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A B S T R A C T   

During the last two decades, forest monitoring and inventory systems have moved from field surveys to remote 
sensing-based methods. These methods tend to focus on economically significant components of forests, thus 
leaving out many factors vital for forest biodiversity, such as the occurrence of species with low economical but 
high ecological values. Airborne hyperspectral imagery has shown significant potential for tree species classi
fication, but the most common analysis methods, such as random forest and support vector machines, require 
manual feature engineering in order to utilize both spatial and spectral features, whereas deep learning methods 
are able to extract these features from the raw data. 

Our research focused on the classification of the major tree species Scots pine, Norway spruce and birch, 
together with an ecologically valuable keystone species, European aspen, which has a sparse and scattered 
occurrence in boreal forests. We compared the performance of three-dimensional convolutional neural networks 
(3D-CNNs) with the support vector machine, random forest, gradient boosting machine and artificial neural 
network in individual tree species classification from hyperspectral data with high spatial and spectral resolution. 
We collected hyperspectral and LiDAR data along with extensive ground reference data measurements of tree 
species from the 83 km2 study area located in the southern boreal zone in Finland. A LiDAR-derived canopy 
height model was used to match ground reference data to aerial imagery. The best performing 3D-CNN, utilizing 
4 m image patches, was able to achieve an F1-score of 0.91 for aspen, an overall F1-score of 0.86 and an overall 
accuracy of 87%, while the lowest performing 3D-CNN utilizing 10 m image patches achieved an F1-score of 0.83 
and an accuracy of 85%. In comparison, the support-vector machine achieved an F1-score of 0.82 and an ac
curacy of 82.4% and the artificial neural network achieved an F1-score of 0.82 and an accuracy of 81.7%. 
Compared to the reference models, 3D-CNNs were more efficient in distinguishing coniferous species from each 
other, with a concurrent high accuracy for aspen classification. 

Deep neural networks, being black box models, hide the information about how they reach their decision. We 
used both occlusion and saliency maps to interpret our models. Finally, we used the best performing 3D-CNN to 
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produce a wall-to-wall tree species map for the full study area that can later be used as a reference prediction in, 
for instance, tree species mapping from multispectral satellite images. The improved tree species classification 
demonstrated by our study can benefit both sustainable forestry and biodiversity conservation.   

1. Introduction 

Recent advances in remote sensing technology hold much promise 
for the detailed mapping of the spatiotemporal distribution and char
acteristics of tree species over wide areas (Fassnacht et al., 2016). Some 
of the most promising techniques related to tree species classification 
and single tree detection are based on hyperspectral and light detection 
and ranging (LiDAR) data, particularly in boreal and temperate eco
systems (e.g., Jones et al. (2010); Maschler et al. (2018); Roth et al. 
(2015a, 2015b)), even though there are still unsolved challenges espe
cially in tropical ecosystems (Asner and Martin, 2009; Baldeck et al., 
2015). Hyperspectral images include a contiguous spectral range with 
hundreds of narrow bands. Hyperspectral sensors typically operate on 
visible and near-infrared (VNIR) area of the electromagnetic spectrum 
(400–1100 nm), and modern sensors are also able to utilize the short- 
wave infrared (SWIR) area of the spectrum (1100–2500 nm). In 
contrast to traditional optical imagery with up to four bands (red, green, 
blue and near-infrared (NIR)) or multispectral imagery with up to 
twenty bands, this rich spectral range can be used to distinguish minor 
differences in the spectral signatures of different materials (Goetz et al., 
1985; Melgani and Bruzzone, 2004). 

In addition to typical challenges with aerial imagery, such as atmo
spheric effects and varying illumination conditions, having numerous 
spectral bands leads to a complex structure and large size of the data and 
requires efficient analysis methods. Machine learning methods, such as 
support-vector machines (SVMs), random forests (RF), gradient boosting 
machines (GBMs) and artificial neural networks (ANN) have been used 
in various remote sensing tasks. In particular, SVM has been extensively 
used for tree species identification from airborne hyperspectral data, 
and was identified as the most common machine learning method for 
these types of tasks by Fassnacht et al. (2016). More recently, Kandare 
et al. (2017) and Dalponte et al. (2019) achieved promising results with 
SVM with overall classification accuracies of 80% for three different 
species and 88% for nine different species respectively. Modzelewska 
et al. (2020) used SVM to produce a tree species map for Białowieża 
Forest in Poland, showing that this method is also suitable for accurately 
mapping tree species across larger areas instead of only in small study 
sites. RF and ANN were used by Nevalainen et al. (2017) for classifying 
unmanned aerial vehicle imagery into four different tree species, 
achieving an overall accuracy of around 95%, an F1-score (the harmonic 
mean of the user’s and the producer’s accuracies) of 0.93 and a Kappa 
score of 0.9 with both methods. 

Since the beginning of the 2010s, convolutional neural networks 
(CNNs) have been the de-facto approach for computer vision tasks, such 
as image classification, object detection and semantic segmentation. 
Even though CNNs were first proposed as early as the late 1980s (LeCun 
et al., 1989), they gained larger interest only after AlexNet (Krizhevsky 
et al., 2012) won the ImageNet Large Scale Visual Recognition Chal
lenge in 2012. Since then, different CNN models have been tailored for 
one-dimensional input data, such as a single spectral signal (1D-CNN), 
two-dimensional input features such as photographs (2D-CNN) and also 
three-dimensional inputs such as hyperspectral cubes or volumetric data 
(3D-CNN) (Audebert et al., 2019; Paoletti et al., 2019). 

The main advantage of deep learning methods over more traditional 
machine learning methods, such as SVM and RF, is that they are able to 
automatically extract features from input data, and that they can also 
utilize spatial (2D-CNN) and spectral-spatial (3D-CNN) information 
instead of spectral information alone, whereas traditional machine 
learning methods are heavily reliant on hand-crafted features. Selecting 
and generating these features, a process known as feature engineering, 

requires both manual work and heavy domain expertise (e.g., (e.g., 
Sothe et al. (2020)). For tree species classification tasks a typical feature 
engineering process consists of computing various vegetation indices 
and textural features. Instead, CNNs work on raw data and are auto
matically able to extract significant features, some of which manual 
feature engineering may ignore. 

The majority of studies utilizing deep learning and remote sensing 
from hyperspectral imagery are focused on land use and land cover 
(LULC) classification tasks due to the most common hyperspectral 
benchmark datasets (Indian Pines, Pavia and Salinas) being LULC tasks 
(Audebert et al., 2019; Ma et al., 2019; Paoletti et al., 2019). Out of the 
studies focusing on tree species identification, Sothe et al. (2020) 
compared the performance of 2D-CNN with SVM and RF for tree-species 
classification in Southern Brazilian forests with 14 target species; their 
CNN implementation outperformed others with overall accuracies of 
84.4% and 74.95% for two different study areas. For boreal forests, Trier 
et al. (2018) compared the effectiveness of partial least squares regres
sion, pixel classification based on conifer and spruce indices, a 2D-CNN 
and a 1D-CNN for the classification of boreal forest tree species into 
three target species from hyperspectral data. Out of these, the 1D-CNN 
achieved an 87% accuracy, while the 2D-CNN (74% accuracy) was 
outperformed not only by the 1D-CNN, but also by partial least squares 
regression (78% accuracy). Their deep learning implementations, 
however, did not utilize all collected hyperspectral data, as they dis
carded all of the SWIR data and only used 160 bandwidths from the 
VNIR sensor for the 1D-CNN and three bandwidths blended with vege
tation height for the 2D-CNN. Furthermore, some recent studies have 
utilized full spectral information and deep learning methods in tree 
species classification in boreal forests. For example, Pölönen et al. 
(2018) proposed a 3D-CNN approach for tree species classification uti
lizing both UAV-collected 33-band hyperspectral data and a normalized 
canopy height model, and achieved an overall accuracy of 96.2% with 
three target species. This indicates that even experimental 3D-CNN 
models are able to achieve either similar or better results compared to 
other classification methods for the data originally presented in Neva
lainen et al. (2017). 

Nowadays, forest monitoring and inventory systems based on multi- 
source remote sensing (RS) data efficiently produce information on 
economically significant components of forests, i.e., the growing stock of 
a few main tree species (see e.g., Maltamo and Packalen (2014); Næsset 
(2002); Nevalainen et al. (2017); Packalén and Maltamo (2007)). From 
the perspective of sustainable forestry and forest biodiversity manage
ment, there is a knowledge gap concerning the occurrence of minor 
deciduous tree species that diversify the forest structure and have 
important ecosystem functions. For example, old, large-diameter aspens 
support high numbers of species, including numerous red-listed species 
(Kivinen et al., 2020; Rassi et al., 2010), and they have been included as 
ecologically relevant individuals in studies that aim to map aspen 
abundance (Latva-Karjanmaa et al., 2007; Maltamo et al., 2015; Vii
nikka et al., 2020). In Finland, ecologically significant components of 
forest structure, such as scattered deciduous tree species with low 
commercial value were collected along with other forest parameters in 
compartment-wise forest inventory (Poso, 1983). The shift to RS-based 
system in the early 2010s has practically ended the extensive 
compartment-level field measurements, and detailed information on 
minor deciduous tree species (e.g. European aspen, Populus tremula L., 
see Kivinen et al. (2020)) is not available, as they are pooled in one class 
in the system. Improved tree species detection with hyperspectral data 
could enable the simultaneous detection of both economically and 
ecologically important tree species and facilitate the consideration of 
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multiple values of forests. 
In this study, we focus on boreal forest ecosystems to demonstrate 

the use of effective analysis methods such as deep learning (i.e., 3D- 
CNN), for the first time in our knowledge, for a big hyperspectral data 
set. Our study concerns three major tree species, Scots pine (Pinus syl
vestris), Norway spruce (Picea abies (L.) Karst.) and birch (Betula sp.), as 
well as a keystone species, European aspen that has a scattered occur
rence in boreal forests. The research aims at answering the following 
questions:  

1. How does the 3D-CNN perform in comparison with SVM, RF, GBM 
and ANN in tree species classification? 

2. How accurately can the four common boreal tree species be recog
nized from hyperspectral data at the tree level? 

2. Materials 

2.1. Study area 

Our study area is located in the Evo forest area in Hämeenlinna, 
Southern Finland, and consists of southern boreal forests (Fig. 1). The 83 
km2 study area is mostly managed but also covers two important con
servation areas. These conservation areas cover a total of 7 km2. The 
forests are mostly dominated by Norway spruce and Scots pine with a 
mixture of Downy birch (Betula pendula) and Silver birch (Betula 
pubescens). European aspen and other deciduous species (e.g., Larix 
sibirica, Sorbus aucuparia, and Alnus incana) are rather scarce in the 
dominant canopy layer. 

2.2. Hyperspectral and airborne laser scanning data 

Hyperspectral and LiDAR data were captured on July 16th, 2018 in 
the morning under cloud-free conditions for the whole study area, with 
the sun angle varying between 27∘ and 44∘. Data were collected from 
1500 m altitude, resulting in 0.5 m spatial resolution for the VNIR data, 
1.0 m spatial resolution for the SWIR data and 10.2 p/m2 for the LiDAR 
data. All fo the details of airborne data collection are presented in 
Table 1. 

The hyperspectral and LiDAR data were georeferenced and orthor
ectified using Parge 3.4 software (Richter and Schläpfer, 2002). 
Hyperspectral cubes were orthorectified based on digital surface model 
generated from LiDAR data using fast-nearest neighbor interpolation. 
The atmospheric correction for hyperspectral data was performed by a 
contractor with ATCOR software version 4.7.3 by ReSe (Richter and 
Schläpfer, 2004). This correction did not account for bidirectional 
reflectance distribution or shadows but rather meant to remove atmo
spheric artefacts in captured data. Thus, the result is not the true surface 

Fig. 1. Study area and ground reference data locations. Hyperspectral and LiDAR data are captured from the highlighted area. Map produced from ESA remote 
sensing data (Sentinel-2 imagery, bands B04, B03 and B02) captured on July 19th, 2018. 

Table 1 
Flight index information.  

Time of data capture 2018.07.16 08:27–11:14 
VNIR camera HySpex 1800 – SN00827 
VNIR spectral range 406–995 nm, 186 bands 
SWIR camera HySpex 384 me – SN3126 
SWIR spectral range 956–2525 nm, 288 bands 
LiDAR scanner Leica ALS70-HP – SN7204 
LiDAR point cloud density 10.2 p/m2 

Aircraft Piper PA-31-350 Chieftain – LN-TTC 
Maximum flight altitude 1500 m above ground level 
Solar angle during data acquisition 26∘ – 44∘  
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reflectance but rather an approximation. Atmospheric correction was 
also performed to correct spectral misregistration, which leads to a small 
shift in wavelengths. Spectral bands in the central wavelengths of 720 
nm, 895–1000 nm, 1081–1191 nm, 1332–1469 nm and 1780–2021 nm 
were interpolated due to either water or oxygen absorption in the at
mosphere. In addition, SWIR bands from band 274 (2449.44 nm) on
ward were masked out due to poor signal-to-noise levels. There was a 
slight overlap between the last bands of the VNIR sensor and the first 
bands of the SWIR sensor, but they fell under the interpolated area and 
were discarded in our analyses. Hyperspectral data was tiled into a total 
of 381 tiles of 500 × 500 m. A normalized canopy height model (CHM) 
with a spatial resolution of 0.5 m was derived from LiDAR data. 

Because SWIR channels had a coarser spatial resolution than both the 
VNIR and LiDAR derived CHM, all SWIR data were upsampled to have 
the same spatial resolution as other data using the nearest neighbor 
interpolation method. After this, in order to simplify further processing, 
the VNIR, SWIR and CHM were concatenated to single image stacks with 
the spatial extent of 500 × 500 m each. The alignment of CHM, VNIR 
and SWIR after upsampling and stacking was inspected visually using 
buildings and other landmarks. 

After further data exploration, bands with a central wavelength of 
2000 nm onward were discarded due to issues of low quality such as 
water bodies with abnormally high reflectance values. In addition, we 
discarded all of the interpolated bands, and our final data had 250 
spectral bands with central wavelengths in the ranges of 401.32–717.49, 
723.72–892.05, 1006.17–1077.20, 1197.67–1329.06 and 
1471.22–1776.93 nm. 

2.3. Ground reference data 

The ground reference data were measured during the summer of 
2018 using both circular plots and individual tree measurements. 
Overall, 400 circular field plots, each with a 9 m radius were distributed 
over the study area using stratified sampling. The study area was 
stratified according to the main tree species (5 strata), DBH (5 strata), 
and basal area (4 strata) using compartment-level forest inventory data 
from 2015. The compartments were first considered as lists of IDs 
belonging to each stratum. Measured compartments were selected sys
tematically from the lists and the number of field plots in each stratum 
was determined by the stratum’s proportional area within the study site. 
Primary locations for the field plots were set in the center of each 
measured compartment. The final plot centers were positioned using a 
real-time kinematic global navigation satellite system (Topcon RTK- 
GNSS and Trimble RTK devices). The locations of individual trees 
within the plots were defined using the azimuth angle and the distance 
from the plot centers. 

To ensure the visibility of reference trees from above, only trees with 
a diameter at breast height (DBH) of 150 mm or more were included in 
the reference data. Only pines, spruces, both birch species and aspens 
were included in the training and validation sets, because the number of 
other species in our ground reference data was small (less than 120 trees 
with DBH ≥ 150 mm). Also, Silver and Downy birch were combined into 
one class. In addition to tree observations from circular plots, the loca
tions of individual trees were recorded from the study area during the 
summer and fall of 2019 using an RTK-GNSS device. In total, the 
reference data consisted of 4343 trees from circular plots and 2256 trees 

measured individually using the RTK-GNSS device. The species distri
butions of the ground reference data are presented in Table 2. 

3. Methods 

Our aim was to test the performance of various machine learning and 
deep learning models in individual tree species identification in a boreal 
forest using airborne hyperspectral data, with a special focus on Euro
pean aspen. Our task was divided into four separate subtasks:  

1. detect and segment individual trees from airborne data,  
2. match detected and segmented tree crowns to ground reference data,  
3. utilize these data to fit the models,  
4. use the models to classify unlabeled trees. 

We performed the first two steps with commonly used methods, and 
for tree species classification we focused on comparing the efficiency of 
several different techniques ranging from traditional machine learning 
to state-of-the-art deep learning methods. Our analyses and the source 
codes that we used are available at https://github.com/jaeeolma/tree 
-detection-evo. 

3.1. Matching airborne data with ground reference data 

We utilized LiDAR-derived CHM to match individual trees from 
ground reference data to airborne data to allow us to control the mini
mum height for detected trees as well as being able to segment shad
owed areas. For individual tree crown delineation, we used the 
algorithm proposed by Dalponte and Coomes (2016), as it has been 
shown to perform well in a reasonable time (e.g., Liu et al. (2019)). All 
treetop detection and tree delineation were performed with R version 
3.5 and lidR package version 2.2.1 (Roussel et al., 2017). First, the tiled 
CHMs were smoothed with a low pass filter, and then initial treetops 
were detected with a local maximum filter with a circular moving 
window, using a window size of 5 m and a minimum height of 10 m. 
Individual trees were segmented based on these treetops using the dal
ponte2016 function from lidR with a minimum height of 10 m 
(th_tree), a growing threshold 1 of 0.65 (th_seed), a growing 
threshold 2 of 0.5 (th_cr) and a maximum crown diameter of 5 m 
(max_cr). The parameters for the dalponte2016 function were selected 
in order to ensure the detection of trees in the upper canopy with a DBH 
of at least 150 mm and to avoid segmentations being mixed with the 
neighboring trees, ensuring that it is more likely that field data points 
located within a segment really correspond to that tree crown. As a post- 
processing step, a 2D convex hull was applied to results from previous 
steps in order to have convex tree crowns (Dalponte and Coomes, 2016). 

After segmenting the full study area, we matched the delineated tree 
crowns and our field measurements with the following algorithm: For 
each tree crown segment, we checked whether it contained any field 
data measurements. If there was only one field data point within a tree 
crown, then the tree crown was labeled with this field data point. If two 
or more measured trees were located inside one tree crown segment, 
then we used the following rules: If any of these field data points was 
individually measured, we only considered individually measured trees 
within the segmented crown as a valid label for the corresponding tree 
crown due to their higher spatial accuracy. Finally, the tree crown was 
labeled with the closest remaining field data measurement to the 
detected treetop pixel. 

Because extracted image patches can contain multiple labeled trees, 
using randomized split can lead to data leakage between training and 
validation sets. Using this kind of data to train our models can give 
overly optimistic validation results that do not reflect the models 
generalization power on truly unseen data, because it is likely that 
models have seen at least parts of the image patches used for validation 
(Audebert et al., 2019; Meyer et al., 2019). To address this, we split our 
labeled tiles into disjoint training and validation sets based on the tiling 

Table 2 
Numbers of trees with DBH ≥ 150 mm by collection method.  

Tree species Field plots Single tree Total 

Scots pine 1882 688 2570 
Norway spruce 1550 495 2045 
Downy and silver birch 793 474 1267 
European aspen 118 599 717 
Overall 4343 2256 6599  
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columns, using columns 19–22 as our validation set. Because flight lines 
of data collection were almost perpendicular to tiling column identifiers, 
by splitting the column identifiers we could ensure that both sets contain 
data collected in various time steps of data collection and thus they have 
all the possible illuminance conditions present in our data. An example 
of these differences is presented in Fig. 2. 

For CNN models, we adopted the typical approach for hyperspectral 
remote sensing scene classification and extracted square image patches 
centered around a labeled treetop. The correct label for each patch is 
then the label for the corresponding treetop, no matter how many other 
trees are present in the image patch. Square patches with diameters of 4, 
6, 8 and 10 m (image cubes with dimensions of 250 × 9 × 9, 250 × 13 ×
13, 250 × 17 × 17 and 250 × 21 × 21 pixels, respectively) were 
extracted in order to test whether the image patch size would provide 
differences in the classification results. Larger image patches will 
contain multiple trees from multiple species and this information could 
be useful for classification purposes. For example, pines tend to be 
surrounded by other pines. We did not use any information about 
delineated tree crowns in CNN classifications and only used the 
segmented results to produce the final wall-to-wall maps. 

For our reference methods, we computed the summary statistics 
(mean and standard deviation) of the full spectra for each delineated 
tree crown. This totaled 500 features for each tree crown object. 

For all methods except RF and GBM, the input reflectance values 
were normalized with the mean and standard deviation of the training 
set such that each spectral channel in the training set has zero mean and 
unit variance. This is a standard preprocessing step for these models, as 
it both prevents features with large values from dominating the classi
fication process and speeds up the convergence of deep learning 
methods (LeCun et al., 2012). Due to the nature of how decision tree- 
based models (RF and GBM) are constructed, normalization doesn’t 
affect the performance of these models at all, and thus this step could be 
omitted. 

3.2. Classification methods 

There are several ways to utilize CNNs in hyperspectral image 
recognition. First of all, a CNN using only one-dimensional convolutions 
(1D-CNN) can be used to extract features from a single pixel spectra. 
This method, however, completely ignores the spatial features present. 
Another way is to use a similar approach that is commonly used in RGB- 
image recognition and use two-dimensional convolution kernels (2D- 
CNN) that are applied to each input channel separately. The problems 
with this approach are that it ignores the rich spectral information, and 

the number of filters and thus parameters that must be optimized can be 
high, because their number is proportional to the dimensions of the 
input. For RGB-images, a simple convolutional layer with a kernel size of 
3 × 3 and 32 output channels will have 3 × 3 × 32 × 3 = 864 param
eters, but hyperspectral image cubes might have over 200 input chan
nels. This type of data leads to at least 3 × 3 × 32 × 200 = 57600 
parameters in a single layer. Because of this, 2D-CNN approaches typi
cally perform some kind of dimensionality reduction, such as principal 
component analysis (PCA) or minimum noise fraction (MNF), on the 
input data (Audebert et al., 2019; Paoletti et al., 2019). 

Recent studies have shown that CNNs utilizing both spectral and 
spatial information yield better results than those that use only one of 
these types of information (Audebert et al., 2019). It is possible to first 
extract spatial features with a 2D-CNN and then the spectral features 
with a 1D-CNN. However, this method does not help to solve the 
problem with the high number of parameters related to the 2D-CNN 
method. The alternative method that has shown the most promising 
results is to extract spectral and spatial features simultaneously with 
three-dimensional convolutions (3D-CNN). Convolutional layers in a 
3D-CNN produce feature cubes instead of one-dimensional feature vec
tors (like 1D-CNN) or two-dimensional feature maps (2D-CNN), and they 
are thus able to extract features that are more complex than handcrafted 
features (Audebert et al., 2019; Paoletti et al., 2019). 

Our CNN models are fairly simple, consisting of four or five (for 10 m 
image patches) convolutional layers with three-dimensional kernels, 
followed by two linear layers. Convolutional layers were used for 
extracting spectral-spatial features from input data, and linear layers 
performed the final classification from these features. Before the linear 
layers, the input is converted to a 1-dimensional vector format (flat
tened). Because our input has an odd number of pixels per spatial 
dimension, we did not use any pooling layers, but rather shrunk the 
input by not having zero padding and having a stride (the amount of 
pixels that the convolutional kernel is moved during one step) of 2 in 
some of the layers. Kernel sizes and the strides of convolutional layers 
are selected such that all of the input data is used, and the data has 
spatial dimensions of 1 × 1 after the final convolutional layer. We used 
the rectified linear unit (ReLU, ReLU(x) = max (0,x)) as the activation 
function in all convolutional layers and the first linear layer. In order to 
get probability values for classes from raw output values, the activation 
function for the final layer was softmax, defined as 

softmax(x)i =
exi

∑n
j=1exj

, (1) 

Fig. 2. Examples of different daylight illuminance conditions at approximately 09:00 (R8C19), 10:00 (R15C19) and 11:00 (R22C19). All images are composed of 
hyperspectral images (Red: 664 nm, Green: 560 nm, Blue: 493 nm) and colour bands are scaled with respect to R15C19. (For interpretation of the references to colour 
in this figure legend, the reader is referred to the web version of this article.) 
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where xi is the raw prediction value for class i and n is the number of 
classes. Implemented CNN architectures are presented in Table 3. 

All CNN models implemented batch normalization (Ioffe and Szeg
edy, 2015) on each layer group and implemented dropout (Srivastava 
et al., 2014) with a probability of 0.5 between linear layers. All deep 
learning models are trained with the AdamW optimizer (Loshchilov and 
Hutter, 2019) with the parameters β1 = 0.9, β2 = 0.999, ϵ = 1e− 8 and 
weight decay rate of 0.01. These values are the recommended default 
values tested to work well in various tasks. We also used one cycle 
learning rate scheduling (Smith, 2018), in which instead of having the 
same learning rate during the whole training process, we start with a 
slightly lower learning rate and periodically increase it during the first 
30% of batches. After reaching the maximum, the learning rate is slowly 
annealed until the end. We used the maximum learning rate of 0.001, a 
batch size of 64 and trained for a maximum of 100 epochs, saving the 
model with the best validation F1-score. Training data augmentation 
and other regularization techniques are described in Section 3.3. 

CNN models were compared with other widely used machine 
learning classification methods for remote sensing applications: random 
forest (RF), a support vector machine (SVM), a gradient boosting ma
chine (GBM) and a feedforward neural network with two hidden layers 
(ANN). Optimal hyperparameters for SVM, RF and GBM were searched 
using randomized search (Bergstra and Bengio, 2012) on 15 parameter 
combinations with five-fold random cross-validation on training data, 
and then the model with the best cross-validation score was fitted with 
the full training data. For deep learning models, the iteration with the 
highest validation accuracy was saved and used for inference instead of 
the model from the last epoch. All evaluations are done with the vali
dation set, which is otherwise not used for fitting models. 

Deep learning models (CNN and ANN) were implemented with 
PyTorch version 1.4 (Paszke et al., 2017) and fastai2 version 0.16 
(Howard and Gugger, 2020), using NVIDIA V100 GPGPU. The SVM and 
RF models were implemented with scikit-learn version 0.22.1 (Pedregosa 
et al., 2011), whereas GBM was implemented with LightGBM version 
2.3.0 (Ke et al., 2017). All data processing and model training was done 
using the computation nodes of Puhti supercomputer hosted by the CSC 
– IT Center for Science, Finland (CSC – IT Center for Science Finland, 
2020). 

3.3. Data augmentation for CNNs 

As mentioned earlier, one of the problems with common hyper
spectral datasets is the low number of labeled training samples. For 
instance, state-of-the-art image recognition models suited for RGB im
ages have been pretrained with the ImageNet dataset (Deng et al., 2009), 
which has about 1.3 million annotated samples from 1000 different 
classes, while the most common hyperspectral benchmark datasets have 
less than 60,000 labeled items (usually pixels). Our data has only around 
3000 labeled samples, which can be considered to be a small dataset for 
training deep learning models from scratch. In order to prevent over
fitting and make our models able to classify unseen data more accu
rately, we regularized the learning process using modern techniques. We 
used the techniques described in this section only for CNN models, not 
on comparison methods. Also, no augmentations were performed in 
advance, but rather on-the-fly when drawing samples into a minibatch. 

First of all, in order to practically eightfold our training data, each 
sample was randomly rotated 90 degrees clockwise or counter-clockwise 
and flipped horizontally or vertically during training. Also, to account 
for possible different lighting conditions for the same species, reflec
tance values were augmented with the probability of 0.5 with the 
following formula: 

xaug=σ(logit(x)+logit(change− 0.5)), σ(x)= ex

ex+1
, logit(x)= − log

(
1
x
− 1

)

(2)  

where x is the original image with reflectance values scaled between 
0 and 1, σ(x) is the sigmoid function, logit(x) the logit function and change 
is a uniformly drawn number from the interval [0.8, 1.2]. 

In addition, we used a novel data augmentation technique: mixup. In 
this approach, instead of using raw images as our training data, mixup 
augmentation generates a linear combination of two distinct images. For 
example, our synthetic input image might consist of 80% spruce and 
20% European aspen, and thus the correct output vector would be 
[0.0,0.2,0.8,0.0]. Mixup has been shown to improve classification re
sults for image classification and speech recognition as well as add 
robustness in case of corrupt labels (Zhang et al., 2018). 

The choice of loss function was also an important factor to consider. 
The most commonly used loss function for multi-class classification 
problems is the categorical cross-entropy, also known as the log-loss, 
defined as 

∑n

i=1
− yilog(pi) (3)  

where n is the number of classes, pi is the probability of class i and yi is 1 
for the correct class and 0 for others. Minimizing this loss is equivalent to 
maximizing the log-likelihood of the correct label. However, this can 
cause the model to overfit. Because minimizing cross-entropy encour
ages the model to assign the full probability to the correct class, the 
model is not guaranteed to be able to generalize. In order to avoid this, 
the method suggested by Szegedy et al. (2016) was used. It presents a 
variation of cross-entropy loss called label smoothing cross-entropy loss, 
which penalizes the model for overconfidence. Instead of computing the 
loss with the true targets y, they are replaced with the modified targets 

y* = yi(1 − α)+ α
n

(4) 

In our study, 0.1 was used as the value for α. While regularizing the 
model in this way might seem counter-intuitive, it has been shown to 
improve robustness at least for RGB-image classification tasks (Müller 
et al., 2019; Szegedy et al., 2016). 

3.4. Evaluation metrics 

To evaluate the performance of each method, we used the following 

Table 3 
Summary of CNN architecture for different image patch sizes.   

Input 4 m 6 m 8 m 10 m 

1 × 250 ×
9 × 9 

1 × 250 ×
13 × 13 

1 × 250 ×
17 × 17 

1 × 250 ×
21 × 21 

Conv1 Kernel 10 × 3 × 3 10 × 3 × 3 10 × 3 × 3 10 × 3 × 3 
Stride 2 × 1 × 1 2 × 1 × 1 2 × 1 × 1 2 × 1 × 1 
Output 32 × 121 

× 7 × 7 
32 × 121 ×
11 × 11 

32 × 121 ×
15 × 15 

32 × 121 ×
19 × 19 

Conv2 Kernel 5 × 3 × 3 5 × 3 × 3 5 × 3 × 3 5 × 3 × 3 
Stride 2 × 1 × 1 2 × 2 × 2 2 × 2 × 2 2 × 2 × 2 
Output 64 × 59 ×

5 × 5 
64 × 59 × 5 
× 5 

64 × 59 × 7 
× 7 

32 × 59 × 9 
× 9 

Conv3 Kernel 3 × 3 × 3 3 × 3 × 3 3 × 3 × 3 3 × 3 × 3 
Stride 2 × 1 × 1 2 × 1 × 1 2 × 2 × 2 2 × 1 × 1 
Output 64 × 29 ×

3 × 3 
64 × 29 × 3 
× 3 

64 × 29 × 3 
× 3 

64 × 29 × 7 
× 7 

Conv4 Kernel 3 × 3 × 3 3 × 3 × 3 3 × 3 × 3 3 × 3 × 3 
Stride 1 × 1 × 1 1 × 1 × 1 2 × 1 × 1 1 × 2 × 2 
Output 128 × 27 

× 1 × 1 
128 × 27 ×
1 × 1 

128 × 27 ×
1 × 1 

64 × 27 × 3 
× 3 

Conv5 Kernel Not used Not used Not used 3 × 3 × 3 
Stride 1 × 1 × 1 
Output 128 × 25 ×

1 × 1 
Linear1 Input 1 × 3456 1 × 3456 1 × 3456 1 × 3200 

Output 1 × 512 1 × 512 1 × 512 1 × 512 
Linear2 Input 1 × 512 1 × 512 1 × 512 1 × 512 

Output 1 × 4 1 × 4 1 × 4 1 × 4  
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metrics: the overall accuracy (OA) of predictions and both macro and 
weighted averages of the user’s accuracy (UA, also known as precision), 
producer’s accuracy (PA, also known as recall) and F1-score. The macro 
averages for multi-class classification results are raw averages of class- 
specific metrics, while weighted averages take the support of classes 
into account. UA measures how many of the positive predictions were 
relevant, PA tells us how many of the positive results were correctly 
classified and F1 is the harmonic mean of UA and PA. These metrics are 
calculated from true positives (TP), true negatives (TN), false negatives 
(FN) and a total number of items (N) in the following way: 

OA =
TP + TN

N
,UA =

TP
TP + FP

,PA =
TP

TP + FN
,F1 =

2⋅UA⋅PA
UA + PA

(5) 

In addition to validating the CNN’s performance with only the 
validation set, we also classified all of the detected trees in our study 
area in order to see whether the distribution of our predictions is real
istic. For this task, if a tree was located near the edge of a tile such that 
extracting a square image patch is not possible, missing reflectance 
values are filled by mirroring the previous values to acquire square 
patches. 

3.5. Model interpretation 

One of the disadvantages of deep neural networks is that due to their 
complex structure they are considered to be black box models. However, 
there are a few techniques to gain some information on which features 
the model considers to be the most important. First of all, by occluding 
parts of the input data and inspecting how the prediction probabilities 
change, it is possible to interpret how the model makes its decisions to 
some degree (Zeiler and Fergus, 2014). Another possibility is to use the 
model to classify an image and then compute the gradient of the 
maximum predicted class with respect to the input image. Higher 
magnitudes of gradient signify which pixels need to be changed the least 
to influence the classification score the most, and they can be considered 
to be the most influential for the classification process (Simonyan et al., 
2014). The gradient can be computed with either vanilla backpropagation 
or guided backpropagation. The difference between these methods is that 
in the guided backpropagation approach, when propagating through 
ReLU-layers, all negative values are masked with zero, thus guiding the 
results to better visualize the features that have a positive impact on 
class scores (Springenberg et al., 2015). Visualizations of these results 
are called saliency maps. 

Most of the work in CNN interpretability is focused on RGB-imagery. 
However, there are a couple of studies applying this work to hyper
spectral data. Pölönen et al. (2018) and Nagasubramanian et al. (2019) 
applied vanilla backpropagation to their models and computed magni
tudes of the gradients in both spatial and spectral dimensions. In this 
work, we used both the occlusion method and the average magnitude of 
gradients acquired with vanilla backpropagation to produce saliency 
maps for each class separately. We occluded input images with random 
noise generated from uniform distribution both one spatial pixel at a 
time and in the spectral dimension one spectral band at a time. At each 
step, the change of confidence for the initially predicted class was 
recorded. Methods for computing gradients and saliency visualizations 
were adapted from the PyTorch CNN Visualizations repository (Ozbu
lak, 2019). However, because our input data had small spatial di
mensions and were centered around the detected treetop pixel, checking 
spatial importance was more of a sanity check for the model rather than 
an accurate interpretation of which spatial locations were vital for 
decisions. 

4. Results 

4.1. Field and airborne data matching 

We were able to match 2874 segments with the field data. The 

majority of these, a total of 2176, contained only a single field measured 
tree, from which 1066 were measured individually using RTK-GNSS and 
1110 originated from field plots. The remaining 698 segments contained 
multiple field measurements of trees with DBH ≥ 150 mm. Of these, 500 
segments contained only one tree species while 198 segments contained 
two or more different species. The most common species combinations 
in the cases of multiple species in one segment were spruce and birch (78 
occasions), spruce and pine (50 occasions) and birch and pine (30 oc
casions). Out of 6716 field data measurements (including "Other” spe
cies), 2928 (43.6%) were not located within any delineated tree crown 
and thus were excluded from further analyses. 

In addition to excluding all trees labeled "Other”, we had to omit all 
trees from one of the field plots due to it being located just outside of the 
hyperspectral data collection area, bringing the total number of trees to 
2826. Overall, deciduous species had a higher matching rate compared 
to coniferous trees. European aspen had the highest matching rate of 
61.8%, while Norway spruce had the lowest (35.3%). Individually 
measured trees resulted in higher matching rates compared to field plot 
measurements (Table 4), with overall matching rates of 63.6% and 
32.0% respectively. The matching rates were calculated by dividing the 
number of labeled crowns by the number of labeled field data points. 

Visual inspection of the segmentation results revealed in
consistencies in the spatial accuracy between hyperspectral images and 
the CHM. Some of the tree segments were not aligned with the hyper
spectral image tree crowns (Fig. 3). These types of misaligments 
occurred mostly in the edges and overlapping areas of flight lines. 

On average, matched trees had a slightly larger DBH compared to all 
of the measured trees in the ground reference data (Fig. 4), with the 
exception of aspen. However, almost all of the matched aspen were 
individually measured, with only 19 matched trees measured from field 
plots. Also, individually measured trees had on average a larger DBH 
compared to trees from field plots. On average, aspen had the largest 
DBH no matter the collection method for full field data and also for 
matched trees. Interestingly, even though both pine and spruce had on 
average larger DBH than birch, both species had a lower detection rate 
compared to birch. 

The average within-segment reflectance spectra (Fig. 5) showed that 
deciduous species had higher reflectance values than coniferous species, 
especially between the 720 nm and 1400 nm wavelengths. European 
aspen had overall the highest reflectance and Norway spruce had the 
lowest. The difference in reflectances between aspens and birches in red- 
edge and NIR (660–900 nm) was larger than between spruce and pine, 
and vice versa in the SWIR-portion of the data (1000 ≤ nm). However, 
due to the varying daylight illuminance conditions during airborne data 
acquisition, there was high variance within each species. The normal
ized data showed a large difference in reflectance between the decidu
ous and coniferous species, particularly in the range above 700 nm. 

The tree species distributions of our training and validation sets are 
presented in Table 5. The numbers vary slightly between different image 
patch sizes due to trees occurring on a tile border where it was not 
possible to extract a square patch. 

Table 4 
Matching rates for different species.  

Species Field plots Single tree Total 

Matched 
trees 

Rate Matched 
trees 

Rate Matched 
trees 

Rate 

Scots pine 650 34.5% 449 65.3% 1099 42.8% 
Norway 

spruce 
463 29.9% 258 52.1% 721 35.3% 

Downy and 
silver 
birch 

259 32.7% 304 64.1% 563 44.4% 

European 
aspen 

19 16.1% 424 70.8% 443 61.8% 

Overall 1391 32.0% 1435 63.6% 2826 42.8%  
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Fig. 3. Example comparison of field plot data and segmentation results for a single field plot and its surroundings. Crosses note individually measured trees and 
circles represent field plot measurements. Left: RGB composite from hyperspectral data, with central wavelengths of Red: 664 nm, Green: 560 nm, Blue: 493 nm. 
Right: LiDAR-derived canopy height model. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 

Fig. 4. Comparison of species-wise DBH-distributions for different collection methods between all data and matched data. Dashed lines within the plots show 25%, 
50% and 75% quartiles for each species-method combination. 

Fig. 5. Left: Average within-segment reflectances. Right: Average normalized within-segment reflectances.  
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4.2. Classification results 

Of our reference methods, both SVM with linear kernel and ANN 
with two hidden layers clearly outperformed decision tree-based 
methods, as seen in Table 6 and Fig. 6. Decision tree-based methods 
had significant difficulties separating deciduous species from each other, 
whereas ANN and SVM only had minor classification errors. Of these 
methods, ANN had the highest F1-score for aspen, and SVM was the best 
method for pine classification. Overall, the performances of SVM and 
ANN were almost equal, and the selection between these methods is up 
to the users’ preferences. However, both of these methods were out
performed by each CNN model. 

The CNN using 4 m image patches had the best overall performance 
of all methods, beating the second best model using 6 m patches by 0.5 
percentage points for OA and 0.01 for the macro F1-score. However, the 
size of the image patch did not have major impacts on classification 
accuracy, and all CNN models achieved better performance than refer
ence methods (Table 7). All CNNs had similar results for different spe
cies. Typically, aspen and pine were classified with the highest 
accuracies, and birch was the most difficult species to classify correctly. 
The model using 4 m image patches had the best results overall due to 
having the highest PA (0.84) for birch and robust results for other spe
cies. Confusion matrices of all 3D-CNNs are shown in Fig. 7. 

Compared to ANN and SVM, each 3D-CNN was more accurate 
especially in classifying the coniferous species. The most typical errors 
for each of the three best performing models (3D-CNN, SVM and ANN) 
were to incorrectly classify spruce as pine and spruce as birch. Neural 
network models (ANN and CNN) rarely labeled pines as spruces, and 
they were slightly more accurate with birch. The most accurate model 
for aspen classification, based on F1-score, was the CNN with 4 m image 
patches. However, both SVM and ANN had higher PA for aspen than any 
3D-CNN. 

4.3. Model interpretation 

Based on the changes in prediction confidences after occlusion 
(Fig. 8), our model put heavy emphasis on SWIR-wavelengths between 
1646 and 1700 nm, especially for coniferous species. For instance, on 
average the confidence for spruce classification drops more than 0.5 
when input wavelengths in this range are replaced with random noise. 
At the same time, the confidence for pine predictions increased. Similar 
effects were also detected for aspen and birch; for instance, the 

wavelength range near 630 nm was important for positive aspen pre
dictions (prediction confidence decreased) but had little to no effect on 
positive birch predictions (prediction confidence increased). Average 
gradient magnitudes were also higher in the wavelength ranges with the 
largest prediction confidence changes, thus confirming which wave
lengths were the most important to the model. 

According to the occlusion method, the most important spatial lo
cations were near the center of the image (Fig. 9). Aspen was the most 
sensitive species for changes in the expected tree crown area, with the 
average classification confidence dropping as much as 0.2 in the 
detected treetop location. Interestingly, on average the confidence for 
birch predictions remained the same or even increased very little when 
occluding parts of the spatial input. Overall, the effects of spatial oc
clusion were smaller than those of spectral occlusion. Based on these 
results along with spatial saliency maps, we were able to confirm that 
the model put more importance on the area near the treetop. 

4.4. Full study area classifications 

We used the best performing CNN model to generate wall-to-wall 
tree species map for our study area. It is worth noting that our treetop 
data contained only trees higher than 10 m, and all trees were classified 
to be one of our training species. In reality, there were some situations 
that our methods either fail to classify at all, such as undergrowth, 
seedling and sapling stands, as well as some less common and rare 
species which were incorrectly classified as one of our four classes. The 
distribution of predicted species is presented in Table 8. Almost half of 
the detected trees in the area were classified as Scots pine, and only 
around 1.4% of trees were classified as European aspen. 

A full tree species map is presented in Fig. 10, aggregated to 10 m 
spatial resolution. Each pixel was labeled with the most abundant spe
cies based on the number of treetops within the pixel. European aspen 
was scattered around the study area, with only a couple of larger aspen 
stands. 

5. Discussion and future work 

In this study, we compared the performance of five common machine 
learning methods (RF, SVM, GBM, ANN, and CNN) in identifying four 
main tree species in a boreal forest using airborne hyperspectral and 
LiDAR data. The results show that the CNN outperformed all other 
methods in overall accuracy. 3D-CNN models performed especially well 
in separating the coniferous species pine and spruce providing a bene
ficial method for forest industry, since commercial interests focus on 
conifers. Perhaps the most surprising result was that the SVM, ANN and 
CNNs distinguished between birch and aspen without difficulty, but had 
more errors with classifying spruce as birch. Spruce was also often 
misclassified as pine. Pine and spruce have been considered separate 
classes in species classifications based on hyperspectral data, whereas 
deciduous trees have been combined into a single class (Dalponte et al., 
2014; Dalponte and Coomes, 2016). It has been suggested that young 
spruce trees may resemble mature birches in their spectrum due to being 
brighter than mature spruce trees (Trier et al., 2018). The high accuracy 

Table 6 
Validation set results for comparison methods.  

Species RF SVM LightGBM ANN 

UA PA F1 UA PA F1 UA PA F1 UA PA F1 

Pine 0.76 0.80 0.78 0.86 0.84 0.85 0.72 0.81 0.76 0.78 0.89 0.83 
Spruce 0.79 0.75 0.77 0.83 0.81 0.82 0.79 0.73 0.76 0.89 0.73 0.80 
Birch 0.45 0.76 0.57 0.73 0.72 0.72 0.44 0.69 0.54 0.69 0.81 0.74 
Aspen 0.80 0.34 0.48 0.83 0.93 0.87 0.76 0.32 0.45 0.88 0.89 0.88 
OA 70.3% 82.4% 68.8% 81.7% 
Macro avg 0.70 0.66 0.65 0.82 0.82 0.82 0.68 0.64 0.63 0.81 0.83 0.82 
Weighted avg 0.74 0.70 0.70 0.82 0.82 0.82 0.72 0.69 0.68 0.83 0.82 0.82  

Table 5 
Training and validation set numbers.  

Species Train Validation 

Scots pine 929 170 
Norway spruce 513 208 
Birch 488 75 
European aspen 361 82 
Overall 2291 535  
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Fig. 6. Confusion matrices for comparison methods. Rows indicate correct labels and columns indicate predicted labels.  

Table 7 
Validation set results the CNN models.  

Species 4 m 6 m 8 m 10 m 

UA PA F1 UA PA F1 UA PA F1 UA PA F1 

Pine 0.87 0.93 0.90 0.87 0.95 0.91 0.84 0.93 0.88 0.86 0.93 0.89 
Spruce 0.92 0.83 0.87 0.90 0.85 0.88 0.87 0.83 0.85 0.88 0.85 0.86 
Birch 0.71 0.84 0.77 0.71 0.82 0.76 0.66 0.75 0.73 0.74 0.71 0.70 
Aspen 0.94 0.88 0.91 0.93 0.78 0.85 0.92 0.85 0.89 0.92 0.80 0.86 
OA 87.0% 86.5% 85.1% 85.0% 
Macro avg 0.86 0.87 0.86 0.85 0.85 0.85 0.85 0.84 0.84 0.84 0.82 0.83 
Weighted avg 0.88 0.87 0.87 0.87 0.87 0.87 0.85 0.85 0.85 0.85 0.85 0.85  
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of aspen classifications may be due to aspens being the thickest and 
highest tree species in the area, with wide canopies, which probably 
resulted in more uniform data than for the other tree species. The wide 
canopies of aspen decreased the possibility of no non-aspen pixels within 
the segmented canopy area. Moreover, almost all labeled aspens were 
measured individually with the RTK-GNSS device resulting in a more 
accurate positioning. 

There are several potential sources of uncertainty in our work. As 
seen in Fig. 3, there were inconsistencies in both our field data and 
airborne imagery. The inconsistencies with field data were due to 
measurement conditions. For field plots, only the plot centers were 
measured and trees within the plot were located related to the plot 
center, which may have led to incorrect locations for trees. Individual 

trees were measured from the central stem position, but the corre
sponding treetop might have been located elsewhere in our aerial im
agery due to for example curvature of the trunk or wind. It is also 
possible that there were trees with DBH < 150 mm located within a 
labeled segment which may have affected to the spectral signature. 
While detecting these situations was possible within 9 m field plots, it 
was practically impossible for individual trees and the edges of the field 
plots. We addressed these situations by using the segmentation algo
rithm to capture only the immediate treetop area. 

In the case of airborne imagery, the mismatch between different data 
sources is a well-known challenge in data fusion, due to, for example, 
differences in spatial resolution or collection time. As seen in Fig. 3, 
some delineated canopies and treetops seem to be displaced based on 

Fig. 7. Confusion matrices for 3D-CNN models. Rows indicate correct labels and columns indicate predicted labels.  
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hyperspectral data, but were in correct locations in the CHM. These 
kinds of problems were more common in our data at the edges of flight 
lines, and were most likely artefacts from the orthorectification process. 
Finally, our models were only able to classify any tree crown into one of 
the four species and thus omitted other, rarer species present in the area. 

The collection method had a large impact on the tree matching rate 
for ground reference data. The larger the proportion of individually 
measured trees, the better the detection rate was for each species. On 
average, individually measured trees had a significantly larger DBH 
compared to field plot measurements in both unmatched and matched 
data. However, this could be due to bias in data collection. Individually 
measured trees were all handpicked by researchers and generally larger 
than trees on average, whereas the field plot measurements contained all 
trees within the field plot. Still, for European aspen there was no dif
ference in size between the labeled trees from the field and handpicked 

data, which may be due to the large average size of the aspen trees in the 
study area. On the other hand, individually measured trees were posi
tioned more accurately than trees positioned based on the field plot 
center, which may have eased the process of matching them with the 
hyperspectral and LiDAR data in the segmentation process. 

Our tree matching rate of 42.8% is comparable to or slightly better 
than the rate in studies with similar LiDAR or CHM data. In previous 
studies, the achieved detection rates have been from 32% (Dalponte and 
Coomes, 2016; Kandare et al., 2016) to around 50% (Nevalainen et al., 
2017) and up to 63.4% (Hamraz et al., 2019). Comparing these results, 
however, is not straightforward, because of different field and airborne 
data collection methods and different limits in minimum height and 
DBH used in these studies. In this study, we performed tree detection 
from the CHM instead of LiDAR point clouds. Since our methods utilized 
spectral features extracted from the upper canopy layer, we wanted to 
classify the trees clearly visible from birds-eye view and therefore set 
limitations for both maximum height and DBH. While this limits the 
applicability of our methods to mature forests, in our study the main 
point of interest was mature and old-growth trees, especially large and 
elderly aspen. As for the subject of improving the tree matching rate, 
algorithms utilizing point cloud data are shown to be more accurate than 
CHM-level methods, especially in dense, heterogenous canopies (Kan
dare et al., 2016). However, they require more processing power and are 
much slower especially for high-density point clouds (Pirotti et al., 
2017), and they are prone to oversegmentation (Liu et al., 2019). 

Fig. 8. Left: Average change in prediction confidence when masking spectral wavelengths. Right: Average magnitude of gradients for vanilla backpropagation.  

Fig. 9. Top: Average change of prediction confidence when occluding spatial pixels from input data. Bottom: Saliency maps showing average magnitude of gradients.  

Table 8 
Classification results for the full study area, for all 
detected trees with maximum height 10 m or more.  

Species Percentage 

Scots pine 48.28% 
Norway spruce 28.50% 
Birch 21.81% 
European aspen 1.41%  
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Utilizing more LiDAR parameters or LiDAR derived features either for 
tree detection or for classification could be an interesting research di
rection as a continuation of this study. For instance, Hamraz et al. (2019) 
acquired promising results in separating coniferous and deciduous trees 
only from LiDAR derived features, and Pölönen et al. (2018) used a 
normalized CHM as an additional input channel in addition to hyper
spectral data in their work. Especially for species that occur sporadically 
or infrequently in the landscape, imaging spectroscopy as such may not 
be enough for precise classification (Waser et al., 2014; Roth et al., 
2015b). Structural information from LiDAR data in combination with 
imaging spectroscopy has been found to improve the classification or 
calibration accuracy (Dalponte et al., 2012). 

The OA of 87% in this study corresponds to or outcompetes the OAs 
acquired by using discriminant analysis methods utilizing hyperspectral 
data in temperate forest sites (Roth et al., 2015a). In general, boreal 
forests in Finland have a low number of main tree species which sim
plifies the identification task. The four species examined in this study 
dominate more than 97% of the growing stock volume of forests in 
Finland (Lier et al., 2017). Thus, the classification problem cannot be 
compared to, e.g., tropical forests with thousands of tree species coex
isting in the canopy (Asner et al., 2015). Generally, the more species or 
classes there are to predict, the larger the field comparison data that is 
needed (Feret and Asner, 2013; Heinzel and Koch, 2011; Yu et al., 2014). 

Based on both occlusion and saliency graphs, the wavelength range 
of 1650–1700 nm influenced the species classification strongly. In this 
range, Kokaly and Skidmore (2015) have attributed a narrow spectral 
absorption feature at 1660 nm to phenolic compounds, whereas tree 
species with a high lignin content, such as pine and spruce, may have a 
shift to 1670 nm. For Populus tremuloides, phenolic compounds such as 

condensed tannins and salicinoids have been predicted based on leaf 
reflectance spectra with many of the important wavelengths in the 
1650–1700 nm range (Couture et al., 2016). Spectral features of 1660, 
1890 and 2000 nm have been shown to match spectral features of cel
lulose and lignin polymers and to differ among tree species with 
different cellulose and lignin content (Buitrago et al., 2018). Viinikka 
et al. (2020) applied both RF and SVM for the same data used in this 
work to identify the most important spectral features for different spe
cies, and the most significant features for aspen included 1684–1706 nm 
which coincides with the results of this study by CNN. In this study, the 
spectral range of 640–660 nm was the most influential VNIR region for 
deciduous trees and was particularly important in the classification of 
birch. It co-occurs with the absorbance maxima of about 642 and 660 
nm of chlorophyll b and a, respectively (Lichtenthaler and Buschmann, 
2001). This is in contrast to most studies, which have red edge as the 
most influential spectral range in VNIR for tree species classification 
(Heikkinen et al., 2010; Pant et al., 2013), as was also found by Viinikka 
et al. (2020). 

Even though 3D-CNNs were able to achieve better results than other 
methods, our neural network architecture is most likely not optimal. For 
most image classification tasks, it is advisable to use an established ar
chitecture and pretrained weights as a baseline and only fine-tune the 
final layer of the model for the task in hand. This process, known as 
transfer learning, has been widely used in remote sensing tasks when the 
input data is RGB images or even synthetic aperture radar images. 
However, the relatively low number of labeled samples for deep 
learning, the variation between band numbers between different data
sets, and the usage of different sensors for public benchmarks make 
transfer learning practically impossible to utilize in hyperspectral image 

Fig. 10. Wall-to-wall tree species map produced with the best performing 3D-CNN of trees with maximum height of 10 m or more, resampled to 10 m spatial 
resolution. Lower left: 100 × 100 m window of a larger aspen stand, showing individual trees. 
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recognition tasks (Audebert et al., 2019; Paoletti et al., 2019). Because of 
this, the models in this study were trained from scratch. 

One possibility that could be used to improve the classification re
sults is the so-called self-supervised learning approach, a subset of unsu
pervised learning. Unsupervised learning refers to training models 
without any human-annotated labels, whereas in self-supervised 
learning, the model is trained with some automatically generated la
bels. Tasks for self-supervised learning can be, for instance, as simple as 
predicting whether the original image is rotated (Gidaris et al., 2018), or 
more advanced, like a clustering-based task (Caron et al., 2018) or a 
generative task (e.g., Zhu et al. (2017)). The motivation behind self- 
supervised learning is that by solving tasks with automatically gener
ated labels, the model learns to extract relevant features that can then be 
fine-tuned for the final task, thus solving the previously mentioned 
transfer learning problem (Jing and Tian, 2019). Self-supervised 
learning has been used both in image and video recognition and natu
ral language processing tasks, and utilizing it for hyperspectral imaging 
would be an interesting research direction. 

Using 3D-CNN, we produced a wall-to-wall tree species map for the 
study area by first segmenting the trees and classifying each tree sepa
rately. However, there are already several proposed deep learning ap
proaches to semantic segmentation, such as U-Net (Ronneberger et al., 
2015), and one possible direction for future research would be to test 
their viability for hyperspectral data using segmentation maps produced 
here as the ground truth. This kind of approach would simplify the 
required preprocessing steps, as tree delineation or treetop detection 
would not be needed anymore, and areas with trees lower than a user- 
defined minimum height could also be labeled. After all, real-world 
applications, such as biomass or timber yield calculations, have no 
practical use for individually segmented and classified trees but rather 
require segmented tree stands consisting of single tree species. Seg
mentation networks have already been used for multispectral satellite 
data (see, e.g., Stoian et al. (2019)), but their viability for true hyper
spectral data still remains an open question. 

Because high resolution hyperspectral data is expensive to collect for 
large areas using airborne platforms, there is a need to test the feasibility 
of accurate tree species classification from other sources, such as mul
tispectral satellite images. Currently, there are several satellite in
struments in orbit offering multispectral data with high revisit time (e.g., 
Sentinel-2, Landsat 8). For some species, upscaling with multispectral 
data seems like a promising opportunity, but there are a number of 
species for which a more detailed spectral resolution is the only way to 
improve species recognition. The biodiversity monitoring community is 
eagerly waiting for open access, high-quality satellite hyperspectral data 
to support the monitoring of taxonomic and functional diversity (Jetz 
et al., 2016). There are already hyperspectral satellites in orbit (such as 
GaoFen-5, PRISMA) and missions in preparation (such as EnMap, 
CHIME), but data from these are not yet available. 

Although valuable for fine-scale planning and investigations, 
hyperspectral airborne data are typically too detailed for operative land 
use planning and analysis. Hence, we look forward to linking highly 
detailed, tree-level airborne data with large-scale spaceborne data. Roth 
et al. (2015b) showed that upscaling is a viable option in combining 
hyperspectral datasets of different resolutions. However, linking tree- 
level data with coarser data raises new questions that require closer 
inspection, e.g., how to preserve and generalize the spectral information 
from species that occur in a scattered way and in low numbers. As the 
spatial resolution is lowered with spaceborne data, the ability to 
distinguish spectral characteristics of individual tree crowns weakens. 
This especially affects the non-dominant species. Also, the machine 
learning-based methods used in this study require extensive training 
sets, which brings up the challenge of collecting enough field data. Here, 
we propose that high resolution airborne data could be used for 
compiling training data for coarser resolution spaceborne data. Hence, 
the pixel-level variation in spaceborne data could be explained with 
extensive tree-level data. In the two-phase system, limited field data 

could be used for training and validating the interpretation methods 
based on airborne data. Airborne instruments could then be used to 
collect extensive tree-level data for training the landscape-level species 
detection utilizing spaceborne data. More accurate landscape-level in
formation on the occurrence of scarce but ecologically significant tree 
species would benefit ecological modeling (Mononen et al., 2018). Still, 
a challenge remains on how to collect extensive training data for scarce 
tree species, such as European aspen. A similar need applies to other 
species of high ecological importance, such as oak (Quercus) and beech 
(Fagus), which support a high number of red-listed invertebrates (Jonsell 
et al., 1998) in temperate and boreal ecosystems. This study contributes 
to the knowledge of the modeling capabilities of combined spectral and 
LiDAR techniques for such scarce species with ecological importance. 

6. Conclusions 

In this work, we presented a workflow for tree species classification 
from high resolution hyperspectral and LiDAR imagery, from accurately 
matching ground reference data with airborne imagery to producing 
wall-to-wall classification maps. In addition, we compared the perfor
mance of random forest, a support vector machine, a gradient boosting 
machine, a feedforward neural network and a convolutional neural 
network for this task. The study shows that species identification can be 
conducted with a high accuracy with the given methods and RS data. 
Even though the implemented CNN models were most likely not 
optimal, they were nevertheless able to outperform RF, GBM, SVM and 
ANN. We aim to use the tree species maps produced in this study as 
training data for larger scale classification tasks. The development of 
these kinds of methods is crucial when operationalizing big remote 
sensing data in biodiversity and ecosystem monitoring. 
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