo
r

qu
an

ti
fy

in
g

th
e

di
ff

er
en

tf
ac

to
rs

;h
ig

h-
en

d
ve

rs
us

lo
w

-e
nd

pr
oc

es
so

rs
.

3.4. OPTIMIZING THE DATA CENTER 41

It is also interesting to note that for a couple workloads, namely gpg,
hmmer and tarz, the middle-of-the-road server yields the best performance
per TCO efficiency, albeit the difference with the low-end server is very
small. The result that high-end and middle-of-the-road servers are more
cost-efficient than low-end servers for some data-centric workloads is
surprising and is in contrast to common wisdom and recently reported
studies [1] [47] [65] which argued for lower-end servers to optimize cost-
efficiency in the data center.

The reason is that these workloads are computation-intensive which
makes the high-end and commodity servers yield a better performance per
cost ratio, as we explain next. It must be noted that these conclusions hold
true for our workloads, but more study is needed before we can general-
ize these results to a much broader range of data-centric workloads, and
Internet-sector workloads in general.

3.4.2 Where does the benefit come from?

In order to get some insight as to why a particular server type is a winner
for a particular workload, we break up the performance per TCO metric
into its contributing components, using the following formula:

performance per TCO =
no. parallel jobs · freq

#cycles
TCO

. (3.1)

The denominator quantifies cost for which we assume a 3-year depreci-
ation cost cycle. The nominator quantifies throughput as the number of
parallel jobs multiplied by the performance per job, or the reciprocal of the
job’s execution time; we measure throughput as the number of jobs that can
be completed over a three-year time period. Figure 3.2 quantifies the con-
tributing components when comparing the high-end versus the low-end
server. The vertical axis is on a logarithmic scale. The contributing com-
ponents are additive on a logarithmic scale, or multiplicative on a nominal
scale. A negative component means that the component is a contributor
in favor of the low-end server. In particular, TCO is always in favor of the
low-end server because the TCO for the low-end server is about 12 times as
low as for the high-end server. A positive component implies that the com-
ponent is a contributor in favor of the high-end server. For example, fre-
quency is a significant positive contributor for the high-end server: 3 GHz
versus 1.2 GHz, a 2.5× improvement. Also, the number of parallel jobs is
a significant contributor for the high-end server for most workloads. This
means that the high-end server benefits from its ability to run multiple jobs
in parallel, and hence achieve a higher throughput than the low-end server.
Note that for some benchmarks, e.g., lucene and specjbb, this component

42 CHAPTER 3. DATA-CENTRIC WORKLOADS

is only half as large as for the other benchmarks. This is due to the fact
that 4 copies is the optimum for these benchmarks on the high-end servers
versus 2 copies on the embedded server, whereas for the other benchmarks
8 copies is the optimum on the high-end server. Finally, the third positive
contributor is the number of execution cycles; this means that the execution
time in number of cycles is smaller on the high-end server compared to
the low-end server. For most benchmarks, the number of execution cycles
is roughly the same for the high-end and low-end servers, which implies
that on the low-end server, the reduction in memory access time (in cycles)
is compensated for by the increase in the number of cycles to do useful
work (smaller processor width on the low-end server) and the increase in
the number of branch mispredictions and cache misses (due to a smaller
branch predictor and smaller caches on the low-end server). The number
of execution cycles is a positive contributor for the high-end server for three
benchmarks though, namely kmeans, specjbb and x264. In other words,
the high-end server benefits significantly from the larger caches and branch
predictor as well as the larger width compared to the low-end server for
these workloads.

3.4.3 Does multi-threading help?

As mentioned before, half the workloads are multi-threaded and we opti-
mize the data center for optimum throughput at the lowest possible cost.
An interesting question is whether multi-threading helps if one aims for
maximizing throughput. In other words, for a given workload for which
there exists both a sequential and a parallel version, should we run mul-
tiple copies of the sequential version simultaneously, or are we better off
running a single copy of the multi-threaded version? This is a non-trivial
question for which an answer cannot be provided without detailed experi-
mentation. On the one hand, parallel execution of sequential versions does
not incur the overhead that is likely to be observed for the parallel version
because of inter-thread communication and synchronization. On the other
hand, multiple copies of sequential versions may incur conflict behavior
in shared resources, e.g., the various sequential copies may incur conflict
misses in the shared cache.

Table 3.3 summarizes the optimum workload configuration on each
of the servers in terms of the number of instances of each workload and
the number of threads per workload. For all of the multi-threaded work-
loads, except for specjbb, running multiple copies of the single-threaded
workload version optimizes throughput. It is remarkable to see that multi-
threading does not help in maximizing throughput for the data-centric
workloads. Running multiple sequential versions yields higher through-
put compared to running a single parallel version; co-running sequential

3.4. OPTIMIZING THE DATA CENTER 43

high-end middle low-end
blender c8t1 c4t1 c2t1
bodytrack c8t1 c4t1 c2t1
eclat c8t1 c4t1 c2t1
gpg c8t1 c4t1 c2t1
hmmer c8t1 c4t1 c2t1
kmeans c8t1 c4t1 c2t1
lucene c4t1 c4t1 c2t1
specjbb c4t2 c2t2 c2t1
tarz c8t1 c4t1 c2t1
x264 c8t1 c4t1 c2t1

Table 3.3: Workload configurations that maximize throughput on the high-
end, commodity and low-end servers; ‘cxty’ means ‘x’ copies of the same
workload with ‘y’ threads.

results

Page 1

homogeneous
high-end only

homogeneous
commodity only

homogeneous
low-end only

heterogeneous
0%

20%

40%

60%

80%

100%

N
o

rm
a

liz
e

d
 d

a
ta

 c
e

n
te

r
co

st

Figure 3.3: Normalized cost for iso-throughput homogeneous data centers
with high-end, middle-of-the-road and low-end servers only, versus a het-
erogeneous data center.

versions does not incur significant conflict behavior in shared resources.

3.4.4 The case for a heterogeneous data center

The results shown above suggest that a heterogeneous data center in which
a job is executed on the most cost-efficient server, may be beneficial. In
order to quantify the potential of a heterogeneous data center for data-
centric workloads, we consider four iso-throughput data center configura-
tions. We consider three homogeneous data centers (with high-end servers
only, middle-of-the-road servers only, and low-end servers only) as well
as a heterogeneous data center. We assume the same workloads as before
and we assume that all of these workloads are equally important — they
all get the same weight. All of the data center configurations achieve the
same throughput (for all of the workloads), hence, a data center with low-

44 CHAPTER 3. DATA-CENTRIC WORKLOADS

1.00

1.10

1.20

1.30

1.40

1.50

1.60

1.70

1.80

1.90

2.00

relative to
homogeneous high-

end only

relative to
homogeneous

commodity only

relative to
homogeneous low-end

only

improvement in performance-cost efficiency

avg max

Figure 3.4: Cost reduction for a heterogeneous data center relative to ho-
mogeneous data center configurations across all possible two-benchmark
workloads.

end servers needs to deploy more servers to achieve the same throughput
as the homogeneous high-end server data center. The heterogeneous data
center is configured such that it minimizes cost while achieving the same
throughput as the homogeneous data centers.

Figure 3.3 quantifies data center cost normalized to the homogeneous
high-end server data center. A homogeneous data center with commodity
servers reduces cost by almost 12% and low-end servers reduce data center
cost by 14%. A heterogeneous data center reduces cost by 18%. Clearly,
optimizing the data center’s architecture has a significant impact on cost.
Even homogeneous data centers with commodity and low-end servers can
reduce cost significantly. Heterogeneity reduces cost even further, although
not by a large margin. However, this is very much tied to the workloads
considered in this study. As shown in Figure 3.1, only two out of the ten
workloads are run most efficiently on the high-end server. Hence, depend-
ing on the workloads, cost reduction may be larger or smaller.

In order to get a better view on the potential of heterogeneity as a func-
tion of its workload, we now consider a large variety of different work-
load mixes. The previous experiment assumed that all the workloads are
equally important, simply because we do not have a way for determining
the relative importance of these workloads in real data centers. We now
consider a more diverse range of workload types: we consider all possible
two-benchmark workload mixes and determine the potential benefit from

3.5. SENSITIVITY ANALYSES 45
Sheet1

Page 1

0% 20% 40% 60% 80% 100%
0%

20%

40%

60%

80%

100%

% Low-end

%
 C

o
m

m
o

d
ity

Figure 3.5: Configuration of the optimum heterogeneous data center:
the fraction of low-end and commodity servers; the fraction of high-end
servers equals one minus the fraction of low-end and commodity servers.

heterogeneity; this is to study how sensitive a heterogeneous data center
is with respect to its workload. In other words, for each possible two-
benchmark workload mix, we determine the cost reduction through het-
erogeneity relative to homogeneous data centers, see Figure 3.4. On aver-
age, a heterogeneous data center improves cost by 25%, 8% and 4%, and up
to 88%, 24% and 17% relative to a homogeneous high-end, commodity and
low-end server data center, respectively. (We consider the two-benchmark
workload mixes for the remainder of this chapter.)

We now zoom in on the architecture of a heterogeneous data center. We
therefore consider the workload mixes for which we observe a throughput
benefit of at least 30% for heterogeneity compared to a homogeneous data
center consisting of high-end servers only. Figure 3.5 plots the fraction of
low-end and commodity servers in a heterogeneous data center; one minus
these two fractions is the fraction of high-end servers. The size of the disks
relate to the number of cases (workload mixes) for which we observe a
particular configuration. We observe that the optimum heterogeneous data
center typically consists of a relatively large fraction low-end servers and
smaller fractions of commodity and high-end servers.

3.5 Sensitivity analyses

The results presented so far assumed the default parameters relating to
data center cost mentioned in Section 3.3. Meaningful cost parameters are
not easy to obtain because they are subject to a particular context, e.g., en-
ergy cost relates to where the data center is located, hardware purchase

46 CHAPTER 3. DATA-CENTRIC WORKLOADS

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0%

5%

10%

15%

20%

25%

30%

35% Maximum
Average

Server-Embedded cost ratio

R
ed

uc
tio

n
in

 T
C

O

EmbeddedHeterogeneousServer

Figure 3.6: Cost reduction through heterogeneity as a function of the cost
ratio between the high-end vs. low-end servers.

cost depends on the number of hardware items purchased, etc. In order to
deal with the cost uncertainties, we therefore perform a sensitivity analy-
sis with respect to the two main cost factors, hardware purchase cost and
energy cost.

3.5.1 Varying the cost ratio

So far, we considered fixed costs for the various server types, as shown in
Table 3.2. However, cost may vary depending on the number of servers
that are bought — we assumed a fixed price per server. In addition, prices
fluctuate over time. Hence, making a quantitative statement about which
system is most performance-cost efficient at a given point in time, is sub-
ject to the cost ratios and thus it is not very informative. Instead, we also
report the cost reduction through heterogeneity as a function of the cost ra-
tio between the high-end and the low-end server, see Figure 3.6. The cost
reduction reported here is the cost reduction over the best possible homo-
geneous data center. In case a high-end server is less than 5 times more
expensive than a low-end server, then a high-end server is the clear win-
ner, and there is no need for heterogeneity: a homogeneous high-end server
data center optimizes the performance per dollar metric. In case a high-end
server is more than 15 times more expensive that a low-end server, then a
homogeneous data center with low-end servers is the optimal data center
configuration. For cost ratios between 5× and 15×, performance per cost
is optimized through heterogeneity. A 10× cost ratio yields the best possi-
ble benefit through heterogeneity, with an average reduction in cost of 8%
and up to 31% for some workload mixes. As a point of reference, the cost

3.5. SENSITIVITY ANALYSES 47

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
0%

5%

10%

15%

20%

25%
Max (excl Commodity)
Max (incl. Commodity)
Average (excl. Commodity)
Average (incl. Commodity)

Energy cost (eurocent per kWh)

R
ed

uc
tio

n
in

 T
C

O

Figure 3.7: Cost reduction for a heterogeneous data center relative to the
best possible homogeneous data center as a function of energy cost.

ratio between the high-end and low-end server assumed in the rest of this
chapter equals 12, see Table 3.2.

3.5.2 Varying energy cost

Along the same line, energy cost is variable as well: it varies from one lo-
cation to another, and it varies over time. Figure 3.7 quantifies the cost
reduction of a heterogeneous data center relative to the best possible ho-
mogeneous data center as a function of energy cost. We report the aver-
age and maximum cost reduction through heterogeneity, and we consider
two heterogeneous data center setups: one setup includes high-end, com-
modity and low-end servers, while the other includes high-end and low-
end servers only (no commodity servers). The reason for considering both
configurations is that the performance-cost efficiency is comparable for the
commodity and low-end servers, as seen in Figure 3.1, which implies that
heterogeneous data centers with high-end and low-end servers only would
achieve most of the benefits from heterogeneity — including commodity
servers does not add much benefit. This is indeed the case for the 17 Euro-
cent per kWh assumed so far.

The interesting observation from Figure 3.7 is that there is a cost benefit
from heterogeneity across a broad range of energy prices. Second, when
considering high-end and low-end servers only (i.e., ‘excluding commod-
ity’ servers in Figure 3.7) for both the homogeneous and heterogeneous
design points, the benefit from heterogeneity tends to be higher at lower
energy costs. At lower energy costs, the performance argument outweighs

48 CHAPTER 3. DATA-CENTRIC WORKLOADS

the cost argument, shifting the optimum towards high-end servers for a
larger fraction of the workloads. At higher energy costs, the performance
per cost metric drives the optimum design point towards low-end servers
for most of the workloads, hence, the benefit from heterogeneity is decreas-
ing. Finally, commodity servers fit a sweet spot at lower energy costs (see
the ‘including commodity’ curves in Figure 3.7). Commodity servers have
interesting performance-cost properties at low electricity costs — they yield
good throughput at relatively low cost. Nevertheless, heterogeneity is still
beneficial and can reduce the data center’s TCO by up to 15%.

3.5.3 Discussion

The results discussed so far made the case for heterogeneous data centers.
Significant cost reductions can be obtained compared to homogeneous data
centers while achieving the same overall system throughput. The results
also revealed that the extent to which cost is reduced is subject to vari-
ous factors including the workloads, server cost ratio for different server
types, energy cost, etc. Hence, in some cases, depending on the constraints,
the benefit from heterogeneity may be limited. However, in a number of
cases (for specific sets of workloads, server cost ratios and energy cost),
heterogeneity may yield substantial cost benefits, which may translate into
millions of dollars of cost savings in real data center environments.

3.6 Related Work

Prior work in architectural studies for warehouse-sized computers con-
sidered online interactive workloads for the most part. In particular, Lim
et al. [47] consider four Internet-sector benchmarks, namely websearch
(search a very large dataset within sub-seconds), webmail (interactive ses-
sions of reading, composing and sending e-mails), YouTube (media servers
servicing requests for video files), and mapreduce (series of map and re-
duce functions performed on key/value pairs in a distributed file system).
These benchmarks are network-intensive (webmail), I/O-bound (YouTube)
or exhibit mixed CPU and I/O activity (websearch and mapreduce). The
data-centric benchmarks considered in this work are data-intensive and are
primarily compute- as well as memory-intensive, and barely involve net-
work and I/O activity. It is to be expected that cloud data centers will fea-
ture both types of workloads, interactive Internet-sector workloads as well
as data-intensive background workloads. Lim et al. reach the conclusion
that lower-end consumer platforms are more performance-cost efficient
— leading to a 2× improvement relative to high-end servers. Low-end
embedded servers have the potential to offer even more cost savings at the

3.6. RELATED WORK 49

same performance, but the choice of embedded platform is important. We
conclude that heterogeneity with both high-end and low-end servers can
yield substantial cost savings.

Andersen et al. [1] propose the Fast Array of Wimpy Nodes (FAWN)
data center architecture with low-power embedded servers coupled with
flash memory for random read I/O-intensive workloads. Vasudevan et
al. [75] evaluate under what workloads the FAWN architecture performs
well while considering a broad set of microbenchmarks ranging from I/O-
bound workloads to CPU- and memory-intensive benchmarks. They con-
clude that low-end nodes are more energy-efficient than high-end CPUs,
except for problems that cannot be parallelized or whose working set can-
not be split to fit in the cache or memory available to the smaller nodes
— wimpy cores are too low-end for these workloads. Whereas the FAWN
project focuses on energy-efficiency, we focus on cost-efficiency, i.e., per-
formance per TCO. While focusing on data-centric workloads, we reach
the conclusion that both high-end and low-end CPUs can be cost-efficient,
depending on the workload.

Reddi et al. [65] evaluate the Microsoft Bing web search engine on In-
tel Xeon and Atom processors. They conclude that this web search en-
gine is more computationally demanding than traditional enterprise work-
loads such as file servers, mail servers, web servers, etc. Hence, they con-
clude that embedded mobile-space processors are beneficial in terms of
their power efficiency, however, these processors would benefit from bet-
ter performance to achieve better service-level agreements and quality-of-
service.

Keys et al. [40] consider a broad set of workloads as well as different
processor types, ranging from embedded, mobile, desktop to server, and
they aim for determining energy-efficient building blocks for the data cen-
ter. They conclude that high-end mobile processors have the right mix of
power and performance. We, in contrast, aim for identifying the most cost-
efficient processor type taking into account total cost of ownership (TCO),
not energy-efficiency only. We conclude that a mix of high-end servers and
low-end servers optimizes performance per TCO.

Nathuji et al. [57] study job scheduling mechanisms for optimizing
power efficiency in heterogeneous data centers. The heterogeneous data
centers considered by Nathuji et al. stem from upgrade cycles, in contrast
to the heterogeneity ‘by design’ in this work. Also, Nathuji et al. consider
high-end servers only and they do not include commodity and low-end
servers as part of their design space.

Kumar et al. [44] propose heterogeneity to optimize power efficiency
in multi-core processors. Whereas Kumar et al. focus on a single chip and
power efficiency, our work considers a data center, considers total cost (in-

50 CHAPTER 3. DATA-CENTRIC WORKLOADS

cluding hardware, power and cooling cost) and data-centric workloads.
Since the original publication of this work at the International Con-

ference on Supercomputing in 2011, the research community has done
more effort in studying contemporary data center workloads. Meisner et
al. [52] study energy proportionality for one particular workload, namely
web search. This workload requires responsiveness in the sub-second time
scale at high request rates while performing significant computing over
massive data sets per user request. They report the impact of using low-
power modes on power usage and end-user latency. They conclude that
there is still need for improving energy proportionality in shared caches
and on-chip memory controllers.

Wong et al. [78] present an insightful survey of server energy propor-
tionality and conclude that contemporary servers are particularly energy-
inefficient at low utilization. They therefore present KnightShift, a server
node design including a high-end and a low-end server sharing the disk
— effectively bringing heterogeneity inside the node as opposed to het-
erogeneity at the cluster level. The idea behind KnightShift is to handle
incoming requests by the low-end server (the Knight) at low activity and
only engage the high-end server at high degrees of activity.

Ferdman et al. [22] focus their work on emerging scale-out workloads
running in a cloud environment. They bundle several cloud workloads into
a new benchmark suite called CloudSuite. They use performance counters
to analyze the micro-architectural behavior of these workloads and con-
clude that there is a mismatch between the workload needs and modern
processors, particularly in the organization of instruction and data mem-
ory systems and the processor core micro-architecture.

Lotfi-Kamran et al. [48] consider emerging applications in scale-out
data centers. They show that performance of scale-out workloads that
operate on large datasets is maximized through scale-out processors, re-
presenting microarchitectures having a modestly-sized last-level cache that
captures the instruction footprint at the lowest possible access latency, in-
stead of microarchitectures that waste silicon on excessively large caches.

Grot et al. [28] analyze several workloads from the CloudSuite bench-
mark suite as well as the SPECweb2009 workload by using a combina-
tion of analytical models and full-system simulation to estimate the per-
formance, area and power usage. The authors consider five server chip
architectures with varying core count, last-level cache size, clock frequency
and power usage. Their results show that small-chip designs are signifi-
cantly less expensive and more energy-efficient than conventional proces-
sors on a per-unit basis, however more expensive at the data-center level.
The reason for this is the small chip’s limited computing power, requiring
many more units to achieve the same throughput. The authors conclude

3.7. CONCLUSION 51

that scale-out processors, as proposed by Lotfi-Kamran et al., provide a
good balance between energy efficiency and performance.

Mars et al. [50] investigate microarchitectural heterogeneity in the data
center, where heterogeneity comes from using several generations of hard-
ware at the same time. The hardware is assumed to be homogeneous, how-
ever, successive generations of hardware have slightly different character-
istics, leading to heterogeneity. The authors conclude that applications that
are sensitive to heterogeneity can have a performance improvement of up
to 70% when executed on the hardware platform that is most suitable.

3.7 Conclusion

Data explosion and diversity in the Internet drives the emergence of a new
set of data-centric workloads to manage, manipulate, mine, index, com-
press, encrypt, etc. huge amounts of data. In addition, the data is increas-
ingly rich media, and includes images, audio and video, in addition to text.
Given that the data centers hosting the online data and running these data-
centric workloads are very much cost driven, it is important to understand
how this emerging class of applications affects some of the design decisions
in the data center.

Through the architectural simulation of minutes of run time of a set
of data-centric workloads on a validated full-system x86 simulator, we
derived the insight that high-end servers are more performance-cost effi-
cient compared to commodity and low-end embedded servers for some
workloads; for others, the low-end server or the commodity server is more
performance-cost efficient. This suggests heterogeneous data centers as
the optimum data center configuration. We conclude that the benefit from
heterogeneity is very much workload and server-cost and electricity-cost
dependent, and, for a specific setup, we report improvements up to 88%,
24% and 17% over a homogeneous high-end, commodity and low-end
server data center, respectively. We also identify the sweet spot for het-
erogeneity as a function of high-end versus low-end server cost, and we
provide the insight that the benefit from heterogeneity increases at lower
energy costs.

52 CHAPTER 3. DATA-CENTRIC WORKLOADS

Chapter 4

Web 2.0 Workload
Characterization

In the previous chapter we focused on data-centric applications. Another important
type of Web applications are social network applications. Designing data centers
for Web 2.0 social networking applications is a major challenge because of the large
number of users, the large scale of the data centers, the distributed application base,
and the cost sensitivity of a data center facility. Hence, optimizing the data center
for performance per dollar is far from trivial. Because social network applications
are highly interactive, we focus on how data center design decisions affect user-
perceived performance in terms of response times.

4.1 Introduction

Internet usage has grown by 566% over the past twelve years worldwide
according to a recent study by Internet World Stats.1 This fast increase is
due to various novel Internet services that are being offered, along with
ubiquitous Internet access possibilities through various devices including
mobile devices such as smartphones, tablets and netbooks. Online social
networking in particular has been booming over the past few years, and
has been attracting an increasing number of customers. Facebook, for ex-
ample, has more than 1 billion active users as of November 2012, and 50%
of these users log on to Facebook at least once a day.2 Twitter has more
than 500 million users and generates more than 100 million tweet messages
per day as of July 2011.3 LinkedIn has more than 135 million profession-

1http://internetworldstats.com/stats.htm
2http://newsroom.fb.com/
3http://semiocast.com/publications/2012 07 30 Twitter reaches half a

billion accounts 140m in the US

53

54 CHAPTER 4. WEB 2.0 WORKLOAD CHARACTERIZATION

als around the world as of November 2011.4 Netlog, a social networking
site where users can keep in touch with and extend their social network,
is currently available in 40 languages and has more than 94 million users
throughout Europe as of January 2012.5 Clearly, social networking commu-
nities have become an important part of digital life.

Designing the servers and data centers to support social networking is
challenging, for a number of reasons. As mentioned above, social networks
have millions of users, which requires distributed applications running in
large data centers [5]. The ensemble of servers is often referred to as a
warehouse-scale computer [6] and scaling out to this large a scale clearly
is a major design challenge. Because of their scale, data centers are very
much cost driven — optimizing the cost per server even by only a couple
tens of dollars results in substantial cost savings and proportional increases
in profit. There are various factors affecting the cost of a data center, such
as the hardware infrastructure (servers, racks and switches), power and
cooling infrastructure, operating expenditure, and real estate. Hence, data
centers are very cost-sensitive and need to be optimized for the ensemble.
As a result, operators drive their data center design decisions towards a
sweet spot that optimizes performance per dollar.

A key question when installing a new data center obviously is which
new hardware infrastructure, i.e., which servers, to buy. This is a non-
trivial question given the many constraints. On the one hand, the hardware
should be a good fit for the workloads that are going to run in the data cen-
ter. The workloads themselves could be very diverse — some workloads
are interactive, others are batch-style workloads and thus throughput-
sensitive and not latency-critical; some workloads are memory-intensive
while others are primarily compute-intensive or I/O-intensive. Hence,
some compromise middle-of-the-road architecture may need to be chosen
to satisfy the opposing demands; alternatively, one may opt for a hetero-
geneous system where different workloads run on different types of hard-
ware. Further, one needs to anticipate what new workloads might emerge
in the coming years, and how existing workloads are likely to evolve over
time. On the other hand, given how cost-sensitive a data center is, it is of
utmost importance that the correct hardware is purchased for the correct
task. High-end hardware is expensive and consumes significant amounts
of power, which leads to a substantial total cost of ownership. This may be
the correct choice if the workloads need this high level of performance. If
not, less expensive and less power-hungry hardware may be a much better
choice.

It is exactly this purchasing question that motivated this work: Can we
come up with a way of guiding service operators and owners of data cen-

4http://press.linkedin.com/about
5http://en.netlog.com/go/about

4.1. INTRODUCTION 55

ters to what hardware to purchase for a given workload? Although this
might be a simple question to answer when considering a single workload
that runs on a single server, answering this question is quite complicated
when it comes to a Web 2.0 social networking workload. A social network-
ing workload consists of multiple services that run on multiple servers in a
distributed way in a data center, e.g., Web servers, database servers, mem-
cached servers, etc. The fundamental difficulty that a Web 2.0 workload
imposes is that the performance of the ensemble can only be measured by
modeling and evaluating the ensemble, because of the complex interplay
between the various servers and services. In other words, performance as
perceived by the end-user, i.e., the response times observed by the end user,
is a result of the performance of the individual servers as well as the overall
interaction among the servers. Put differently, optimizing the performance
of an individual server may not necessarily be beneficial for the ensemble
and may not necessarily have impact on end-user experience, nor may it
have impact on the total cost of ownership.

In this chapter, we present a case study in which we characterize a real-
life Web 2.0 workload and evaluate hardware and software design choices.
We sample the Web 2.0 workload both in space and in time to obtain a
reduced workload that can be replayed, driven by real input data. The
reduced workload captures the important services (and their interactions)
and allows for evaluating how hardware choices affect end-user experi-
ence.

We consider Netlog’s commercially used Web 2.0 social networking
workload, and we evaluate how hardware design choices such as num-
ber of cores, CPU clock frequency, hard-disk drive (HDD) versus solid-
state drive (SSD), etc. affect overall end-user perceived performance. We
conclude that the number of cores per node is not important for the Web
servers in our workload, hence the hardware choice should be driven by
cost per core; further, we find that the end-user response time is inversely
proportional to Web server CPU frequency. SSDs reduce the longest re-
sponse times by around 30% over HDDs in the database servers, which
may or may not be justifiable given the significantly higher cost for SSD
compared to HDD. Finally, the memcached servers show low levels of CPU
utilization while being memory-bound, hence the hardware choice should
be driven by the cost of integrating more main memory in the server.

We believe that this approach is not only useful to service providers
and data center owners, but also to architects, system builders, and inte-
grators to understand Web 2.0 workloads and how hardware choices af-
fect user-perceived performance, server throughput, and utilization. Fur-
ther, software developers and data center system administrators may find
the approach useful to identify and solve performance bottlenecks in the
software and experiment with alternative software implementations. To

56 CHAPTER 4. WEB 2.0 WORKLOAD CHARACTERIZATION

demonstrate the potential usage of the characterization, we present two use
cases illustrating how it can be leveraged for guiding hardware purchasing
decisions and software optimizations.

This chapter is organized as follows. We first describe the Web 2.0
workload used in this study (Section 4.2). We then set the goals for this
chapter (Section 4.3) and describe our methodology in more detail (Sec-
tion 4.4). We detail our experimental setup (Section 4.5) and then present
our results (Section 4.6). We focus on two important use cases for this work
(Section 4.7). Finally, we discuss related work (Section 4.8) and conclude
(Section 4.9).

4.2 Netlog Web 2.0 Workload

As mentioned in the introduction, we use Netlog’s software infrastructure
as a representative Web 2.0 workload. Netlog hosts a social networking site
that is targeted at bringing people together. As of January 2012, Netlog is
currently available in 40 languages and has more than 94 million members
throughout Europe. According to ComScore, in January 2012 Netlog is the
pageview market leader in Belgium, Italy, Austria, Switzerland, Romania
and Turkey; and it is the second market leader in the Netherlands, Ger-
many, France and Portugal.6 Netlog has around 100 million viewers per
month, leading to over two billion pageviews per month. Netlog users can
chat with other friends, share pictures, write blog entries, watch movies
and listen to music.

Netlog’s architecture is illustrated in Figure 4.1. A load balancer dis-
tributes the incoming requests among the Web servers. The Web servers
process the requests and assemble a response by fetching recently accessed
data from the memcached servers. If the requested data is not present in
one of the memcached servers, the Web server communicates with one of
the database servers. There is one global database that holds general infor-
mation with user data (like nickname and passwords). All other user data
is spread among multiple database servers using a technique called ‘shard-
ing’.7 Each of the servers run on a physical machine. The relative fraction
of servers is as follows: 54% of Netlog’s servers are Web servers, 16% are
memcached servers and 30% are database servers. The Netlog data center
hosts more than 1,500 servers.

Netlog’s data center is partitioned among the languages that it sup-

6http://www.comscore.com/
7Sharding is a horizontal partitioning database design principle whereby rows of a

database table are held separately, rather than splitting by columns. Each partition forms
part of a shard, which may in turn be located on a separate database server or physical
location.

4.3. CASE STUDY GOALS 57

the Internet load
balancer

Web
server

Web
server

Web
server

Web
server

Web
server

memcached
server

global
database

server

memcached
server

database
server

database
server

database
server

Figure 4.1: Netlog’s architecture.

ports, i.e., servers are devoted to one particular language. The largest lan-
guage is Dutch, followed by German, Italian, Arabic, English, and others.
Interestingly, usage patterns are similar across languages, hence, the same
relative occurrence of Web, caching and database servers is maintained
across all the languages.

In terms of software, the Web servers run the Apache8 HTTP server; the
caching servers run Memcached9; and the database servers run MySQL10.
For more information, please refer to Section 4.5.

4.3 Case Study Goals

Before describing our case study in great detail, we first need to set out
its goals. First, we want to be able to characterize and evaluate end-user
perceived performance of a Web 2.0 system. This implies that a represen-
tative part of the workload needs to be duplicated in the experimental en-
vironment which enables evaluating overall end-to-end performance. This

8http://httpd.apache.org/
9http://memcached.org/

10http://www.mysql.com/

58 CHAPTER 4. WEB 2.0 WORKLOAD CHARACTERIZATION

in turn implies that a set of machines needs to be engaged with each ma-
chine running part of the workload — some run Web servers, some run
database servers, others run memcached servers. Collectively, this set of
machines runs the entire workload. This experimental environment, when
supplied with real user requests, will act like a real data center running the
real workload. This enables measuring user-perceived response times as
well as server-side throughput and utilization.

Second, the experimental environment by itself will not provide useful
measurement data. It also needs a method to feed real-life user requests
into the experimental environment. In other words, real user requests need
to be captured and recorded in a real data center and then need to be re-
played in our experimental environment. This will enable us to measure
how design choices in hardware and software affect user-perceived perfor-
mance as well as server throughput and utilization.

Third, in addition to being able to faithfully replay real-life user re-
quests, it is useful to be able to stress the setup through experiments in
which user requests are submitted at a fixed rate. This allows for gaining
insight into the system’s limits and how the system will react in case of
high loads. For example, it allows for learning about how user-perceived
response time is affected by server load. Or, it allows for understanding
the maximum allowable server load before seeing degradations in user re-
sponse times.

Finally, we need the ability to run reproducible experiments, or in other
words, we want to draw similar performance figures when running the
same experiment multiple times. This allow us to measure how changes in
system configuration parameters affect performance. In the end, we want
to use the experimental environment and change both hardware and soft-
ware settings to understand how hardware and software design choices
affect user-perceived performance as well as server-level throughput and
utilization. This not only enables service providers and data center owners
to purchase, provision and configure their hardware and software, it also
enables architects, system builders and integrators, software developers,
etc. where to focus when optimizing overall system performance.

4.4 Methodology

Our methodology has a number of important features in order to make the
experimental environment both efficient and effective for carrying out our
case study.

• Sampling in space. It is obviously prohibitively costly to duplicate
an entire Web 2.0 workload with possibly hundreds, if not thousands,

4.4. METHODOLOGY 59

of servers in the experimental environment. We therefore sample the
workload in space and we select a reduced but representative portion
of the workload as the basis for the experimental framework. For the
Netlog workload, we select one language out of the many languages
that Netlog’s workload supports; this language is representative for
the other languages and for the Netlog workload at large. Sampling
in space allows us to evaluate a commercial Web 2.0 workload with
hundreds of servers in real operation with only 10 servers in our ex-
perimental environment.

• Sampling in time. Replaying a Web 2.0 workload using real-life
user input, as we will describe next, can be very time-consuming,
especially if one wants to replay multiple days of real-life operation
in the data center. Moreover, in order to understand performance
trends across hardware and software design changes, one may need
to explore many configurations and hence run the workload multi-
ple times. This may make the experimental setup impractical to use.
Hence, we analyze the time-varying behavior of the workload and
we identify representative phases in the execution, which we sample
from, and which we can accurately extrapolate performance numbers
to the entire workload. Sampling in time allows to analyze only a few
hours of real time while being representative for a workload that runs
for days.

• Workload warm-up. Sampling in time implies that we evaluate only
a small fraction of the total run time. A potential pitfall with this ap-
proach is that system state might be very different when replaying
under sampling than if one were to replay a workload for days of ex-
ecution. This is referred to as the cold-start problem. In other words,
the system needs to be warmed up when employing sampling in time
so that the performance characteristics during the evaluation are rep-
resentative for as if we were to run the entire workload. Our method-
ology uses a statistics-based approach to gauge whether the system
is warmed up sufficiently.

• Replaying empirical user request streams. As mentioned before, we
capture and replay real-life user requests. The user request file that
we store on disk and that we use as input to the experimental environ-
ment contains sufficient information for faithfully replaying real-life
users requests. In other words, the input served to the load balancer
of the Netlog workload is identical under replay as when we captured
it during real-life operation.

We now discuss the various steps of our methodology in more detail.

60 CHAPTER 4. WEB 2.0 WORKLOAD CHARACTERIZATION

4.4.1 Sampling in space

As part of this study we duplicated Netlog’s workload. Because it is infea-
sible to duplicate Netlog’s entire workload, we chose to duplicate a small
part only, namely the part associated with the Slovene language. This is
feasible to do, and leads to a representative workload. Netlog organizes
its servers such that there are a number of physical servers per language
domain. Hence, by selecting a language domain and by only duplicating
that language domain, we sample in space while being representative for
the entire workload. The Slovene part is representative for Netlog’s entire
workload because it exhibits the same partitioning of servers as the rest of
Netlog’s workload. Also, we observe similar degree of activity and access
behavior (access to profiles, photos, videos, etc.) for the Slovene language
as for the other languages.

Duplicating the Slovene language part of Netlog’s workload can be
done with a reasonable number of servers. Our setup includes 6 Web
servers, 1 memcached server and 2 database servers; this distribution
across server types is identical to what is observed for the entire Netlog
workload, across all the languages. Further, our setup includes the entire
Slovene database and all of its records. The data present in our duplicate
copy is anonymized. This is done through hashing while maintaining the
length of the records.

4.4.2 Validating the setup

Duplicating a Web 2.0 workload is a significant effort and involves fine-
tuning various software settings and configurations, which necessitates
proper validation. We validated our experimental framework both func-
tionally and with respect to behavior and timing. In particular, we automat-
ically verified whether the file sizes returned by the duplicated workload
match the file sizes observed in the real workload. The reason for doing
so is that some of the Web pages returned by the Web 2.0 workload are
composed semi-randomly, and hence its content may not be perfectly iden-
tical when requesting the same page multiple times. In our experimental
environment, we found that 99.3% of the responses fall within a 5% error
bound with respect to file size compared to the real workload environment,
as shown in Figure 4.2.

4.4.3 Replaying user requests

An important aspect of the experimental environment is the replay of user
requests. In order to do so, we collect user requests as observed at the load
balancer. The information collected by the user input recorder consists of

4.4. METHODOLOGY 61

0 10k 20k 30k 40k 50k 60k 70k
0%

20%

40%

60%

80%

100%

Original Response Size
Replayed Response Size

Response Size (bytes)

P
ro

b
a

b
ili

ty
 (

%
)

Figure 4.2: Distribution of response sizes when comparing real versus re-
played requests.

the following items — recall that the data is anonymized:

• Header information. All HTTP header information is recorded so the
same request can be reconstructed. This includes the requested URL,
browser information, supported encoding formats, etc.

• Timing information. The date and time the request was submitted
is recorded (at microsecond resolution). This allows for maintaining
precise timing information when replaying the user request file. This
is important to model bursty behavior in user requests.

• User data. The input recorder captures all POST data that is sent to
the Web servers. Note that GET data is already captured as part of
the URL in the header. All HTTP cookies are saved as well, and are
used to do automated login.

The file that contains these user requests is fairly large and contains
24 GB of data per day on average. Our user input recorder uses tcpdump
to log the network traffic to a file in pcap format.11,12 pcap defines an API
for capturing network traffic. On Linux/Unix systems, this is implemented
in the libpcap library which most network tools like tcpdump, Wireshark,
etc. implement. A limitation of tcpdump/pcap is that it may drop packets;
however, packet loss rate was less than 0.002% for a 1 Gbps network in our
setup.

The replayer reads the user request file and replays the requests one by
one. This means that the replayer picks the first request, sends the request

11http://www.tcpdump.org/
12http://www.winpcap.org/ntar/draft/PCAP-DumpFileFormat.html

62 CHAPTER 4. WEB 2.0 WORKLOAD CHARACTERIZATION

to the Web 2.0 workload at the time specified in the request file. It then
picks the next request and sends it at its time, etc. The replayer does not
wait for the response to come back to determine the next request; all the
requests are available in the user request file.

Implementing the user request replayer is a challenge in itself. The rea-
son is that the user request file is huge in size, and the requests need to
be submitted to the workload at a fine time granularity. Reading the re-
quest file from disk, and submitting requests in real-time is too slow. On
the other hand, it is impractical to store the entire request file in main mem-
ory. We therefore developed a two-thread replayer. The first thread reads
the pcap file and fills in the requests in the request pool in memory. The
second thread then reads from the request pool and submits the requests
to the workload using libcurl, which is a client-side URL transfer library
that supports sending requests using the HTTP protocol to a remote Web
server.13

4.4.4 Sampling in time

We recorded four days (March 13–16, 2011) of user activity to the Slovene
language domain of the Netlog workload. This was done by capturing
all the user requests (and their timing) at the load balancer. Replaying
these four days of activity in real time would require four days of exper-
imentation time. Although this is doable if one were to evaluate a single
design point, exploring trade-offs by varying hardware and/or software
parameters, quickly leads to impractically long experimentation times. We
therefore employ sampling in time to evaluate only parts of the workload
activity while being representative for the entire workload.

Figure 4.3 shows traffic over a four day period in number of requests
per second. Clearly, we observe cyclic behavior in which there is much
more activity in the evening than during the day. Traffic increases steeply
in the morning between 6am and 9am, and remains somewhat stable or
increases more slowly between 9 am and 5pm. Once past 5pm, traffic in-
creases steeply until 8pm. We observe a sharp decrease in the number of
requests past 9pm. This traffic pattern suggests that sampling in time is
a sensible idea, i.e., by picking samples that represent different traffic pat-
terns, one can significantly reduce the load that needs to be replayed, which
will lead to significant improvements in experimentation speed, while re-
producing a representative workload.

We set ourselves a number of goals for how to sample in time. We want
the samples to be representative in a number of ways: we want the sam-
ples to represent diverse traffic intensity as well as the sort of activity that

13http://curl.haxx.se/

4.4. METHODOLOGY 63

12
 P

M

12
 A

M

12
 P

M

1
2

 A
M

1
2

 P
M

12
 A

M

12
 P

M

12
 A

M

0
10
20
30
40
50
60
70
80
90

100

T
ra

ffi
c

(R
e

q
u

e
st

s/
s)

Figure 4.3: Netlog traffic profile for four days to the Slovene language do-
main.

the samples cover, i.e., as mentioned before, Netlog offers various sorts of
services ranging from chatting to watching videos, etc., hence the samples
should cover these different types of activity well. Further, we prefer hav-
ing a few long representative samples over having many small samples.
The reason is that small samples require more precise warmup of the sys-
tem than longer samples in order to be accurate.

We therefore employ the following two-step sampling procedure. We
first aim at finding a number of time periods with different traffic intensity.
We employ k-means clustering as our classification method [36]. The input
to the clustering algorithm is a time series representing the number of re-
quests per minute. The clustering algorithm then aims at classifying this
time series in a number of clusters N . It initially picks N cluster centroids
in a random fashion, and assigns all data elements in the time series to its
closest cluster. In the next iteration, the algorithm recomputes the cluster
centroid, and subsequently reassigns all data elements to clusters. This iter-
ative process is repeated until convergence, or until a maximum number of
iterations is done. An important question is how many clusters N should
one pick. We use the Bayesian Information Criterion (BIC) [71], which is a
measure for how well the clustering matches the data. Using a maximum
value of Nmax = 6 — recall we aim for a limited number of samples — we
obtain the result that N = 3 yields the optimum BIC score. Hence, we ob-
tain three samples. These are shown in Figure 4.4. Intuitively, these three
samples correspond to low-intensity, medium-intensity and high-intensity
traffic, respectively.

The next question is how long the samples should be in these low,
medium and high-intensity traffic regions. We therefore rely on our sec-
ond requirement: we want the samples to cover diverse behavior in terms

64 CHAPTER 4. WEB 2.0 WORKLOAD CHARACTERIZATION

Sunday Monday Tuesday Wednesday
0

10

20

30

40

50

60

70

80

90

100
T

ra
ffi

c
(R

e
q

u
e

st
s/

s)
Warm-up Low Mid High

Figure 4.4: Identifying representative samples based on traffic intensity.

0 2 4 6 8 10
0

1

2

3

Time (h)

W
e

b
p

a
g

e
 c

a
te

g
o

ry

Figure 4.5: Traffic classified by its type.

of the type of traffic. We identify 30 major types of traffic including mes-
sages, photos, videos, friends, music, etc. This yields a 30-dimensional time
series: each data element in the time series consists of 30 values, namely
the number of requests per minute for each type of traffic. We then ap-
ply k-means clustering on this 30-dimensional time series which yields the
optimum number of four clusters using the BIC score. These four clusters
represent the predominant traffic rates observed at a given point in time.
Figure 4.5 illustrates how the time series of ten hours of the second day is
distributed across these four clusters. Interestingly, some traffic rates are
more predominant during some periods of time, and traffic rate predomi-
nance varies fairly quickly. However, if we take a long enough snapshot,
e.g., two hours, the sample contains all traffic rates. The end result for sam-
pling in time, thus is that we pick three samples of two hours of activity
from the low, medium and high-intensity regions.

4.4. METHODOLOGY 65

0 500 1000 1500 2000 2500
0%

2%

4%

6%

8%

10%

Number of replayed requests

C
P

U
 L

o
a

d
 (

%
)

Figure 4.6: Quantifying PHP cache warmup behavior. Replay speed is set
to a fixed rate of 10 requests/s.

4.4.5 Warmup

With sampling in time, an important issue is how to start from a warmed-
up system state so that the performance numbers that we obtain from our
experiments are representative for the real workload. Clearly, starting from
a cold state is not going to be accurate because the performance of the
workload will be very different from what one would observe in a real
(and warmed-up) environment. Warmup of a Web 2.0 workload involves
a number of issues. First, as mentioned before, the Web servers run PHP
code, and hence they rely on an opcode cache that caches the bytecodes; the
PHP engine does not need to interpret cached bytecodes again, and hence
it achieves better performance. This implies that the performance of the
PHP engine is relatively low initially, but then improves gradually as more
and more code gets cached and optimized; this is obviously reflected in the
Web server response times observed by the end user. In other words, in the
context of this work, it is important that we measure the performance of the
PHP engine in steady-state modus, in which it executes highly optimized
code as opposed to interpreting the PHP code. As shown in Figure 4.6, the
CPU load is higher when the PHP engine is first initialized. In this stage,
the PHP engine still has to compile all PHP code. After 1,000 requests, most
PHP pages are compiled and loaded into the cache, hence, we conclude that
the PHP cache is warmed up in the order of a couple seconds.

Second, and more importantly, we also need to warm up the mem-
cached and database servers. Initially, in a cold system, all the requests will
go to the database server because the memcached server does not cache
any data yet; further, the database server will need to read from disk to
access the database. Hence, we will observe a significant fraction of time

66 CHAPTER 4. WEB 2.0 WORKLOAD CHARACTERIZATION

0 2 4 6 8 10 12 14 16 18 20 22 24
0
5

10
15
20
25
30
35
40

Time (h)

IO
 W

a
it

tim
e

 (
%

)

Figure 4.7: Quantifying how long one needs to warmup the database and
memcached servers: I/O wait time on the database server is shown as a
function of time when replaying the first day.

spent waiting for I/O both over the network and for accessing disks. In-
deed, gigabytes of data need to be read in the database and transferred
from the database servers to a memcached server. This requires a large
number of user requests being sent to the system to warmup the database
and memcached servers. Figure 4.7 illustrates the fraction I/O wait time
on the database server starting from a cold state as a function of time. We
observe that the fraction I/O wait time, which is proportional to how often
one needs to access the database on disk and transfer data to the mem-
cached server, decreases as a function of time. Although there is a steep
decrease in I/O wait time in the first few hours, it takes close to an entire
day before I/O wait time drops below a few percent which represents a
fully warmed up system.

In order to get more confidence in this finding we employ the Kolmogorov-
Smirnov statistical test to verify whether the system is sufficiently warmed
up. The Kolmogorov-Smirnov test is a non-parametric test for the equal-
ity of continuous, one-dimensional probability distributions. It basically
measures whether two distributions are equal or not; the exact form of
the distribution is not important, hence it is labeled a non-parametric test.
In this work, we compare the distribution of user response times starting
from a cold versus a warmed-up system. This is done in steps of 5,000 user
requests, see Figure 4.8. The P -value reported by the Kolmogorov-Smirnov
test gives an estimate for how good the correspondence is between start-
ing from no-warmup versus a fully warmed up system; the P -value is a
higher-is-better metric. We observe that the P -value saturates after approx-
imately six hours of warmup, and reaches its highest score after 18 to 20
hours of warmup. Based on these observations we decided to warm up
our experimental system with one full day of load.

4.5. EXPERIMENTAL SETUP 67

0 2 4 6 8 10 12 14 16 18 20 22 24
0

0.2

0.4

0.6

0.8

Time (h)

P
-V

a
lu

e
 o

f K
S

-t
e

st

Figure 4.8: Using the Kolmogorov-Smirnov test to verify whether the sys-
tem is sufficiently warmed up by comparing the distribution of response
times under full versus no warmup.

Note that, in our experimental environment, it does not take a full day
to actually warmup the entire system. During warmup, we quickly sub-
mit an entire day’s user requests to the Netlog workload, as fast as possi-
ble. This takes approximately two hours in our setup. Once the system is
warmed up, we then submit user requests for the sample of interest at the
time stamps as stored in the user request file, as explained before.

4.5 Experimental Setup

As mentioned before, we duplicated the Slovene language domain of the
Netlog workload to our experimental environment. Our infrastructure con-
sists of 10 dual AMD Opteron 6168 servers, with each server having 24
cores in total or 12 cores per CPU. Each server has at least 64 GB of main
memory, and is equipped with both a regular HDD (1 TB Seagate SATA
7200 rpm) as well as an SSD (128 GB ATP Velocity MII). We configure the
machines as 6 Web servers, 1 memcached server, and 2 database servers.
The tenth server is used to generate workload traffic and inject user re-
quests to the system under test.

Our baseline configuration runs all the cores at 1.9 GHz. We provision
the Web servers as well as the database servers with 64 GB of main mem-
ory. The memcached server is equipped with 128 GB of RAM. Further,
we assume a HDD drive in each of the servers — we consider SSD in the
database servers in one of the experiments.

Our infrastructure uses Ubuntu 10.04.14 The Web server is configured

14http://www.ubuntu.com

68 CHAPTER 4. WEB 2.0 WORKLOAD CHARACTERIZATION

with Apache 2.215 and runs PHP 5.216. The database software used is a
MySQL derivative, Percona 5.1. We use the standard Memcached 1.4.217

version as our caching mechanism.

4.6 Results and Discussion

Using our experimental environment, we now focus on gaining insights
in how hardware trade-offs affect user-perceived performance (response
times) for the end-to-end workload. We first consider user requests sub-
mitted at the rate as measured in the real-life workload, and we look at
hardware trade-offs for the Web server, memcached server and database
server, respectively. Subsequently, we consider fixed-rate experiments in
order to stress the system.

4.6.1 Web server

We evaluate two hardware trade-offs for the Web server, namely CPU clock
frequency and the number of cores per node. Figure 4.9 shows the distri-
bution of the user response times while changing the Web server’s CPU
frequency in three steps: 1.9 GHz, 1.3 GHz and 800 MHz. The distribution
of response times is skewed, i.e., there is a steep increase in the response
time distribution around 0.04 seconds at 1.9GHz, and the distribution has
a fairly long and heavy tail for longer response times. We observe similarly
skewed distributions at lower CPU clock frequencies, yet the distributions
shift towards the right with decreasing frequencies, i.e., user response time
increases with lower clock frequencies. This is perhaps intuitive, as the
CPU gets more work done per unit of time at higher clock frequencies. It
is interesting to observe though that Web server clock frequency has a sig-
nificant impact on user response times (even at low CPU loads, as we will
see next). In conclusion, user response time is sensitive to Web server clock
frequency. Hence, the Web server should have a sufficiently high clock fre-
quency in order not to exceed particular bounds on user response time.

An important point of concern in provisioning servers for a Web 2.0
workload is to have sufficient leeway to accommodate bursty traffic be-
havior and sudden high peaks of load. For gauging the amount of leeway
on a server, we use CPU load. If the CPU load is sufficiently low, the server
can accommodate additional work. Figure 4.10 quantifies Web server CPU
load as a function of clock frequency. Clearly, CPU load increases with
lower CPU frequencies.

15http://www.apache.org/
16http://www.php.net
17http://www.memcached.org/

4.6. RESULTS AND DISCUSSION 69

(a) Low-traffic load

0 0.05 0.1 0.15 0.2 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

800 MHz
1.3 GHz
1.9 GHz

Response time (s)

(b) High-traffic load

0 0.05 0.1 0.15 0.2 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

800 MHz
1.3 GHz
1.9 GHz

Response time (s)

Figure 4.9: Cumulative distribution of user response times while changing
the Web server’s CPU frequency under (a) low-traffic load and (b) high-
traffic load.

As alluded to before, the response time distribution has a fairly long
and heavy tail. A heavy-tailed response time distribution is a significant is-
sue in Web 2.0 workloads because it implies that some users are experienc-
ing an unusually long response time. Given the large number of concurrent
users of Web 2.0 workloads, and although the number is small in terms of
percentages, still a significant number of users will be experiencing very
long response times. Very long and unpredictable response times quickly
irritate end users, which may have a significant impact on company rev-
enue if users sign off because of the slow response times. Because of this,
companies such as Google and others heavily focus on the 99% percentile
of the user response times when optimizing overall system performance.
Figure 4.11 shows the percentile response times as a function of Web server

70 CHAPTER 4. WEB 2.0 WORKLOAD CHARACTERIZATION

800 MHz 1.3 GHz 1.9 GHz
0

2

4

6

8

10

12

14
C

P
U

 lo
a

d
 (

%
)

Figure 4.10: Web server CPU load as a function of CPU clock frequency for
the high-traffic load scenario.

1900 1300 800
0

0.5

1

1.5

2

2.5

3

50.0%
75.0%
87.5%
93.8%
96.9%
98.4%
99.2%
99.6%

Clock frequency (MHz)

R
e

sp
o

n
se

 ti
m

e
 (

s) 54%

Figure 4.11: Percentile response times as a function of Web server CPU
clock frequency.

CPU clock frequency. For example, this graph shows that, see the top left,
99.6% of the response times are below 1.8 seconds at 1.9 GHz. The 99.6%
percentile goes up to 2.8 seconds at 800 MHz, see the top right. The inter-
esting observation is that long-latency response times increase sub-linearly
with decreasing Web server clock frequency. The 99.6% percentile response
time increases by 54% only, while decreasing clock frequency from 1.9 GHz
to 800 MHz, or increasing cycle time by 138% from 0.53ns to 1.25ns.

The second hardware trade-off that we study relates to the number of
cores per node one should have for the Web server. The reason why this
is an interesting trade-off is that systems with more sockets per node are
more expensive, i.e., a four-socket system is typically more than twice as
expensive as a two-socket system. Similarly, the number of cores per CPU

4.6. RESULTS AND DISCUSSION 71

1x24 cores 2x12 cores 4x6 cores 6x4 cores
0.00

10.00

20.00

30.00

40.00

50.00

C
P

U
 lo

a
d

 (
%

)

Figure 4.12: Web server CPU load as a function of the number of nodes and
cores per node: m× n means m nodes and n cores per node.

also directly relates to cost. Figure 4.12 quantifies Web server CPU load as a
function of the number of nodes and the number of cores per node. (Recall
that CPU load is a good proxy for user response time as observed.) We vary
from one Web server node with 24 cores enabled, to 2 nodes and 12 cores
each, to 4 nodes and 6 cores each, to 6 nodes and 4 cores each. Clearly, CPU
load (and response time) is not affected much by node and core count (as
long as the total number of cores is constant). This suggests that the Web
server is a workload that scales well with core count, even across nodes.
In conclusion, when purchasing Web server hardware, although total core
count is important, core count per node is not. This is an important insight
to take into account when determining how many servers to buy with how
many cores each. Determining the best buy (number of servers and number
of cores per server) depends on many factors such as performance, power
cost, real estate cost, reliability, availability, etc., however, this case study
shows that the number of cores per server is a parameter one can tweak to
optimize Web server performance per dollar.

4.6.2 Database server

As mentioned before, the database servers generate substantial disk I/O
activity. We therefore focus on a hardware trade-off that involves HDDs
versus SSDs in the database servers. We also vary CPU clock frequency.
Figure 4.13 quantifies the percentile response times for the four hardware
design points that result from changing clock frequency and hard drives.
We observe that, while short response times are not greatly affected by re-
placing the HDD with an SSD, the 99.6% percentile response time decreases
by 30% when trading an HDD for an SSD. Although this is a significant
reduction in the longest response times observed, it may not justify the sig-

72 CHAPTER 4. WEB 2.0 WORKLOAD CHARACTERIZATION

800 – hdd 1900 – hdd 800 – ssd 1900 – ssd
0

0.5

1

1.5

2

50.0%
75.0%
87.5%
93.8%
96.9%
98.4%
99.2%
99.6%R

e
sp

o
n

se
 T

im
e

 (
s) 30%

Figure 4.13: Trading off HDD versus SSD and CPU clock frequency for the
database servers.

nificantly higher cost of SSD versus HDD.

4.6.3 Memcached server

The memcached server has a very low typical CPU load, and is primar-
ily memory and network-bound. The average CPU load for the mem-
cached server is typically below 5% when stressed with 6 Web servers.
Figure 4.14 shows CPU time versus network time for a memcached ex-
periment in which we generate memcached GET requests of varying size,
more specifically, the responses of the GET requests are of varying size.
This clearly shows that memcached performance is mainly determined by
the network. Hence, CPU performance for the memcached servers is not
critical, and one could for example deploy relatively inexpensive servers. It
is important for the memcached servers to have sufficient amount of mem-
ory though.

4.6.4 Fixed-rate experiments

The experiments done so far involved replaying the user requests as
recorded in the real-life workload, i.e., the requests are submitted at a
rate determined by the users. We now consider experiments in which we
submit requests at a fixed rate. The reason for doing so is to stress the
system under high levels of request rates in order to understand how CPU
load and user response times are affected by the load imposed on the entire
workload. Figure 4.15 quantifies CPU load of the Web servers (left axis)
and the average response time (right axis) as a function of the number of
requests per second submitted to the system. Interestingly, the response
time remains low and CPU load increases linearly with request rate, up
until a request rate of 700 requests per second. Beyond 800 requests per

4.7. USE CASES 73

1
k

1
0

k

2
0

k

30
k

4
0

k

50
k

6
0

k

0

200

400

600

800

1000

CPU Time
Network Time

Message Size (Bytes)

T
im

e
 (

u
s)

Figure 4.14: CPU time versus network time for memcached requests of dif-
ferent size.

1
0

0

20
0

3
0

0

4
0

0

50
0

6
0

0

7
0

0

80
0

90
0

1
0

0
0

11
0

0

12
0

0

1
3

0
0

1
4

0
0

15
0

0
0

20

40

60

80

0.0
0.2
0.4
0.6
0.8
1.0
1.2

CPU load
Response time

Replay speed (Requests/s)

C
P

U
 lo

a
d

 (
%

)

R
e

sp
o

n
se

 ti
m

e
 (

s)

Figure 4.15: CPU load and average response time as a function of the num-
ber of requests per second under a fixed-rate experiment.

second, CPU load saturates around 65 to 75 percent, and response time
increases substantially from 0.2 seconds to approximately 1 second. The
reason why response time saturates beyond 1,000 requests per second is
that requests get dropped once the Web server’s CPU load gets too high as
it runs out of resources and is unable to process all incoming requests.

4.7 Use Cases

The approach we have followed can be applied to numerous use cases. For
example, data center owners and service providers can use the approach
to guide purchasing decisions. Similarly, system architects, integrators and
implementors can use the approach to gain insight in how fundamental
design decisions of the data center architecture affect user perceived per-

74 CHAPTER 4. WEB 2.0 WORKLOAD CHARACTERIZATION

formance. Finally, software architects and system administrators can use
the approach to drive software design decisions, identify and address per-
formance bottlenecks and evaluate alternative software implementations.

In this section, we present two use cases to illustrate the potential of the
approach for making hardware and software design choices.

4.7.1 Hardware purchasing

The first use case that we present relates to hardware design choices, and
more specifically to data center owners and service providers who wish
to understand which hardware to purchase for a given workload. As men-
tioned earlier, this is a challenging question because of the many constraints
one needs to deal with, ranging from purchasing cost, energy/power cost,
cooling cost, performance, throughput, density, etc. In this use case, we
look at two of the most important factors, namely performance and pur-
chasing cost, for guiding the purchasing decisions. We also consider the
implications on a third factor, namely power consumption.

Data center owners and service providers who wish to upgrade their
hardware infrastructure face a challenging problem, and their decisions are
mostly guided by experience and advice given by the hardware vendor(s).
We now describe a scenario in which a hardware vendor would make a
recommendation on which hardware to purchase. This scenario is hypo-
thetical — we did not actually ask a hardware vendor for making a sugges-
tion for a specific configuration for the given Web 2.0 workload. However,
the suggested configuration is based on rules of thumb, and therefore we
believe it is realistic. The hardware prices are based on real cost numbers of
a large online hardware vendor. We now describe the suggested hardware
configuration.

• Web server: It is well-known that Web servers are performance-
hungry. Therefore, a hardware vendor might, for example, suggest a
high-performance system with an Intel Xeon X3480 (3.06 GHz, 8 MB
LLC Cache, 4 cores, Hyper-Threading), 8 GB RAM and a typical
HDD. The price for this web server is $1,795.

• Memcached server: Because memory is an important factor in a
memcached server, the vendor might suggest including more mem-
ory, leading to an Intel Xeon X3480, with 16 GB RAM and a typical
HDD. The price for this system is $2,015.

• Database server: Finally, because the hard disk is often a bottleneck
on a database server, a hardware vendor might suggest to replace
the HDD with an SSD, leading to a system with an Intel Xeon X3480,
16 GB RAM and an SSD. The price for this database server is $2,915.

4.7. USE CASES 75

The total cost of this configuration, including 6 Web servers, 1 memcached
server and 2 database servers — recall the 6-1-2 ratio of web, memcached
and database servers in the Netlog configuration as described earlier —
equals $18,615.

Now, given the insight obtained from this study as described in Sec-
tion 4.6, we can make the following alternative recommendations for a
hardware configuration.

• Suggestion #1: Low-cost memcached and database server

As previously reported, a memcached server does not need a high-
performance CPU. We therefore suggest a CPU of the same class as
proposed by the hardware vendor, but at a lower clock frequency
(e.g., Intel Xeon X3440 at 2.53 GHz). The same is true for the database
server. On top of that we suggest not to consider an SSD, because of
its high cost and relatively low performance gain over HDD for this
particular workload.

The lower price for the CPU makes the memcached and database
server cost $1,445 each. The total price of our suggested configura-
tion now equals $15,105. This means a purchasing cost reduction of
18.9%.

Using the results presented in Figure 4.13, we conclude that, using
this configuration, 50% of all requests will not experience any extra
latency. For the other 50% of the requests, response times would in-
crease from 11% for the 75% percentile to 39% for the 99.6% percentile.
In summary, performance as perceived by the end user would be re-
duced by 9.1% on average. It is then up to the service provider to
balance the purchase cost against the loss in performance for a small
fraction of the user requests.

• Suggestion #2: Low-frequency Web server

We can go one step further and use a CPU at lower clock frequency
for the Web servers as well (Intel Xeon X3440 at 2.53 GHz). The price
of the Web server is now $1,225. This could mean a total purchasing
cost reduction of 37.2% over the hardware vendor suggested config-
uration.

User requests would now observe a latency increase by 29% for the
50% percentile, and up to 56% for the 99.6% percentile. On average,
end-user performance would be reduced by 36.9%. Again, it is up to
the service provider to determine whether this loss in performance is
worth the reduction in cost.

So far, when computing the cost reduction, we only focused on purchas-
ing cost and we did not account for savings due to lower power consump-

76 CHAPTER 4. WEB 2.0 WORKLOAD CHARACTERIZATION

Suggestion #1 Suggestion #2
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Performance
Performance / Server cost
Performance / Watt
Performance / TCO
Performance / TCO²

Figure 4.16: Several performance trade-offs for different hardware sugges-
tions compared to the hardware vendor suggestion.

tion, leading to reduction in cost for powering and cooling the servers.
Power consumption is a significant cost factor in today’s servers and data
centers [6], hence it should be taken into account when computing cost sav-
ings. In Figure 4.16, we show different metrics to help the service provider
determine which platform should be chosen; the reason for considering
multiple metrics is that different criteria might be appropriate for different
scenarios. All metrics are higher-is-better metrics, and all values are nor-
malized against the suggestion by the hardware vendor; a value greater
than one thus is in favor of one of our suggestions.

• Performance: As mentioned before, raw performance drops by 9.1%
for suggestion #1 and 36.9% for suggestion #2. This metric does not
take any cost factor into account.

• Performance per server cost: Suggestion #1 reduces cost without dra-
matically reducing performance. When using server hardware costs
in our metric, the benefit for suggestion #1 is 12.0%. The benefit for
suggestion #2 is almost zero because of the extra decrease in perfor-
mance, i.e., cost saving is offset by performance decrease.

• Performance per Watt: In the above case study, we considered two
server configurations, one at 3.06 GHz and one at 2.53 GHz, which
corresponds to a 17.3% reduction in clock frequency. Dynamic power
consumption is proportional to clock frequency, so CPU dynamic
power consumption will be lowered by 17.3% as well. The Intel
X3480 has a Thermal Design Point (TDP) of 95 Watts and we assume
other components (motherboard, disk, memory, etc.) to consume
100 Watts in total. The reduction in wattage is low compared to the
performance decrease, resulting in a net decrease in performance per
Watt for the two suggestions compared to the hardware vendor’s

4.7. USE CASES 77

suggestion. However, this metric only considers power consumption
and does not take electricity costs into account.

• Performance per TCO: As mentioned before, data center facilities
and online services are cost-sensitive, and hence, a metric for the
data center should include some notion of total cost of ownership
(TCO). TCO includes server purchasing cost plus electricity cost for
powering and cooling the servers. We assume electricity cost to be
$0.07/kWh and we assume a three-year depreciation cycle. For the
cooling cost, we assume there is need for 1 Watt of cooling power for
each Watt of consumed power. The three-year total cost of ownership
(TCO) for 6 Web servers, 1 memcached server and 2 database servers
consists of hardware cost, power cost and cooling cost; this makes
$24,887 for the hardware vendor’s suggestion, $21,201 for suggestion
#1 and $17,428 for suggestion #2. This means a reduction in TCO of
14.8% and 30.0% for suggestions #1 and #2, respectively. The perfor-
mance per TCO metric leads to a gain of 6.7% for suggestion #1 and a
loss of 10.0% for suggestion #2.

• Performance per TCO2 : If total cost of ownership is more important
than performance, performance per TCO-squared might be an appro-
priate metric. Using this metric, it is clear that there is a big benefit in
using our two suggestions compared to the hardware vendor’s sug-
gestion, with a respective gain of 25.2% and 28.5%.

Note that total (both static and dynamic) power consumption is likely
to be reduced even more because of reduced operating temperature which
reduces leakage power consumption. In other words, the reduced cost fac-
tors mentioned above are pessimistic cost savings; actual savings in power
consumption and total cost of ownership will be higher.

In summary, this case study illustrated evaluating hardware design
choices in the data center, enabling service providers, data center owners,
as well as system architects to make trade-offs taking into account end-user
performance of a Web 2.0 workload.

4.7.2 Software optimizations

Whereas the first use case considered a hardware design trade-off, our sec-
ond use case illustrates the potential for driving software trade-offs and
analyses. The reason why this is valuable is that setting up such experi-
ments in a live data center is considered to be too risky because it might
interrupt normal operation. Our approach on the other hand allows for
setting up such experiments in a controlled environment while being able
to apply real-life user requests.

78 CHAPTER 4. WEB 2.0 WORKLOAD CHARACTERIZATION

ke
ep

ali
ve

 d
isa

ble
d

76
8

co
nn

. p
er

 w
or

ke
r

51
2

co
nn

. p
er

 w
or

ke
r

38
4

co
nn

. p
er

 w
or

ke
r

de
fa

ult
0

5

10

15

R
e

sp
o

n
se

 ti
m

e
 <

 3
0

0
m

s
(%

)

Figure 4.17: Increase in number of requests handled under 300 ms for dif-
ferent NGINX configurations, compared to the Apache Web server.

In this case study, we analyze the performance for an alternative Web
server software package. As mentioned before, Netlog uses the Apache
Web server software to process all user requests on the Web servers. An-
other well-known web server software package is called NGINX – High
performance Web server with low memory footprint.18 In Figure 4.17, we
show the percentage increase in the number of requests that were handled
under 300 ms, the chosen metric for this case study. We compare different
NGINX configurations to the standard Netlog Apache configuration. On
the horizontal axis we distinguish several NGINX configurations, starting
with the default configuration on the left side.

We observe that replacing Apache by a default NGINX setup increases
the number of requests handled under 300 ms by 7.5%. This number gets
up to 13.5% when tuning the number of connections per worker thread.
We also disabled the HTTP keepalive feature, but conclude that there is no
performance difference in disabling this feature.19

NGINX reduces response times as perceived by the end user, thereby
increasing customer satisfaction. This will lead to more users visiting the
social network site, leading to an increase in company profit. System en-
gineers and software developers can easily study other software tweaks or
parameter tuning for maximizing performance in the data center by using
the proposed method.

18http://www.nginx.net/
19The ‘keepalive’ feature is used for actively maintaining a connection between a client

and a server.

4.8. RELATED WORK 79

4.8 Related Work

4.8.1 Data center workloads

A number of studies have been conducted recently to understand what
hardware platform is best suited for a given data center workload. In all of
these setups, a single server is considered — the study focuses on leaf-node
performance — and/or microbenchmarks with specific behavior are em-
ployed. In contrast, this work considers a setup involving multiple physical
servers running real workloads, and we focus on end-user performance.

Kozyrakis et al. [43] consider three Microsoft online services, Hotmail,
Cosmos (framework for distributed storage and analytics) and the Bing
search engine, and their goal is to understand how online services and
technology trends affect design decisions in the data center. They collect
performance data from production servers subject to real user input, and
in addition, they set up a slightly modified version of the software in a lab
setup in order to perform stress tests for evaluating individual server per-
formance under peak load. Our work differs from the Kozyrakis et al. work
in two important ways: (i) we consider a different workload (Web 2.0 so-
cial networking), and (ii) our methodology is very different: our lab setup
includes multiple servers, running unmodified production software sup-
plied with real-life user input; in addition, we focus on end-user perceived
performance.

Lim et al. [47] consider four Internet-sector benchmarks, namely Web
search (search a very large dataset within sub-seconds), webmail (interac-
tive sessions of reading, composing and sending e-mails), YouTube (media
servers servicing requests for video files), and mapreduce (series of map
and reduce functions performed on key/value pairs in a distributed file
system). These benchmarks are network-intensive (webmail), I/O-bound
(YouTube) or exhibit mixed CPU and I/O activity (Web search and mapre-
duce). Lim et al. reach the conclusion that lower-end consumer platforms
are more performance-cost efficient — leading to a 2× improvement rela-
tive to high-end servers. Low-end embedded servers have the potential to
offer even more cost savings at the same performance.

Andersen et al. [1] propose the Fast Array of Wimpy Nodes (FAWN)
data center architecture with low-power embedded servers coupled with
flash memory for random read I/O-intensive workloads. Vasudevan et
al. [75] evaluate under what workloads the FAWN architecture performs
well while considering a broad set of microbenchmarks ranging from I/O-
bound workloads to CPU- and memory-intensive benchmarks. They con-
clude that low-end nodes are more energy-efficient than high-end CPUs,
except for problems that cannot be parallelized or whose working set can-
not be split to fit in the cache or memory available to the smaller nodes —

80 CHAPTER 4. WEB 2.0 WORKLOAD CHARACTERIZATION

wimpy cores are too low end for these workloads.
Reddi et al. [65] evaluate the Microsoft Bing Web search engine on In-

tel Xeon and Atom processors. They conclude that this Web search en-
gine is more computationally demanding than traditional enterprise work-
loads such as file servers, mail servers, Web servers, etc. Hence, they con-
clude that embedded mobile-space processors are beneficial in terms of
their power efficiency, however, these processors would benefit from bet-
ter performance to achieve better service-level agreements and quality-of-
service.

Meisner et al. [51] introduce PowerNap, an energy-conservation ap-
proach where the entire system transitions rapidly between a high-perfor-
mance active state and a near-zeropower idle state in response to instanta-
neous load. However, the authors focus on a special type of server enclo-
sures only, called blade servers.

Zhao et al. [81] study the impact of using HipHop, a static compiler for
the dynamic PHP language, on some simple microbenchmarks and on the
Facebook workload. The PHP language is a popular language that is often
used in scale-out Web applications. As mentioned before, PHP is an inter-
preted language and it is known that PHP incurs a lot of overhead. The
authors show that the use of HipHop is up to 5.5x more efficient than tra-
ditional PHP execution. This technique might be beneficial for the Netlog
workload as well.

Lotfi-Kamran et al. [48] consider emerging applications in scale-out
data centers. They show that performance of scale-out workloads that op-
erate on large datasets is maximized through a modestly-sized last-level
cache that captures the instruction footprint at the lowest possible access
latency instead of microarchitectures that waste silicon on excessively large
caches. We must note that the results of Lotfi-Kamran et al. are very much
dependent upon the workload being considered — results might be very
different for the Netlog workload.

Hoffmann et al. [30] present a system for dynamically adapting appli-
cation behavior depending on load and power fluctuations. The authors
show that their benchmark applications execute responsively in the face of
power caps that would otherwise significantly reduce performance. They
also prove that dynamically adapting application behavior can help deal-
ing with reducing the number of machines needed to handle load spikes,
reducing power usage and TCO.

4.8.2 Sampling

Sampling is not a novel method in performance analysis. Some of the prior
work mentioned above focuses on leaf-node performance, an example of

4.9. CONCLUSION 81

sampling in space. Sampling in time is heavily used in architectural sim-
ulation. Current benchmarks execute hundreds of billions, if not trillions,
of instructions, and detailed cycle-accurate simulation is too slow to ef-
ficiently simulate these workloads in a reasonable amount of time. This
problem is further exacerbated given the surge of multi-core processor ar-
chitectures, i.e., multiple cores and their interactions need to simulated,
which is challenging given that most cycle-accurate simulators are single-
threaded.

Sampled simulation takes a number of samples from the dynamic in-
struction stream and only simulates these samples in great detail. Conte et
al. [16] were the first to use sampling for processor simulation. They select
samples randomly and use statistics theory to build confidence bounds.
Further, they quantify what fraction of the sampling error comes from the
sampling itself (sampling bias) versus the fraction of the error due to im-
perfect state at the beginning of each sample (non-sampling bias or cold-
start problem). Wunderlich et al. [79] employ periodic sampling and very
small samples while keeping the cache and predictor structures ‘warm’,
i.e., cache and predictor state is simulated, while fast-forwarding between
samples. Follow-up work by Wenisch et al. [77] introduces the concept of
checkpoint-based sampling. Each checkpoint or so-called ‘Live point’ is a
storage-efficient implementation that saves the current state of the proces-
sor, including caches, predictors, etc. Checkpoint-based sampling allows
individual performance measurements to be simulated independently, re-
ducing simulation time drastically.

Whereas both the Conte et al. as well as the Wunderlich et al. ap-
proaches select a large number of samples and rely on statistics to evaluate
the representativeness of the samples, Sherwood et al. [71] employ knowl-
edge about program structure and its execution to determine representative
samples. They collect program statistics, e.g., basic block vectors (BBVs),
during a profiling run, and they then rely on clustering to determine a set
of representative samples. The approach taken in this work is similar to
Sherwood et al. although we take different workload statistics as input to
the sample selection algorithm, while considering server workloads rather
than CPU workloads.

4.9 Conclusion

In this chapter, we presented a case study in which we characterized a real-
life Web 2.0 workload and evaluated hardware and software design choices
in the data center. Our methodology samples the Web 2.0 workload both
in space and in time to obtain a reduced workload that can be replayed,
driven by input data captured from a real data center. The reduced work-

82 CHAPTER 4. WEB 2.0 WORKLOAD CHARACTERIZATION

load captures the important services (and their interactions) and allows for
evaluating how hardware and software choices affect end-user experience
(response times).

The real-life Web 2.0 workload used in this work is Netlog, a popular
and commercially deployed social networking site with a large user base
in Europe. We explored hardware trade-offs in terms of core count, clock
frequency, HDD versus SSD, etc., for the Web, memcached and database
servers, and we obtain several interesting insights, such as the Web servers
scale well with core count, and end-user response times are inversely pro-
portional to Web server CPU frequency; an SSD reduces the longest re-
sponse times by around 30% over an HDD in the database servers, which
may or may not be justifiable given the significantly higher cost for SSD ver-
sus; memcached servers show low levels of CPU utilization, and are both
memory and network-bound, hence, hardware choice should be driven by
the cost of integrating more main memory in the server. Further, we pre-
sented two case studies illustrating how the method can be used for guid-
ing hardware purchasing decisions as well as software optimizations.

Chapter 5

Database Cloning

The database management system is an important component of a contemporary
Web 2.0 workload, yet improving its performance is challenging. Evaluating hard-
ware and software alternatives and trade-offs in a production environment is com-
plicated and might not always be possible; copying (part of) a database to an of-
fline environment might not be feasible either, particularly because of intellectual
property and privacy issues. In this work, we propose a framework for generating
synthetic but representative database clone workloads.

5.1 Introduction

Optimizing Web 2.0 performance is non-trivial because of the complex
interplay between the many software components (load balancers, web,
memcached and database servers), the scale of the data center, non-
determinism, bursty user requests, etc. An important software component
of a Web 2.0 workload is the database management system. Requests that
do not happen to be cached by the memcached servers need to get the
data from the database servers. Hence, the requests that need to go to
the database server are arguably the slowest — even though the database
may reside in memory, as is typically the case for contemporary Web 2.0
workloads in order to deliver good interactive performance to the end
user. Fine-tuning the database management system and the hardware it
runs on is challenging in itself as it is a multifaceted optimization endeavor
including criteria related to cost, performance, scalability, dependability,
availability, power consumption, etc. Contemporary database systems
have complex configuration possibilities, and identifying the optimal soft-
ware configuration is difficult. Further, the best configuration might even
change over time as new features are being offered by the services that they
support. Making these trade-offs is non-trivial because of the complexity
of the system, and making these trade-offs in an online environment makes

83

84 CHAPTER 5. DATABASE CLONING

Original
DB

Synthetic
DB

Statistical
Profile Synthetic

Database
Generator

Database
Profiler

Figure 5.1: Overview of the synthetic database generation framework.

it even more challenging because it may affect user experience. Further,
performing offline evaluations on a copy of the database comes with its
own issues. Copying a large database onto a test platform may be time-
consuming and costly, if at all possible, because of the size of the database.
In addition, it may not be desirable to do so because of privacy issues. For
example, sharing (part of) the database with third parties (e.g., a database
performance consultancy firm, or a processor manufacturer or system in-
tegrator interested in optimizing hardware for their client’s workloads)
is likely to be impossible without anonymizing the database. However,
anonymizing the database to make sure no sensitive (business and/or per-
sonal user) information is leaked is hard to automate and is likely to be
error-prone.

In this work, we present a framework for creating a synthetic duplicate
or clone of an existing database, see Figure 5.1 for a high-level overview.
In the first step, a database profiler constructs a statistical profile that de-
scribes the original database in a statistical manner through a collection
of distributions. The statistical profile serves as input to the synthetic
database generator. This generator then builds a synthetic database that
can be used for various experimental purposes. Synthetically generated
databases have a number of key benefits.

• Ease of duplication: The profile can be collected with limited over-
head. Once the profile is collected, a synthetic duplicate can be recon-
structed offline. There is no need to copy hundreds or thousands of
gigabytes of data from the production environment to a test environ-
ment.

• No sensitive information: The statistical profile captures high-level
information about the data in a statistical manner. No actual user
information or company related data is stored in the profile. This
enables sharing the synthetic database with third parties performing
representative performance analyses without having to worry about
IP or privacy issues. For example, a database consultancy firm could
run analyses and give feedback on how the database management
system (DBMS) should be tuned. Likewise, processor manufacturers
and system integrators can run performance analyses using a syn-
thetic database clone.

5.1. INTRODUCTION 85

• Repeatability: Doing performance measurements and experiments
in a live environment is complicated as the state of the database con-
tinuously changes. Hence, it is difficult to reproduce experimental re-
sults. Further, performance comparisons between design alternatives
can only be done in a meaningful way through sophisticated statis-
tical analysis. Synthetic databases provide a solution for this prob-
lem as they allow for running multiple experiments starting from the
same initial conditions in an offline environment.

• Scalability: By adjusting the statistical profile, it is very easy to gen-
erate synthetic databases with specific characteristics of interest, in-
cluding very large databases, complex inter-table relationships, novel
data types, etc. This enables answering interesting what-if questions.
In particular, it can be used to do database scalability analysis, i.e., a
Web 2.0 company may want to study the effect of an increasing num-
ber of users, leading to a growth in database size and how this affects
user response times and server load.

We illustrate our framework on a database taken from the same real-
life Web 2.0 workload as in the previous chapter, Netlog. We demonstrate
that we can generate a synthetic, anonymized clone from the real database
in limited time, i.e., generating a statistical profile from a 3 GB database
shard takes around 10 minutes, and generating a synthetic, anonymized
clone takes around one hour; further, anonymizing and matching up a
recorded query log with the synthetic clone is straightforward once we
have the anonymized database. The synthetic clone generates similar per-
formance behavior as the original database: we find that queries sent to
the synthetic clone are accurate within 0.95% on average compared to the
original database, and the 90% percentile of the response time distribu-
tion is estimated with an error of 1.38%. We further illustrate the usage
of synthetic database clones for both hardware and software performance
studies. We show that the synthetic clone leads to the same conclusions
when evaluating hardware design trade-offs when changing CPU clock
frequency, enabling/disabling hardware prefetching, evaluating hard-disk
drives versus solid-state disks, and comparing processor families. We eval-
uate several software trade-offs using the synthetic clone while evaluating
database scalability, exploring query cache size, and comparing storage en-
gines (InnoDB versus MyISAM).

We envision several use cases for this framework. Database perfor-
mance analysts, administrators and engineers can use the framework to
evaluate hardware and software alternatives and trade-offs in an offline
test environment. External consultancy firms can even run off-site perfor-
mance analyses as the database is anonymized. Our own primary inter-
est is to eventually use this framework for generating representative but

86 CHAPTER 5. DATABASE CLONING

anonymized workloads for architecture and code optimization research.
This work is just a first step towards this end. We now have the ability of
anonymizing a real-life database workload, yet the workload is still long
running and thus not amenable to simulation using slow architectural sim-
ulators. The next step is to reduce the size of the workload, either by re-
ducing the size of the database or by selecting a number of representative
queries or both, so that the workload can be simulated using detailed pro-
cessor simulators in a reasonable amount of time.

The remainder of this chapter is organized as follows. Section 5.2 in-
troduces the basic concepts of (relational) database management systems.
We present the statistical profile that is used to summarize the database
in statistical terms in Section 5.3. Section 5.4 describes how the synthetic
database is generated and in Section 5.5 we describe how the synthetic
query log is generated. In Section 5.6 we validate the presented techniques.
We then provide several use cases that illustrate the usefulness of syntheti-
cally generated databases for hardware and software studies in Sections 5.7
and 5.8, respectively. Section 5.9 illustrates the pitfall when using simple
databases such as OSDB for evaluating DBMS performance, which rein-
forces the need for a rigorous framework like the one presented in this
Chapter. Finally, we describe related work in Section 5.10, and we conclude
in Section 5.11.

5.2 Relational Databases

Before describing how we characterize a database in a statistical manner
and how we generate a synthetic database clone from this profile, it is im-
portant to understand the fundamentals of relational databases, which is
the purpose of this section.

The relational data model is the predominant choice for storing data in
a database. A relational database is organized as a set of tables, in which
each row represents a data tuple and each column represents an attribute;
a table basically stores all attributes for all data tuples and represents a so-
called ‘relation’. A relational database is the most widely-used database
type, for a number of reasons.

• Wide adoption: A number of big vendors like Oracle, IBM and Mi-
crosoft offer enterprise database systems and there is a large com-
munity supporting both commercial (Oracle, DB2, SQL Server) and
open-source database systems (MySQL, PostGreSQL, SQLite).

• Intuitive data model: The relational model structures data in an intu-
itive manner, thereby avoiding complexity. To minimize redundancy
and dependency, tables are typically normalized meaning that redun-

5.2. RELATIONAL DATABASES 87

dant data is eliminated by dividing large tables into small tables and
by defining relationships between the tables. This eases the process
of inserting, deleting and modifying fields to just one table and then
propagate those changes to the rest of the database through the de-
fined relationships.

• Data retrieval: All relational database management systems (RDBMS)
support an easy-to-use human-readable language for querying the
database, namely SQL.

• Flexibility: A relational database is extensible by nature, providing
a flexible structure for changing requirements and adding additional
data. The relational model permits easy changes to the database
structure without impacting the rest of the database, i.e., adding or
removing tables does not compromise the rest of the database.

• Security: A relational database supports fine-grained access permis-
sions and supports the concepts of users and user rights.

5.2.1 Column attributes

The database of a Relational Database Management System (RDBMS) con-
sists of multiple tables, with each table having one or more columns. The
columns hold the actual data, and each column has a specific data type.
(We describe common data types in Section 5.2.2.) Further, there are a few
special column attributes worth mentioning at this point as they form the
foundation of a relational database.

• PRIMARY KEY: This column attribute means that the respective col-
umn uniquely identifies the rows in a table. Primary keys are guar-
anteed to be unique, and are user-defined or autogenerated by the
DBMS.

• FOREIGN KEY: A foreign key is used to express relationships be-
tween tables. A foreign key will match a primary key of another table
meaning that rows in the two tables with the same foreign and pri-
mary key, respectively, are related.

Our test setup uses MyISAM as a storage engine.1 MyISAM, however,
does not have support for defining foreign keys explicitly; instead,
foreign keys are defined implicitly. In Section 5.3.3, we will show how
to detect relationships between tables with implicitly defined foreign
keys.

1http://dev.mysql.com/doc/refman/5.0/en/myisam-storage-engine.html

88 CHAPTER 5. DATABASE CLONING

• INDEX: To increase query performance, a special data structure,
called an index, can be used. The performance impact of using in-
dices is significant [46]. It is therefore important that our synthetic
duplicate uses indices the same way as the original database; one of
our case study illustrates this.

• UNIQUE: The unique attribute is used to express that only unique
values can be used in a column. A more complex use of this con-
straint allows multiple columns to be combined into a single unique
constraint. For example, the column ADDRESS and NAME of a user
table could be specified to have a collective, unique constraint, i.e.,
although multiple people may live at the same address and although
multiple people may have the same name, multiple persons having
the same name and living at the same address is (almost) impossible.

5.2.2 Data types

In order to build a statistical profile of the original database, it is important
to understand what data types are supported by the RDBMS. The following
is a brief summary of some of the most common data types available in
most database management systems, including MySQL which we use in
our setup.

• CHAR, VARCHAR: These data types represent a number of charac-
ters. The number of bytes needed by a CHAR is fixed, whereas the
number of bytes for a VARCHAR data element depends on the value
that is being stored.

• TEXT: This data type is used to store large amounts of text. In most
database systems, text objects are stored separately from the table,
not as part of a row, which implies that retrieving data from a col-
umn with the TEXT data type will incur more overhead because of
an additional indirection.

• ENUM, SET: ENUM is a string data type with a single value chosen
from a list of permitted values (e.g., small, medium, large). The list
of permitted values is specified during column creation. If a value is
inserted that is not included in the possible values, an empty string is
inserted.

The SET data type is a similar string data type that can have zero or
more values. As with ENUM, each of these values must be chosen
from a list of permitted values.

• INT, FLOAT: These data types are used to store integer or floating-
point values. There are different types of INTEGER values: TINYINT,

5.3. STATISTICAL DATABASE PROFILE 89

SMALLINT, MEDIUMINT, INT, and BIGINT, representing 1, 2, 3, 4
and 8 bytes of storage, respectively.

There are two floating-point types: FLOAT and DOUBLE, using 4 and
8 bytes, respectively. The above data types are used in the MySQL
database system. Other database management systems might not
support all of these or might require different storage demands.

• DATE, TIMESTAMP: The DATE data type is used to store a date; the
smallest granularity is one day. If a finer granularity is needed, one
can use the TIMESTAMP data type which offers one-second preci-
sion.

5.3 Statistical Database Profile

Building a statistical profile of the original database is the first step in our
synthetic database generation framework, as previously shown in Fig-
ure 5.1. We want this profile to be small but as accurate as possible —
it should accurately summarize the data in the database in a statistical
manner — without storing sensitive information about the company, its
business and its users.

5.3.1 Database scheme

There is some information available in the original database scheme as
it describes the structure of all the tables in the database, including col-
umn names and column data types. Relationships between tables in the
database scheme may be revealed as well, for example through foreign
keys — not the case in our environment though as it uses MyISAM, as
mentioned before. Finally, it may provide information about column con-
straints, keys and indices. The database scheme may thus reveal business
logic. In order to obfuscate as much business logic as possible, we re-
place table and column names by anonymized names by generating ran-
dom strings of the same length. Yet, the statistical profile keeps track of the
number of tables in the database, as well as the number of columns and
their data types; this is important in order to achieve similar performance
characteristics for the synthetic clone compared to the original database.

5.3.2 Statistical profile of column data

For each table in the database, we also collect a statistical profile regarding
its columns. We describe a column’s data properties in a statistical manner
using distributions. Different types of profiles are kept per data type.

90 CHAPTER 5. DATABASE CLONING

• CHAR, VARCHAR: Since CHAR values are of fixed size and we al-
ready know the size from the database scheme, we only store the
number of unique values appearing in the column. As mentioned
before, VARCHAR data types have variable length; the data is more
likely to be unique and of different size. To mimic the same behav-
ior with the synthetic clone as the original database, we build a his-
togram to capture the different lengths in the column. We use 2048
bins to represent its distribution. Given that the VARCHAR data type
has a maximum length of 64 K characters, the first bin thus counts the
number of column entries with 0 to 32 characters, the next bin counts
the number of column entries with 32 to 64 characters, etc.

• TEXT: This data type is similar to the VARCHAR type. We build a
histogram that counts the number of occurrences of each length —
this is done the same way as for the VARCHAR data type.

• ENUM, SET: The ENUM and SET data types take values from a pre-
defined set of values. We anonymize these values in the statistical
profile. We also capture the distribution amongst the value set and
the number of empty values, i.e., we have a count saying how fre-
quently each value is used and how frequently no value was chosen.

• INT, FLOAT: We store the minimum and maximum value of these
data types across the column. If a column with the INT data type is
used as a foreign key, we also store a histogram of frequency of oc-
currence for each data value. The histogram consists of 20 K buckets
divided evenly between the minimum and maximum values. The
reason for capturing a histogram for INT data types is that this data
type is used to define relationships between tables through primary
and foreign keys. Preserving the number and nature of inter-table re-
lationships has a significant impact on database performance as per-
ceived through response times.

• DATE, TIMESTAMP: In the statistical profile, we store the earliest
and latest date. We also store the number of unique dates and the
percentage of nil values (0000-00-00) appearing in the column.

5.3.3 Statistical profile of table relationships

As mentioned before, foreign keys play an important role in a relational
database because they represent relationships between tables. We distin-
guish three ways for detecting relationships between tables.

5.3. STATISTICAL DATABASE PROFILE 91

Database scheme

Most database management systems implement table relationships using
foreign keys. Explicit foreign keys allow one to easily determine relation-
ships from the database scheme. However, as mentioned in Section 5.2.1,
we could not extract foreign key information from our test database be-
cause it uses MyISAM as its storage engine, which does not make foreign
keys explicit. Relationships in our case are implicit and appear through the
same column data values with a primary key from another table.

Analyzing query log

An alternative approach is to extract table relationship information from
analyzing the queries that are executed on the database. Suppose the fol-
lowing query is performed on the database:

SELECT * FROM PICTURES INNER JOIN USERS
ON USERS.userId = PICTURES.userId
WHERE USERS.name = ‘Bob’

As we can see from this example, table USERS is joined with table PIC-
TURES through the userId column. This way, we can conclude that there is
a relationship between the two tables, namely through the userId column.
Unfortunately, this technique for detecting relationships does not work on
our test database either — and may not work in general — because the
queries in our database workload do not use JOIN statements between ta-
bles across database shards.2

Data analysis and clustering

The two previous techniques do not work on our database, for the reasons
mentioned above. Hence, we need an alternative heuristic approach for
detecting relationships between tables. Primary keys are known from the
database scheme, i.e., there is one primary key per table. The question
now is to find foreign keys. We do this through a clustering algorithm.
The purpose of the clustering algorithm is to group columns from different
tables for which there is a high probability that they are related to each
other. These clusters then presumably contain the foreign keys that relate
to the primary keys in the cluster. It is possible that one cluster contains

2Database sharding is a horizontal partitioning technique in which every x rows of a
table are stored in a separate database. For example, all information about users 1 to 100 is
stored on database server 1, information about users 101 to 200 is stored on database server
2, etc. Each shard is typically stored on a different physical server. This technique makes it
easy to scale out to a large number of users.

92 CHAPTER 5. DATABASE CLONING

USERS

userId
INT

PRIMARY

name VARCHAR

PICTURES

userId INT

albumId
INT

Range: 3-99

id INT
PRIMARY

ALBUMS

owner_userId INT

id
INT

PRIMARY
Range: 1-100

name VARCHAR

Figure 5.2: Clustering example: Based on the name and data type, we can
detect that the columns userId and owner userId are related to each other.
Column albumId of table PICTURES and column id of table ALBUMS are of
the same type and their data range is similar; hence we conclude that these
columns are also related.

more than two columns from a given table, in which case we will have to
decide which column, apart from the column holding a primary key, is the
foreign key.

The clustering algorithm considers all possible combinations of columns
and withholds column combinations if they fulfill to all three below crite-
ria.

• Name clustering: Columns that refer to each other often carry the
same or a similar name. For example, in Figure 5.3, column ‘userId’
from table PICTURES refers to column ‘userId’ from table USERS. A
column combination is withheld if there is a match in column name
in the original database (i.e., if a column name is a substring of the
other column name).

• Data type clustering: If two columns have different data types, it is
very unlikely that they will refer to each other. Hence, we only cluster
columns with the same data type.

• Value range clustering: We try to find related columns by checking
their value ranges. We compare minimum and maximum values of
a pair of columns and we decide that the likelihood of being related
is high if these values correspond well. Two columns are said to be
within similar if the relative difference in range is smaller than a given
threshold (3% in our case).

Figure 5.2 shows an example to illustrate how column clustering works.
We can see that the first columns of each table are related — they all have
‘userId’ in their names. The second column of the PICTURES and ALBUMS
table are related as well; we detect this because their value range is very
close to each other.

5.4. SYNTHETIC DATABASE GENERATION 93

The above algorithm for detecting inter-table relationship is based on
heuristics, hence it is imperfect — nevertheless, we found it to work well for
our test database. In addition, our framework offers its users the ability to
manually verify whether the proposed clustering makes sense, and which
clusters should be accepted and which not. (Note that the user here refers
to the person anonymizing the database by collecting a statistical profile
and generating a synthetic database clone. The user of the synthetic clone
only gets to see the anonymized data and is unable to reverse-engineer the
anonymized data.)

The next step is to convert the clusters into appropriate primary and for-
eign keys — we will use the primary and foreign key column information
during synthetic database generation, i.e., we will first populate the pri-
mary key columns with unique data values before populating the foreign
key columns as they which refer to the primary key columns. One of the
columns in each cluster will be chosen as the primary key, and the others
will act as foreign key columns. We distinguish three different scenarios:

• If there is a single primary key column in the cluster, then this column
is the primary key and the other columns are foreign keys.

• If more than one column is a primary key in its table, then we will
randomly pick one to be the primary key column; the other columns
are then foreign keys.

• If there are no primary key columns in the cluster, we will denote the
column that has the most unique values as the primary column and
the others as foreign key columns.

5.4 Synthetic Database Generation

Having collected the statistical profile, we can now build a synthetic dupli-
cate of the original database.

5.4.1 Overview

Generating a synthetic database is done as follows. We first generate all the
tables. This includes establishing the number of rows, columns, column
data types, (anonymized) table and column names, etc. We then define the
primary keys in all of the tables, i.e., one column is chosen as the primary
key per table. Once we have defined the primary keys, we then determine
the foreign key columns which define the inter-table relationships. Finally,
we populate the columns with anonymized data. We describe the synthetic
database generation process in more detail in the next few sections. We

94 CHAPTER 5. DATABASE CLONING

Username UserId

Alice 1

Bob 2

Carol 3

Dave 4

Username UserId

sd6fe 7

td5s 3

z5q 9

c6f2c 1

Filename UserId

Pic1.jpg 1

Pic2.jpg 1

Pic3.jpg 1

Pic4.jpg 3

Filename UserId

1b55s3dg

9c56wg1f

3cr82slfe

1dba03dg

Username UserId

sd6fe 7

td5s 3

z5q 9

c6f2c 1

Filename UserId

1b55s3dg 9

9c56wg1f 9

3cr82slfe 7

1dba03dg 9

 1. General anonymization

 2. Foreign key generation

Original
Database

Synthetic
Database

Figure 5.3: Example illustrating anonymization and foreign key genera-
tion. In this example we show two tables, USERS (left) and PICTURES
(right). In the original database there is one user with three pictures, one
user with one picture, and two users with no pictures. In the first step of the
anonymization process, we anonymize the Username, UserId and Filename
columns. We subsequently need to make sure that the foreign key distribu-
tion in the synthetic clone matches the histogram in the statistical profile.
This is done by assigning three pictures to a single random user, one picture
to another random user, and leave the other users without pictures.

describe how we generate primary keys, foreign keys and data values. Fi-
nally, we detail on how we satisfy unique constraints and how we deal with
fragmentation.

Figure 5.3 shows an example illustrating how two tables of an origi-
nal database are converted into synthetic versions in the clone database.
Our technique makes sure that the foreign key distribution is the same in
the synthetic duplicate as in the original database, and hence, the inter-
table relationships are maintained in the synthetic database compared to
the original database in a statistical sense.

5.4.2 Primary key generation

Primary key generation is done in a fairly straightforward way. As men-
tioned before, primary keys are defined using the INT data type. We know
how many unique values there need to be, namely the number of rows in

5.4. SYNTHETIC DATABASE GENERATION 95

the table, and we also know the range of data values in the column from
the statistical profile. We then generate as many unique values as needed
from the specified range, and randomly assign these unique values to rows
in the table.

5.4.3 Foreign key generation

The generation of foreign keys needs two requirements to be fulfilled. First,
the values in a foreign key column need to match with values of a primary
key column in another table. Second, the distribution over these values
needs to match the histogram stored in the statistical profile.

The following algorithm fulfills both requirements. We randomly
choose a value from the primary key column the foreign key column cor-
responds to. (We verify that the value was not picked before.) We then
determine how often this value should occur in the foreign key column;
this is done using the histogram stored in the statistical profile. We gen-
erate a random number between 0 and 1, and use the inverse cumulative
distribution to determine the number of occurrences of the value in the
foreign key column. We then fill in this value as many times as just deter-
mined at random rows in the foreign key column. This process is iterated
until all rows in the foreign key column are filled in.

5.4.4 Anonymized data value generation

Populating the tables with anonymized data is done as follows.

• CHAR, VARCHAR, TEXT: For all string data types, we insert a ran-
dom alphanumeric string. The length of the string is determined
by the histogram for VARCHAR and TEXT columns; the length of
a CHAR column is determined by the length stored in the statisti-
cal profile. We also take the number of unique values into account
and generate the same number of unique values as in the original
database.

• ENUM, SET: One of the permitted values will be picked and inserted
in the synthetic database; the permitted data values are anonymized
by generating random values. The probability of each value is deter-
mined by the respective distributions in the statistical profile.

• DATE, TIMESTAMP: We insert the same number of nil values as
stored in the statistical profile. For the other values, we insert a ran-
dom date between the minimum and maximum date.

96 CHAPTER 5. DATABASE CLONING

ALBUMS

Column Range

userId 10.000 Root column

albumId 500 Non-root column

gender 2 Non-root column
P

R
IM

A
R

Y
 K

E
Y

Figure 5.4: In this example, a primary key containing multiple columns
is defined. This makes it hard to determine values, because the combi-
nation of all three fields has to be unique. There are 10,000,000 possible
unique combinations and if the number of required unique values is close
to 10,000,000, it will be hard for a naive implementation to generate the
final few values.

• INT, FLOAT: A random value between the saved minimum and max-
imum is inserted. If this column is a foreign key, insertion is more
complicated, as described in the previous section.

5.4.5 Satisfying unique constraints

As explained in Section 5.2.1, a table may have a PRIMARY constraint and
multiple UNIQUE constraints. We need to make sure we do not violate
these constraints during data value generation. A naive implementation
of randomly picking data values might not work effectively if the number
of required values is close to the number of available values. Figure 5.4
illustrates this in which three columns (userId, albumId, and gender) are
joined to form one PRIMARY key. In this example, the maximum number
of possible values equals 10,000,000, which is the cross-product of 10,000
userIds, 500 albumIds and 2 gender type; assume we need to generate close
to 10,000,000 unique values, say 9,999,999. A naive implementation that
randomly picks a cross-product of these three values might have a hard
time generating unique values as more and more cross-product values have
been generated. In particular, the algorithm might need to try many times
to find another unique value towards the end. We therefore take a different
approach, and essentially generate all possible cross-product values, from
which we then randomly pick.

5.4.6 Fragmentation

In order to be able to have repeatable performance measurements with syn-
thetically generated databases, we pay attention to fragmentation and how
this may affect database performance. We distinguish two types of frag-
mentation.

5.5. GENERATING SYNTHETIC QUERY LOG 97

• File fragmentation: If a database is running in a production environ-
ment for months or years, the tables might get fragmented because
of the many DELETE, INSERT and UPDATE statements. MyISAM
uses several techniques to reduce fragmentation. In MySQL, one can
remove fragmentation by executing the OPTIMIZE command. We
compared the performance difference before and after running the
OPTIMIZE command and we did not observe a statistical difference.
Hence, we conclude that fragmentation is low and that there is little
impact on performance, at least for our particular database.

• Disk fragmentation: Another type of fragmentation might happen at
the disk level: a file that is stored on disk might get fragmented over
time as well. Using the filefrag tool, we observed that large database
files were often fragmented into smaller pieces.3 To get similar frag-
mentation effects on both the original and synthetic databases in our
experiments, we create a new file system before running each test. As
a consequence, by copying the original or synthetic databases to this
new file system, the fragmentation is very similar, and hence frag-
mentation has little impact on overall performance. Moreover, it en-
ables repeatable experiments.

5.5 Generating Synthetic Query Log

Using the synthetically generated database for performance analyses also
requires that we have a synthetically generated query log to exercise the
database. One could use a random query log, however, this is unlikely to be
representative for a live production environment. Alternatively, one could
use a synthetically generated query log that stresses a particular component
of the database — a so-called stress test. For example, one could stress the
system by having many users inserting or downloading particular items in
the database. This could lead to some interesting observation with respect
to the scalability of the database in terms of the number of users and bursty
behavior.

In this work, we capture a real query log and derive a synthetic version
from it, in order to be as representative as possible compared to the real
query log. We use this approach for validating our framework in this work.
We obtain timing information for the real query log by replaying it against
the original database; we apply the same procedure for the synthetic query
log on the synthetic database, after which we then compare the timings
between the synthetic runs versus the original database runs.

The query log contains an entry for each query with all of its parame-

3http://linux.die.net/man/8/filefrag

98 CHAPTER 5. DATABASE CLONING

ters. Obviously, the original query log does not match with the synthetic
database clone, i.e., the queries are no longer meaningful because of the
anonymization process during synthetic database generation. Hence, the
query trace log needs to be adapted accordingly to reflect the synthetic
database, i.e., we also anonymize the query log and we make sure it
matches the synthetic database. This is done as follows. Every query
in the original query log is inspected, and values that are used in the query
are replaced by existing values from the synthetic database. Because the
database is anonymized, the query log will now also consist of anonymized
data values, and yet, the query log will be meaningful with respect to the
synthetic database, i.e., the synthetic database will reply anonymized data
in response to the queries. We maintain the structures of the queries during
this process while anonymizing data values. For example, if an original
query on the original database asks for all the pictures from a particular
user, the anonymized query will ask for all pictures from a random user
in the database. The result returned from the database will be a set of file
names (the pictures); these file names are just random strings as they were
anonymized during the generation of the synthetic database clone.

In case of an INSERT query, we save the value that is inserted in the
database. We do not insert the original value, because this might conflict
with other values in the synthetic database and it might defeat our goal of
anonymizing the database. Instead we insert a randomly generated data
value. Later on, if the value is being searched for by a later query in the
query log, we will modify the later query and use the (random) value we
have just inserted.

5.6 Validation

Having described how we generate a synthetic database clone and how we
generate a series of synthetic queries to exercise the database, we now vali-
date our approach by comparing the performance of the synthetic database
against the original database. This is done by replaying the original ver-
sus synthesized query trace log on the original versus synthetic database,
respectively, and by comparing their performance numbers. If the query
response times on the original database correspond with those of the syn-
thetic one, we can conclude that our synthetic duplicate accurately mimics
the behavior of the original database.

5.6.1 Experimental setup

Before describing our validation results, we first detail on our experimental
setup.

5.6. VALIDATION 99

The real-life Web 2.0 workload we used is taken from the same social
network application as in the previous chapter, Netlog. The databases in
the Netlog data center are organized per language. We focus on the Slovene
database, which consists of more than 100 tables, including user, video,
music, chatting, friends and blogging content, for a total of 90 GB of data.
The Slovene part is representative for Netlog’s entire workload because it
exhibits the same partitioning of servers as the rest of Netlog’s workload.
Also, we observe similar degree of activity and access behavior (access to
profiles, photos, videos, etc.) for the Slovene language as for the other lan-
guages. The Netlog workload uses MySQL 5.1 as its database management
system.4 As mentioned before, the database is horizontally partitioned,
i.e., rows of database table are held separately on different physical servers
— a technique called sharding. For the Netlog workload, this means that
different users are distributed across different physical machines which en-
ables holding the database in memory while scaling out to large numbers
of users. Each shard in the Slovene part of the Netlog workload consists
of a 3 GB database (there are 30 3 GB shards for the Slovene language); we
consider one such 3 GB database shard in our study.

To mimic real user traffic we captured a query trace log on the original
infrastructure. The query trace log contains 90,000 queries — the selection
of the references from a single day of operation (March 13, 2011) that access
the database shard that we selected. This trace file is replayed using our
own query replayer, written in Java, which executes all queries sequentially
with a 10 ms think time between consecutive queries.

We conducted our experiments on two hardware platforms. One plat-
form has a 3.2 GHz Sandy Bridge quad-core Intel Xeon E3-1230 processor
with 16 GB of memory. It has both a regular rotating Western Digital Caviar
Green disk5 as well as an Intel Postville solid-state disk6. Our second plat-
form has a two 2 GHz dual-core AMD Opteron 2212 processors with 8 GB
of memory. It has a regular rotating Western Digital Caviar Blue disk.7

Collecting the statistical profile and generating the synthetic database
from it can be done in limited time. It takes 10 minutes to extract the
database scheme and collect the statistical profile from our 3 GB Netlog
database shard. In a real-life setting, this profiling can be done during
quiet hours so that users experience as little overhead as possible. The ben-
efit over making a copy of the original database through ‘mysqldump’ is
that it does not require the database to be locked; an approximate statisti-

4http://www.mysql.com/
5Western Digital WDC WD20EADS-00R: 2 TB disk running at 5.400 rotations per

minute with a 32 MB cache.
6Intel SSDSA2M080: 80 GB Multi level cell solid state disk with 32 MB cache.
7Western Digital WDC WD5000AAKS: 500 GB running at 7.200 rotations per minute

with a 16 MB cache.

100 CHAPTER 5. DATABASE CLONING

cal profile is good enough for our purpose. This also implies that profiling
the database can even be spread over time. Further, the statistical profile
is as small as 3 MB — a thousand-fold reduction in storage compared to
the original database — hence, in contrast to copying the entire database, it
does not add much pressure on the network and storage infrastructure in
the data center. Generation of the synthetic database takes about one hour.
This is acceptable, because it only has to be done once. If one wants to run
multiple tests, it is possible to make a copy of the synthetic database.

5.6.2 Results

Because of the statistical nature of the proposed framework, i.e., we gen-
erate the synthetic database based on statistics using distribution and we
anonymize the query log, we validate the database workload cloning in
a statistical manner. This is done by comparing the response time distri-
bution on the original database against the response time distribution on
the database clone. In other words, we run the (anonymized) query log
on the (anonymized) database and time the response for each query. We
then compute the response time distribution. Figure 5.5 visualizes the re-
sponse time distributions for both the original database workload and its
synthetic version; Figure 5.6 shows the same information using the cumula-
tive distributions. The distributions match well, and the synthetic database
also illustrates the bimodal distribution; both the original and the synthetic
database workloads show peaks around 400 and 600 microseconds. The
second peak represents more complex queries that involve a lookup on
a column that does not have an index. The mean response time for the
synthetic workload is within 0.95% of the original workload. The 90% per-
centile is estimated with an error of 1.38%.

5.7 Hardware Tuning

Having gained confidence in the representativeness of synthetically gener-
ated databases and query logs, we now use this approach to explore hard-
ware and software trade-offs. In this section we consider a number of hard-
ware experiments; the next section then focuses on software experiments.

We run the following experiments on recent server hardware. The CPU
in our test server is a Sandy Bridge quad-core Intel Xeon CPU E3-1230,
which supports Dynamic Voltage and Frequency Scaling (DVFS) and ad-
vanced architectural settings (i.e., hardware prefetching) can be configured.
The server has 16 GB of main memory and is running Ubuntu Linux 11.04.
In the following tests, we execute 90 K queries on the original and the syn-
thetic database. We repeat each test at least five times and we present aver-

5.7. HARDWARE TUNING 101
Sheet1

Page 1

0 200 400 600 800 1000 1200 1400
0%

10%

20%

30%

40%

50%

60%

70%

Original DB
Synthetic DB

Response time (us)

P
ro

b
a

b
ili

ty
 (

%
)

Figure 5.5: Validation of the database workload cloning. Comparing re-
sponse time distributions (in microseconds) on the original versus cloned
database.

age results along with confidence intervals with a 95% confidence level.

5.7.1 Clock frequency

The Intel Xeon CPU E3-1230 supports clock frequencies from 1.6 GHz to
3.2 GHz. In this section we show how CPU clock frequency affects query
response time. As shown in Figure 5.7, increasing clock frequency from
1.6 GHz to 3.2 GHz reduces average query response time on the original
database by 10%. Query response times get reduced by 8.5% on average on
the synthetic database, which is close to what we observe on the original
database. This result shows that the impact of varying clock frequency is
rather low. This is to be understood intuitively as the database server is
mostly memory-intensive. Since memory speed does not scale while scal-
ing CPU clock frequency, the performance impact of CPU scaling is lim-
ited. Figure 5.8 shows a similar result for the 90% percentile of the query
response time. Interestingly, increasing CPU clock frequency improves the
slowest queries more than the average query (32% versus 10% improve-
ment). The slowest queries involve more computation work which benefit
from a higher clock frequency.

The important conclusion from this experiment is that a designer would
reach the same conclusion using the synthetic versus the original database,
namely changing CPU clock frequency affects query response time some-
what (around 10 percent) on average and improves the slowest responses
more significantly (around 30 percent). This is potentially important in-
formation for Web 2.0 companies that seek at reducing their overall energy

102 CHAPTER 5. DATABASE CLONING
cumulative

Page 1

0 100 200 300 400 500 600 700 800 900 1000
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Original DB
Synthetic DB

Response time (us)

C
u

m
u

la
tiv

e
 P

ro
b

a
b

ili
t y

 (
%

)

0 20000 40000 60000 80000 100000
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Original DB
Synthetic DB

Response time (us)

C
u

m
u

la
tiv

e
 P

ro
b

a
b

ili
t y

 (
%

)

cumulative

Page 1

0 100 200 300 400 500 600 700 800 900 1000
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Original DB
Synthetic DB

Response time (us)

C
u

m
u

la
tiv

e
 P

ro
b

a
b

ili
t y

 (
%

)

Figure 5.6: Validation of the database workload cloning. Comparing cumu-
lative response time distributions (in microseconds) on the original versus
cloned database. Entire cumulative distribution is shown on top; graph at
the bottom is zoomed in.

consumption. If they decide to halve the CPU clock frequency to save more
energy, then they can expect an average 10% (and up to 30%) drop in per-
formance for the queries that need to go to the database server.

5.7.2 Hardware prefetcher

The Intel Xeon CPU E3-1230 (Sandy Bridge) has a hardware prefetcher that
prefetches data into the last-level cache and possibly the L2 cache. The
hardware prefetcher monitors read requests from the L1 (instruction and
data) caches for ascending and descending sequences of addresses, and
when a forward or backward memory reference stream is detected, the an-
ticipated cache lines are prefetched [34]. It is possible to disable the hard-

5.7. HARDWARE TUNING 103
Sheet1

Page 1

Original database Synthetic database
95%

100%

105%

110%

115%

1.6 GHz
2.4 GHz
3.2 GHz

R
e

la
tiv

e
 P

e
rf

o
rm

a
n

ce

Figure 5.7: Average query performance as a function of CPU clock fre-
quency for both the original and synthetic databases.

Sheet1

Page 1

Original database Synthetic database
90%

100%

110%

120%

130%

140%

1.6 GHz
2.4 GHz
3.2 GHz

R
e

la
tiv

e
 P

e
rf

o
rm

a
n

ce

Figure 5.8: 90% percentile query performance as a function of CPU clock
frequency for both the original and synthetic databases.

ware prefetch unit in our machine through the BIOS. By disabling and en-
abling this L2 hardware prefetcher we can measure the impact of hard-
ware prefetching on response times. For both the original and synthetic
databases, we find that enabling the hardware prefetcher improves query
performance by a small percentage only, see Figure 5.9. Apparently, the
memory access patterns are hard to predict by the hardware prefetcher,
hence its impact on performance is limited. It is encouraging to observe
that similar insights and results are obtained using the synthetic and origi-
nal databases.

5.7.3 Solid-state disk

Solid-state disks are popular these days because of their high performance
and low energy consumption. Their isolated performance has been stud-

104 CHAPTER 5. DATABASE CLONING
Sheet1

Page 1

Original database Synthetic database
96%

98%

100%

102%

104%

No prefetching
Prefetching

R
e

la
tiv

e
 P

e
rf

o
rm

a
n

ce

Figure 5.9: Impact on average query performance from hardware prefetch-
ing for both the original and synthetic databases.

ied before and the results look promising [17] [26]. However, solid state
disks are still expensive these days, hence the question is whether solid-
state disks yield a significant performance benefit for a Web 2.0 workload,
and whether the higher cost is worth the performance benefit. To answer
this question, we set up an experiment in which we replace the standard ro-
tating Western Digital Caviar Green hard disk (HDD) by an Intel Postville
solid-state disk (SSD).

For the purpose of evaluating this trade-off between HDD versus SSD,
we limit the amount of physical memory in our machine to 1 GB. This will
cause the 3 GB database shard to be stored partially in memory and partial
on HDD/SSD. In other words, some requests will get the data from mem-
ory, others will get the data from HDD/SSD. This enables us to measure the
impact of SSD versus HDD when at least a fraction of the requests cannot
be serviced from memory.

As shown in Figure 5.10, the benefit of using a solid-state disk is large
in case the database does not fit in physical memory. Query response
times improve by 48% on the original database and by 44% on the syn-
thetic database. Again, we conclude that the synthetic database accurately
predicts the relative performance trends observed on the original database.

5.7.4 Comparing hardware platforms

In this section we compare our server platform (Intel Xeon E3-1230) with
an (older) server that has two dual-core AMD Opteron 2212 processors.
The AMD server has 8 GB of main memory and is running Ubuntu Linux
10.04. The results are shown in Figure 5.11. The newer Intel Xeon server
platform, outperforms the AMD Opteron system by 18% according to the
experiments with the original database; the experiments with the synthetic

5.8. SOFTWARE TUNING 105
Sheet1

Page 1

Original database Synthetic database
0%

20%

40%

60%

80%

100%

120%

140%

160%

HDD
SSD

R
e

la
tiv

e
 P

e
rf

o
rm

a
n

ce

Figure 5.10: Impact on performance for a spinning hard drive versus a
solid-state disk for both the synthetic and original databases.

Sheet1

Page 1

Original database Synthetic database
80%

90%

100%

110%

120%

AMD Opteron
Intel Xeon

R
e

la
tiv

e
 P

e
rf

o
rm

a
n

ce

Figure 5.11: Comparing two hardware platforms: The Intel Xeon outper-
forms the AMD Opteron platform by more than 10% according to both the
original and synthetic databases.

database report a performance improvement of 12%. This experiment illus-
trates how Web 2.0 companies and third parties can use synthetic databases
to perform hardware performance evaluations.

5.8 Software Tuning

Configuring complex software, e.g., a database management system, is
known to be a challenging task. In this section we show some case studies
for tuning several software configurations using synthetic databases.

106 CHAPTER 5. DATABASE CLONING

5.8.1 Database scaling

An interesting property of a framework for generating synthetic databases
is that it allows for easily changing its characteristics and evaluating its
impact on performance. For example, building a synthetic database that
is larger than the original one can be done fairly easily by increasing the
number of entries in each table, and adjusting the data values accordingly
as well as the query log. This might be interesting for evaluating the scal-
ability of the database model. In particular, given the popularity of social
networking, it is important to understand how database upscaling affects
performance in order to steer capacity planning.

In Figure 5.12 we show results for a synthetic database that is the same
size as the original one, as well as results for a database that is twice the size
of the original one. Doubling the size of the database was done by simply
doubling the number of entries in each table; we populated the tables with
random data following the distributions in the statistical profile. Separate
synthetic queries were generated for both database sizes. As shown in Fig-
ure 5.12, doubling the database size increases the response times for a sig-
nificant number of queries. On the other hand, there are also a lot of queries
for which response time is not affected. A more detailed analysis revealed
that queries that uses indices are largely unaffected by the database size,
i.e., the indices allowed for quickly identifying the appropriate entries in
the table. Queries that do not use indices are slowed down substantially
when increasing the database size, the reason being that these queries re-
quire the table to be scanned sequentially. The insight is that in order to
make the database scale better, it is important to use indices. Our tool en-
ables database performance engineers to determine which types of queries
do or do not scale with database size and for which types of queries the
database should be optimized for.

5.8.2 Query cache

There are many complex configuration possibilities in modern database
management systems. Hence, it is difficult and time-consuming to come
up with an optimal configuration. Synthetic databases facilitate exploring
various configuration options because they allow for running experiments
starting from the same initial database state in an offline setting. Running
similar experiments in an online production environments are challenging,
if at all possible.

In this section we show one example in which we vary the query cache
size of our DBMS. The query cache stores the content of SELECT queries. If
an identical query is received later, the server retrieves the result from the
query cache instead of parsing and executing the query again. When tables

5.8. SOFTWARE TUNING 107

1 5 10 15 20 25 30 35 40 45 50
1

10

100

1000

10000
1x Database size
2x Database size

Query response time (ms)

N
u

m
b

e
r

o
f q

u
e

ri
e

s

Figure 5.12: Scaling the database size by a factor of two introduces more
queries with higher response times.

get modified, relevant entries in the query cache are flushed. The query
cache is of interest to databases in which tables do not change very often
and when the DBMS receives a lot of identical queries. The MySQL refer-
ence manual reports that the overhead of having a query cache active when
there is nothing to be cached equals 13%, whereas single-row select queries
are 238% faster if the query cache is active and used.8 For our database, we
find that a 8 MB query cache optimizes performance: it reduces average
response time by 20% over no cache, see Figure 5.13. A database perfor-
mance analyst may based on these experiments using synthetic databases
suggest to set the query cache to 8 MB. We verified this using the original
database and we found that an 8 MB query cache improves response time
by 24% on average over no query cache — very close to the 20% predicted
using the synthetic database workload.

5.8.3 Storage engine: InnoDB vs MyISAM

Our final case study explores the impact of the choice of storage engine
on overall database performance. As mentioned throughout this chapter,
the Netlog DBMS uses MyISAM as its storage engine. The question might
come up whether it is worth replacing MyISAM with InnoDB.9 InnoDB is
a more recent engine that guarantees ACID properties.10 Further, InnoDB

8http://dev.mysql.com/doc/refman/5.1/en/query-cache.html
9http://dev.mysql.com/doc/refman/5.0/en/innodb-storage-engine.html

10Atomicity, Consistency, Isolation, Durability

108 CHAPTER 5. DATABASE CLONING
Sheet1

Page 1

0 2 4 8 16 32 64 128 256
90%

95%

100%

105%

110%

115%

120%

125%

Query cache size (MB)

R
e

la
tiv

e
 P

e
rf

o
rm

a
n

ce

Figure 5.13: Impact on performance (query response time) for the MySQL
built-in query cache as a function of its size.

uses row locking instead of table locking, which is faster for insert and up-
date queries, but slower for select queries.11 Finally, InnoDB has native
support for foreign keys, transactions and rollback, which makes InnoDB a
more complex storage engine compared to MyISAM. Answering this ques-
tion in a live production environment is challenging. One option might
be to route a fraction of the request stream from the production environ-
ment to a test environment. Statistically comparing the response times in
the test environment against the production environment might yield the
requested answer. Users whose requests are routed to the test environment
will experience longer response times if the test environment yields poor
performance. An alternative approach which does not affect end user expe-
rience is to use synthetically generated databases in an offline experimental
environment.

In Figure 5.14 we show how query response time is affected by the
two storage engines, InnoDB versus MyISAM. We find the difference to
be small for queries that take less than 1 ms. However, MyISAM shows
better performance numbers for queries that take longer than 1 ms. We
note that most of these long-taking queries are complex select queries. As
mentioned before, the overhead of table locking is lower than for row lock-
ing, which explains why the simpler MyISAM storage engine is performing
better than the more complex InnoDB engine on average.

11http://dev.mysql.com/doc/refman/5.0/en/table-locking.html

5.9. PITFALLS IN USING SIMPLE DATABASE BENCHMARKS 109

0 5 10 15 20 25 30 35 40 45 50
1

10

100

1,000

10,000
MyISAM
InnoDB

Query response time (ms)

N
u

m
b

e
r

o
f q

u
e

ri
e

s

Figure 5.14: Comparing the performance impact of InnoDB versus My-
ISAM as a storage engine as a function of query response times. InnoDB
introduces more overhead for insert operations, which leads to long-taking
queries to take even longer.

5.9 Pitfalls in Using Simple Database Benchmarks

The Transaction Processing Performance Council (TPC)12 provides a set
of database benchmarks for evaluating hardware and software configu-
rations for Online Transaction Processing (OLTP) and Decision Support
Systems (DSS) workloads, which are considered the de facto standard
today. Setting up these benchmarks is non-trivial though because it in-
volves multiple machines (both clients and/or servers), disk arrays, and
fine-tuning the DBMS. Further, it is extremely difficult to extrapolate per-
formance numbers published by TPC to a particular database application
and environment. This observation has inspired people to come up with
simpler benchmarks, such as Open Source Database Benchmark (OSDB)13

and SysBench14, that are claimed to provide some insight in system per-
formance while setting up a simple database (in case of OSDB) or without
having to set up a database at all (in case of SysBench).

We make the case that synthetically generated benchmarks are in fact
an interesting solution to the problem of evaluating hardware and soft-
ware configurations for a given database. As mentioned throughout this
Chapter, synthetic databases are easily set up, are representative for the

12http://www.tpc.org/
13http://osdb.sourceforge.net/
14http://sysbench.sourceforge.net/

110 CHAPTER 5. DATABASE CLONING

real databases that they model, and enable repeatable experimentation in
an offline environment. To illustrate the superiority of synthetic databases
over simpler benchmarks, we now compare our synthetic database against
OSDB, as an example of a simple database benchmarking tool. This is done
through two experiments. In our first experiment, we scale CPU clock fre-
quency, as done in Section 5.7.1, and measure its impact on query response
times, see Figure 5.15. From the OSDB benchmark results, one would con-
clude that there is a significant performance benefit from higher CPU clock
frequency. Synthetic databases show that the performance benefit is lim-
ited and smaller than what the OSDB workload suggests; this is in line
with the experiments we did using the original database workload, see Sec-
tion 5.7.1. In our second experiment, we run the OSDB benchmark on both
of our server platforms, as done in Section 5.7.4. From the results in Fig-
ure 5.16, one would conclude that the Intel Xeon platform performs 36%
better than the older AMD Opteron platform; our workload suggests that
the performance benefit is more moderate as previously reported. These
two experiments clearly illustrate that the OSDB database workload does
not accurately capture the behavior of real-life database workloads of inter-
est, and may lead to incorrect conclusions which may impact cost as well
as end-user experience. In particular, OSDB uses a database consisting of 6
tables only, it does not model relationships between tables, and considers
a limited number of basic queries only. A synthetically generated database
using the proposed methodology on the other hand provides a more faith-
ful representation compared to the real workload of interest. Our synthetic
database consists of more than 100 tables, does model inter-table relation-
ships, and runs anonymized queries based on real-life queries. This leads to
a more complex, and more memory-intensive and less compute-intensive
workload than OSDB, which explains why OSDB benefits more from in-
creased CPU clock frequencies, both in Figures 5.15 and 5.16.

5.10 Related Work

We now describe related work in Web 2.0 and cloud workload performance
analysis, and synthetic workload generation.

5.10.1 Web 2.0 and cloud performance analysis

Performance analysis for Web 2.0 and cloud workloads is challenging be-
cause of the scale of the system and the complex interactions taking place
between the numerous software components and hardware servers. One
approach is to construct a scaled-down version of a real workload. In
the previous chapter, we characterized the real-life Netlog workload, the

5.10. RELATED WORK 111
Sheet1

Page 1

OSDB benchmark Synthetic database
0%

20%

40%

60%

80%

100%

120%

140%

160%

1.6 GHz
2.4 GHz
3.2 GHz

R
e

la
tiv

e
 P

e
rf

o
rm

a
n

ce

Figure 5.15: Evaluating how CPU clock frequency affects average response
time for the OSDB and synthetic database workloads.

same workload used in this work. We therefore duplicated a subset of
the workload — we selected one language — in an offline environment
and we replayed real input traffic which we had captured over a period
of four days. This setup enabled us to explore numerous hardware and
software trade-offs and how they affect end-user experience as measured
by response times. Setting up this environment was very time-consuming
because we had to both make a copy of the software onto our test environ-
ment and we had to anonymize the database and input traffic. This was
largely a manual process, which took us several man-months and which
motivated the work presented in this work. By characterizing the database
using a statistical profile and by generating a synthetic database and re-
quest stream, as we propose in this work, we no longer need to make a
copy of the database and the anonymization is dealt with by construction.
Having set up the infrastructure presented in this work, we are now able to
characterize and duplicate a synthetic database clone and request stream in
less than two hours, while yielding representative performance numbers.

Open Cirrus [3] is an open cloud-computing research testbed that was
initiated by a collaborative group of researchers in both industry and
academia. Open Cirrus’ primary goal is to provide a distributed set of fed-
erated data centers as a testbed for system-level cloud computing research:
it provides open-source software stacks and APIs, it enables systems-level
research, it provides experimental data sets and it allows for studying
application development for cloud computing.

An approach that is complementary to building a testbed or offline test
environment, is to set up a simulation environment that allows one to per-
form more detailed performance analyses. Depending on the scope of the

112 CHAPTER 5. DATABASE CLONING
Sheet1

Page 1

OSDB benchmark Synthetic database
0%

20%

40%

60%

80%

100%

120%

140%

160%

AMD Opteron
Intel Xeon

R
e

la
tiv

e
 P

e
rf

o
rm

a
n

ce

Figure 5.16: Evaluating how processor families affect average response
time for the OSDB and synthetic database workloads.

study, one may opt for a detailed, but relatively slow, simulation strategy
when focusing on an individual server or limited set of servers; alterna-
tively, one may be interested in understanding system-level design trade-
offs over longer time scales and/or across multiple servers, and hence one
may need a less detailed, and thus faster, simulation approach. Cloud-
Suite [22] is a recently proposed benchmark suite for online service appli-
cations such as web search, social networking, and business analytics, and
when run on a full-system simulator, such as Flexus [77] or gem5 [11], it en-
ables performing detailed microarchitecture explorations for these emerg-
ing applications. System-level studies across multiple servers call for faster
simulation strategies. COTSon [2] targets cluster-level systems consisting
of multiple multi-core processor nodes connected through a network, i.e.,
it targets both scale-up (i.e., multi-core and many-core processor simula-
tion) as well as scale-out (i.e., simulation of a multi-node cluster). COTSon
uses the AMD SimNow full-system simulator to functionally simulate each
node in the cluster. Each COTSon node further consists of timing models
for the disks, network card interface and the CPU (i.e., processor and mem-
ory) [68]. VSim [69] uses time dilation through virtual machines to simu-
late multi-server setups at near native hardware speed, and demonstrated
system-level scale-out simulation studies using Olio Web 2.0 and Hadoop
workloads.

5.10.2 Synthetic workload generation

This work is also inspired by earlier work in synthetic workload genera-
tion. Some prior work focuses on synthetic workloads for evaluating stor-
age systems, see for example [24]. Other prior work focuses on generating

5.10. RELATED WORK 113

synthetic workloads and clones of general-purpose and embedded appli-
cations, such as SPEC CPU and MiBench, however, this work was limited
to mostly CPU-centric workloads and systems, and did not consider more
complex workloads that involve significant full-system activity as is the
case for the database workload considered in this study. In particular, sta-
tistical simulation [18] [58] [60] collects program characteristics from a pro-
gram execution and subsequently generates a synthetic trace from it that
is then simulated on a simple, statistical trace-driven processor simulator.
The important advantage of statistical simulation is twofold. Because the
synthetic traces are very short, typically a few millions of instructions at
most, they can be simulated in a short amount of time, making statistical
simulation a valuable approach for early design stage exploration. Second,
a synthetic trace hides proprietary information and does not leak business
nor user-sensitive information to third parties. More recent work proposed
automated synthetic benchmark generation [8] [33] [37] [74] which builds
on the statistical simulation approach but generates a synthetic benchmark
rather than a synthetic trace, which allows for running the synthetic work-
load on real hardware as well as execution-driven simulators.

Whereas statistical simulation and synthetic benchmark generation is a
bottom-up approach, i.e., a workload is generated from specifying its be-
havioral characteristics, [73] proposed code mutation which hides propri-
etary information in a top-down manner. They mutate an existing bench-
mark so that reverse engineering the benchmark gets more complicated,
while preserving similar execution behavior. Code obfuscation [15] is a re-
lated technique but converts a program into an equivalent program that is
more difficult to understand and reverse engineer. There is a fundamental
difference between code obfuscation and benchmark synthesis though. The
goal of program obfuscation is to generate a transformed program that is
functionally equivalent to the original program, i.e., when given the same
input, the transformed program should produce the same output as the
original program. The performance characteristics of the transformed pro-
gram can be — and in practice they are — very different from the original
program. Benchmark synthesis on the other hand generates a synthetic
program that exhibits the same performance characteristics as the original
program, however, its functionality can be very different.

5.10.3 Database performance analysis

Shao et al. [70] present DBmbench which is a microbenchmark suite for em-
ulating Decision Support Systems (DSS) and Online Transaction Processing
(OLTP) workloads at the computer architectural level. DBmbench includes
two tables and three simple queries, and its key design principle is to keep
the schemas and queries as simple as possible, and to focus on the dom-

114 CHAPTER 5. DATABASE CLONING

inant operations in DSS and OLTP workloads. Our goal and approach is
different. We aim at evaluating DBMS at the system level, and consider
real-life database schemes and queries while hiding business and user in-
formation.

Morfonios et al. [54] present the approach used in Oracle 11g for accu-
rately capturing database requests from multiple concurrent users in a pro-
duction database environment. The recorded requests are then replayed in
a test database environment. They pay special attention to synchronization
to enforce specific orderings between the replayed requests. This enables
accurately capturing timing and concurrency between database requests in
a test environment. This approach assumes a test database environment
that is identical to the production environment, which might not always
be possible in practice because of privacy issues and/or because it requires
taking an exact copy of the production database in the test environment.

There is significant interest in synthetic database generation in the
database community. However, none of this prior work actually vali-
dates the synthetically generated databases against a real-life commercial
database workload like we do in this work — several papers compare
the synthetic database workload against TPC-C or TPC-H though. [72]
argues that the handful of TPC benchmarks is becoming increasingly ir-
relevant to the multitude of data-centric applications observed these days.
Instead, Tay advocates for techniques to synthetically scale up and down
empirical data sets to match specific database applications. [14] propose a
framework for generating synthetic databases with specific data distribu-
tions and query workloads; [31] use a graph-based database model; [27]
are concerned with quickly generating very large databases. [12] generate
synthetic databases for testing purposes, not for performance analysis.

5.11 Conclusion

In this chapter, we presented a framework for cloning database workloads.
This is done by collecting a statistical profile of the original database, from
which a synthetic database clone is then generated. The synthetic database
clone anonymizes and obfuscates the original database so that performance
analyses can be done by third parties without worrying about intellectual
property and privacy issues. Synthetically generated database workloads
allow for repeatable experiments in an offline environment that are repre-
sentative for the original workload, and answering what-if questions by
simply changing the statistical profile and generating a synthetic database
workload from it.

We evaluated the proposed framework for a real-life database taken
from the Netlog Web 2.0 workload, a popular social networking site in

5.11. CONCLUSION 115

Europe. We validated accuracy — the average response time is estimated
with a 0.95% error, and the 90 percentile with a 1.38% error, using the
synthetic workload compared to the original workload — and we demon-
strated the usefulness of database cloning through various case studies in
which we change both hardware and software configurations. We explored
the impact of CPU clock frequency, hardware prefetching, hard drives ver-
sus solid-state disks, database scaling, alternative storage engines, and
database query cache sizing. These case studies illustrated the ability to ac-
curately mimic the original database workload behavior through cloning,
and explore various design alternatives and trade-offs.

116 CHAPTER 5. DATABASE CLONING

Chapter 6

Conclusions and Future Work

In this dissertation, we focused on optimizing the total cost of ownership of the data
center. Because of the wide variety of data center applications, we also focused on
characterizing which type of applications are running in the data center, and their
impact on TCO. In this chapter, we first summarize the challenges, after which we
draw conclusions for the presented research work. Finally, we present some ideas
for future research.

6.1 Summary

The fast growth of the World Wide Web has introduced many challenges for
service providers. One of the most important challenges is to reduce total
cost of ownership. There are various factors affecting the cost of a data
center, such as the hardware infrastructure (servers, racks and switches),
power and cooling infrastructure, operating expenditure, and real estate.
Hence, data centers are very cost-sensitive and need to be optimized for
the ensemble.

The end-user is playing a central role in the expansion of the World
Wide Web. Today’s end-users have ubiquitous Internet access possibili-
ties such as smartphones and tablets to access content that is residing on
the Internet. Along with optimizing the total cost of ownership, it is also
of great importance to minimize end-user latency. It is known from pre-
vious research that page loading times have direct influence on company
profit [42].

In the remainder of this chapter, we briefly highlight the major findings
and contributions of this dissertation.

117

118 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

6.1.1 Power-hungry workloads

We started this dissertation by tackling the traditional technique for dimen-
sioning data centers. Common practice is to (over-)provision the power
and cooling infrastructure of a data center by using nameplate power con-
sumption, as provided by hardware vendors. As a first step, we presented
a better approach for dimensioning the power and cooling grid by using
realistic maximum power consumption. We presented a solution to the
challenge of determining realistic maximum power consumption through
a methodology for automatically generating so-called power viruses.

The proposed framework automatically generates full-system multi-
core powermarks, or synthetic programs with desired power characteris-
tics on multi-core server platforms. This framework was used to study the
impact on the total energy cost of dimensioning the power supply units at
the power usage determined by a max powermark rather than the name-
plate power consumption. The powermarks exceed power consumption of
existing performance benchmarks and torture tests by a significant margin.
These powermarks can be used for constructing full-system power models
that are reasonably accurate, easy to develop and use, and provide error
bounds; in addition, the powermarks can be used for dimensioning power
provisioning in server and data center infrastructures.

6.1.2 Data-centric workloads

Data explosion and diversity in the Internet drives the emergence of a new
set of data-centric workloads to manage, manipulate, mine, index, com-
press, encrypt, etc. huge amounts of data, often referred to as ‘big data’.
In addition, the data is increasingly rich media, and includes images, au-
dio and video, in addition to text. Given that the data centers hosting the
online data and running these data-centric workloads are very much cost
driven, it is important to understand how this emerging class of applica-
tions affects some of the design decisions in the data center.

Through the architectural simulation of minutes of run time of a set
of data-centric workloads on a validated full-system x86 simulator, we
derived the insight that high-end servers are more performance-cost effi-
cient compared to commodity and low-end embedded servers for some
workloads; for others, the low-end server or the commodity server is more
performance-cost efficient. This suggests heterogeneous data centers as
the optimum data center configuration. We conclude that the benefit from
heterogeneity is very much workload, server-cost and electricity-cost de-
pendent, and, for a specific setup, we report improvements up to 88%, 24%
and 17% over a homogeneous high-end, commodity and low-end server
data center, respectively. We also identify the sweet spot for heterogeneity

6.1. SUMMARY 119

as a function of high-end versus low-end server cost, and we provide the
insight that the benefit from heterogeneity increases at lower energy costs.

6.1.3 Web 2.0 workload characterization

Designing data centers for Web 2.0 social networking applications is a ma-
jor challenge because of the large number of users, the large scale of the
data centers, the distributed application base, and the cost sensitivity of a
data center facility. Optimizing the data center for performance per dollar
is far from trivial.

In this dissertation, we presented a case study in which we character-
ized a real-life Web 2.0 workload called Netlog, a popular social network-
ing site in Europe, and evaluated hardware and software design choices
in the data center. Our methodology samples the Web 2.0 workload both
in space and in time to obtain a reduced workload that can be replayed,
driven by input data captured from a real data center. The reduced work-
load captures the important services (and their interactions) and allows for
evaluating how hardware and software choices affect end-user experience
(response times).

We explored hardware trade-offs for the Web 2.0 workload in terms
of core count, clock frequency, HDD versus SSD, etc., for the Web, mem-
cached and database servers, and we obtain several interesting insights,
such as the Web servers scale well with core count, and end-user response
times are inversely proportional to Web server CPU frequency; an SSD
reduces the longest response times by around 30% over an HDD in the
database servers, which may or may not be justifiable given the signifi-
cantly higher cost for SSD versus; memcached servers show low levels of
CPU utilization, and are both memory and network-bound, hence, hard-
ware choice should be driven by the cost of integrating more main memory
in the server. Further, we presented two case studies illustrating how the
method can be used for guiding hardware purchasing decisions as well as
software optimizations.

6.1.4 Synthetic database cloning

The database management system is an important component of a contem-
porary Web 2.0 workload, yet improving its performance is challenging.
Evaluating hardware and software alternatives and trade-offs in a produc-
tion environment is complicated and might not always be possible; copying
(part of) a database to an offline environment might not be feasible either,
particularly because of intellectual property and privacy issues.

In this dissertation, we presented a framework for cloning database
workloads. This is done by collecting a statistical profile of the original

120 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

database, from which a synthetic database clone is then generated. The
synthetic database clone anonymizes and obfuscates the original database
so that performance analyses can be done by third parties without worry-
ing about intellectual property and privacy issues. Synthetically generated
database workloads allow for repeatable experiments in an offline envi-
ronment that are representative for the original workload, and answering
what-if questions by simply changing the statistical profile and generating
a synthetic database workload from it.

We evaluated the proposed framework for a real-life database taken
from the Netlog Web 2.0 workload. We validated accuracy — the average
response time is estimated with a 0.95% error, and the 90 percentile with a
1.38% error, using the synthetic workload compared to the original work-
load — and we demonstrated the usefulness of database cloning through
various case studies in which we change both hardware and software con-
figurations. We explored the impact of CPU clock frequency, hardware
prefetching, hard drives versus solid-state disks, database scaling, alter-
native storage engines, and database query cache sizing. These case stud-
ies illustrated the ability to accurately mimic the original database work-
load behavior through cloning, and explore various design alternatives and
trade-offs.

6.2 Future Work

Since the high-performance computing server market is still expected to
grow 8% yearly until 2015, there will still be several research opportunities
to further optimize the data center, with a special emphasis on power and
TCO.1 In the following sections we present some ideas for future work.

6.2.1 Power and energy efficiency

One of the key issues in supporting the growth of the World Wide Web is
energy provisioning. We want data centers to be as energy-efficient as pos-
sible. In Chapter 2 we presented a technique to dimension the data center
based on realistic maximum power consumption. In the presented results
we see that energy proportionality is poor for current server platforms, i.e.,
some platforms still use more than 100 Watt when the CPU is idle.

CPUs have become more energy-efficient over the years, however
memory, storage, cooling and other components did not evolve at the
same pace. Work has to be done to reduce the static power consumed
by these components. The benefit of improving energy proportionality of

1http://www.idc.com/getdoc.jsp?containerId=prUS23386912

6.2. FUTURE WORK 121

future server platforms can potentially save huge amounts of energy, thus
reducing TCO.

6.2.2 Workload cloning

In Chapter 4 we presented our work of cloning a real-life Web 2.0 work-
load. Setting up an entire workload, including web servers, caching servers
and database servers in a separate testing environment is a tedious task.
Furthermore, when replicating a proprietary Web application, web pages,
databases, etc. have to be anonymized to protect company and user-
sensitive information.

To speed up the task of replicating and anonymizing an entire database,
we presented a technique to automatically build a synthetic database clone
in Chapter 5. As part of future work, it would be of great interest to also
make a synthetic duplicate of the other components of a real-life Web 2.0
workload. The ultimate goal could be to have an automated tool that au-
tomatically builds a synthetic clone of an entire Web 2.0 application. The
first step in this tool would be to capture live incoming requests. These re-
quests will need to be anonymized to protect company and user-sensitive
information. Using this anonymization scheme, the tool would need to
construct a synthetic duplicate of all web pages and a synthetic database
clone. This would enable us to rebuild an entire Web application in an au-
tomated way.

6.2.3 Analytical workload modeling

In Chapter 4, we duplicated the entire Netlog workload from a production
to a test environment in order to analyze and understand its performance
characteristics. An alternative approach might be to construct an analyt-
ical model that describes the workload’s key performance characteristics
with inputs taken from hardware performance counters and system-level
monitoring. The analytical model might then be helpful in guiding soft-
ware and hardware optimizations, finding performance bottlenecks, and
exploring what-if questions.

Building an analytical performance model for a commercial data center
workload like Netlog would, without any doubt, be very challenging and
it is unclear whether it would be possible to construct a white-box model
from first principles, or whether one would need to resort to a black-box,
empirical model, such as a neural network or regression model. An addi-
tional challenge, next to the model itself, is to collect the appropriate set of
characteristics that serve as input to the model. The overhead for collecting
these inputs would need to be zero (or at least very small) in order not to
affect the production environment.

122 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

6.2.4 New workloads: Web 3.0?

In this dissertation we focused on different workloads running in the data
center, several data-centric workloads, and a real-life Web 2.0 workload.
Some experts believe that the next phase in the development of the World
Wide Web is getting closer. Some call it Web 3.0, the web of data, or the
semantic Web.2,3 Web 3.0 technology is about connecting everything to-
gether in a semantic way. This enables not only humans, but also devices,
to interpret information and respond to complex human requests, based on
their meaning.

With the emergence of Web 3.0 technology, a new set of data center
workloads will become available. It is important that the research commu-
nity puts effort in understanding and characterizing these new workloads.
Some of these workloads might have very different architectural require-
ments compared to their predecessors.

2http://www.tweakandtrick.com/2012/05/web-30.html
3http://en.wikipedia.org/wiki/Semantic Web

Bibliography

[1] D. G. Andersen, J. Franklin, M. Kaminsky, A. Phanishayee, L. Tan, and
V. Vasudevan. FAWN: A fast array of wimpy nodes. In Proceedings
of the International Symposium on Operating Systems Principles (SOSP),
pages 1–14, October 2009.

[2] E. Argollo, A. Falcón, P. Faraboschi, M. Monchiero, and D. Ortega.
COTSon: Infrastructure for full system simulation. SIGOPS Operating
System Review, 43(1):52–61, January 2009.

[3] A. Avetisyan, R. Campbell, I. Gupta, M. Heath, S. Ko, G. Ganger,
M. Kozuch, D. OHallaron, M. Kunze, T. Kwan, K. Lai, M. Lyons,
D. Milojicic, H. Y. Lee, Y. C. Soh, N. K. Ming, J. Y. Luke, and H. H. Nam-
goong. Open cirrus: A global cloud computing testbed. IEEE Com-
puter, 43(4):42–50, April 2010.

[4] D. A. Bader, Y. Li, T. Li, and V. Sachdeva. BioPerf: A benchmark suite
to evaluate high-performance computer architecture on bioinformat-
ics applications. In Proceedings of the International Symposium on Work-
load Characterization (IISWC), pages 163–173, October 2005.

[5] L. A. Barroso, J. Dean, and U. Hölzle. Web search for a planet: The
google cluster architecture. IEEE Micro, 23(2):22–28, March 2003.

[6] L. A. Barroso and U. Hölzle. The Datacenter as a Computer: An Introduc-
tion to the Design of Warehouse-Scale Machines. Synthesis Lectures on
Computer Architecture. Morgan and Claypool Publishers, 2009.

[7] R. Bedichek. SimNow: Fast platform simulation purely in software. In
Proceedings of the Symposium on High Performance Chips (HOT CHIPS),
August 2004.

[8] R. Bell, Jr. and L. K. John. Improved automatic testcase synthesis for
performance model validation. In Proceedings of the 19th ACM Interna-
tional Conference on Supercomputing (ICS), pages 111–120, June 2005.

[9] R. Bertran, A. Buyuktosunoglu, M.S. Gupta, M. Gonzalez, and P. Bose.
Systematic energy characterization of CMP / SMT processor systems

123

124 BIBLIOGRAPHY

via automated micro-benchmarks. In Proceedings of the International
Symposium on Microarchitecture (MICRO), pages 199–211, December
2012.

[10] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC benchmark
suite: Characterization and architectural implications. In Proceedings
of the International Conference on Parallel Architectures and Compilation
Techniques (PACT), pages 72–81, October 2008.

[11] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood. The gem5 simulator.
Computer Architecture News, 39:1–7, May 2011.

[12] C. Binnig, D. Kossmann, E. Lo, and T. Ozsu. QAGen: Generating
query-aware test databases. In Proceedings of the ACM SIGMOD Inter-
nation Conference on Management of Data, pages 341–352, June 2007.

[13] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A framework for
architectural-level power analysis and optimizations. In Proceedings
of the 27th Annual International Symposium on Computer Architecture
(ISCA), pages 83–94, June 2000.

[14] N. Bruno and S. Chaudhuri. Flexible database generators. In Pro-
ceedings of the International Conference on Very Large Data Bases (VLDB),
pages 1097–1107, August 2005.

[15] C. Collberg, C. Thomborson, and D. Low. A taxonomy of obfuscating
transformations. Technical Report 148, The University of Auckland,
July 1997.

[16] T. M. Conte, M. A. Hirsch, and K. N. Menezes. Reducing state loss
for effective trace sampling of superscalar processors. In Proceedings of
the International Conference on Computer Design (ICCD), pages 468–477,
October 1996.

[17] C. Dirik and B. Jacob. The performance of PC solid-state disks (SSDs)
as a function of bandwidth, concurrency, device architecture, and sys-
tem organization. In Proceedings of the International Symposium on Com-
puter Architecture (ISCA), pages 279–289, June 2009.

[18] L. Eeckhout, R. H. Bell Jr., B. Stougie, K. De Bosschere, and L. K. John.
Control flow modeling in statistical simulation for accurate and effi-
cient processor design studies. In Proceedings of the 31st Annual In-
ternational Symposium on Computer Architecture (ISCA), pages 350–361,
June 2004.

BIBLIOGRAPHY 125

[19] L. Eeckhout, S. Nussbaum, J. E. Smith, and K. De Bosschere. Statisti-
cal simulation: Adding efficiency to the computer designer’s toolbox.
IEEE Micro, 23(5):26–38, Sept/Oct 2003.

[20] X. Fan, W.-D. Weber, and L. A. Barroso. Power provisioning for a
warehouse-sized computer. In Proceedings of the International Sympo-
sium on Computer Architecture (ISCA), pages 13–23, June 2007.

[21] W. Felter and T. Keller. Power measurement on the Apple Power Mac
G5. Technical Report RC23276, IBM, 2004.

[22] M. Ferdman, A. Abileh, O. Kocberber, S. Volos, M. Alisafaee, D. Jevd-
jic, C. Kaynak, A. D. Popescu, A. Ailamaki, and B. Falsafi. Clearing
the clouds: A study of emerging scale-out workloads on modern hard-
ware. In Proceedings of the International Conference on Architectural Sup-
port for Programming Languages and Operating Systems (ASPLOS), pages
37–48, March 2012.

[23] K. Ganesan, J. Jo, W. L. Bircher, D. Kaseridis, Z. Yu, and L. K. John.
System-level max power (SYMPO) — a systematic approach for esca-
lating system level power consumption using synthetic benchmarks.
In Proceedings of the International Conference on Parallel Architectures and
Compilation Techniques (PACT), pages 19–28, September 2010.

[24] G. R. Ganger. Generating representative synthetic workloads: An un-
solved problem. In Proceedings of the Computer Measurement Group
(CMG) Conference, pages 1263–1269, December 1995.

[25] M. K. Gowan, L. L. Biro, and D. B. Jackson. Power considerations in
the design of the Alpha 21264 microprocessor. In Proceedings of the 35th
Design Automation Conference (DAC), pages 726–731, June 1998.

[26] J. Gray and B. Fitzgerald. Flash disk opportunity for server applica-
tions. ACM Queue, 6:18–23, July/August 2008.

[27] J. Gray, O. Sundaresan, S. Englert, K. Baclawski, and P. J. Weinberger.
Quickly generating billion-record synthetic databases. In Proceedings of
the ACM SIGMOD Internation Conference on Management of Data, pages
243–252, May 1994.

[28] B. Grot, D. Hardy, P. Lotfi-Kamran, B. Falsafi, C. Nicopoulos, and
Y. Sazeides. Optimizing data-center TCO with scale-out processors.
IEEE Micro, 32(5):52–63, 2012.

[29] J. Hamilton. Datacenter networks are in my way. Principles of Ama-
zon, October 2010. http://perspectives.mvdirona.com/.

126 BIBLIOGRAPHY

[30] H. Hoffmann, S. Sidiroglou, M. Carbin, S. Misailovic, A. Agarwal, and
M. Rinard. Dynamic knobs for responsive power-aware computing.
In Proceedings of the International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), pages 199–
212, August 2011.

[31] K. Houkjaer, K. Torp, and R. Wind. Simple and realistic data gener-
ation. In Proceedings of the International Conference on Very Large Data
Bases (VLDB), pages 1243–1246, September 2006.

[32] M. Huangs, P. Sallee, and M. Farrens. Branch transition rate: A new
metric for improved branch claassification analysis. In Proceedings of
the International Symposium on High Performance Computer Architecture
(HPCA), pages 241–150, January 2000.

[33] C. Hughes and T. Li. Accelerating multi-core processor design space
evaluation using automatic multi-threaded workload synthesis. In
Proceedings of the IEEE International Symposium on Workload Characteri-
zation (IISWC), pages 163–172, September 2008.

[34] Intel. Intel 64 and IA-32 Architectures Optimization Reference Manual.
Intel Corp., April 2012.

[35] C. Isci and M. Martonosi. Runtime power monitoring in high-end
processors: Methodology and empirical data. In Proceedings of the 36th
Annual International Symposium on Microarchitecture (MICRO), pages
93–104, December 2003.

[36] R. A. Johnson and D. W. Wichern. Applied Multivariate Statistical Anal-
ysis. Prentice Hall, fifth edition, 2002.

[37] A. M. Joshi, L. Eeckhout, R. Bell, Jr., and L. K. John. Distilling the
essence of proprietary workloads into miniature benchmarks. ACM
Transactions on Architecture and Code Optimization (TACO), 5(2), August
2008.

[38] A. M. Joshi, L. Eeckhout, L. K. John, and C. Isen. Automated mi-
croprocessor stressmark generation. In Proceedings of the International
Symposium on High-Performance Computer Architecture (HPCA), pages
229–239, February 2008.

[39] K. Keeton, D. A. Patterson, Y. Q. He, R. C. Raphael, and W. E. Baker.
Performance characterization of a quad Pentium Pro SMP using OLTP
workloads. In Proceedings of the International Symposium on Computer
Architecture (ISCA), pages 15–26, June 1998.

BIBLIOGRAPHY 127

[40] L. Keys, S. Rivoire, and J. D. Davis. The search for energy-efficient
building blocks for the data center. In The Second Workshop on Energy-
Efficient Design (WEED), held in conjunction with the International Sym-
posium on Computer Architecture (ISCA), June 2010.

[41] Y. Kim, L. K. John, S. Pant, S. Manne, M. Schulte, W. L. Bircher, and
M. S. Sibi Govindan. AUDIT: Stress testing the automatic way. In Pro-
ceedings of the International Symposium on Microarchitecture (MICRO),
pages 212–223, December 2012.

[42] R. Kohavi and R. Longbotham. Online experiments: Lessons learned.
IEEE Computer, 40:85–87, September 2007.

[43] C. Kozyrakis, A. Kansal, S. Sankar, and K. Vaid. Server engineering in-
sights for large-scale online services. IEEE Micro, 30:8–19, July/August
2010.

[44] R. Kumar, K. I. Farkas, N. P. Jouppi, P. Ranganathan, and D. M. Tullsen.
Single-ISA heterogeneous multi-core architectures: The potential for
processor power reduction. In Proceedings of the International Sympo-
sium on Microarchitecture (MICRO), pages 81–92, December 2003.

[45] K.-D. Lange. Identifying shades of green: The SPECpower bench-
marks. IEEE Computer, 42(3):95–97, March 2009.

[46] T. J. Lehman and M. J. Carey. A study of index structures for main
memory database management systems. In Proceedings of the Interna-
tional Conference on Very Large Data Bases (VLDB), pages 294–303, Au-
gust 1986.

[47] K. Lim, P. Ranganathan, J. Chang, C. Patel, T. Mudge, and S. Rein-
hardt. Understanding and designing new server architectures for
emerging warehouse-computing environments. In Proceedings of the
International Symposium on Computer Architecture (ISCA), pages 315–
326, June 2008.

[48] P. Lotfi-Kamran, B. Grot, M. Ferdman, S. Volos, O. Kocberber, J. Pi-
corel, A. Adileh, D. Jevdjic, S. Idgunji, E. Ozer, and B. Falsafi. Scale-out
processors. In Proceedings of the International Symposium on Computer
Architecture (ISCA), pages 500–511, June 2012.

[49] Y. Luo, J. Rubio, L. K. John, P. Seshadri, and A. Mericas. Benchmarking
internet servers on superscalar machines. IEEE Computer, 36(2):34–40,
February 2003.

[50] J. Mars, L. Tang, and R. Hundt. Heterogeneity in ‘homogeneous’
warehouse-scale computers: A performance opportunity. IEEE Com-
put. Archit. Lett., 10(2):29–32, July 2011.

128 BIBLIOGRAPHY

[51] D. Meisner, B. T. Gold, and T. Wenisch. PowerNap: Eliminating server
idle power. In Proceedings of the International Conference on Architec-
tural Support for Programming Languages and Operating ystems (ASP-
LOS), pages 205–216, March 2009.

[52] D. Meisner, C. M. Sadler, L. A. Barroso, W.-D. Weber, and T. F. Wenisch.
Power management of online data-intensive services. In Proceedings
of the International Symposium on Computer Architecture (ISCA), pages
319–330, June 2011.

[53] D. Meisner and T. Wenisch. Peak power modeling for data center
servers with switched-mode power supplies. In Proceedings of the In-
ternational Symposium on Low Power Electronics and Design (ISLPED),
pages 319–324, New York, NY, USA, 2010. ACM.

[54] K. Morfonios, R. Colle, L. Galanis, S. Buranawatanachoke,
B. Dageville, K. Dias, and Y. Wang. Consistent synchronization
schemes for workload replay. Proceedings of the Very Large Data Bases
(VLDB) Endowment, 4:1225–1236, August 2011.

[55] T. Mudge and U. Hölzle. Challenges and opportunities for extremely
energy-efficient processors. IEEE Micro, 30(4):20–24, July 2010.

[56] R. Narayanan, B. Ozisikyilmaz, J. Zambreno, G. Memik, A. Choud-
hary, and J. Pisharath. MineBench: A benchmark suite for data mining
workloads. In Proceedings of the International Symposium on Computer
Architecture (IISWC), pages 182–188, October 2006.

[57] R. Nathuji, C. Isci, and E. Gorbatov. Exploiting platform heterogeneity
for power efficient data centers. In Proceedings of the International Con-
ference on Autonomic Computing (ICAC), pages 182–188, October 2007.

[58] S. Nussbaum and J. E. Smith. Modeling superscalar processors via
statistical simulation. In Proceedings of the International Conference on
Parallel Architectures and Compilation Techniques (PACT), pages 15–24,
September 2001.

[59] K. Olukotun, J. Laudon, and B. Lee. Mega-servers versus micro-blades
for datacenter workloads. Panel debate at the Workshop on Architec-
tural Concerns in Large Datacenters (ACLD), held with ISCA, June
2010.

[60] M. Oskin, F. T. Chong, and M. Farrens. HLS: Combining statistical
and symbolic simulation to guide microprocessor design. In Proceed-
ings of the 27th Annual International Symposium on Computer Architecture
(ISCA), pages 71–82, June 2000.

BIBLIOGRAPHY 129

[61] S. Polfliet, F. Ryckbosch, and L. Eeckhout. Studying hardware and
software trade-offs for a real-life Web 2.0 workload. In Proceedings
of the ACM/SPEC International Conference on Performance Engineering
(ICPE), pages 181–192, April 2012.

[62] Racktivity. Racktivity RC0816. Racktivity Inc., 2009.
http://confluence.aserver.com/display/wwwrack/Smart+PDUs.

[63] P. Ranganathan. Green clouds and black swans in the exascale era.
Keynote at the IEEE International Symposium on Workload Charac-
terization (IISWC), October 2009.

[64] P. Ranganathan, K. Gharachorloo, S. V. Adve, and L. A. Barroso. Per-
formance of database workloads on shared-memory systems with out-
of-order processors. In Proceedings of the International Conference on
Architectural Support for Programming Languages and Operating Systems
(ASPLOS), pages 307–318, October 1998.

[65] V. J. Reddi, B. C. Lee, T. Chilimbi, and K. Vaid. Web search using mo-
bile cores: Quantifying and mitigating the price of efficiency. In Pro-
ceedings of the International Symposium on Computer Architecture (ISCA),
pages 26–36, June 2010.

[66] S. Rivoire, P. Ranganathan, and C. Kozyrakis. A comparison of high-
level full-system power models. In Proceedings of the Workshop on Power
Aware Computing and Systems (HotPower), held at the Symposium on Op-
erating Systems Design and Implementation (OSDI), December 2008.

[67] S. Rivoire, M. A. Shah, P. Ranganathan, and C. Kozyrakis. JouleSort:
A balanced energy-efficiency benchmark. In Proceedings of the SIG-
MOD International Conference on Management of Data, pages 365–374,
June 2007.

[68] F. Ryckbosch, S. Polfliet, and L. Eeckhout. Fast, accurate and vali-
dated full-system software simulation of x86 hardware. IEEE Micro,
30(6):46–56, Nov/Dec 2010.

[69] F. Ryckbosch, S. Polfliet, and L. Eeckhout. VSim: Simulating multi-
server setups at near native hardware speed. ACM Transactions on
Architecture and Code Optimization (TACO), 8(4), January 2012.

[70] M. Shao, A. Ailamaki, and B. Falsafi. DBmbench: Fast and accurate
database workload representation on modern microarchitecture. In
Proceedings of the Conference of the Centre for Advanced Studies on Collab-
orative Research (CASCON), pages 254–267, October 2005.

130 BIBLIOGRAPHY

[71] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. Automatically
characterizing large scale program behavior. In Proceedings of the Inter-
national Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), pages 45–57, October 2002.

[72] Y. C. Tay. Data generation for application-specific benchmarking. Pro-
ceedings of the Very Large Data Bases (VLDB) Endowment, 4:1470–1473,
August 2011.

[73] L. Van Ertvelde and L. Eeckhout. Dispersing proprietary applications
as benchmarks through code mutation. In Proceedings of the Interna-
tional Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), pages 201–210, March 2008.

[74] L. Van Ertvelde and L. Eeckhout. Benchmark synthesis for architec-
ture and compiler exploration. In The IEEE International Symposium on
Workload Characterization (IISWC), pages 106–116, December 2010.

[75] V. Vasudevan, D. Andersen, M. Kaminsky, L. Tan, J. Franklin, and
I. Moraru. Energy-efficient cluster computing with FAWN: Work-
loads and implications. In Proceedings of the International Conference on
Energy-Efficient Computing and Networking (e-Energy), pages 195–204,
April 2010.

[76] R. Vishmanath, V. Wakharkar, A. Watwe, and V. Lebonheur. Thermal
performance challenges from silicon to systems. Intel Technology Jour-
nal, 4(3), August 2000.

[77] T. F. Wenisch, R. E. Wunderlich, M. Ferdman, A. Ailamaki, B. Falsafi,
and J. C. Hoe. SimFlex: Statistical sampling of computer system sim-
ulation. IEEE Micro, 26(4):18–31, July 2006.

[78] D. Wong and M. Annavaram. KnightShift: Scaling the energy propor-
tionality wall through server-level heterogeneity. In Proceedings of the
International Symposium on Microarchitecture (MICRO), pages 119–130,
December 2012.

[79] R. E. Wunderlich, T. F. Wenisch, B. Falsafi, and J. C. Hoe. SMARTS:
Accelerating microarchitecture simulation via rigorous statistical sam-
pling. In Proceedings of the International Symposium on Computer Archi-
tecture (ISCA), pages 84–95, June 2003.

[80] W. Ye, N. Vijaykrishnan, M. Kandemir, and M. J. Irwin. The design and
use of SimplePower: A cycle-accurate energy estimation tool. In Pro-
ceedings of the 37th Design Automation Conference, pages 340–345, June
2000.

BIBLIOGRAPHY 131

[81] H. Zhao, I. Proctor, M. Yang, X. Qi, M. Williams, Q. Gao, G. Ot-
toni, A. Paroski, S. MacVicar, J. Evans, and S. Tu. The HipHop com-
piler for PHP. In Proceedings of the International Conference on Object
Oriented Programming Systems Languages and Applications (OOPSLA),
pages 575–586, October 2012.

