22 research outputs found

    Improving variational autoencoder with deep feature consistent and generative adversarial training

    Get PDF
    We present a new method for improving the performances of variational autoencoder (VAE). In addition to enforcing the deep feature consistent principle thus ensuring the VAE output and its corresponding input images to have similar deep features, we also implement a generative adversarial training mechanism to force the VAE to output realistic and natural images. We present experimental results to show that the VAE trained with our new method outperforms state of the art in generating face images with much clearer and more natural noses, eyes, teeth, hair textures as well as reasonable backgrounds. We also show that our method can learn powerful embeddings of input face images, which can be used to achieve facial attribute manipulation. Moreover we propose a multi-view feature extraction strategy to extract effective image representations, which can be used to achieve state of the art performance in facial attribute prediction

    Distinctive action sketch for human action recognition

    Get PDF
    Recent developments in the field of computer vision have led to a renewed interest in sketch correlated research. There have emerged considerable solid evidence which revealed the significance of sketch. However, there have been few profound discussions on sketch based action analysis so far. In this paper, we propose an approach to discover the most distinctive sketches for action recognition. The action sketches should satisfy two characteristics: sketchability and objectiveness. Primitive sketches are prepared according to the structured forests based fast edge detection. Meanwhile, we take advantage of Faster R-CNN to detect the persons in parallel. On completion of the two stages, the process of distinctive action sketch mining is carried out. After that, we present four kinds of sketch pooling methods to get a uniform representation for action videos. The experimental results show that the proposed method achieves impressive performance against several compared methods on two public datasets.The work was supported in part by the National Science Foundation of China (61472103, 61772158, 61702136, and 61701273) and Australian Research Council (ARC) grant (DP150104645)

    Video-based human action recognition using deep learning: a review

    Get PDF
    Human action recognition is an important application domain in computer vision. Its primary aim is to accurately describe human actions and their interactions from a previously unseen data sequence acquired by sensors. The ability to recognize, understand and predict complex human actions enables the construction of many important applications such as intelligent surveillance systems, human-computer interfaces, health care, security and military applications. In recent years, deep learning has been given particular attention by the computer vision community. This paper presents an overview of the current state-of-the-art in action recognition using video analysis with deep learning techniques. We present the most important deep learning models for recognizing human actions, analyze them to provide the current progress of deep learning algorithms applied to solve human action recognition problems in realistic videos highlighting their advantages and disadvantages. Based on the quantitative analysis using recognition accuracies reported in the literature, our study identies state-of-the-art deep architectures in action recognition and then provides current trends and open problems for future works in this led.This work was supported by the Cen-tre d'Etudes et d'Expertise sur les Risques, l'environnement la mobilité et l'aménagement (CEREMA) and the UC3M Conex-Marie Curie Program.No publicad

    Graph learning and its applications : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Computer Science, Massey University, Albany, Auckland, New Zealand

    Get PDF
    Since graph features consider the correlations between two data points to provide high-order information, i.e., more complex correlations than the low-order information which considers the correlations in the individual data, they have attracted much attention in real applications. The key of graph feature extraction is the graph construction. Previous study has demonstrated that the quality of the graph usually determines the effectiveness of the graph feature. However, the graph is usually constructed from the original data which often contain noise and redundancy. To address the above issue, graph learning is designed to iteratively adjust the graph and model parameters so that improving the quality of the graph and outputting optimal model parameters. As a result, graph learning has become a very popular research topic in traditional machine learning and deep learning. Although previous graph learning methods have been applied in many fields by adding a graph regularization to the objective function, they still have some issues to be addressed. This thesis focuses on the study of graph learning aiming to overcome the drawbacks in previous methods for different applications. We list the proposed methods as follows. • We propose a traditional graph learning method under supervised learning to consider the robustness and the interpretability of graph learning. Specifically, we propose utilizing self-paced learning to assign important samples with large weights, conducting feature selection to remove redundant features, and learning a graph matrix from the low dimensional data of the original data to preserve the local structure of the data. As a consequence, both important samples and useful features are used to select support vectors in the SVM framework. • We propose a traditional graph learning method under semi-supervised learning to explore parameter-free fusion of graph learning. Specifically, we first employ the discrete wavelet transform and Pearson correlation coefficient to obtain multiple fully connected Functional Connectivity brain Networks (FCNs) for every subject, and then learn a sparsely connected FCN for every subject. Finally, the ℓ1-SVM is employed to learn the important features and conduct disease diagnosis. • We propose a deep graph learning method to consider graph fusion of graph learning. Specifically, we first employ the Simple Linear Iterative Clustering (SLIC) method to obtain multi-scale features for every image, and then design a new graph fusion method to fine-tune features of every scale. As a result, the multi-scale feature fine-tuning, graph learning, and feature learning are embedded into a unified framework. All proposed methods are evaluated on real-world data sets, by comparing to state-of-the-art methods. Experimental results demonstrate that our methods outperformed all comparison methods

    Interpretable Hyperspectral AI: When Non-Convex Modeling meets Hyperspectral Remote Sensing

    Full text link
    Hyperspectral imaging, also known as image spectrometry, is a landmark technique in geoscience and remote sensing (RS). In the past decade, enormous efforts have been made to process and analyze these hyperspectral (HS) products mainly by means of seasoned experts. However, with the ever-growing volume of data, the bulk of costs in manpower and material resources poses new challenges on reducing the burden of manual labor and improving efficiency. For this reason, it is, therefore, urgent to develop more intelligent and automatic approaches for various HS RS applications. Machine learning (ML) tools with convex optimization have successfully undertaken the tasks of numerous artificial intelligence (AI)-related applications. However, their ability in handling complex practical problems remains limited, particularly for HS data, due to the effects of various spectral variabilities in the process of HS imaging and the complexity and redundancy of higher dimensional HS signals. Compared to the convex models, non-convex modeling, which is capable of characterizing more complex real scenes and providing the model interpretability technically and theoretically, has been proven to be a feasible solution to reduce the gap between challenging HS vision tasks and currently advanced intelligent data processing models

    Algorithms, applications and systems towards interpretable pattern mining from multi-aspect data

    Get PDF
    How do humans move around in the urban space and how do they differ when the city undergoes terrorist attacks? How do users behave in Massive Open Online courses~(MOOCs) and how do they differ if some of them achieve certificates while some of them not? What areas in the court elite players, such as Stephen Curry, LeBron James, like to make their shots in the course of the game? How can we uncover the hidden habits that govern our online purchases? Are there unspoken agendas in how different states pass legislation of certain kinds? At the heart of these seemingly unconnected puzzles is this same mystery of multi-aspect mining, i.g., how can we mine and interpret the hidden pattern from a dataset that simultaneously reveals the associations, or changes of the associations, among various aspects of the data (e.g., a shot could be described with three aspects, player, time of the game, and area in the court)? Solving this problem could open gates to a deep understanding of underlying mechanisms for many real-world phenomena. While much of the research in multi-aspect mining contribute broad scope of innovations in the mining part, interpretation of patterns from the perspective of users (or domain experts) is often overlooked. Questions like what do they require for patterns, how good are the patterns, or how to read them, have barely been addressed. Without efficient and effective ways of involving users in the process of multi-aspect mining, the results are likely to lead to something difficult for them to comprehend. This dissertation proposes the M^3 framework, which consists of multiplex pattern discovery, multifaceted pattern evaluation, and multipurpose pattern presentation, to tackle the challenges of multi-aspect pattern discovery. Based on this framework, we develop algorithms, applications, and analytic systems to enable interpretable pattern discovery from multi-aspect data. Following the concept of meaningful multiplex pattern discovery, we propose PairFac to close the gap between human information needs and naive mining optimization. We demonstrate its effectiveness in the context of impact discovery in the aftermath of urban disasters. We develop iDisc to target the crossing of multiplex pattern discovery with multifaceted pattern evaluation. iDisc meets the specific information need in understanding multi-level, contrastive behavior patterns. As an example, we use iDisc to predict student performance outcomes in Massive Open Online Courses given users' latent behaviors. FacIt is an interactive visual analytic system that sits at the intersection of all three components and enables for interpretable, fine-tunable, and scrutinizable pattern discovery from multi-aspect data. We demonstrate each work's significance and implications in its respective problem context. As a whole, this series of studies is an effort to instantiate the M^3 framework and push the field of multi-aspect mining towards a more human-centric process in real-world applications

    Trusted Artificial Intelligence in Manufacturing; Trusted Artificial Intelligence in Manufacturing

    Get PDF
    The successful deployment of AI solutions in manufacturing environments hinges on their security, safety and reliability which becomes more challenging in settings where multiple AI systems (e.g., industrial robots, robotic cells, Deep Neural Networks (DNNs)) interact as atomic systems and with humans. To guarantee the safe and reliable operation of AI systems in the shopfloor, there is a need to address many challenges in the scope of complex, heterogeneous, dynamic and unpredictable environments. Specifically, data reliability, human machine interaction, security, transparency and explainability challenges need to be addressed at the same time. Recent advances in AI research (e.g., in deep neural networks security and explainable AI (XAI) systems), coupled with novel research outcomes in the formal specification and verification of AI systems provide a sound basis for safe and reliable AI deployments in production lines. Moreover, the legal and regulatory dimension of safe and reliable AI solutions in production lines must be considered as well. To address some of the above listed challenges, fifteen European Organizations collaborate in the scope of the STAR project, a research initiative funded by the European Commission in the scope of its H2020 program (Grant Agreement Number: 956573). STAR researches, develops, and validates novel technologies that enable AI systems to acquire knowledge in order to take timely and safe decisions in dynamic and unpredictable environments. Moreover, the project researches and delivers approaches that enable AI systems to confront sophisticated adversaries and to remain robust against security attacks. This book is co-authored by the STAR consortium members and provides a review of technologies, techniques and systems for trusted, ethical, and secure AI in manufacturing. The different chapters of the book cover systems and technologies for industrial data reliability, responsible and transparent artificial intelligence systems, human centered manufacturing systems such as human-centred digital twins, cyber-defence in AI systems, simulated reality systems, human robot collaboration systems, as well as automated mobile robots for manufacturing environments. A variety of cutting-edge AI technologies are employed by these systems including deep neural networks, reinforcement learning systems, and explainable artificial intelligence systems. Furthermore, relevant standards and applicable regulations are discussed. Beyond reviewing state of the art standards and technologies, the book illustrates how the STAR research goes beyond the state of the art, towards enabling and showcasing human-centred technologies in production lines. Emphasis is put on dynamic human in the loop scenarios, where ethical, transparent, and trusted AI systems co-exist with human workers. The book is made available as an open access publication, which could make it broadly and freely available to the AI and smart manufacturing communities
    corecore