459 research outputs found

    Dual-Window Superpixel Data Augmentation for Hyperspectral Image Classification

    Get PDF
    Deep learning (DL) has been shown to obtain superior results for classification tasks in the field of remote sensing hyperspectral imaging. Superpixel-based techniques can be applied to DL, significantly decreasing training and prediction times, but the results are usually far from satisfactory due to overfitting. Data augmentation techniques alleviate the problem by synthetically generating new samples from an existing dataset in order to improve the generalization capabilities of the classification model. In this paper we propose a novel data augmentation framework in the context of superpixel-based DL called dual-window superpixel (DWS). With DWS, data augmentation is performed over patches centered on the superpixels obtained by the application of simple linear iterative clustering (SLIC) superpixel segmentation. DWS is based on dividing the input patches extracted from the superpixels into two regions and independently applying transformations over them. As a result, four different data augmentation techniques are proposed that can be applied to a superpixel-based CNN classification scheme. An extensive comparison in terms of classification accuracy with other data augmentation techniques from the literature using two datasets is also shown. One of the datasets consists of small hyperspectral small scenes commonly found in the literature. The other consists of large multispectral vegetation scenes of river basins. The experimental results show that the proposed approach increases the overall classification accuracy for the selected datasets. In particular, two of the data augmentation techniques introduced, namely, dual-flip and dual-rotate, obtained the best resultsThe images of the Galicia dataset were obtained in partnership with the Babcock company, supported in part by the Civil Program UAVs Initiative, promoted by the Xunta de Galicia. This work was supported in part by Ministerio de Ciencia e Innovación, Government of Spain (grant numbers PID2019-104834GB-I00 and BES-2017-080920), and Consellería de Educación, Universidade e Formación Profesional (grant number ED431C 2018/19, and accreditation 2019–2022 ED431G-2019/04). All are co-funded by the European Regional Development Fund (ERDF)S

    Semantic segmentation of surgical hyperspectral images under geometric domain shifts

    Full text link
    Robust semantic segmentation of intraoperative image data could pave the way for automatic surgical scene understanding and autonomous robotic surgery. Geometric domain shifts, however, although common in real-world open surgeries due to variations in surgical procedures or situs occlusions, remain a topic largely unaddressed in the field. To address this gap in the literature, we (1) present the first analysis of state-of-the-art (SOA) semantic segmentation networks in the presence of geometric out-of-distribution (OOD) data, and (2) address generalizability with a dedicated augmentation technique termed "Organ Transplantation" that we adapted from the general computer vision community. According to a comprehensive validation on six different OOD data sets comprising 600 RGB and hyperspectral imaging (HSI) cubes from 33 pigs semantically annotated with 19 classes, we demonstrate a large performance drop of SOA organ segmentation networks applied to geometric OOD data. Surprisingly, this holds true not only for conventional RGB data (drop of Dice similarity coefficient (DSC) by 46 %) but also for HSI data (drop by 45 %), despite the latter's rich information content per pixel. Using our augmentation scheme improves on the SOA DSC by up to 67 % (RGB) and 90 % (HSI) and renders performance on par with in-distribution performance on real OOD test data. The simplicity and effectiveness of our augmentation scheme makes it a valuable network-independent tool for addressing geometric domain shifts in semantic scene segmentation of intraoperative data. Our code and pre-trained models are available at https://github.com/IMSY-DKFZ/htc.Comment: The first two authors (Jan Sellner and Silvia Seidlitz) contributed equally to this pape

    DeepWheat: Estimating Phenotypic Traits from Crop Images with Deep Learning

    Full text link
    In this paper, we investigate estimating emergence and biomass traits from color images and elevation maps of wheat field plots. We employ a state-of-the-art deconvolutional network for segmentation and convolutional architectures, with residual and Inception-like layers, to estimate traits via high dimensional nonlinear regression. Evaluation was performed on two different species of wheat, grown in field plots for an experimental plant breeding study. Our framework achieves satisfactory performance with mean and standard deviation of absolute difference of 1.05 and 1.40 counts for emergence and 1.45 and 2.05 for biomass estimation. Our results for counting wheat plants from field images are better than the accuracy reported for the similar, but arguably less difficult, task of counting leaves from indoor images of rosette plants. Our results for biomass estimation, even with a very small dataset, improve upon all previously proposed approaches in the literature.Comment: WACV 2018 (Code repository: https://github.com/p2irc/deepwheat_WACV-2018

    Deep learning in agriculture: A survey

    Get PDF
    Deep learning constitutes a recent, modern technique for image processing and data analysis, with promising results and large potential. As deep learning has been successfully applied in various domains, it has recently entered also the domain of agriculture. In this paper, we perform a survey of 40 research efforts that employ deep learning techniques, applied to various agricultural and food production challenges. We examine the particular agricultural problems under study, the specific models and frameworks employed, the sources, nature and pre-processing of data used, and the overall performance achieved according to the metrics used at each work under study. Moreover, we study comparisons of deep learning with other existing popular techniques, in respect to differences in classification or regression performance. Our findings indicate that deep learning provides high accuracy, outperforming existing commonly used image processing techniques.info:eu-repo/semantics/acceptedVersio

    Deep learning in agriculture: A survey

    Get PDF
    Deep learning constitutes a recent, modern technique for image processing and data analysis, with promising results and large potential. As deep learning has been successfully applied in various domains, it has recently entered also the domain of agriculture. In this paper, we perform a survey of 40 research efforts that employ deep learning techniques, applied to various agricultural and food production challenges. We examine the particular agricultural problems under study, the specific models and frameworks employed, the sources, nature and pre-processing of data used, and the overall performance achieved according to the metrics used at each work under study. Moreover, we study comparisons of deep learning with other existing popular techniques, in respect to differences in classification or regression performance. Our findings indicate that deep learning provides high accuracy, outperforming existing commonly used image processing techniques

    Tree species classification from airborne hyperspectral and LiDAR data using 3D convolutional neural networks

    Get PDF
    During the last two decades, forest monitoring and inventory systems have moved from field surveys to remote sensing-based methods. These methods tend to focus on economically significant components of forests, thus leaving out many factors vital for forest biodiversity, such as the occurrence of species with low economical but high ecological values. Airborne hyperspectral imagery has shown significant potential for tree species classification, but the most common analysis methods, such as random forest and support vector machines, require manual feature engineering in order to utilize both spatial and spectral features, whereas deep learning methods are able to extract these features from the raw data. Our research focused on the classification of the major tree species Scots pine, Norway spruce and birch, together with an ecologically valuable keystone species, European aspen, which has a sparse and scattered occurrence in boreal forests. We compared the performance of three-dimensional convolutional neural networks (3D-CNNs) with the support vector machine, random forest, gradient boosting machine and artificial neural network in individual tree species classification from hyperspectral data with high spatial and spectral resolution. We collected hyperspectral and LiDAR data along with extensive ground reference data measurements of tree species from the 83 km2 study area located in the southern boreal zone in Finland. A LiDAR-derived canopy height model was used to match ground reference data to aerial imagery. The best performing 3D-CNN, utilizing 4 m image patches, was able to achieve an F1-score of 0.91 for aspen, an overall F1-score of 0.86 and an overall accuracy of 87%, while the lowest performing 3D-CNN utilizing 10 m image patches achieved an F1-score of 0.83 and an accuracy of 85%. In comparison, the support-vector machine achieved an F1-score of 0.82 and an accuracy of 82.4% and the artificial neural network achieved an F1-score of 0.82 and an accuracy of 81.7%. Compared to the reference models, 3D-CNNs were more efficient in distinguishing coniferous species from each other, with a concurrent high accuracy for aspen classification. Deep neural networks, being black box models, hide the information about how they reach their decision. We used both occlusion and saliency maps to interpret our models. Finally, we used the best performing 3D-CNN to produce a wall-to-wall tree species map for the full study area that can later be used as a reference prediction in, for instance, tree species mapping from multispectral satellite images. The improved tree species classification demonstrated by our study can benefit both sustainable forestry and biodiversity conservation.peerReviewe

    Techniques for the extraction of spatial and spectral information in the supervised classification of hyperspectral imagery for land-cover applications

    Get PDF
    The objective of this PhD thesis is the development of spatialspectral information extraction techniques for supervised classification tasks, both by means of classical models and those based on deep learning, to be used in the classification of land use or land cover (LULC) multi- and hyper-spectral images obtained by remote sensing. The main goal is the efficient application of these techniques, so that they are able to obtain satisfactory classification results with a low use of computational resources and low execution time

    A Multispectral Light Field Dataset and Framework for Light Field Deep Learning

    Get PDF
    Deep learning undoubtedly has had a huge impact on the computer vision community in recent years. In light field imaging, machine learning-based applications have significantly outperformed their conventional counterparts. Furthermore, multi- and hyperspectral light fields have shown promising results in light field-related applications such as disparity or shape estimation. Yet, a multispectral light field dataset, enabling data-driven approaches, is missing. Therefore, we propose a new synthetic multispectral light field dataset with depth and disparity ground truth. The dataset consists of a training, validation and test dataset, containing light fields of randomly generated scenes, as well as a challenge dataset rendered from hand-crafted scenes enabling detailed performance assessment. Additionally, we present a Python framework for light field deep learning. The goal of this framework is to ensure reproducibility of light field deep learning research and to provide a unified platform to accelerate the development of new architectures. The dataset is made available under dx.doi.org/10.21227/y90t-xk47 . The framework is maintained at gitlab.com/iiit-public/lfcnn
    corecore