332 research outputs found

    STEROWANIE ORAZ SYNCHRONIZACJA DWUPOZIOMOWEGO FALOWNIKA NAPIĘCIA W WARUNKACH PRZEJŚCIOWEJ ASYMETRII NAPIĘĆ SIECI

    Get PDF
    This paper presents the operation of grid tied, two level voltage source inverter (VSI) during network voltage unbalance. The control system was implemented in synchronous rotating reference frame dq0 (SRF). Two types of control structures were investigated herein. First utilizes the Double Decoupled SRF Phase-locked loop (DDSRF-PLL) synchronisation with positive and negative sequence currents control. Second one is simplified system that does not provide symmetrical components decomposition and decoupling for synchronisation. Simulation results exhibited a superior performance of the DDSRF-PLL control system under grid voltage unbalance.Niniejszy artykuł przedstawia pracę dwupoziomowego falownika napięcia współpracującego z siecią, podczas przejściowej asymetrii napięć. System sterowania został zaimplementowany w wirującym układzie synchronicznym dq0. Przeanalizowano dwa typy sterowania. W pierwszym zastosowano metodę synchronizacji z odprzęganiem DDSRF-PLL wraz z możliwością kontroli prądów składowej zgodnej i przeciwnej. Drugi natomiast w swoje uproszczeni formie nie pozwalała na sterowanie obu składowych symetrycznych, zabrakło również odprzęgania podczas synchronizacji z siecią. Wyniki symulacji pokazały o wiele lepsze działanie pierwszej metody sterowania

    POWER CONDITIONING UNIT FOR SMALL SCALE HYBRID PV-WIND GENERATION SYSTEM

    Get PDF
    Small-scale renewable energy systems are becoming increasingly popular due to soaring fuel prices and due to technological advancements which reduce the cost of manufacturing. Solar and wind energies, among other renewable energy sources, are the most available ones globally. The hybrid photovoltaic (PV) and wind power system has a higher capability to deliver continuous power with reduced energy storage requirements and therefore results in better utilization of power conversion and control equipment than either of the individual sources. Power conditioning units (p.c.u.) for such small-scale hybrid PV-wind generation systems have been proposed in this study. The system was connected to the grid, but it could also operate in standalone mode if the grid was unavailable. The system contains a local controller for every energy source and the grid inverter. Besides, it contains the supervisory controller. For the wind generator side, small-scale vertical axis wind turbines (VAWTs) are attractive due to their ability to capture wind from different directions without using a yaw. One difficulty with VAWTs is to prevent over-speeding and component over-loading at excessive wind velocities. The proposed local controller for the wind generator is based on the current and voltage measured on the dc side of the rectifier connected to the permanent magnet synchronous generator (PMSG). Maximum power point tracking (MPPT) control is provided in normal operation under the rated speed using a dc/dc boost converter. For high wind velocities, the suggested local controller controls the electric power in order to operate the turbine in the stall region. This high wind velocity control strategy attenuates the stress in the system while it smoothes the power generated. It is shown that the controller is able to stabilize the nonlinear system using an adaptive current feedback loop. Simulation and experimental results are presented. The PV generator side controller is designed to work in systems with multiple energy sources, such as those studied in this thesis. One of the most widely used methods to maximize the output PV power is the hill climbing technique. This study gives guidelines for designing both the perturbation magnitude and the time interval between consecutive perturbations for such a technique. These guidelines would improve the maximum power point tracking efficiency. According to these guidelines, a variable step MPPT algorithm with reduced power mode is designed and applied to the system. The algorithm is validated by simulation and experimental results. A single phase H-bridge inverter is proposed to supply the load and to connect the grid. Generally, a current controller injects active power with a controlled power factor and constant dc link voltage in the grid connected mode. However, in the standalone mode, it injects active power with constant ac output voltage and a power factor which depends on the load. The current controller for both modes is based on a newly developed peak current control (p.c.c.) with selective harmonic elimination. A design procedure has been proposed for the controller. Then, the method was demonstrated by simulation. The problem of the dc current injection to the grid has been investigated for such inverters. The causes of dc current injection are analyzed, and a measurement circuit is then proposed to control the inverter for dc current injection elimination. Characteristics of the proposed method are demonstrated, using simulation and experimental results. At the final stage of the study, a supervisory controller is demonstrated, which manages the different operating states of the system during starting, grid-connected and standalone modes. The operating states, designed for every mode, have been defined in such a hybrid model to allow stability and smooth transition between these states. The supervisory controller switches the system between the different modes and states according to the availability of the utility grid, renewable energy generators, the state of charge (SOC) of energy storage batteries, and the load. The p.c.u. including the supervisory controller has been verified in the different modes and states by simulation

    Performance of direct power controlled grid-connected voltage source converters

    Get PDF
    PhD ThesisIn this thesis the performance of direct power controlled grid-connected voltage source converters (VSCs) is investigated. Of particular interest is the stability of the controller with the third-order LCL filter employed as the grid filter, effect of grid impedance variations and grid voltage distortion, and current limitation during voltage dips. The control scheme implemented is virtual-flux direct power control with space vector modulation (VF-DPC-SVM). By mathematical modelling and stability analysis, it is found that the closed-loop power control system is stable for all values of proportional gain when the current sensors are on the inverter side of the LCL filter. The inverter current together with the estimated grid virtual-flux is used to estimate the active power and the reactive power. The difference between the estimated reactive power and the reactive power on the grid side is compensated for, using a new reactive power error compensation scheme based on the estimated capacitor current. The control system is found to be robust to changes in grid inductance, and remains stable for a range of grid inductance values, and controller proportional gain. It is demonstrated in simulation and experimentally that the total harmonic distortion (THD) of the current injected by the VSC is less than the limit of 5 %, set by standards, for all different values of grid inductance and proportional gain. This is true even in the presence of significant grid voltage distortion. To control the VSC during voltage dips without damaging the semiconductor devices, a new current limiting algorithm is proposed and implemented. The positive-sequence component of the virtual-flux is used for synchronization and power estimation to achieve balanced, undistorted currents during unsymmetrical voltage dips. Experimental results show that the current achieved during unsymmetrical voltage dips is balanced and has a THD of less than 3 %.Commonwealth Scholarship and Fellowship Plan, Copperbelt Universit

    Analysis of Power Converter\u27s Control Techniques in Grid-Tie and AC Micro/Smart Grid

    Get PDF
    Power converters have an outstanding potential in micro and smart grid applications that require flexible and fast power control as well as rigid voltage regulation at the point of common coupling. Power converters are required to properly operate under several modes of operation such as grid-tie and micro-grid modes of operations. In addition, the control system should be designed to enable proper load sharing between several units. Several control techniques have been proposed in the literature to address most of the control requirements of the power converters under different operating modes mentioned above. However, references found in the literatures are usually centered on the analysis of the system under only one mode of operation and using a single control strategy. Comprehensive study that combines an in depth analysis of the power converters control under several modes are very scarce in the literature. In this thesis, a detailed survey and analysis of power converter control techniques in Grid-Tie and AC Micro/Smart Grid applications are introduced. This analysis is based on detailed nonlinear time domain simulations as well as average and small signal models for system stability assessment and performance evaluation

    Model-based active damping control for three-phase voltage source inverters with LCL filter

    Get PDF
    (c) 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.This paper presents a robust model-based active damping control in natural frame for a three-phase voltage source inverter with LCL filter. The presence of the LCL filter complicates the design of the control scheme, particularly when system parameters deviations are considered. The proposed control method is addressed to overcome such difficulties and uses a modified converter model in an state observer. In this proposal, the converter model is modified by introducing a virtual damping resistor. Then, a Kalman filter makes use of this model to estimate the system state-space variables. Although the state estimates do not obviously match the real world system variables, they permit designing three current sliding-mode controllers that provide the following features to the closed loop system: a) robust ande active damping capability like in the case of using a physical damping resistor, b) robustness because the control specifications are met independently of variation in the system parameters, c) noise immunity due to the application of the Kalman filter, and d) power loss minimization because the system losses caused by the physical damping resistor are avoided. An interesting side effect of the proposed control scheme is that the sliding surfaces for each controller are independent. This decoupling property for the three controllers allows using a fixed switching frequency algorithm that ensures perfect current control. To complete the control scheme, a theoretical stability analysis is developed. Finally, selected experimental results validate the proposed control strategy and permit illustrating all its appealing features.Peer ReviewedPostprint (author's final draft

    Performance Analysis of Photovoltaic Fed Distributed Static Compensator for Power Quality Improvement

    Get PDF
    Owing to rising demand for electricity, shortage of fossil fuels, reliability issues, high transmission and distribution losses, presently many countries are looking forward to integrate the renewable energy sources into existing electricity grid. This kind of distributed generation provides power at a location close to the residential or commercial consumers with low transmission and distribution costs. Among other micro sources, solar photovoltaic (PV) systems are penetrating rapidly due to its ability to provide necessary dc voltage and decreasing capital cost. On the other hand, the distribution systems are confronting serious power quality issues because of various nonlinear loads and impromptu expansion. The power quality issues incorporate harmonic currents, high reactive power burden, and load unbalance and so on. The custom power device widely used to improve these power quality issues is the distributed static compensator (DSTATCOM). For continuous and effective compensation of power quality issues in a grid connected solar photovoltaic distribution system, the solar inverters are designed to operate as a DSTATCOM thus by increasing the efficiency and reducing the cost of the system. The solar inverters are interfaced with grid through an L-type or LCL-type ac passive filters. Due to the voltage drop across these passive filters a high amount of voltage is maintained across the dc-link of the solar inverter so that the power can flow from PV source to grid and an effective compensation can be achieved. So in the thesis a new topology has been proposed for PV-DSTATCOM to reduce the dc-link voltage which inherently reduces the cost and rating of the solar inverter. The new LCLC-type PV-DSTATCOM is implemented both in simulation and hardware for extensive study. From the obtained results, the LCLC-type PV-DSTATCOM found to be more effective than L-type and LCL-type PV-DSTATCOM. Selection of proper reference compensation current extraction scheme plays the most crucial role in DSTATCOM performance. This thesis describes three time-domain schemes viz. Instantaneous active and reactive power (p-q), modified p-q, and IcosΦ schemes. The objective is to bring down the source current THD below 5%, to satisfy the IEEE-519 Standard recommendations on harmonic limits. Comparative evaluation shows that, IcosΦ scheme is the best PV-DSTATCOM control scheme irrespective of supply and load conditions. In the view of the fact that the filtering parameters of the PV-DSTATCOM and gains of the PI controller are designed using a linearized mathematical model of the system. Such a design may not yield satisfactory results under changing operating conditions due to the complex, nonlinear and time-varying nature of power system networks. To overcome this, evolutionary algorithms have been adopted and an algorithm-specific control parameter independent optimization tool (JAYA) is proposed. The JAYA optimization algorithm overcomes the drawbacks of both grenade explosion method (GEM) and teaching learning based optimization (TLBO), and accelerate the convergence of optimization problem. Extensive simulation studies and real-time investigations are performed for comparative assessment of proposed implementation of GEM, TLBO and JAYA optimization on PV-DSTATCOM. This validates that, the PV-DSTATCOM employing JAYA offers superior harmonic compensation compared to other alternatives, by lowering down the source current THD to drastically small values. Another indispensable aspect of PV-DSTATCOM is that due to parameter variation and nonlinearity present in the system, the reference current generated by the reference compensation current extraction scheme get altered for a changing operating conditions. So a sliding mode controller (SMC) based p-q theory is proposed in the dissertation to reduce these effects. To validate the efficacy of the implemented sliding mode controller for the power quality improvement, the performance of the proposed system with both linear and non-linear controller are observed and compared by taking total harmonic distortion as performance index. From the obtained simulation and experimentation results it is concluded that the SMC based LCLC-type PV-DSTATCOM performs better in all critical operating conditions
    corecore