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1

I N T RO D U C T I O N

From early childhood to old age, humans gain and revise their understanding of the world
by inferring knowledge through the analysis of objects and forming mental relations
among those objects [28]. The basis for the object analysis are sensory inputs, whereas
the relations are formed by contextualizing these inputs. We can make inference about
an object by the raw sensory data associated with it, often referred to as its content,
and relating it to pre-existing knowledge representations or other sensory inputs. Doing
so, we create an understanding about a scene, an activity or an event. For example, a
person who has never seen “a house boat” or “a white peacock” can easily imagine these
combinations by simply interpreting the content of each word and forming relations
between them. Thus, for making any inference, a structural understanding of the raw
sensory data in combination with their relations is pivotal.

The very thought of relating objects makes us typically assume the relations would
be pairwise and that is how we commonly represent relations in a machine, namely
using graphs. A graph is a data structure describing a set of objects, represented as
nodes, and their pairwise relationships, represented as edges. For example, a simple
financial transaction between two individuals can be represented by an edge between
two nodes representing those individuals. Graphs have been the most ubiquitous data
structures for representing relations and using them to discover relevant information in a
data collection. This is due to their capability to combine node-level information with
the underlying inter-node relations. However, making any inference using only pairwise
relations is often insufficient in real-world scenarios. Consider a simple visual scene
of “a room consisting of a chair, a desk, a person and a picture of human anatomy”.
Accurately making even a simple inference about the person using pairwise relations
between person-chair or person-desk in this scenario is highly unlikely. However, if
we include all the objects and analyze this group relation of person-chair-desk and
human anatomy picture, we can make a fair judgement about the person being a doctor
and the room to be a clinic. These group relations termed as higher-order relations —
involving more than two objects at a time — are crucial for humans to gain insights.
Higher-order relations are commonly encountered in many domains, such as medical
science (e.g., coexisting diseases/symptoms), pharmacology (e.g., reacting chemicals),
bibliometrics (e.g., collaborating researchers), people analytics (e.g., a team) and social
networks (e.g., groups of users and the posts among them). These relations capture
a group of objects, where each group can exhibit different properties and the higher-
order relations can dynamically change over time. Therefore, representing relations in
real-world datasets as pairwise connections using graphs is sub-optimal in capturing
the complex information. Using higher-order relations can enhance the representation
capabilities of a data structure.
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I N T RO D U C T I O N

Just as humans exploit higher-order relations to make sense of the world, machines
should also be capable of exploiting them for making better inferences. However,
as mentioned above, modeling the higher-order relations with graphs leads to loss
of information. The pairwise relations fail to represent all the higher-order relations
among the objects and, do not correctly capture the collective flow of information. A
collection of intersecting higher-order relations can be much better represented using
hypergraphs. Hypergraphs are graph-like structures that allow edges (called “hyperedges”
or “hyperlinks”) spanning over more than two nodes. In a hypergraph there exist two
types of relations, intra-group relations between nodes within a hyperedge and inter-
group relations between nodes across hyperedges. In a quest to better understand, learn
and infer such relations, in this thesis we propose novel approaches for hypergraph
representation learning. In particular, we introduce a range of methods for structuring the
representations and computations of deep neural network-based models on hypergraphs.
Our hypergraph representations eventually allow for improved generalization in learning
from multimodal data consisting of complex higher-order relations.

This thesis takes a broad view of representation learning on hypergraphs. We try to
simultaneously learn about the content of an object stored as features on a node and
higher-order relations among the objects represented by hyperedges. In particular, our
focus is on the development of hypergraph learning frameworks that can capture the
group relations on dynamically evolving real-world datasets. We seek to answer the
following main research question:

How to learn higher-order relations using hypergraphs?

One of the earliest efforts in developing machine learning algorithms for hypergraphs
came from Zhou et. al in 2007 [206]. They generalize the methodology of spectral
clustering, which originally operates on undirected graphs, to hypergraphs and further de-
velop algorithms for hypergraph embedding and classification. Recent advancements in
the field of geometric deep learning [30] have presented formulations on graph structured
data for the tasks of node classification [91], link prediction [200], or the classification
of graphs [202]. Most of early methods do not generalize to the outlined problem of
learning higher-order relations.

In this thesis, we argue for the introduction and design of deep learning models which
can accurately learn higher-order relations within datasets represented using hypergraphs.
Some of the major challenges in devising such a learning algorithm include extracting
relational information from the complex hypergraph structure, combining content based
information with the hypergraph structure, scalability to multiple modalities, adaptability
to the dynamic nature of real-world datasets, and generalizability of the model across
multiple data domains. We begin our research by examining the extent to which the
structure of a hypergraph can capture higher-order relational information as compared to
a graph. This leads to the first sub-question:

What information can be extracted from the hypergraph structure alone?

Hypergraphs have been shown to represent higher-order relations but their capability
to capture and devise predictive modeling algorithms using these relations is yet to be
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I N T RO D U C T I O N

explored. In Chapter 2, we study the extent to which a hypergraph can be used to capture
relational information among objects and how to utilize those relations to make useful
predictions. We show that representing objects in a social network by mere pairwise
relations tends to under exploit the underlying nuances, leading to substantial loss in
information. In fact, much of the interesting information in social networks is captured
by jointly observing the inter-group relations with intra-group relations. In this chapter,
we design a framework that uses only the structure of a hypergraph to simultaneously
capture these relations for performing several classification and recommendation tasks.
This leads to the second research question:

What is the added value of content-based relations in deep learning on hypergraphs?

As outlined above, accurately learning the representation of an object requires model-
ing the content of an object and its relations. In Chapter 3, we define relations among
objects by using the content comprising their intrinsic characteristics. These charac-
teristics can be defined based on the available information of an object within a data
collection. The underlying idea is to enhance a hypergraph model to learn heterogeneous
relations among objects. For example, two social network users can be linked based
on their friendship relations or based on their political views reflected in the content
they interact with. We hypothesize that the flexibility of the hypergraph structure can
facilitate designing deep learning models that can represent and learn such relations as
well. Thus, we exploit content-based relations using hypergraphs to construct a learning
framework. As a use case, this framework is used to make predictions on the communi-
cation behavior of users in an online discussion forum. However, these communication
behaviors can evolve over time and thus can lead to structural changes in the hypergraph.
Accommodating these changes into the model and making new inferences is of utmost
importance in many applications. This leads to the third research question:

How to interactively add temporal structural changes to a hypergraph learning model?

One of the major challenges for learning on graphs and hypergraphs has been their
rigidity in adapting to any structural change in terms of addition or removal of nodes
and edges. These changes can be induced by temporal changes in the content or because
of incremental insight in the collection by the user. In reality, relations between nodes
change over time and, ideally, a deep learning model should be capable of adapting
to the changes by learning these new sets of relations. To that end in Chapter 4 we
present HYPER-MATRIX, a novel large-scale interactive hypergraph learning framework
that enables temporal hypergraph exploration with a user relevance feedback model.
This interactive learning approach is capable of incorporating user’s responses into a
pre-existing hypergraph learning model and providing relevant results in interactive time.
Doing so, HYPER-MATRIX integrates user relevance feedback with a deep learning
model, improving the quality of predictions over time. Such an approach enhances
the learning framework to incorporate structural changes within a hypergraph based
on external domain knowledge. However, such an approach possesses the problem
of scalability to many modalities and to larger datasets due to the incremental matrix
updation framework. This leads to the third research question:
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I N T RO D U C T I O N

Is it possible to scale deep learning on hypergraphs to datasets with many modalities?

While we were able to formulate a hypergraph learning framework, in order for
multimedia analytics to be a true enabler of knowledge gain, we must address the
problem of scalability to datasets with many modalities. These modalities can include,
for example, image, video, audio, text (in the form of a comment, tag or post)or emoji.
HYPERLEARN offers the possibility of deploying a hypergraph learning framework on
highly multimodal data, alleviating the limitations on scaling the framework to many
modalities. Moreover in a parallel computing setting, adding new modalities to the model
requires only an additional computing unit keeping the computational time unchanged
when such nodes are available, which brings representation learning to truly multimodal
datasets. In Chapter 5, we demonstrate the feasibility of such a framework in experiments
on multimedia datasets featuring higher-order relations. The relations and the number
of objects in these datasets are static and do not change with time, making the entire
learning framework transductive. In real world scenarios, however, there are temporal
changes in a dataset leading to addition/removal of objects (nodes) as well as relations
(edges). To perform inferences on unseen objects, an inductive learning framework is
required. This leads to our final research question:

How can we develop deep learning models for dynamically evolving higher-order rela-
tions on hypergraph?

For long-term analysis of practially any real-world dataset, a learning framework
should be adaptive to its dynamically evolving nature. This includes not only the
structural changes induced by modifying the relations between objects, but also the
addition of an increasing number of new objects over time. Thus, making inferences on
these never encountered objects has become a priority in many applications. The final
chapter of this thesis addresses the challenging problem of inductive learning on dynamic
hypergraphs which aims at making predictions on unseen nodes and relations. In Chapter
6, we propose HYPERMSG comprising a message passing strategy to accurately and
efficiently propagate information through the hyperedges, thereby learning the higher-
order relations. HYPERMSG is scalable and generalizable to datasets from domains
ranging from citation networks and social multimedia networks to brain activity networks
in neuroscience.

The combination of the answers to the research questions yields a complete framework
enabling the machine to interactively assist the user in multimedia analytics on even very
large and heterogeneous collections.
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2

E X P L O I T I N G R E L AT I O NA L I N F O R M AT I O N I N S O C I A L
N E T W O R K S U S I N G G E O M E T R I C D E E P L E A R N I N G O N
H Y P E R G R A P H S

Online social networks are constituted by a diverse set of entities including users, images
and posts which makes the task of predicting interdependencies between entities challeng-
ing. We need a model that transfers information from a given type of relations between
entities to predict other types of relations, irrespective of the type of entity. In order to
devise a generic framework, one needs to capture the relational information between
entities without any entity dependent information. However, there are two challenges:
(a) a social network has an intrinsic community structure. In these communities, some
relations are much more complicated than pairwise relations, thus cannot be simply
modeled by a graph; (b) there are different types of entities and relations in a social
network, taking into account all of them makes it difficult to formulate a model. In this
paper, we claim that representing social networks using hypergraphs improves the task of
predicting missing information about an entity by capturing higher-order relations. We
study the behavior of our method by performing experiments on CLEF dataset consisting
of images from Flickr, an online photo sharing social network.

2.1 I N T RO D U C T I O N

The structure of an online social network contains an enormous amount of information
within the intrinsic relationships among entities. Capturing implicit relations within these
structure allows to perform tasks such as clustering, classification and link prediction. In
order to extract these relational information sources, data representation plays a key role.
In multimedia, the problem of learning one type of relations between entities to predict
other types of relations has been a topic of significant interest. In particular, exploiting
relations in online social networks, brings up the problem of generalization across
different types of entities. The entities can be users in social communication networks
(Facebook, Twitter), images/videos in media sharing networks (Flickr, Instagram), posts
in discussion forums (Reddit, Quora) or resources in ’sharing economy’ networks (Airbnb,
Uber). There exists a multitude of relations within these social networks, even for a small
dataset which reveals another hindrance to extract meaningful information. One of the
key solutions for these problems is to design a model that can efficiently capture large
amounts of relational information between entities, so one can perform tasks irrespective
of any entity specific knowledge. Hence, there is a need for a representation which is
scalable and a formulation which is neutral to all kinds of social networks.
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S T RU C T U R A L H Y P E R G R A P H R E P R E S E N TAT I O N L E A R N I N G

Figure 1: Figure (a) represents the overlapping community structure within a social
network with the size of node proportional to its degree. As can be seen, the higher degree
nodes forms a sub-unit to which other low degree nodes are densely connected. Figure
(b) shows a comparison between the hypergraph and traditional graph representation.
The higher-order relation between vertices cannot be captured using the pairwise edges.
However, it can be easily captured using the hyperedges e1,e2 and e3.

Traditional graph-based representations of a social network leads to a loss in informa-
tion, as it implicitly takes into account only pairwise connections between the entities.
These pairwise relations fail to represent higher-order relations among the entities. More-
over, a simple binary representation of relations does not depict a collective flow of
information. For instance, consider Twitter which has users, tweets, hashtags, lists etc..
Representing even a ternary relation of a user releasing a tweet containing multiple
hashtags is infeasible using traditional graphs [100]. Or even in the simple case of a co-
authorship network, one cannot know whether three or more authors that link together in
the network were co-authors of the same paper or not [206] as seen in Fig.21(b). Thus to
capture higher-order relations in social networks, traditional graph-based representation
of the network proves to be insufficient.

Another characteristic of social networks is the presence of overlapping communities
[113]. Most importantly a social network possesses the special property of being a scale-
free network [123] [126]. Scale-free networks are a class of power-law networks where
the nodes that have many connections (high-degree nodes) tend to be connected to other
nodes with many connections, while they are surrounded by many small clusters of low-
degree nodes. In other words, social networks contain a structure of communities, where
smaller communities in the network are joined to larger communities by highly connected
nodes that play the role of local hubs [140]. Graphically, these communities form subunits
within the network which show relatively high levels of connection within them and a
lower connectivity among them as seen in Fig.21(a). This implies that high-degree nodes
in the core of a subunit are crucial for an efficient flow of information and to maintain
strong connectivity in these networks. To efficiently capture the relational information
within a social network one needs to exploit this dense overlapping community structure.

Various approaches have been proposed in the past to exploit relational information
in social networks [119] [36] [131] [81] [115]. However, they do not fully capture the
structural features shared within the overlapping community structure of the entities. In

16



2.1 I N T RO D U C T I O N

Figure 2: An example of the proposed method on the CLEF dataset of Flickr. The goal
is to predict any type of metadata for images given two sets of input. Input 1 is the
partial information about the images in one of the metadata spaces represented by
an incomplete hypergraph (implying an incomplete incidence matrix). Input 2 is the
complete information for the images in the other metadata space. Finally, the output is
the set of predicted hyperedges between the images in the partial metadata space.

order to utilize this property, in this paper we represent social networks as hypergraphs
where each entity is represented as a set of vertices and the edges represent the overlap-
ping relations between them. A hypergraph [25] is a generalization of the simple graph
in which the edges, called hyperedges, are arbitrary non-empty subsets of the vertex
set and may therefore connect any number of vertices. The hyperedges form the key
difference between a hypergraph and a traditional graph. The nodes are kept the same as
in a simple graph but a hyperedge can connect even all the nodes at once as compared to a
traditional graph where an edge is always a connection between 2 nodes. Especially, a set
of multimodal entities in a social network can be viewed as a hypergraph whose vertices
are the individuals and whose hyperedges are the communities. Finally, a hypergraph
representation can be computationally advantageous as compared to the simple graph
model since the incidence matrix of a hypergraph requires less storage space in depicting
the same volume of information [185]. In this way, a hypergraph is a natural framework
to capture the community structure as well as higher-order relations between nodes in
the network.

In order to infer relations between entities using only its relational information requires
not only a good representation of data, but also a robust powerful model to integrate
them. In this work, we propose a methodology which can perform multiple tasks and can
be generalized to all social networks. We develop a model to predict missing information
(metadata) about an entity by learning relations between entities, without requiring any
content-specific features of the entity. To build a multi-functional model for predicting
missing metadata, we introduce a multi-graph convolutional neural network model for
hypergraphs based on the recent works in deep learning on graphs, specifically graph
convolutional networks.

Deep convolutional neural networks [94] have been proven to offer an efficient frame-
work to extract deep meaningful statistical patterns in signals like image, speech or

17



S T RU C T U R A L H Y P E R G R A P H R E P R E S E N TAT I O N L E A R N I N G

video, in which there is a latent Euclidean structure. However, most of the definitions of
convolution, utilize the properties of stationarity and locality which holds for Euclidean
data spaces. Recent works [48] [91] on geometric deep learning aims to extend the
framework of convolutional neural networks to data represented on graphs. The key idea
in geometric deep learning is to devise a method for representation learning that can
capture structural information within non-Euclidean domains, especially graphs. The
applications of graph convolutional network ranges from describing shapes in different
human poses [150], semi-supervised classification of authors in citation networks [91]
and learning molecular fingerprints [43]. However, regular graph CNNs provide only a
partial solution for learning dense information within a group of nodes. The two basic
drawbacks of such models in a social network scenario have been due to the compact
structure of data which makes the model unscalabale and the inability to share rela-
tional information across entities. Hence, we focus on developing a framework that can
represent the scale-free properties of a social network and is generalizable to all social
networks.

The points below highlight the contributions of this paper:

• We propose a generic framework which can transfer relational information from
one type of relation to predict other types of relations between entities. Our ap-
proach is entity independent and captures higher-order relations by using hypergraph-
based representation of a social network.

• We formulate a model for geometric deep learning on hypergraphs to perform tasks
such as multi-label classification, link prediction and recommendation. Our results
shows significant improvement as compared to previous graph-based methods.

• We further establish that a hypergraph-based representation of a social network is
the most efficient way to build a model for learning the same volume of information
in a network as compared to traditional pairwise simple or weighted graphs.

2.2 BAC K G RO U N D

In this section, we introduce some background on the three concepts on which we base
our methodology i.e. hypergraphs, matrix completion and geometric deep learning.

2.2.1 Notation and Formulation of a Hypergraph

A hypergraph G is formally represented as H = (V , E), where V is a set of vertices and
E is a set of hyperedges where each e ∈ E is a subset of V . The degree of a hyperedge
e, denoted as δ(e), is the number of vertices in e. In case of a simple graph, δ(e) = 2
and hence they are known as ”2-graph”. The diagonal matrices containing the degrees
of all vertices (v) and hyperedges (e) are denoted by Dv and De respectively. We say
that there is a hyperpath between vertices v1 and vk when there is a sequence of distinct
vertices and hyperedges v1, e1, v2, e2, ..., ek−1, vk such that {vi, vi+1} ⊆ ei for 1 ≤ i ≤ k − 1.
One of the key differences of hypergraphs as compared to pairwise simple graphs is its
representation using an incidence matrix. It is represented by a |V | × |E| matrix H with

18



2.2 BAC K G RO U N D

entries h(v, e) = 1 if v ∈ e and 0 otherwise. A simple graph is commonly represented by
a square |V | × |V | matrix A which is known as the adjacency matrix, such that its element
ai j is 1 when there is an edge from vertex i to vertex j and 0 when there is no edge.
There are many advantages of the incidence matrix (H) over the adjacency matrix (A)
to model relational data [185]. The three key advantages are: (i) the incidence matrix
of the hypergraph requires less storage space in comparison with the graph adjacency
matrix to represent the same volume of information; (ii) hypergraph incidence matrices
require fewer operations for matrix-vector multiplication; and (iii) most importantly, the
benefits of using the Laplacian of a hypergraph incidence matrix which will be discussed
in detail in section 2.4.2.

2.2.2 Matrix Completion

Matrix completion is the task of finding the missing values of a partially observed p × q
matrix M. That is, we only observe a sparse set E of observations Mi, j : ∀(i, j) ∈ E,
with |E| << pq. The goal is to estimate the rest of the values Mi, j < E. A particularly
popular model is to assume that the values lie in a smaller subspace, resulting in M being
a low-rank matrix, which leads to solving a rank minimization problem. Let Ξ(•) be the
projection operator selecting only those entries that lie in the set E and let R be the target
matrix to be reconstructed using Mi, j : ∀(i, j) ∈ E. Then the rank minimization problem
is given by:

The number of unknown variables in this formulation are in the order of p × q which
makes it practically unscalable for large matrices. One of the solutions is to use a
factorized representation of matrix R i.e. R = XYT , where X, Y are p × r and q × r,
matrices respectively with r << min(p, q), which formulates as eq.6.1 [154].

Low-rank further implies linear dependence of rows/columns of M which can be
utilized to constraint the space of solutions to be smooth. In many scenarios, the
rows/columns form communities which can further optimize computation by incorpo-
rating proximity information among rows/columns. Recent work on geometric matrix
completion has shown the importance of these relations by using them as side information
to the matrix completion problem [82] [125] [24] [138]. It assumes that there exists a
graph Gr = (VX, EX) whose adjacency matrix encodes the relationships between the p
rows of X and a graph Gc = (VY , EY) for q rows of Y . The geometric matrix completion
can then be written as

min
X,Y

1
2
||X||2Gr

+
1
2
||Y ||2Gc

+ λX,Y ||Ξ(M − XYT )||2F (2.1)

where, ||X||2Gr
= trace(X∆rXT ) and ||Y ||2Gc

= trace(Y∆cYT ) are the graph Dirichlet
semi-norm for rows and columns respectively. ∆r and ∆c are the row and column
laplacian matrices.

2.2.3 Geometric Deep Learning

As defined by Bronstein et.al. [30]; ”Geometric deep learning is an umbrella term
for emerging techniques attempting to generalize (structured) deep neural models to
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Figure 3: A block-diagram of the proposed model. The input to the model are the partial
Hθ

p
i and complete Hθc0 hypergraphs corresponding to the two types of metadata θi and

θ0 respectively. Iθc0 and Iθ
p
i are the incidence matrices (the grey color depicts data used

for training whereas white represents missing data). The model updates the hypergraph
incrementally by updating the incidence matrix using geometric deep learning based
model.

non-Euclidean domains such as graphs and manifolds”. One of the early attempts on
generalizing neural network to graphs are due to Scarselli et.al. in 2005 [63], who
proposed a combination of recurrent neural networks and random walk models called
Graph Neural Networks (GNN). The first formulation of convolution neural networks on
graphs used the definition of convolutions from graph signal processing in the spectral
domain [31].
In this work, we focus on applying convolution network on graphs in order to learn the
intrinsic relations in social networks. A convolutional layer in the spectral domain is
defined as

f out
l = ξ(

p∑
l′=1

ΦkĜl,l′ΦT
K f in

l′ ) (2.2)

where, Fn×p
in = ( f in

1 ... f in
p ) and Fn×q

out = ( f out
1 ... f out

p ) represent the p and q−dimensional
input and output signals on the vertices of the graph. Φk is the n × k matrix of the
eigenvectors from the spectral decomposition of the graph. Ĝl,l′ are the learnable spectral
filters and ξ is the ReLU non-linearity. Further advancement to this definition have
been proposed in order to make a Graph Convolution Network (GCN) generic and
scalable [71] [43] [91].
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2.3 R E L AT E D W O R K

We review two categories of related work: studies on context/network based learning of
relational information in social networks and applications of deep learning approaches
on graphs.

2.3.1 Learning Relational Information in Social Networks

Several approaches have been introduced for learning relations within a social network.
They can be grouped in five main categories based on their representation of social
network data.

In the first one, [110] proposed one of the earliest approaches where they use network
topology in which, they model a social network as a simple homogeneous graph where
each node represents an entity and each link denotes social relationships. [179] proposed
Link Prediction using Social Features (LPS F), based on features extracted from patterns
of prominent interactions across the network for each entity pair. These features are
very useful in identifying similar node pairs, even when they are far away. They propose
a simple yet powerful model to capture relations between entities. However, these
approaches are not made generic across all networks and lack scalability due to their
dependence on pre-defined methods for feature extraction.

In the second type of approach [196] proposed to model social networks as pairwise
heterogeneous graphs as opposed to homogeneous ones and apply a random walk algo-
rithm to calculate link proximity. Online photo sharing networks have been of particular
interest in learning relations due to the generation of large amounts of metadata. [119]
proposed a graphical model that treats image classification as a problem of simultane-
ously predicting binary labels for a network of photos. They represent each image by
a node while the edges are formed between images that have some common property.
The first two approaches model social relations between entities as pairs and then apply
a structural learning algorithm. These approaches can be scalable to large networks but
they still fail to capture any higher-order relations. Therefore, they cannot make use of
the community structure in social networks leading to loss in information. Moreover,
their applicability to real-world networks is confined as they use parametric methods for
modeling relations [81].

The third category of approaches represents data on an ego network, which consist
of a focal node (”ego”) and the nodes to whom ego is directly connected to (”alters”).
Egos and alters are tied to each other by social relations, in [45] and [99], the authors
propose to learn social circles by representing the data in ego networks. Li et. al. [104]
further study the problem of profiling user attributes in social networks by capturing
the correlation between attributes and social connections in an ego network. These
approaches however does not generalize for all types of social networks and to learn all
kinds of relations between entities and metadata.

Another kind of approaches are based on hypergraph theory. Hypergraph-based
models have been widely used in the multimedia domain for solving the problems
of community detection [205] [111], multi-label classification [35] [160], tag-based
social image searching [58], music recommendation [32] and link prediction in social
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networks [100]. In this work, we use hypergraph-based approach to represent data, for
precisely capturing the high-order relations, in order to build a generic framework for
classification, recommendation and link prediction.

Several ”non-graph” based approaches to exploit relational information across domains
have also been a field of particular interest. Earlier works on multi-domain collaborative
filtering includes interaction-associated information of users and items as side information
for recommendation. Cross-domain collaborative filtering (CDCF) [73] has recently
started to draw significant research attention. The basic concept of CDCF is to borrow
rating knowledge for each user from some related auxiliary domains, whose rating
matrices are relatively dense, to alleviate the rating sparsity problem in the sparse target
domain. These approaches rely mostly on implicit domain correlations that are mined
solely from user preference data, and and no explicit links are exploited. There are two
major questions surrounding this approach [148]. First, what could be the common
knowledge that can be transferred/shared between different domains, and, second, what
could be the optimal way to transfer/share knowledge between different domains [133].

2.3.2 Application of Deep Learning based Approaches on Graphs

There has been a recent surge of interest to formulate deep learning methods on non-
euclidean domain especially in graphs. The effectiveness of deep learning graph-based
approaches ranges from computer graphics [29] to chemistry [48]. The spectral graph
convolutional neural networks (GCN), originally proposed in [31] and extended in [43]
have proven effective in classification of handwritten digits and news texts. [91] proposed
a simplified GCN for semi-supervised classification of authors in a citation network. In
the computer vision community, GCN has been extended by [118] to describe shapes in
different human poses, [150] to demonstrate classification of point clouds and [124] for
image and 3D shape analysis. In multimedia, [143] proposed an approach to categorize
user posts for political extremism content based on their discussion topics. Deep learning
on graphs for social networks is yet to be explored for their ability to uncover hidden
relations between multimedia items. In this paper, we take a step further to devise a
generic model for learning relations in social networks using geometric deep learning
methods.

2.4 P RO P O S E D M O D E L

In this work, we define a trainable graphical model that treats predicting metadata for
an entity, as the unified problem of generating sets of hyperedges across entities. The
basic hypothesis of the model is that entities related through one set of metadata carry
imperative information which can be learnt to predict other relational properties between
them. In this paper, we will use Hp/c

Θ (with Ip/c
Θ as its incidence matrix) to denote a

partial(p) or a complete (c) hypergraph. The subscript Θ is the type of metadata used
to construct the hyperedges i.e. Θ = t/l/g/u for tags (t), labels (l), groups (g) and
users (u) respectively. The inputs to the model are: (a) a complete hypergraph of entities
constructed using one type of metadata denoted by Hc

Θand (b) a partial hypergraph on
the same sets of entities constructed from the required metadata denoted by Hp

Θ. The
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training of the model has three phases: constructing the model by formulating it as a
factorized matrix completion problem, relational feature extraction using geometric deep
learning and finally updating the partial hypergraph by predicting hyperedges across
entities. Fig.3 shows these three phases as a block diagram.

2.4.1 Formulating Hyperedge Prediction as Matrix Completion

The computational advantage of using a hypergraph for the above mentioned problems
instead of a simple graph is the representation of its vertices and edges by an incidence
matrix. As compared to traditional graphs where the incidence matrix has an additional
constraint of only two non-zero values in each column (”2-graph” property), the incidence
matrix of a hypergraph can have as many as all non-zero values in each column. Therefore,
generating hyperedges in a hypergraph can be termed equivalent to the problem of filling
missing entries in its corresponding incidence matrix. In this work, we represent the
relation between entities using their metadata by hypergraphs. Each entity corresponds
to a vertex and the edges depict all unique values of the corresponding metadata. The
respective incidence matrix (Ip/c

Θ ) is of dimension n × θ, where n is the total number of
entities and θ are the unique values corresponding to the metadata Θ. Hence, the problem
of predicting hyperedges between entities in Hp

Θ reduces to completing the incidence
matrix Ip

Θ with multiple missing entries corresponding to each column and at least one
known entry in each row, where each row is an entity and the columns are values of the
metadata.

min
X
||X||2Hc

Θ
+ λX ||Ξ ◦ (I

p
Θ − XYT )||2F (2.3)

2.4.2 Feature Extraction using Multi-Graph CNNs on Hypergraph

The second phase of our model aims at jointly extracting features from Hc
Θ and Hp

Θ. In
this way, we can transfer the relational information from the complete hypergraph Hc

Θ to
predict the missing hyperedges in Hp

Θ. In this paper, we devise our solution based on re-
cent work on multi-graph convolution (MGCNN) [125]. It uses the formulation for GCN
using recurrent Chebyshev polynomials which simplifies eq.2.2 [43]. The motivation
behind multi-graph convolution is that, a Fourier transform of a 2-dimensional signal can
be simplified by formulating it as applying a one-dimensional Fourier transform to its
rows and columns. In particular, multi-graph convolution proposes a method of matrix
completion, given the rows and columns of a matrix possess relational information within
themselves. In our framework, we extract features combining Ip

Θ and Ic
Θ by stacking

multi-graph CNN layers given by

X′t =
q∑

j=0

Φ jT j(∆r)Xt (2.4)

where Φ j are the learnable filter coefficients, ∆n×n
r is the row-hypergraph Laplacian and

T j is the representation of filters using Chebyshev polynomials. In this way a multi-graph
CNN on Xn×q

t with a single channel produces a k dimensional output X′n×q×k
t .
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Task1 Task2 Task3 Task4
θ0 Tags (t) Tags(t) Tags (t) Labels (l)
θi Labels (l) User (u) Groups (g) Tags (t)
||relθi || 613,014 51,804 70,226,414 91,485,864
||rel(Hc

θ0
)|| 45,766 45,766 45,766 55,396

||rel(Gc
θ0
)|| 85,802 85,802 85,802 95,766

Table 1: Table showing the details about the 4 tasks. The goal is to predict relations given
a partial set of relθi and complete set of relations represented on hypergraph (rel(Hc

θ0
))

or on simple and weighted-graph (rel(Gc
θ0
)).

The other advantage of the above formulation is the use of the Laplacian to encode
information from data defined on hypergraph Hc

Θ. The Laplacian matrix of a hypergraph
has been shown to be useful for learning higher-order relations [1] [160], spectral
clustering of edges [206] and to measure the relatedness between two entities [32]. In
this paper, we use the normalized hypergraph Laplacian matrix (∆r) [206] given by
where Dv and De are the vertex and edge degree matrices of hypergraph Hc

Θ respectively,
I is the identity matrix and IcT

Θ is the transpose of incidence matrix Ic
Θ. The Laplacian

will be used for incorporating the structure of the hypergraph Hc
Θ in eq.2.4. In this way,

we extract relational features using combined information from the complete and the
partial hypergraph.

2.4.3 Incremental Updates of the Hypergraph

The next step is to diffuse the features extracted by coupling the structures of the
two hypergraphs (Hc

Θ and Hp
Θ). The partial hypergraph is updated incrementally as

a consequence of the completion of its incidence matrix. We use a Recurrent Neural
Network (RNN) [72] to predict small incremental changes (dX) to the matrix X [125].
One of the main advantages of using an RNN for predicting accurate small changes is
its ability to store information for longer temporal steps. The model is finally trained
by feeding the features extracted from multi-graph CNN (X′t ) to an RNN and perform
training by using the minimization eq.2.3 in geometric matrix completion as the loss
function.

L (Φ,σ) = ||X′t,σ∆rX′t,σ
T ||2 + λX ||Ξ ◦ (X′t,σYT − IP

θ )||2 (2.5)

where X′t is the feature extracted by multi-graph convolution with Φ as the learning
coefficient, σ denotes the parameter for RNN and the subscript t denotes the number of
diffusion iterations.

2.5 E X P E R I M E N T S

In this section, we perform extensive experiments to show the advantages of learning
higher-order relations in a social network using geometric deep learning on hypergraphs
as compared to other approaches. We design our experiments to investigate the following:

• Performance of the proposed generic framework to predict multiple types of
relations between entities
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(a) Task1: Multi-Label Image Classification (b) Task2: Image-User Link Prediction

(c) Task3: Group Recommendation (d) Task4: Tag Recommendation

Figure 4: Experiment 1 - Receiver Operating Characteristics (ROC) curve showing the perfor-
mance of the models on each of the 4 tasks. The hypergraph-based geometric deep learning
model (HGDL) has significant advantage as compared to other methods.

• Advantages of using geometric deep learning over existing simple graph as well as
hypergraph-based learning

• Efficiency in representing relational information of a network using hypergraphs
as compared to pairwise simple graph representation

To evaluate our model, we explore the online photo sharing social network Flickr,
which generates a huge amount of metadata and hence relations for each image. Flickr has
been particularly very popular in using social network metadata for image classification
among other implications [81] [119]. The metadata, such as user-generated tags and
community-curated groups in Flickr are used by people as a means to communicate with
other people, and as a means to describe the image and its location. But not every image
is annotated with all the information, hence using relational information can be highly
informative in unveiling the missing information of every image.
Data Setup For our experiments, we study the CLEF dataset [119] comprising of images
from Flickr which has social network metadata and has labels provided by human
annotators for each image. The dataset consists of 4,546 images with 99 labels (l), 21,192
tags (t), 10,575 groups (g) and 2,663 users (u). We show that our framework can be
used as a generic multi-functional setup for generating information for an image by
performing 4 types of tasks using our model: Task1 : Multi-Label Image Classification,
Task2 : Image-User Link Prediction, Task3 : Group Recommendation and Task4 :
Tag Recommendation. Given a set of known-metadata (θ0) for each image, we first
construct the complete hypergraph Hc

θ0
. Our goal is to predict other sets of partially

known metadata (θi) associated with the images.
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(a) Task1: Multi-Label Image Classification (b) Task2: Image-User Link Prediction

(c) Task3: Group Recommendation (d) Task4: Tag Recommendation

Figure 5: Experiment 2 - Figure showing the rate of learning with each iteration of the proposed
model using hypergraph (HGDL), weighted graph (wG) and simple graph (G). As can be seen,
the hypergraph-based model converges faster for all the 4 tasks implying a better representation
to learn relational information.

Training The total number of relations, ||relθi || between the images and the target
metadata (θi) is tabulated in Table2. As seen from the table, each image has multiple
values of metadata in common with other images, resulting in a multitude of relations.
We randomly sample 40% of these relations and keep them aside to use them as test set.
The remaining relations are used to construct the partial hypergraph Hp

θi
for training the

model along with the complete hypergraph Hc
θ0

.
Evaluation To show the efficiency in representing social network information with a
hypergraph, we compare our result with the data represented by hypergraph (H), simple
graph (G) and weighted graph (wG) using the same model. Simple graph (G) indicates
a binary relation between entities with a value 1 if the two entities share at least one
common value of the metadata. The weighted graph (wG) is constructed by assigning
weights equal to the count of values of the metadata common between two entities.
The hypergraph-based representation reduces the total number of relations between
entities and the known metadata significantly by representing higher-order relations as
community. This can be seen from Table2 where ||rel(Hc

θ0
)|| and ||rel(Gc

θ0
)|| denote the

total number of relations in a hypergraph and graph based representation respectively.
We evaluate the performance of our geometric deep learning based model as compared

to the previous hypergraph based algorithm (MRH) [32] [100] and a graph-based model
trained on social network features (LPS F) [179] [180] for the same tasks. LPS F as
mentioned under the first approach in section 2.3.1, trains a neural network on popular
features like Page Rank, Number of Common Neighbors, Preferential Attachment etc.
extracted from a social network. We use the notation HGDL, wGGDL and GGDL for our
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geometric deep learning (GDL) model on hypergraph, weighted graph and regular graph
respectively.

2.5.1 Experiment 1: Learning Relational Information in a Social Network

We start our experimental evaluation by showing the performance of our model, MRH
and LPS F on the 4 tasks. To evaluate the performance of our model and show its
advantages over other methods, we show the Receiver Operating Characteristic (ROC)
curves for each tasks. The ROC curve depicts how well a model is able to predict the
presence/absence of a relation among images with the corresponding metadata. Fig.8
shows the performance of the models on the 4 tasks. The Geometric Deep Learning
based approach outperforms existing hypergraph-based MRH and graph-based LPS H
methods in all the 4 tasks. This confirms, the significant advantage of using a hypergraph
representation of the network as compared to simple and weighted graphs using the same
model. Most importantly, this proves the advantage of learning relations using geometric
deep learning techniques as compared to existing hypergraph-based model.

2.5.2 Experiment 2: Measuring the efficiency of representing data from social network

To explore the advantage of representing a social network using hypergraphs as compared
to traditional graphs, we evaluate their efficiency in learning relational information.
We compare the rate of convergence of our algorithm on the three graph frameworks
mentioned above i.e. hypergraph (H), weighted graph (wG) and simple graph (G) on the
4 tasks. The faster the algorithm converges, the better the framework is in capturing the
same volume of relational information. We plot the area under the ROC curve against
the number of iterations used to update the matrix incrementally. As can be seen from
Fig.5, the hypergraph-based representation converges faster than simple and weighted
graphs for all the 4 tasks. This concludes the efficiency of a hypergraph in capturing
information which makes it the best choice to represent data on a social network.

2.6 C O N C L U S I O N

In this paper, a generic method to exploit relational information between entities in a
social network for predicting missing information about an entity has been presented.
In contrast with traditional graph representation, we model a social network using
hypergraphs. We show the importance of using hypergraphs in order to capture all types
of entities and either the pair wise or high-order relations among them to avoid loss
of any information. Moreover, our approach is content independent i.e. it does not
depend on any entity-specific information and hence can be generalized to all types of
social networks. We formulate the learning problem as matrix completion on graphs and
extend the methods on geometric deep learning to hypergraphs. We evaluate our model
on 4 tasks: multi-label image classification, image-user link prediction, group and tag
recommendation in a Flickr dataset. Experimental results show a significant advantage in
representing social networks by hypergraphs and using deep learning based method for
exploiting relational information within the network. We also prove the computational
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effectiveness of representing the same volume of information from a social network on a
hypergraph as compared to the traditional pairwise graphs.
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P R E D I C T I N G B E H AV I O U R A L PAT T E R N S I N D I S C U S S I O N
F O RU M S U S I N G D E E P L E A R N I N G O N H Y P E R G R A P H S

Online discussion forums provide open workspace allowing users to share information,
exchange ideas, address problems, and form groups. These forums feature multimodal
posts and analyzing them requires a framework that can integrate heterogeneous in-
formation extracted from the posts, i.e. text, visual content and the information about
user interactions with the online platform and each other. In this paper, we develop a
generic framework that can be trained to identify communication behavior and patterns
in relation to an entity of interest, be it user, image or text in internet forums. As the case
study we use the analysis of violent online political extremism content, which has been a
major challenge for domain experts. We demonstrate the generalizability and flexibility
of our framework in predicting relational information between multimodal entities by
conducting extensive experimentation around four practical use cases.

3.1 I N T RO D U C T I O N

A large amount of visual and textual content is posted daily in different social networking
and content sharing platforms, where users can express their thoughts and share expe-
riences. Pervasive nature of internet and social media has not only made it possible to
communicate and demonstrate radical views and intentions, but also to connect to other
persons with similar interests. Due to this high reachability and popularity of social
media, people also use these platforms for planning events and mobilizing others for
protests, public demonstrations, promoting violent extremist ideologies, and spreading
racist opinions. The problem of automatic identification of such online radicalization
and prediction of social unrest is of paramount importance for law enforcement agencies.
It requires collection, fusion and analysis of ’weak signals’ or ’digital traces’ which
are present on social media. Current analysis techniques focus mostly on hashing and
filtering of known extremist multimedia items. However, aiding domain experts in
rigorous large-scale empirical analysis requires novel multimodal tools designed to han-
dle unstructured data from diverse information channels, especially internet discussion
forums.

Discussion forums are a type of social multimedia network where people can meet,
form groups, discuss common interests and exchange ideas. Through the use of dis-
cussion forums, it is also possible for members of the public, whether supporters or
detractors of a group, to engage in debate. This may assist the terrorist group in ad-
justing their position and tactics and, potentially, increasing their levels of support and
general appeal [39, 61, 183]. This is also noted in Europol’s annual terrorism situation
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Figure 6: An example of the proposed pipeline of the framework. It represents a typical
post with multimodal entities in Stormfront, a white nationalist, white supremacist and
neo-Nazi Internet forum followed by the extraction of semantic concepts from the post
and then construction of a hypergraph framework using the entities and concepts as
proposed in [12]. H0 and Hi represents complete and partial hypergraph. The goal is to
predict missing information i.e. generate hyperedges (red-dotted line) on Hi.

and trend report for 2012, which warns that internet forums present effective means
for addressing target audiences, and “recruiting” supporters with no off-line links to
terrorist organizations [52]. By just analyzing the content after it has been shared in
”extremosphere” of these forums can lead to a delay in detecting critical events, which
can prove to be a massive loss in the future. Hence, an effective framework is needed for
predicting future communication behaviour between users or communities within the
(often implicit) social networks hosted by these forums. Major challenge in developing
such framework is the presence of low quality content in contextual metadata and the
large volume of information in internet forums.

In this paper, we construct a pipeline, as shown in figure 21, which can be used
to identify communication behavior and patterns in violent online extremism forums.
Our framework is built upon the methodology developed in [12] where the authors
presented an approach to predicting links and groups between entities (which can be
images, users, posts, groups etc.) within a social multimedia network such as Flickr. An
entity can be any of the visible constituents of a post in social network. For example, in
Instagram, entities consist of tags, image, video, user, location and caption. In this work,
we extend the methodology proposed in [12] for the use with heterogeneous entities in
discussion forums, which contain more unstructured information. It can enhance the
Law Enforcement Agencies (LEAs) to exploit future interactions between entities within
a network, for instances: (a) mob formation - which type of people or forums a particular
user(s) might be interested in to interact with, (b) deciphering hidden messages from an
image - what kinds of images can be associated with a post or (c) content classification -
which type of category a post might belong to. These use cases requires analysis of posts
at a particularly high semantic level. Hence, we focus on extracting semantic concepts,
such as topics, personages, locations and gender from text using entity linking and visual
concepts (such as TRECVID [152] and ImageNet [44] concepts) from images and videos.
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The usage of such semantic concepts is important since the results are intended to be
interpretable by the end users.

To facilitate such applications, we extract semantic (visual and text) concepts from
the posts and then train a model based on relational information between entities in
the social network. These relations can either be formed between entities of different
modality or between entity and its metadata information. Uncovering hidden relations
between multimedia items has long been a topic of research in multimedia information
retrieval. Graph-based approaches have been prominent for their ability to represent
and analyze such problems. Recent works [30] [48] [43] on geometric deep learning
aim at formulating convolutional neural networks to data represented on graphs. The
key idea in geometric deep learning is to devise a method for representation learning
that can capture structural information within non-Euclidean domains, especially graphs.
However, there are two major challenges for their wider adoption in learning multimodal
relations in discussion forums. Firstly, graph-based approaches are hindered by the
challenges related with associating and learning semantic concepts due to the presence of
unstructured textual data and low quality images. In addition, inefficient representation
of multimedia post can lead to loss of available information or capture it only partially.

The main contributions of the paper are:

• We present a framework, which combines semantic concepts and contextual rela-
tions between entities in a discussion forum to predict communication behavior
and patterns in relation to various types of entities.

• We demonstrate the flexibility of such framework in tackling a variety of potential
use cases arising during the analysis of violent political extremism forums. Multi-
media analysis is further shown effective in aiding the domain experts involved in
the qualitative analysis of these forums.

• Our experiments provide insights into the usefulness of the relations between
individual modalities and semantic features, which can be exploited to unravel
implicit information about diverse entities in a discussion forum.

The remainder of this paper is organized as follows. In Section 2 we provide an
overview of related work. Then in Section 3 we introduce our approach and in sections 4
and 5 we present the experimental setup and results. Section 6 concludes the paper.

3.2 R E L AT E D W O R K

This section describes and discusses related work on the methods for learning patterns
and behaviours of entities in a social network.

Understanding how users behave when they connect to social networking sites creates
opportunities for richer studies of social interactions, better detection of irregular behavior
and improved design of content distribution systems. Jin et al. [80] presented an elaborate
survey on the importance of analysis and characterization of user behaviours in online
social networks, highlighting the different perspectives that are shaping the ongoing
work in the field. The need for analysis of user behaviors have now become even more
interesting with the rise of social multimedia network. The presence of multimodal
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Figure 7: An example from Use Case 4, where the known information for a user is his/her
User ID (U), Avatar Features (A) and partially known Forum Categories that he/she
posted. The goal is to predict these unknown forum categories using the relations A ∼ U
and U / F. Similar, examples can be drawn from the other use cases.

entities in social network, has shifted the primary focus of multimedia community to go
beyond the structural analysis of network [179] [196] and towards the analysis of content
at a higher semantic level [119].

Moreover, the advantages of combining semantic concepts with the network structure
has made graph-based approaches very popular. The application of graph-based methods
on social network varies from link prediction [45], discovering social circle in ego
networks [99], music recommendation by combining social media information and
music content [32] to categorizing violent online political extremism content [143].
Hypergraphs [25], in particular, were proven to be highly efficient in capturing relational
information in multimodal social networks [12] [100] [58].

3.3 A P P ROAC H

Given a multimodal post from an arbitrary discussion forum, our goal is to construct a
framework that can encode semantic concepts about an entity in the form of relations,
and then predict valuable information about them. Our framework can, in general, allow
a user to perform either of two tasks: (1) predict implicit relations between multimodal
entities or (2) extract additional semantic concept about entities. We combine these two
tasks by using a common graph-based approach that can provide users with the flexibility
to train a model according to their usage. Below we describe the three main facets of our
formulation - representation, information flow and generalizability.

3.3.1 Representation

We represent information in a multimodal post using hypergraphs due to their numerous
advantages over traditional graph based representation, one of them being efficient
capture of higher-order relations [12] [206]. A hypergraph is a generalization of the
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graph in which the edges, called hyperedges, are arbitrary non-empty subsets of the
vertex set and may therefore connect any number of vertices. The nodes are kept the
same as in a graph but a hyperedge can connect even all the nodes at once as compared to
a traditional graph where an edge is always a connection between 2 nodes. In particular,
a set of multimodal entities in a social network can be viewed as a hypergraph whose
vertices are the individuals and whose hyperedges are the common properties between
them [100].

The other advantage of using hypergraphs is the ease of modifying definitions of nodes
and hyperedges. In this work, we will exploit this property in order to merge the two
tasks mentioned in section 3.3. For both tasks, we construct a hypergraph in which its
nodes represent the main entity (for which relations/information needs to be predicted)
connected through hyperedges which can represent either entities from other modality or
metadata information about the main entity. So, the problem reduces to that of generating
hyperedges across the main entity which in-turn can represent (a) relations between
multimodal entities or (b) relations between metadata and the main entity. In this way,
we can devise a learning algorithm which can merge both tasks and is devoid of any loss
in available information.

3.3.2 Information Flow

The next challenge is to construct a pipeline extracting entities and concepts from posts to
then learn relational information. We aim at encoding information from the available set
of relations for an entity to predict the unknown sets of relations. For extracting semantic
information from a post, we employ entity linking for text, where the idea is to link the
text to an external knowledge base such as Wikipedia [122, 143] and for visual concepts
we extract 346 TRECVID semantic concepts [152]. Further, we use a robust model
for extracting features and learn relational information [12] from the posts represented
on hypergraphs. This model is based on geometric matrix completion solution initially
proposed in [125]. We formulate the relation prediction task as a matrix completion
problem, where rows and columns represent two separate entities. This matrix is derived
from the incidence matrix of partial hypergraph, where the vertices forms the rows and
the edges forms the columns. For example, the images posted in discussion forums will
be represented on the rows of a matrix (and vertices of hypergraph) while the columns
(corresponding edges in hypergraph) can be the forum categories. Thus, each entry of this
matrix will have a binary value representing presence/absence of an image in a particular
forum category. The aim is to complete this matrix using auxiliary information about
images from the complete hypergraph. Hence, to extract combined relational features we
use Multi-Graph Convolution Networks (MGCNN). To explain further, we give a brief
background about low rank matrix completion and Multi-Graph Convolution Networks.

Low rank matrix completion involves recovering a matrix M ∈ RN1×N2 of rank
R << min(N1, N2) from a subset of its entries Ω. To concisely put, given partial
observation of M over an index set Ω ⊂ (1, 2, .., N1) × (1, 2, .., N2) the task is to select
the matrix with the lowest rank. Let X denotes the matrix to recover and MΩ is the set
of the known entries. However, rank minimization is an NP-hard optimization problem
and in many real world matrix completion problems, the entities defined on rows and/or
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columns share many common attributes. These entities can thus be encoded using graphs
by exploiting their proximity information. Incorporating proximity information forces the
solution for matrix completion task to be smooth on these row and column graphs. For
the row graph, entities defined in the rows forms the vertices and each row of the matrix
can be thought of as signals defined on its vertices. In order to combine information
from both the row and column graphs, [82] used the concept of Graph Fourier Transform
on matrices. Taking into account that Fourier Transform operation is separable and
symmetric, the two dimensional transforms can be computed as sequential row and
column one-dimensional transforms. Hence the corresponding Fourier transform of
matrix X is given by F (X) = ΦT

r XΦc, where Φr and Φc are the eigenvectors of row
and column graphs with Lr and Lc as the corresponding Laplacian matrices respectively.
Further, Monti et.al. [125] proposed Multi-Graph Convolutional Networks (MGCNN)
that aims at extracting spatial features from the matrix. Given a matrix X ∈ RN1×N2 ,
MGCNN is given by

X̃ =
q∑

j, j′=0

θ j, j′T j(Lr)XT j′(Lc) (3.1)

where, Θ = θ j, j′ is the (q + 1) × (q + 1) represents coefficient of filters and T j(.)
denotes the Chebyshev polynomial of degree j. Using this equation as the convolutional
layer of MGCNN, it produces q output channels (N1 × N2 × q) for matrix X ∈ RN1×N2

having a single input channel .
In this way, we extract features and then combine all the information channels in

one framework using both the semantic concepts and their contextual relations with the
entities.

3.3.3 Generalizability

The proposed framework should be generalizable to different use cases consisting of any
form of relevant information. Let X and θ be the main entity and the known concept/entity
respectively. From all the available information, we know all the relations of entities
in X to that with θ, let this relation be represented by (θ ∼ X). We aim to predict all
the relations of X with another type of concept/entity(ϕ) for whom we know partial
relations (X / ϕ). We define (θ ∼ X) and (X / ϕ) on two different hypergraphs H0
and Hi respectively and then use the learning model proposed in [12] to complete the
partial information in Hi. We will represent the complete framework by (θ ∼ X / ϕ).
Our generic approach representing relations on hypergraph and the learning model make
the framework applicable in a variety of settings and use cases. Especially in case of
discussion forums, adding any semantic concepts would not alter the pipeline of the
proposed framework.
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Table 2: Table showing the data setup of the 4 use cases. For training, the framework
uses all the relations θ ∼ X and 40% of X ∼ ϕ. The goal is to predict the rest of X ∼ ϕ
relations.

Use Case 1 Use Case 2 Use Case 3 Use Case 4
θ E: 3,319 F: 39 E: 3,319 A: 290
X P: 10,000 U: 10,252 P: 10,000 U: 10, 252
ϕ U: 4,218 T : 258 F: 31 F: 39
θ ∼ X E ∼ P: 36,640 F ∼ U: 40,418 E ∼ P: 36,640 A ∼ U: 51,260
X ∼ ϕ P ∼ U: 10,000 U ∼ T : 29,321 P ∼ F: 55,280 U ∼ F: 40,418

3.4 E X P E R I M E N TA L S E T U P

3.4.1 Dataset

We use Stormfront, a white nationalist, white supremacist and neo-Nazi Internet forum as
the testbed for this study. The forum contains 40 high-level categories, indicating topics
of discussion, ranging from ”Politics and Continuing Crises”, ”Strategy and Tactics” and
”Ideology and Philosophy” to the topics relevant to national chapters, e.g. “Stormfront
en Francais” and “Stormfront en Espanoly Portugués”. Typically, in Stormfront, a
user posts a content (text, images, videos, links etc.) in one of the relevant forum
categories. These users often have a small avatar image and/or somewhat larger profile
picture. Recently, Rudinac et al. [143] deployed graph convolutional neural networks
for classifying 2 million user posts from Stormfront. In this paper, we use the same data
setup as mentioned in [143] for all the use cases. We include the following items of a
post from the dataset for our experiments:

• Post ID (P): Unique ID given to each post

• User (U): User who posted it

• Avatar Features(A): Features extracted from display picture of user’s avatar

• Forum Category (F): Type of category in which a post has been shared

• User Topics (T): Topic of interest for a user

• Semantic Entities (E): Relevant entities present in textual content of a post

3.4.2 Use Cases

To demonstrate the effectiveness of our framework we conduct a set of experiments
organized around the following use cases:

Use Case 1: (E ∼ P / U) In the first case, we aim to predict potential users who
would be interested in interacting with a certain post. This can help in understanding
and tracking communication patterns of certain users. In this case, users are the partial
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information for the posts while the semantic entities associated with the post will be used
for learning the relations between the posts.

Use Case 2: (F ∼ U / T ) [143] the authors conjecture that the user preferences are a
good predictor of the post category. We take motivation from this result for the second
use case. Often we require more information about a particular user, but due to very
limited user activity, it is not possible to extract such information. We conjecture that
the community formed by users posting in different forum categories can have sufficient
clues which can be exploited to extract more information (user topics) about an arbitrary
user.

Use Case 3: (E ∼ P / F) It is often necessary to categorize posts based on their
national network due to the formation of local mob or even event organizations. The
extracted semantic entities might carry sufficient information for such classification, as
the national chapters are characterised by a certain number of topics, more frequent
use of national (i.e. non-English) language, and a closed group of users discussing the
matters of regional relevance.

Use Case 4: (A ∼ U / F) We aim at identifying the properties of avatars specific
of a particular post category. This is to investigate which semantic concepts are more
commonly appearing in a certain forum categories, for example “For Stormfront Ladies
Only” forum as compared to the other forums on Stormfront. The particular use case
came from the domain experts investigating the role and portrayal of women in right-
wing extremist networks. Based on the avatars and profile pictures, we are trying to
identify users likely to be associated with a particular, specialised discussion forum (e.g.
“dating advice” or “religion”). Figure 7 shows an example of the user’s features extracted
from visual concepts and the partial information of his/her forum categories.

Table 3: Performance of our approach (HGDL as compared with standard models MRH
and LPS F

Use Case 1 Use Case 2 Use Case 3 Use Case 4
AUC EER’ AUC EER’ AUC EER’ AUC EER’

HGDL 86.4 78.5 88.7 80.3 80.6 72.5 89.2 83.0
MRH 79.1 69.9 77.8 70.2 78.4 70.6 84.6 76.5
LPSF 63.1 60.2 60.3 57.9 71.2 68.4 62.9 60.3

3.4.3 Experiments

We start our experimental evaluation by showing the performance of our framework on
all the 4 use cases. The corresponding number of entities used in each use-cases and the
total number of relations formed among them is shown in Table 2. As seen from the table,
each entity has multiple values in common with other entities, resulting in a multitude of
relations. For example, a user (U) can post in multiple forum categories about various
issues. This will account for a large number of F ∼ U and U ∼ T relations. For our
experimental setup, we randomly sample 40% of these relations and keep them aside to
use as a test set. The remaining relations are used to construct the partial hypergraph Hi
for training the model.
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(a) Use Case 1 (b) Use Case 2

(c) Use Case 3 (d) Use Case 4

Figure 8: Receiver Operating Characteristics (ROC) curve showing the performance of the
models on each of the 4 use cases. The hypergraph-based geometric deep learning model (HGDL)
has significant advantage as compared to other methods on all the 4 use cases.

3.5 R E S U LT S

We report the results of our framework and compare them to hypergraph based algorithm
(MRH) [32, 100] and a graph-based model trained on social network features (LPS F)
[179] for the same tasks. LPS F trains a neural network on popular features like Page
Rank, Number of Common Neighbors, Preferential Attachment etc. extracted from a
social network. To evaluate the performance of our model and show its advantages over
other methods, we plot the Receiver Operating Characteristic (ROC) curves for each task.
The ROC curve depicts how well a model is able to predict the presence/absence of any
information in an entity. Figure 8 shows the performance of the models on the 4 use
cases.

To further quantify the results, we calculate AUC(Area Under Curve of the ROC plot)
and EER′ = 100% − EER (Equal Error Rate) for all the three methodologies. EER
corresponds to the point on the ROC curve that corresponds to an equal probability of
miss-classifying a positive or negative sample. Both these numbers are very important
indicators of a model’s overall performance, the higher the AUC and EER′ the higher the
accuracy of the system. We show them in Table 3, where it can be seen that our model,
in general, overperforms alternatives in predicting information of any type of entities.

37



C O N T E N T- BA S E D H Y P E R G R A P H R E P R E S E NAT I O N L E A R N I N G

3.6 C O N C L U S I O N

In this paper, we constructed a framework which can be used to learn and predict
relational information within a discussion forum. The generalizability of the framework
provides the flexibility to the end users to formulate their own use cases irrespective
of domain-specific constraints. As a test bed for our study we use the analysis of a
realistic collection of data from Stormfront, a violent online political extremism forums.
The experiments are conducted around research questions raised by the domain experts
and demonstrate the effectiveness of our approach in providing implicit information
about users of a forum. The results confirm the merit of our approach to geometric
deep learning on hypergraphs and suggest that in case of multimodal data, the proposed
framework can be used for designing a case study. Finally, on four example use cases we
demonstrated that this technique may be a valuable asset to domain experts performing
qualitative analysis of violent online political extremism.
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V I S UA L A NA LY T I C S F O R T E M P O R A L H Y P E R G R A P H
M O D E L E X P L O R AT I O N

Many processes, from gene interaction in biology to computer networks to social media,
can be modeled more precisely as temporal hypergraphs than by regular graphs. This
is because hypergraphs generalize graphs by extending edges to connect any number
of vertices, allowing complex relationships to be described more accurately and predict
their behavior over time. However, the interactive exploration and seamless refinement
of such hypergraph-based prediction models still pose a major challenge. We contribute
HYPER-MATRIX, a novel visual analytics technique that addresses this challenge through
a tight coupling between machine-learning and interactive visualizations. In particular,
the technique incorporates a geometric deep learning model as a blueprint for problem-
specific models while integrating visualizations for graph-based and category-based
data with a novel combination of interactions for an effective user-driven exploration
of hypergraph models. To eliminate demanding context switches and ensure scalability,
our matrix-based visualization provides drill-down capabilities across multiple levels
of semantic zoom, from an overview of model predictions down to the content. We
facilitate a focused analysis of relevant connections and groups based on interactive
user-steering for filtering and search tasks, a dynamically modifiable partition hierarchy,
various matrix reordering techniques, and interactive model feedback. We evaluate
our technique in a case study and through formative evaluation with law enforcement
experts using real-world internet forum communication data. The results show that our
approach surpasses existing solutions in terms of scalability and applicability, enables the
incorporation of domain knowledge, and allows for fast search-space traversal. With the
proposed technique, we pave the way for the visual analytics of temporal hypergraphs in
a wide variety of domains.

4.1 I N T RO D U C T I O N

A significant volume of real-world data consists of entities and their relationships and can
accordingly be modeled mathematically using graph-based approaches. Such approaches
are widely applied in many domains, ranging from natural and social sciences to engi-
neering and business. Examples include modeling biological and chemical processes like
protein-protein interactions [137], relationships in computer [182] as well as human com-
munication networks [132], or knowledge network exploration in business processes [70].
Whereas static graphs can represent the fixed relationships between entities, using an
undirected or directed graph as a model, many of the examples presented above are more
accurately described as processes with complex interrelations that may change or evolve.
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Figure 9: HYPER-MATRIX, a novel approach to explore and refine temporal hypergraph
models using visual analytics. The interactive multi-level matrix-based visualization A
enables the inspection of the model, together with the upper interface B . The main
area shows the second semantic zoom level applied to an obfuscated real-world dataset
in criminal investigations, while the five insets C show the other drill-down levels for
exploration. The technique allows to interactively D contribute domain knowledge, the
resulting implications have ripple effects on the whole machine learning model, thereby
refining it.

Here, geometric deep learning methods together with interactive visualization can help
to more accurately model, predict, and explore the model evolution. Considering, for
example, conversations, a topic is a time-dependent grouping encompassing users, which
cannot be described using a static graph. This evolution of relations should be modeled
by dynamic networks. Compared to regular graphs, using edges or separate node types,
such modeling often reflects the actual process more accurately. Dynamic networks are,
however, more challenging to model and have traditionally been modeled as regular,
undirected graphs, mainly due to computational and visualization limitations. In recent
years, modeling has extended to dynamic networks [95], but some limitations remain.

Consequently, one can take a step further and use temporal hypergraphs. Hypergraphs
generalize graphs by extending edges to connect any number of vertices, allowing com-
plex relationships to be described more accurately [147] while reducing ambiguity and
network inflation. Utilizing temporal hypergraph prediction models, however, introduces
its own set of challenges.

First, as the model structure is more complex, it is relevant how the information is
communicated to the analyst through visualization (cf. [69]) and how domain knowledge
feedback is incorporated. Static hypergraphs can be considered as standard sets, with
different visualizations available [4]. Temporal hypergraphs, meanwhile, add a time-
dependent evolution, making it harder to convey the relevant information meaningfully.

Secondly, many traditional graph-based concepts cannot directly be applied to hyper-
graphs. Hyperedges, as arbitrary sized sets of connected nodes, add another order of
complexity. In previous works [11, 13], we presented how geometric deep learning can
be applied to hypergraphs and showed how this method could be leveraged to predict
behavioral patterns in social media hypergraph models.
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Consequently, the incorporation of machine learning techniques into an interactive
model to more accurately predict changes in the hypergraph due to changes in the
data introduces new problems. While deep learning avoids assiduous manual feature
engineering and algorithm design, it reduces explainability and accountability of the
results. Domain experts usually have some domain-specific intuition—a mental model
and structure—about inherent and implicit relations and groupings not available in the
data, enabling them to judge the plausibility of hypotheses and to steer the exploration.
Yet, they face difficulties articulating their domain knowledge through machine learning
into the predictions and tracing its influence. This holds especially for very complex
models, like temporal hypergraphs. The knowledge formalization requires a very detailed
a priori understanding of the problem by domain experts, which is not always available.
For the same reason, it is challenging to capture the knowledge independently of the
model without rapid, iterative feedback. Hence, the machine learning outcome often
correlates strongly with the adequacy of the initial problem modeling and the quality
of the training data, while domain expertise and domain knowledge are frequently not
leveraged to their full potential.

To address these issues, we present HYPER-MATRIX, making the following contribu-
tions:

• A novel, interactive framework for temporal hypergraph exploration through the
use of semantic zooming relying on a multi-level matrix-based approach and
various exploration concepts.

• The extension of a geometric machine learning architecture [11, 13] with a rele-
vance feedback model.

• A tight coupling between the visualization and the machine learning relevance
feedback model for evaluation and seamless refinement, offering the integration
of domain knowledge and making the corresponding model changes visually
transparent.

• One case study describing an application of the technique to the law enforcement
field.

• A formative evaluation with law enforcement experts using real-world communica-
tion data, demonstrating that our technique surpasses existing solutions, enabling
the effective analysis of large amounts of information in a targeted way.

Our approach bridges the gap between visual exploration and separate model training,
allowing domain experts to enhance the machine learning predictions with implicit
domain knowledge in the same step as evaluating and exploring the temporal hypergraph
model predictions.

4.2 R E L AT E D W O R K

This research is an entry into the interactive temporal hypergraph model exploration in
the context of explainable support by machine learning. In the literature hypergraphs
are studied from both a visualization as well as a machine learning perspective. In
the following discussion, we adhere to the same distinction and relate our work to the
visualization of temporal hypergraphs as well as their application in machine learning.
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4.2.1 Visualization of Hypergraphs

We first shortly discuss the situation for (static) hypergraphs as well as dynamic graphs,
before looking at temporal hypergraphs. Hypergraphs can be considered as a set of sets.
The survey on set visualizations by Alsallakh et al. [4] shows that several visualizations
are applicable to hypergraphs. Hypergraphs are often drawn as regular graph networks
or bipartite networks. When making their dimensionality explicit, they can be drawn as
subsets—like Venn diagrams or radial sets—or in node-link form [175], using colored
hulls or other, specifically adapted approaches [120]. A third possibility is to use a matrix-
based approach, which improves scalability [86]. Subsets and node-link diagrams suffer
from limited scalability, quickly leading to occlusion and clutter. Bound in the number
of visual attributes they can employ, these techniques typically reach their constraints in
the order of one or two dozens of hyperedges [173]. Further, they are difficult to extend
with a temporal component, having already used up most visual attributes.

In comparison to set based approaches, dynamic graphs change over time, leaving the
choice [20] between employing animation or an additional timeline component. The
former puts significant strain on the mental map when many connections change, while
the latter is limited by the available screen space in the number of discrete timesteps it can
show. The survey [20] also points out that node-link diagrams remain the most commonly
used type of visualization. However, these approaches mostly lack the extendability to
hypergraphs.

When studying temporal hypergraphs, the issues arising from the dimensionality
and the temporal nature all build up. Indeed, there is almost no prior work on the
visualization of temporal hypergraphs specifically. Two notable exceptions exist, which
allow visualizing—but not modifying or refining—temporal hypergraphs: First, the
recent works by Valdivia et al. [171–173]. Their visualization approach is also shown
later in Figure 14c as part of the case study. Second, the previous work by Streeb et
al. [157] introduces an in-line visualization of the temporal evolution. Valdivia et al.
begin to tackle the research gap by proposing PAOHvis, thereby claiming to provide the
“first [. . . ] highly readable representation of dynamic hypergraphs”. While this is a strong
claim to make, the literature review showed a broad diversity between the approaches,
but none—except the two mentioned above—is directly suitable for temporal hypergraph
visualization, supporting this conclusion. Utilizing the previously discussed approaches
as substitutes for a tailored visualization often does not adequately leverage the additional
information available with temporal hypergraphs and does not address the tasks that
come with hypergraph topology and evolution. For those, we refer to Section 4.2.3.
Shortcomings in existing approaches include, for example, Streeb et al. providing only
the prediction abstraction level in their visual interface (cf. Level 3 in Section 4.4.1).
Similarly, this is true for Valdivia, although they support coloring by a group. This can
lead to information overload, as filtering using thresholds is the only way to reduce
the information. In contrast, usage of semantic zoom enables an exploration of the
complete hypergraph (cf. Section 4.4.1) without the need to preliminary apply filters while
enabling tailored visualizations showing detailed information when focusing on different
abstraction levels. Prominent examples of matrix-based visualizations are the Zoomable
Adjacency Matrix Explorer [50] that enables users to zoom and pan with interactive
performance from an overview to the most detailed views and the visual analysis system
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of Behrisch et al. [22]. It features a flexible semantic zoom to navigate through sets of
matrices at different levels of detail. Further, both Streeb and Valdivia, only support
sorting by weights and average (cf. size ordering in Section 4.4.2), compared to our
default matrix-based sorting, improving cluster identification. Significantly, all existing
approaches aim at analyzing a fixed hypergraph model. None focus on interactively
working with the model and iteratively improving it (cf. Sections 4.3.2 and 4.4.3).

At last, while not strictly related to the research on temporal hypergraphs per se, we
want to mention approaches that are, at least partly, similar to ours, and also conventional
tools so far applied in practice. Here we concentrate on how hypergraph-like data is han-
dled in the law enforcement field, relevant for the case study and the evaluation through
domain experts (see also Sections 4.5 and 4.6). The visual analysis of communication
data—but without any hypergraph visualization or a tunable model—is not novel and has
been researched both from the analytical side [116] as well as the visualization side [186].
Also, the idea of semantic zooming for matrix-like visualizations has been described
previously [174], however, in a different way and in the area of software management.
Further, it was also described how an overlay magic lens [60] can be used instead of
zooming, to keep the context and allow for faster search space traversal from locations far
apart, which we partly employ for the partition hierarchy (Section 4.4.2). In practice, for
the law enforcement field, we found that data which benefits from a hypergraph modeling,
like communication patterns or process analysis, is prevalent, but not supported by any
system. Gephi [17] is sometimes used, but analysts often prefer Pajek [18, 19], as it
supports larger networks. The most popular tool is IBM i2 Analyst’s Notebook’s [78]
graph component due to the prevalence and familiarity in this domain.

4.2.2 Machine Learning for Hypergraph Models

Learning with hypergraphs was introduced by Zhou et al. [206] to model high-order
correlations for semi-supervised classification and clustering. It generalizes the efficient
methodology of spectral clustering to hypergraphs by proposing a label propagation
method to minimize the differences in labels of vertices sharing the same hyperedge.
The correlation among hyperedges was further explored by Hwang et al. [77], assuming
that highly correlated hyperedges have similar weights. More recent works [30] con-
centrate on parametric learning of weights using propagation of node features across
hyperedges [53, 191].

Understanding communication patterns of users on social networking sites has created
opportunities for richer studies of social interactions and better prediction of behavioral
patterns. In multimedia, link prediction on hypergraphs has been a popular topic of
research in social network analysis. This includes predicting metadata information such
as tags and groups for entities in social networks, e.g., images from Flickr [13], music
recommendation by exploiting network proximity information of users in Last.fm [32]
and predicting higher-order links (such as tweets with a specific hashtag) in Twitter [100].
Besides, hypergraph learning models are being used in multimodal data analysis to
integrate complementary information from multiple modalities effectively. Liu et al. [114]
proposed a multi-hypergraph learning method to handle incomplete multimodal data
for disease diagnosis in neuroimaging and Arya et al. [10] proposed a framework to
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learn a compact representation for each modality in a multimodal hypergraph using a
tensor-based representation. These works have shown the importance of hypergraph
based learning for predicting implicit links within a network. However, none of these
approaches pose an interactive learning formulation that can assimilate user feedback as
an external source of information to either improve the predictive capability of a model
or to even change the intrinsic properties such as learnable parameters of a model. In this
work, we extend our previous work [11] on link prediction in communication networks
capable of fine-tuning the trained model by incorporating external relevance feedbacks.

4.2.3 Tasks for Evaluation of Temporal Hypergraph Models

Tasks in temporal hypergraph analysis relate to dynamic networks and set comparisons.
A task taxonomy of the former is provided in the survey by Beck et al. [20], and for
the latter in the survey by Alsallakh et al. [5]. For temporal hypergraphs, in particular,
the tasks sometimes substantially differ; for example, one being the analysis of changes
of both connections and attributes over time. The proposed technique does not directly
fit with any existing task taxonomy, positioning itself between disciplines [6]. For a
discussion on existing taxonomies and their applicability to temporal hypergraphs, we
refer to the existing work by Valdivia et al. [173] and summarize only the main aspects
here. Our technique supports not all traditional tasks in set analysis [5], and in dynamic
network analysis [2, 14, 84, 97], summarized in [20]. However, it provides support for
several additional tasks relevant to our driving application. These include the clustering
of related groups independently of their temporal connection, the inspection of shared
attributes of connections, the following of temporal evolutions, while both retaining
an overview and simultaneously being able to explore details. In short, the experts are
interested in connectivity information involving both graph topology as well as attribute
values, which can be separated between time ranges. One main requirement is the need
to include external (domain) knowledge that is not directly available as raw data and
includes conceptualized topics in line with their mental categorization. These tasks are not
sufficiently described or supported by existing taxonomies, as they neglect the additional
complexity incorporated by hypergraphs and the domain knowledge integration.

Given the sparse research in hypergraph visualization, it is unsurprising that there is
no prior work on bridging both fields; this is the gap we aim to fill: offering a technique
that addresses the shortcomings discussed above, enabling the exploration and refinement
of hypergraph models using interactive visualization, closing the visual analytics loop.

4.3 E X T E N S I O N O F M AC H I N E L E A R N I N G T O H Y P E R G R A P H S

In the following two sections, we describe the overall workflow of our approach, shown
in Figure 10. We begin with an exemplary description of one geometric deep learning
model, adapted to a task relevant for our law enforcement domain experts: the temporal
prediction and analysis of patterns in communication data. It acts as a blueprint for
problem-specific temporal hypergraph models. In Section 4.4, we then discuss the
interactive exploration using visual analytic principles.
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Figure 10: High-level workflow of our technique, showcasing the main components and
the interaction flow for the exploration and refinement of temporal hypergraph models,
adapted to use case A in Section 4.5. The workflow begins with raw data extraction
and the generation of a temporal hypergraph model. The model state is visualized using a
matrix-based multilevel hypergraph visualization , allowing for various exploration
and filter schemes, including search and filters , a dynamically modifiable partition
hierarchy , and matrix-reordering techniques . The domain expert can interact
with the model by either refining the filter schemes or by contributing domain knowledge,
which both update the model. The model feedback can then be explored and accepted,
closing the visual analytics loop→. The chronology of interactions and contributions
are available for recovery or verification as a provenance history , facilitating
accountability.

4.3.1 Notation and Formulation of a Temporal Hypergraph

In set theory, an undirected hypergraph H = (V , E) is defined as an ordered pair, where
V = {v1, .., vn} represents the n vertices (hypernodes) and subsets of these vertices
E = {e1, .., em} constitute the m distinct hyperedges. H is represented by the incidence
matrix I=|V |×|E|, with entries i(v j,ek) 1 if v j∈ek and 0 otherwise. We define the neighborhood
of v j as the set N(v j) of nodes within the same hyperedges as v j.

In adapting a generic temporal hypergraph model to our use case, we follow our
previous work [11], representing the relationship between internet forum users and their
behavioral characteristics (both “explicit” and “implicit”). The available metadata (in
particular forum category) forms the explicit characteristic of a user, while their topics of
discussion outline the implicit communication characteristic. Thereby, we construct two
separate hypergraphs depicting the connection of users with these explicit and implicit
behavioral characteristics. To model the temporal component, let us define a temporal
hypergraph by H[t], at a given time t, where each user is represented as a node, and each
type of explicit/implicit characteristic is represented as a separate hyperedge. We denote
the explicit and implicit hypergraphs, at any given time t, by H0

[t]
and H′

[t]
, respectively.

Consequently, in H′
[t]

, each topic is depicted as a separate hyperedge and users (nodes)
who adhere to a common topic of interest are connected by it. Thus, forecasting the
evolution of users’ topics of interest for time t+1 becomes equivalent to the task of
finding new relations over the existing relations in hypergraph H′

[t]
.
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4.3.2 Relevance Feedback to Deep Learning Model

As indicated, the underlying model for forecasting future interests of internet forum users
is based on predicting links in temporal hypergraphs. The task of link prediction on a
hypergraph H[t] with a fixed set of edges E aims at updating the set ek. This link prediction
can be formulated as missing value imputation or a matrix completion task on I. In
the following, we extend our previous work [11, 13], to allow for the incorporation of
feedback in HYPER-MATRIX. Therefore, we first reconsider the module for training a
geometric deep-learning model. Then, we formulate how feedback from the user can be
employed to update the model.

T R A I N I N G M O D U L E Let I[t] denote the incidence matrix of H′
[t]

at time t which
we can factorize as I[t]=XtYT

t with Xt and Yt the row and column matrices, respectively.
Hypergraph H0

[t]
will be utilized as an auxiliary set of explicit information between

users for predicting links in the implicit hypergraph H′
[t]

. The information in H0
[t]

is
encoded by extracting its Laplacian denoted by ∆0. The Laplacian ∆0 gives a measure
for the relatedness between any pair of users [32]. Using such a similarity measure can
significantly enhance the user-topic link prediction outcomes by reducing extraneous
noise and thus smoothing the model output.

To train the model, we employ a semi-supervised learning setup, hence the predictive
loss is backpropagated by using a small set (around 5–8 %) of known links in H′

[t+1]
.

These known links create an upper bound for the number of timesteps the model can
predict in Î[t+1]. Details can be found in [11, 13]. For training, we take the incidence
matrix I[t] at time t and use the hypergraph link prediction model HGDL to learn the best
parameter set Φ[t] for predicting the incidence matrix I[t+1] at time t+1:

Î[t+1], Φ[t] = HGDL(I[t], ∆0) (4.1)

F E E D BAC K M O D U L E In order to integrate domain knowledge into the underlying
model, we propose a novel interactive learning formulation to incorporate feedback from
the domain expert. These feedbacks are assumed to contain definitive implicit information
about the topic of interest for certain users in the dataset. Instead of just updating the
information by directly changing the topic (hyperedge) of the respective users (nodes),
these feedbacks should also create a “ripple effect” on the overall connections in the
hypergraph H′

[t]
. That is, if the feedback f[t] at time t involving the single user (u j)

denoted by node v j in the hypergraph H′
[t]

, then incorporating f [t] will entail a twofold
operation: 1. Update: Topics for user u j are updated, i.e., add/remove v j to/from
the respective hyperedges E = {e1, .., em} corresponding to f[t]. 2. Predict: Change
topics for users in close communication with u j based on their relatedness to u j, i.e., re-
calculate the connection strength for vertices in N(v j) with the hyperedges E = {e1, .., em}.
The first operation is a straightforward updating of the matrix I[t+1] by updating new
values corresponding to nodes and edges suggested in the feedbacks f[t]. The change in
the neighborhood connections are calculated by using the updated matrix I[t+1]+ f[t] as
input to our link prediction model HGDL. However, in the feedback module, instead of
learning parameters through an iterative process, the learned parameters Φ[t] are used as
initialization of the already trained model HGDL. This ensures the model converges in
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Figure 11: Semantic zoom levels and the different filtering levels (cf. Section 4.4.1). At
each zoom step, the analyst gains another type of information about the model, filtering
a different layer of complexity. As the focus becomes more detailed, the visualization
takes up more space (zoom level and viewport as shown not to scale), while the number
of visible entities decreases accordingly. The temporal predictions are shown in different
forms throughout all levels (see fine grey line), with the detailed temporal evolution first
shown in Level 3 and continuing down to Level 6.

far less time after incorporating the feedbacks f[t] than when learned from scratch. The
following equation shows the representation of the feedback module in symbolic form:

Î[t+1] = HGDL(I[t+1] + f[t], ∆0, Φ[t]) (4.2)

4.4 I N T E R AC T I V E H Y P E R G R A P H M O D E L E X P L O R AT I O N

In this section, we focus on the visualization and interaction with the temporal hyper-
graph model, providing a tight coupling between the data manipulation and display
(see Figure 10). We begin by describing how the model state can be depicted using a
matrix-based visualization that provides drill-down capabilities across multiple levels
via semantic zoom. Drill-down is thereby defined as the seamless zooming through the
different levels during exploratory analysis, starting from a general overview to increas-
ingly more focused and detailed information, as highlighted in Figure 11. To facilitate
the interactive exploration, we present user-steering based on classical filters for standard
search tasks, a dynamically modifiable partition hierarchy to include user-based structur-
ing, and various matrix reordering techniques for the focused analysis of connections and
groups. We then specify the interactions that allow domain knowledge to be incorporated
into the machine learning model via relevance feedback and highlight how the updated
predictions can be reflected in the existing visualization. This workflow facilitates the
explainability of the underlying model, thus enabling the domain experts to provide
more meaningful feedback. Finally, we describe how all interactions, domain knowledge
input, and model output are stored in a provenance history, providing accountability and
making the decision-making processes more transparent.
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4.4.1 Model Visualization

As discussed above, the complexity of temporal hypergraphs makes them difficult to
visualize. Hence, we propose a multi-level matrix-based approach, specifically tailored
to the hyper-dimensionality as well as the temporal component. The visualization (see
Figure 9) consists of a menu bar on top, controlling the interaction concepts discussed
later, and, for the main part, a matrix-like viewport, showing nodes as rows and hyper-
edges as columns, with corresponding row and column headers. This viewport provides
freely pan-able and zoom-able drill-down capabilities across six levels of semantic zoom,
shown in Figure 11, increasing or decreasing the information detail: from an overview
of model predictions down to contents. For this purpose, we use three different level
types: cells, arrows, and content boxes. Colored cell visualizations are used in Levels 1
and 2. An arrow-like representation reflecting a timeline is used in Levels 3 and 4.
The base of the arrow represents the past, while the head reflects predictions. As the
predictions become more uncertain with time, the arrowhead becomes smaller, reflecting
the increased uncertainty and thus the decreased relevancy of the prediction. Levels 5
and 6 add text-based elements like keywords or raw content. Level 3 and beyond all
contain the temporal aspect.

The visualization depends on the zoom state of the viewport. During drill-down, the
focus shifts from a general structure overview over the temporal evolution to the raw
content, providing the expert with more and more detailed information. Before we start
with the description of this process, we define some necessary terms. As the feedback
model outputs probabilities for the connections (see Section 4.3.2), gradual differences
can be analyzed. When setting a minimum threshold for a connection to be meaningful,
this allows for a binary choice. Showing a color encoding of the connection strength
allows for a more expressive representation of the gradual differences. Setting a cutoff
threshold can still be used to avoid cluttering with low-probability entries. The drill-down
shifts the focus of the analysis. It starts at the (binary) connectivity information, extends
to gradual connection strength (Level 2), to the temporal change represented as an arrow
(Level 3), to the temporal change encoded using position instead of only color (Level 4),
then to information summarizing the underlying content for the predictions, in this case,
keywords (Level 5), and, at last, to the raw data (Level 6). The design choice for an arrow
glyph representation in Levels 3 and 4 is based on five reasons: (1) The principal idea of
an arrow glyph was previously published [157] and found to be beneficial. Then, (2) given
the target audience, a representation as an arrow of time is closely related to everyday
experience. Further, (3) the separation into arrow base and head allows a clear distinction
between past data and model predictions, which is very important for the target audience.
The arrowhead also allows to visually reflect the decreasing prediction accuracy by
becoming smaller. In terms of (4) visual advantages, an arrow provides a distinct shape,
while, e.g., a cell is easily perceived to merge with neighboring cells, which is undesired.
The choice also comes with disadvantages, introducing white space and can sometimes
lead to distracting patterns. Finally, (5) a design study on combining timeline and graph
visualization by Saraiya et al. [145] shows that our approach—simultaneously overlaying
the timeline—is best suited for detecting outliers. This is one of the main tasks for
these levels, given the focus on change. The study also supports the design choice of
showing only a single timestep in Levels 1 and 2, as the focus is on the topological
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structure. However, different visual representations like horizon graphs might be better
suited when focusing on a continuous analysis. The seamless changes between levels
speed up navigating through large models while eliminating demanding context switches.
Moreover, at each step, the information becomes more complex, requiring more screen
space to visualize. For a regular HD screen, we give rough guidance (O(n)) on the
number of elements that can be usefully shown on-screen, amounting to around 256k
grid cells of connectivity information and around four for the raw content.

4.4.2 Interactive Exploration and Drill-Down

To facilitate the interactive exploration, we contribute a user-steering based on classical
concepts and filters for standard search tasks, a dynamically modifiable partition hierarchy
to include user-controlled structuring and various matrix reordering techniques for the
focused analysis of connections and groups. All these interactions concepts are reactive,
and the visualization can smoothly and instantly update (< 100 ms), except for the
domain knowledge integration in Section 4.4.3.

I N T E R AC T I O N A N D FI LT E R C O N C E P T S Standard methods available in an in-
teractive visualization are included, like (1) highlighting selected rows or columns, (2)
highlighting hovered cells, (3) tooltip-based menus, (4) marking (i.e., starring) individual
entries to highlight them for tracking and follow-up, (5) adding textual notes, and (6)
showing additional meta-information. Modal views allow to (7) control the partition
hierarchy (see details below), while setting an (8) overall cutoff threshold allows con-
trolling the confidence threshold of the underlying model. A (9) global search function
provides the ability to search for node- and edge information as well as content and
highlights the matching components. At last, the menu bar allows (10) controlling the
matrix reordering (see detail below).

DY NA M I C A L LY M O D I FI A B L E PA RT I T I O N H I E R A R C H Y To allow domain
experts to articulate their mental categorization to the model, the experts can create
(nested) groups of different nodes or hyperedges, creating hierarchies. The nodes or
hyperedges hereby relate to the leaves of the dendrogram. The groups can be expanded
or contracted either directly from the node or hyperedge headers, visually indicated
by color, or by editing them inside the partition hierarchy viewer in a modal overlay.
The viewer shows a dendrogram-based representation with freely reorderable entries.
Each branch of this dendrogram can be independently collapsed or expanded, i.e., the
abstraction level is local to each branch and not globally set. For example, it is possible to
collapse a large, uninteresting sub-branch, including the nested nodes it contains, while
simultaneously having one branch fully expanded and another only up to the penultimate
level. This is also independent of the overall visualization level, similar in concept to
multiple fixed magic lenses, visually supporting different analysis paths. The hierarchy
allows, for example, to group complementing entities together, to build meta-entities,
and even hierarchies of entities.
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(a) Multi-step hierarchy (b) Size (c) First occurrence

Figure 12: Comparison of different matrix reordering techniques to facilitate the detection
of similar groups and connections. Compared to the unordered state and the slightly
improved ordering by size, the adoption of a default multi-step, dendrogram-based
reordering, modified and adapted from [21], enhances the clustering by similarity.

M AT R I X R E O R D E R I N G A N D S O RT I N G To support the tasks relevant for our
driving application (see Section 4.2.3), a matrix reordering is desirable such that related
users and topics appear close to each other. Due to the independent and often conflicting
interpretations of both axes and the sparseness of the underlying matrix, the direct
application of standard 2D numeric sorting algorithms (e.g., Multi-scale-, Chen-, or
Travelling salesman problem ordering) [21] often leads to unsatisfactory results, as they
are mainly applicable to pairwise comparison matrices.

As part of the visualization, we offer three main different reordering strategies, as
shown in Figure 12: (a) matrix-reordering (default), (b) sorted by size (connectivity),
(c) first occurrence (original). The reordering is applied individually for each axis, as
the requirement may differentiate between search tasks, not always favoring a block-
like clustering. It also provides more flexibility for adopting other sorting methods in
domain adaptions of our technique. The underlying sorting principles build upon a
dendrogram-based serial matrix reordering discussed by Behrisch et al. [21]. It forms a
multi-step process, combining the sorting of node and edge similarity vectors. Supported
dendrogram methods are ward-, single-, average-, and complete linkage, combined with
any pairwise distance function like Euclidean, cosine, or Jaccard. We refrain from
discussing individual choices, which can vary strongly on domain adaption. For our case
study, the Jaccard and cosine distance provide consistent results.

4.4.3 Visual Analytics for Model Updates

To increase the traceability of domain knowledge integration and explainability of
the resulting model changes, we propose an interactive change feedback visualization,
that seamlessly integrates with our visualization. The two-step process is shown in
Figure 13. An expert can integrate domain knowledge by selecting a cell and setting a
new connection strength (Figure 13a), thereby complement missing or override model
input data. This input is used to partly retrain the model and refine its predictions as
described in Section 4.3.2, leading to a ripple effect. Thereby, the model has prediction
authority, i.e., the user cannot manually fix the ultimate output to guarantee model
authenticity. A spinner indicates the few seconds long operation. The resulting changes
are displayed inside the same view (Figure 13b). A diverging color scale is used, showing
changes instead of predictions. Through two visually distinct scales, it is immediately
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(a) Manually input a connection strength.

(b) Resulting changes in the model predictions.

Figure 13: Resulting changes in the model prediction (ripple effect) from an input are
visualized by a diverging color scale (from negative to no to positive change). They can
be explored and rejected or accepted. This allows for model verification and multiple,
different analysis paths.

apparent if predictions or changes in the predictions are shown. The view integration
allows for consistency, reducing the mental workload, and improving mental mapping.

Changes can be inspected on all levels of the visualization. The exploration is not
restricted to just the current viewport, finding even weak connections. Change detection is
facilitated, allowing rejection if deemed implausible or acceptance if convincing, enabling
the followup of multiple analysis paths. By iteratively and interactively queering the
model and see how it responds to domain knowledge integration, experts can discern
better how connections and processes in the model are related, improving understanding
and increasing explainability.

Experts in many applications are interested in their analytical progress and must
reproducibly document the steps. We address this by a re-loadable provenance, storing
the interaction sequence, domain knowledge input, model output, and fixed RNG seeds.
This allows for inspection, verification, and traceability while providing accountability
and making decision processes transparent. The provenance history allows undoing
analysis steps, preventing dead-ends, revisiting and explaining past steps, but also
bridging off to diverging analysis trails.
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4.5 C A S E S T U DY: I N T E R N E T F O RU M C O M M U N I C AT I O N DATA

To demonstrate the visual exploration of temporal hypergraph models in HYPER-MATRIX,
we conduct a case study, showing the applicability of our technique and improvements
compared to existing approaches.

The communication data was collected from an internet forum well-known to law
enforcement. It contains 335 188 text posts from 4904 users. We pre-processed the
data using standard NLP methods to extract 158 topics, based on a domain-specific
ontology. As described in Section 4.3, users are associated with nodes and topics become
dynamic hyperedges. To allow for a reasonable side-by-side comparison with the existing
approaches, shown in Figure 14, we had to restrict to a subset, consisting of 35 users, 65
topics, and six timesteps. This is around four times more than conventional approaches
are designed for. We confirmed that our prototype works for significantly larger networks
(cf. Section 4.7). Our prediction model is fed with four years (timesteps) of historical
data and then predicts the evolution of the next two years as two timesteps. Almost any
real-world data is noisy and may miss some relationships. Consequently, some of the
conclusions drawn here may be inaccurate. However, we focus on demonstrating the
concepts and benefits of the visual analysis process HYPER-MATRIX provides.

The task we want to focus on in this case study is the identification of related groups
and missing links, common in criminal investigations. To identify users discussing
the same topics and topics discussed by the same group, the matrix reordering and
connectivity information in Level 2 can be used to see structures, as shown in Figure 14b.
Their spatial closeness acts as primary identification criterion, as similar row/column
vectors are grouped closely. From this, their spatial closeness, describing the multi-step
alignment, supports discovering related users or topics discussed simultaneously, but also
latent connections. Distinct orderings can be applied separately to nodes and hyperedges,
for example, to either favor overall similarity (cosine) or matching parts (Jaccard). For
other requirements, it is also possible to include different metrics. To reduce noise and
exclude weak connections, the top menu allows to set a threshold for the connection
strength for historical and predicted data. A flag controls the ordering mode to either
respect the filtered or the full dataset (including filtered elements). To further structure
the view, the experts can manually click and select to group users and topics to reflect
their mental categorization of users and topics. This allows to reflect domain-specific
ontologies (e.g., similar concepts) or represent known formations of users.

Zooming to the lower visualization levels shows the temporal development. Com-
pared to existing approaches (see Figure 14c) our technique (Figure 14d) increases the
scalability and comparability for dense temporal evolution. Compared to the industry
standard Figure 14a, presenting the temporal evolution as a timeline-like arrow within
each cell reduces comparison distances. Levels 5 and 6 allow an expert to understand the
actual data on which a predicted connection is based: The main keywords of the relevant
text fragments and, respectively, the actual raw text fragments (cf. Figure 11). This
ability allows the expert to verify predictions and detect shortcomings as, for example,
irony and coded synonyms are still difficult to be detected automatically. If the expert
has identified shortcomings on any level, e.g., missing connections or wrong attribution
of an ambiguous term, the technique allows for the inclusion of this additional domain
knowledge. To externalize knowledge, the expert selects the corresponding connection
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(a) IBM i2 Analyst’s Notebook. Automatically generated graph representation from the hyper-
graph model displaying the connections (labels removed) for the furthest predicted year using a
modified bipartite representation. Data-wise, this can be compared to the connectivity informa-
tion in our Levels 1 and 2. Clutter and occlusion prevent a meaningful global analysis, and while
individual users and topics can be explored, this is only possible slowly, not without difficulty,
and likely requires moving entities around to identify connections safely.

(b) Our technique at Level 2, showing the same predicted connectivity information as Analyst’s
Notebook in Figure 14a. Clusters and related users/topics can be pinpointed more easily. The
color scheme and filtering settings in the top menu bar also facilitate to identify the prediction
strength, which can be estimated by using the overlayed legend in the bottom right corner. The
blue buttons allow to access the partition hierarchy modifier to view a dendrogram view of the
grouped entities.
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(c) PAOHvis [172]. The temporal hypergraph evolution shows the individual hyperedges, allowing
to find connected users and topics. However, the hypergraph size is at the upper limit for a
feasible visualization, already leading to some cluttering. Also, due to the temporal splitting, the
comparability between years is hindered for such complex, non-sparse hyperedges compared to
our technique, but better suited for comparing topics in the same year.

(d) Our technique at Level 3, showing the same temporal evolution information as PAOHvis
in Figure 14c. The scalability is increased, showing no occlusion and the comparability of
trends (important for the case study) is improved. This is due to retained cell ordering and short
comparison distance. The downside is a reduced comparability between topics in the same year.
The nature of the predictions depend on the model.

Figure 14: Case study comparison of different approaches using the same internet
forum hypergraph model dataset and exactly the same data view (connection strength
> 0.1, min. 2 hyperedges). Compared are the state-of-the-art industry solution IBM i2
Analyst’s Notebook (Figure 14a), PAOHvis (Figure 14c) against our technique, showing
the information at two different levels of abstraction (Figures 14b and 14d). Further,
both external approaches only support a fixed network while our technique allows for an
interactive refinement and domain knowledge integration.
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and specifies the proposed strength on a scale between 0 and 1. This translates to definite
knowledge about no and guaranteed connection, respectively. More nuanced values like
.7 allow the expert to reflect his own uncertainty. This allows them to try out hunches
while simultaneously preserving some model flexibility. For this reason, the change
preview (cf. Figure 13b) is extremely relevant for the domain experts, as it allows them
to see directly how their knowledge transforms the model prior to accepting the changes.
They can explore the consequences by zooming and panning through all levels and
correlate their findings with their intuition or other facts. If unsatisfied, they can go
back. Otherwise, they can continue and repeat this visual analytics loop multiple times.
This rapid feedback supports the expert in refining the model without being blind to the
resulting consequences, but being able to control and explore the latest model state at all
times. As the domain experts focus is on exploratory analysis the iterative refinement
supports finding connections and missing links faster. With domain knowledge that is
difficult to be integrated a priori, step-by-step changes are more understandable.

4.6 F O R M AT I V E E VA L UAT I O N

We performed formative evaluation sessions involving three domain experts (P1-P3). P1
is a criminal investigator working for a European law enforcement agency, having more
than 30 years of experience, 20 years spent in digital and criminal investigations. His
expertise includes communication and network analysis, familiarity with commercial
systems like IBM i2 Analyst’s Notebook [78], the graph visualization tool Gephi [17],
as well as the large network analyzer Pajek [18, 19]. P2 works at the same agency in a
different division, and has more than 20 years of experience in criminal investigations,
specialized in group structure and content analysis. P3 is a senior project lead at a
governmental research institute, studying analytical raw data analysis for more than ten
years.

4.6.1 Study Procedure

The formative evaluation was conducted individually via remote screen sharing, taking
about 60 minutes. For later review of these remote screen sharing sessions, they were
recorded after receiving the formal consent of the experts. In the first 10 minutes a demo
presented how to perform the visual analysis, explore and refine data and processes, and
integrate domain knowledge in the search process and in the machine learning model. The
next 30 minutes were spent between the experts using the system and providing feedback,
as well as additional on-demand demonstrations. The tasks the experts performed include
overview, the identification of the most promising leads, and the drill-down through the
different zoom-levels down to the actual raw content, in this case, communication data.
Further, we demonstrated and debated the different interaction techniques, like cutoff
values and thresholds, matrix sorting and reordering strategies, and the dynamically
modifiable partition hierarchy, as well as the machine learning feedback process.

In the last 20 minutes, the authors interviewed the experts asking 32 prepared questions
(see annexes). During each of the formative evaluation sessions, the experts engaged
actively, trying out concepts, asking questions, commenting on the features, and pointing
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out issues. If an expert already partially gave comments during the 30 minutes session,
they were offered to extend their answer. For example, when an aversion or surprising
idea was mentioned, we additionally focused on these aspects. The interview was
designed to elicit aspects of our technique that the experts find relevant for their work or
confusing or misinterpretable, as well as opinions on the individual approaches.

4.6.2 Findings and Lessons Learned

The main observations during the study are that our approach can effectively support
most analytical requirements of the experts and that the experts favor both the rapid
exploration of large datasets at different levels as well as the ability to integrate and
contribute with their domain knowledge. This matches with their need to identify
general trends in single combinations of users and topics and simultaneously identify co-
occurrences. For this, the general prediction is more important than being able to identify
differences between entities in the same year (cf. Figure 14). The underlying model we
built upon [11] has proven to perform sufficiently well in this prediction task with an
AUC (area under curve) of the ROC (receiver operating characteristic) of .88 and a recall
value of .81. Excluded from the requirements are concepts outside the design scope,
like purely mathematical capabilities as, for example, general centrality calculations,
for which algorithms exist and could be included. In the following, we structure and
summarize the main findings based on the expert’s interactions and comments.

The domain experts agree that our approach of structuring information in multiple
levels of details, using a matrix-based approach, is novel and therefore is not used
in practice in their domain. For example, so far P1 has worked with either text-based
or graph-based tools, and thinks our approach can “perfectly complement” existing
workflows. The experts highlight the ability to effortlessly explore so much information
(cf. P3), thereby “saving time” (P1), enabling a “quick analysis” (P3), while providing a
“great overview . . . with much details, . . . but without overloading” (P2) the analyst, with
an ease that is unexpected, given previous experience with this amount of data (cf. P2).
We observed, that the experts often switch between the levels for targeting (upper levels)
and then exploration and confirmation (lower levels). As P2 notes, this increases the
size limit of the visually analyzable graph models, enhancing upon existing systems.
“Together with the search capability” (P1), this allows for a very flexible workflow,
enabling a good overview even for larger datasets.

The initial overview visualizations (Levels 1 and 2) are welcomed for providing a fast
overview (cf. P1). The color scheme in Level 2 is regarded as comprehensible without
explanation and aligning with expectations (cf. P1). It helps to provide guidance “where
to start” (P1), and supports analysts in “planing their actions” (P3). To make the color
scheme absolutely comparable, P3 requested the addition of a color legend. The glyphs
are appreciated for providing details on the temporal distribution and future predictions
(P2, P3). The glyph-based arrow representation in Levels 3 and 4 is appreciated for
providing details on the temporal distribution (cf. P2, P3) interesting to the experts, and,
most importantly, “the future predictions” (P2) in context of the historical data. Depicting
future predictions in the arrowhead and the past data in the shaft, and seeing both together
was described as “helpful” (P3). The alignment by fixed timesteps, like years, is regarded
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as precise and practicable (cf. P1) by the experts. In comparison, the distribution as line
chart in Level 4 received mixed responses, with P1 and P3 finding it beneficial for their
understanding to get a better, absolute reading, while P2 feels “it does not add much”.
The keyword visualization (Level 5) is regarded as fine for an abstract summary of the
content visualization but could be extended (cf. P3). This layer, representing the “main
connection” (P1) to the actual raw data, is important (cf. P1), and only shown when
relevant in high zoom levels, “where the text content is relevant” (P1).

The ability to search through all underlying textual data and highlight matches in
the views was received enthusiastically by all experts, as they can also transfer and
fulfill some of their existing workflow, e.g., content- and text-based workflows, with our
technique. It allows to explore global tendencies while enabling to query locally (cf. P2),
not being distracted by other matches “not relevant at the moment” (P2).

While the visualization alone helps them already some ways, providing them “with
improved degree of detail . . . unknown so far” (P1), all the experts also agree that the
interaction concepts constitute an essential and relevant part of the approach, “helping
them with strategical and operational decision” (P1). The matrix reordering strate-
gies significantly improving the visual clarity of the overview, are regarded as “very
interesting” (P2), and enable the experts to detect “groups” (P1) as well as connections
easily, allowing them to “quickly identify hotspots” (P2), while putting less emphasis on
weak connections. This is regarded as very supportive, being rarely supported in analysis
systems (cf. P1), “saving costs and time” (P1). We observed that the experts use this as
system guidance. The partition hierarchy is regarded by all experts as “essential” (P2),
with P3 describing it as a “core functionality”. It allows grouping different model parts
into physical concepts, applying structure comparable to existing mental models (cf. P2),
improving the mental mapping. It “makes decision easier” (P3) and allows to “connect
things” (P3).

The experts further describe that with existing tools, one major problem is that their
mental concepts and models can “not [be integrated] enough” (P2) in the exploration,
making it harder and less comprehensible. They notice that our approach supports them
in three ways not present in existing tools: (1) the interactive exploration allowing to
follow their instinct, (2) the modifiable partition hierarchy to express and capture their
mental concepts, and, “most importantly” (P1), (3) the ability to integrate their domain
and external knowledge directly in the model. While the experts wished that they could
already “generate a report [. . . and] export single entries” (P2) as commercial systems
do, they note the enormous conceptional benefits of our technique. They regard them
as “optimal” (P1), as there “are concepts and knowledge that cannot be modeled with
machine learning [alone]” (P1) and are not “available” (P1) in the data. This knowledge
then “cannot be integrated so far” (P1), is often documented in the head of the domain
expert or “on a post-it note on the desk” (P1), leading to a high risk of the knowledge
being “lost” (P1) or not leveraged. According to P1, the knowledge integration is
performed iteratively during exploration, which we also observed as the experts adding
knowledge intermittently, beginning with their main suspects and then expanding, adding
knowledge when necessary either from post-its or when reading a name triggers a
memory. The experts think that our feedback loop contributes to their analysis (cf. P1),
replacing and “perfectly complementing” (P1) existing workflows. They regard the
ability to interactively insert their knowledge as versatile. P1 noted that inserting all
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knowledge beforehand would be error-prone and “practically impossible” for larger
datasets. To see “validation [possibilities] on changes” (P3) is especially important for
vetting, and the change view is regarded as “very clear” (P1), allowing them a first glance,
beneficial for prefiltering, steering and follow-up search guidance (cf. P1) to better divide
their time for exploration. For improved usability P1 suggested to enable clicking to
jump directly to the raw data in the change preview mode for validation. P1 regards the
ability for a global accept/reject as sufficient for now, conceding that a partial accept
could be explored in the future, although he does not see an immediate benefit. They state
that the 0–1 scale is “understandable and usable” (P1), but note that using the “5x5x5
system” (P1)—a commonly used police system based on letters A–E and 1–5 for source
and intelligence evaluation [129]—would be immediately understood and universally
accepted in the target domain. The approach allows them to integrate their domain
knowledge on multiple levels, together with the ability to perform a “quick analysis” (P3)
of “large amounts of information” (P2) “in a targeted” (P1), non-overloading manner.
From the observations of the experts, we derived a set of tentative tasks, relevant
in law enforcement: (1) finding linked users/topics, (2) connecting users which share
related topics to identify co-conspirators, (3) using classical text-based search in the
raw data to identify users, (4) finding and judging an in/decrease of user activity for a
topic, (5) finding a temporal co-occurrence between topics and users, (6) adding domain
knowledge to a specific user and specific topic and judging the implications, (7) transfer
raw data patterns and identify related users, and (8) confirming the model predictions by
cross-validation plausibility with the raw data texts.

4.7 D I S C U S S I O N A N D F U T U R E W O R K

During the evaluation, we received multiple proposals on how our approach could
be extended further, including by mathematical analysis methods and industry-grade
interfaces. In the following, we discuss the limitations and broader applicability of our
approach, also in the context of future work. For our prototype approach, we adapted the
generic blueprint of a machine learning model to the case study. This use case has its own
limitation, requiring structured data with time and author information, and dependent
on advanced topic extraction models. We tested our prototype successfully with 1 000
users, 800 topics, and 15 timesteps on an HD screen, typically the upper size for large
investigations. In terms of data type, the technique can cope both with sparse and none-
sparse matrix structures. For the former, the matrix reordering allows to prioritize more
relevant connections and order them further on the top left, reducing the required screen
usage for the main parts. Of course, a homogeneous sparse matrix does not benefit from
that. In this case, and for none-sparse matrices, the different zoom levels shift the size
limitations. Nevertheless, they do not scale infinitely. Scrolling would be needed when
scaling further, even for the overview level. According to domain expert P1, there the
primary concern would be the number of users (y-axis), but using the partition hierarchy
and matrix reordering could partially mitigate the issue. When increasing the number of
time steps, the arrow becomes more detailed, shifting from blocks to a more continuous
stream, becoming less distinguishable. For our use case, this fine-grained time is not
primarily relevant because the experts aim at seeing who has recently been interested in
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a topic. However, it might become an issue when the task requires to extract detailed
timestamps. Therefore one could use hovering, magnification on demand, or a more
specialized visualization. Also, the visualization presented is better at analyzing trends
and connectivity tasks on an overview level. Comparing the same time step in Levels 3
and beyond between two non-aligned nodes, however, becomes harder. For further work,
we envision an adaptable overview layer showing a specific time point, allowing cross-cell
comparability. When adapting to different use cases, some of the filtering methodology
likely has to be changed. For example, when supporting biochemical process analysis,
the raw attributes are not texts anymore, which (1) would need a different visualization
for the content in the two lowest display level, but would also impact (2) the search
functionality, which would need to be adapted to search and filter for biological and
chemical properties instead of text. The discussed visualization components serve only
as examples for the visual analytics workflow presented. When adapting to a different
field, there exist manifold possibilities for extensions, by integrating domain-specific
visualization components. We provision this by a modular view architecture, supporting
independent layer modules. Further enhancements are multiple magic lenses to allow for
simultaneous drill-down to different levels.

In the future, we envision improvements to the feedback system, for example, showing
how domain knowledge propagates not only between two model states, i.e., before
and after adding knowledge but also explaining the effects of previously introduced
knowledge, for example, by interactively highlighting the individual influences on hover.
This is supported by our architecture, but the computation time scales linearly with the
number of domain knowledge inputs, which leads to computation times of several minutes
and more, making it infeasible in an interactive environment for fast iterations. We hope
to improve this by enhanced engineering, reducing the model setup and reloading times
by advanced ways of updating the hypergraph model.

4.8 C O N C L U S I O N

Many processes are difficult to describe using traditional graph-based concepts and
benefit from more precise yet more complex modeling as temporal hypergraphs. We
address this challenge by using a geometric deep learning approach and extend it to
hypergraphs. However, such deep learning models typically do not incorporate domain
knowledge, usually unavailable in the data. This is not least because domain experts
struggle to articulate their knowledge without rapid, iterative feedback and intuitive
representations matching their mental models, alternatively requiring a detailed a priori
understanding of the problem. Hence, domain expertise is often not leveraged to its full
potential.

We contribute a technique, named HYPER-MATRIX, to make temporal hypergraph
model exploration more accessible for domain experts by enabling the integration of
domain knowledge into the process and support their mental models through a multi-level
matrix-based visualization architecture. The technique enables the interactive evaluation
and seamless refinement of such models while providing a tight coupling and rapid,
iterative feedback cycles to the underlying machine learning model. Model changes in
response to the integration of domain knowledge are visualized transparently by a change
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preview, allowing experts to foster a more detailed understanding of how the underlying
model works while externalizing their knowledge to teach the machine.

The approach allows to swiftly explore vast search spaces while maintaining focus and
eliminating demanding context switches. Drill-down capabilities across multiple levels
allow studying details and model contents on demand while retaining the overview. This
architecture facilitates a focused analysis of relevant model aspects, allowing experts to
detect patterns more rapidly and accurately. It is complemented by interactive filtering
and search, various matrix reordering techniques, and a dynamically modifiable partition
hierarchy, allowing the integration of domain knowledge in the visualization layers.

We evaluate our approach in one case study and through formative evaluation with law
enforcement experts using real-world communication data. The results show that our ap-
proach surpasses existing solutions in terms of scalability and applicability, enabling the
incorporation of domain knowledge and allowing fast and targeted search-space traversal.
While we focused on topic prediction for law enforcement as driving application, the
interactions and concepts work with any temporal hypergraph, being model agnostic and
applicable more generically to a wider variety of domains. With our technique, we hope
to pave the way for domain experts to a more interactive exploration and refinement of
temporal hypergraph models, enabling them to use their knowledge not only for steering
but also to articulate it into the machine learning model.
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H Y P E R L E A R N : A D I S T R I B U T E D A P P ROAC H F O R
R E P R E S E N TAT I O N L E A R N I N G I N DATA S E T S W I T H M A N Y
M O DA L I T I E S

Multimodal datasets contain an enormous amount of relational information, which grows
exponentially with the introduction of new modalities. Learning representations in such a
scenario is inherently complex due to the presence of multiple heterogeneous information
channels. These channels can encode both (a) inter-relations between the items of differ-
ent modalities and (b) intra-relations between the items of the same modality. Encoding
multimedia items into a continuous low-dimensional semantic space such that both types
of relations are captured and preserved is extremely challenging, especially if the goal
is a unified end-to-end learning framework. The two key challenges that need to be
addressed are: 1) the framework must be able to merge complex intra and inter relations
without losing any valuable information and 2) the learning model should be invariant to
the addition of new and potentially very different modalities. In this paper, we propose
a flexible framework which can scale to data streams from many modalities. To that
end we introduce a hypergraph-based model for data representation and deploy Graph
Convolutional Networks to fuse relational information within and across modalities. Our
approach provides an efficient solution for distributing otherwise extremely computa-
tionally expensive or even unfeasible training processes across multiple-GPUs, without
any sacrifices in accuracy. Moreover, adding new modalities to our model requires
only an additional GPU unit keeping the computational time unchanged, which brings
representation learning to truly multimodal datasets. We demonstrate the feasibility
of our approach in the experiments on multimedia datasets featuring second, third and
fourth order relations.

5.1 I N T RO D U C T I O N

The field of multimedia has been slowly, but steadily growing beyond simple combining
of diverse modalities, such as text, audio and video, to modeling their complex relations
and interactions. These relations are commonly perceived, and therefore, modelled as
only pair-wise connections between two items, which is a major drawback in the majority
of the existing techniques. Going beyond pair-wise connections to encode higher-order
relations can not only discover complex inter-dependencies between items but also help
in removing ambiguous relations. For instance: in the task of social image-tag refinement,
conventional approaches focus on exploiting the pairwise tag-image relations, without
considering the user information which has been proven extremely useful in resolving
tag ambiguities and closing the semantic gap between visual representation and semantic
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Figure 15: Example showing importance of capturing ternary relations (images-tags-
users) in a social network dataset and quaternary relations (artworks-media-artists-
timeframe) in artistic dataset. HyperLearn exploits such relations to learn complex
representations for each modality. At the same time, HyperLearn provides a distributed
learning approach, which makes it scalable to datasets with many modalities

meaning [42, 108, 165, 166]. It is hence an interesting, but far more challenging problem
in multimedia to exploit and learn higher-order relations to be able to (a) learn a better
representation for each item, (b) improve pairwise retrieval tasks and (c) discover far
more complex relations which can be ternary (3rd order), quaternary (4th order), quinary
(5th order) or even beyond. As examples, figure 15 shows the importance of modeling
higher-order relations in social networks and in artistic analysis respectively. In the upper
example from Figure 15, textual annotations and information about user demographics
is utilized for disambiguation between landmarks with very similar visual appearance.
Similarly, the second example illustrates quaternary relations formed by the artworks,
media, artists and the time-frame in which they were active. Capturing such complex
relations is of utmost importance in a number of tasks performed by the domain experts,
such as author attribution, influence and appreciation analysis.

Learning representations in multimodal datasets is an extremely complex task due to
the enormous amount of relational information available. At the same time most of these
relations have an innate property of ‘homophily’, which is the fact that similarity breeds
connections. Exploiting this property of similarities can help in immensely simplifying
the understanding of these relations. These similarities can be derived from both intra
relations between items of the same modality and inter-relations between items across
different modalities. Unifying the two types of relations in a complementary manner
has the potential to bolster the performance of practically any multimedia task. Thus,
in this work we propose an efficient learning framework that can merge information
generated by both intra as well as inter-relations in datasets with many modalities. We
conjecture that such an approach can pave the way for a generic methodology for learning
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representations by exploiting higher-order relations. At the same time, we introduce an
approach that makes our framework scale to multiple modalities.

We focus on learning a low-dimensional representation for each multimodal item using
an unsupervised framework. The unsupervised methods utilize relational information
both within as well as across modalities to learn common representations for a given
multimodal dataset. The co-occurrence information simply means that two items from
different modalities are semantically similar if they co-exist in a multimedia collection.
For example, the textual description of a video often describes the events shown in
the visual channel. Many of the multimedia tasks revolve around this compact latent
representation of each multimodal entity [130, 139]. The major challenge lies in
bridging the learning gap between the two types of relations in a way that they can
be semantically complementary in describing similar concepts. Learning representation
is usually extremely expensive, both in computational time and required storage as
even a relatively small multimedia collection normally contains a multitude of complex
relations.

Handling a large amount of relations requires a framework with a flexible approach to
training across multiple pipelines. Most of the existing algorithms fail in parallelizing
their framework into separate pipelines [109, 194], resulting in large time and memory
consumption. Thus, in the proposed framework we can parallelize the training process
for different modalities into separate pipelines, each requiring just an additional GPU
core. By doing so, we facilitate joint multimodal representation learning on highly
heterogeneous multimedia collections containing an arbitrarily large number of modali-
ties, effectively hitting an elusive target sought after since the early days of multimedia
research. The points below highlight the contributions of this paper:

• We address the challenging problem of multimodal representation learning by
proposing HyperLearn, an unsupervised framework capable of jointly modeling
relations between the items of the same modality, as well as across different
modalities.

• Based on the concept of geometric deep learning on hypergraphs, our HyperLearn
framework is effective in extracting higher-order relations in multimodal datasets.

• In order to reduce prohibitively high computational costs associated with mul-
timodal representation learning, in this work we propose a distributed learning
approach, which can be parallelized across multiple GPUs without harming the
accuracy. Moreover, introducing a new modality into HyperLearn framework
requires only an additional GPU, which makes it scalable to datasets with many
modalities.

• Extensive experimentation shows that our approach is task-independent, with a
potential for deployment in a variety of applications and multimedia collections.

5.2 R E L AT E D W O R K

The core challenge in multimodal learning revolves around learning representations that
can process and relate information from multiple heterogeneous modalities. Most of ex-
isting multimodal representation learning methods can be split into two broad categories

63



U N S U P E RV I S E D S C A L A B L E L E A R N I N G O N H Y P E R G R A P H S

– multimodal network embeddings and tensor factorization-based latent representation
learning. In this section we reflect on the representative approaches from these two
categories. Since, in this work we extend the notion of graph convolution networks for
multimodal datasets, we also touch upon some of the existing techniques that aim to
deploy deep learning on graphs.

5.2.1 Multimodal Network Embedding

A common strategy for representation learning is to project different modalities together
into a joint feature space. Traditional methods [119, 142, 168] focus on generating
node embeddings by constructing an affinity graph on the nodes and then finding the
leading eigenvectors for representing each node. With the advent of deep learning, neural
networks have become a popular way to construct combined representations. They
owe their popularity to the ability to jointly learn high-quality representations in an
end-to-end manner. For example, Srivastava and Salakhutdinov proposed an approach
for learning higher-level representation for multiple modalities, such as images and texts
using Deep Boltzmann Machines (DBM) [156]. Since then a large number of multimodal
representation learning methods based on deep learning have been proposed. Some
of these methods attempt to learn a multimodal network embedding by combining the
content and link information [34,74,103,109,164,194,199]. Other set of methods focuses
on modeling the correlation between multiple modalities to learn a shared representation
of multimedia items. An example of such coordinated representation is Deep Canonical
Correlation Analysis (DCCA) that aims to find a non-linear mapping that maximizes
the correlation between the mapped vectors from the two modalities [192]. Ambiguities
often occur while using network embedding methods to learn multimodal relations due
to sub-optimal usage of available information. This is mostly because these methods
assume relations between items to be pairwise which often leads to loss of information
[12, 32, 100].

5.2.2 Tensor Factorization Based Latent Representation Learning

Decoupling a multidimensional tensor into its factor matrices has been proven successful
in unraveling latent representations of their components in an unsupervised manner
[93, 96, 128]. Most existing approaches aim to embed both entities and relations into a
low-dimensional space for tasks such as link prediction [170], reasoning in knowledge
bases [153] or multi-label classification problems [117]. Recent methods on social
image understanding incorporate user information as the third modality for tag based
image retrieval and image-tag refinement problems [162, 165, 166]. Even though
most of these approaches are suitable for large datasets, one of the main disadvantages
of using a factorization based model is the lack of flexibility when scaling to highly
multidimensional datasets. Additionally, most of the tensor decomposition methods are
based on the optimization with a least squared criterion, which severely lacks robustness
to outliers [88].

In this work, we first overcome the issues of network embedding methods by using
a hypergraph-based learning method. Secondly, we introduce a scalable approach to
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tensor decomposition for scaling representation learning to many modalities. Finally,
we can combine the advantages of rich information from network structure with the
unsupervised nature of tensor decomposition in one single end-to-end framework.

5.2.3 Geometric Deep Learning on graphs

Geometric deep learning [30] brings the algorithms that can help learn from non-
euclidean data like graphs and 3D objects by proposing an ordering of mathematical
operators that is different from common convolutional networks. The aim of Geomet-
ric Deep Learning is to process signals defined on the vertices of an undirected graph
G(V, E, W), where V is the set of vertices, E is set of edges, and W ∈ R|V|×|V| is the
adjacency matrix. Following [43, 149], spectral domain convolution of signals x and y
defined on the vertices of a graph is formulated as:

x ⊛ y = Φ(ΦT x).(ΦT y) = Φ(F (x).F (y)) (5.1)

Here, ΦT x corresponds to Graph Fourier Transform and F (.) represents Fourier Trans-
form; the eigen functions Φ of the graph laplacian play the role of Fourier modes; the
corresponding eigenvalues Λ of the graph laplacian are identified as the frequencies
of the graph. Recent applications of graph convolutional networks range from com-
puter graphics [29] to chemistry [48]. The spectral graph convolutional neural networks
(GCN), originally proposed in [31] and extended in [43] were proven effective in classi-
fication of handwritten digits and news texts. A simplification of the GCN formulation
was proposed in [91] for semi-supervised classification of nodes in a graph. In the
computer vision community, GCN has been extended to describe shapes in different
human poses [118], perform action detection in videos [177] and for image and 3D
shape analysis [125]. However, in the multimedia field there have been considerably
less examples of using deep learning on graphs for modeling highly multimodal datasets
with [12, 143] as notable exceptions.

In this paper, we propose an approach that introduces the application of graph convo-
lutional networks on multimodal datasets. We deploy Multi-Graph Convolution Network
(MGCNN) originally proposed by [125] for the matrix completion task using row and col-
umn graphs as auxiliary information. It aims at extracting spatial features from a matrix
by using information from both the row and column graphs. For a matrix X ∈ RN1×N2 ,
MGCNN is given by

X̃ =
q∑

j, j′=0

θ j j′T j(Lr)XT j′(Lc) (5.2)

where, Θ = θ j j′ is (q+ 1)× (q+ 1) dimensional matrix which represents the coefficients
of the filters, T j(.) denotes the Chebyshev polynomial of degree j and Lr, Lc are the
row and column Graph Laplacians respectively. Using Equation 5.2 as the convolutional
layer of MGCNN, it produces q output channels (N1 × N2 × q) for matrix X ∈ RN1×N2

with a single input channel. In this way, one can extract q dimensional features for each
item in matrix X by combining information from row and column graphs, which can
correspond to e.g. individual modalities.
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Figure 16: (a) Pair-wise relationship among the items of the same modality in K-modal
data. (b) Complex higher-order heterogeneous relationships between entities of different
modalities using a Hypergraph representation.

5.3 T H E P RO P O S E D F R A M E W O R K

In this section, we propose a novel distributed learning framework that can simultaneously
exploit both intra and inter-relations in multimodal datasets. We depict these inter-
relations on a hypergraph and conjecture that this way of representing higher-order
relations reduces any loss of information contained within the multimodal network
structure [12,100,206]. Mathematically, a hypergraph is depicted by its adjacency tensor
[16]. A simple tensor factorization on this adjacency tensor can disentangle modalities
into their compact representations. However, this kind of representation lacks information
from the intra-relation of items belonging to the same modality. Subsequently, we
therefore incorporate intra-relations among entities as auxiliary information to facilitate
flow of within-modal relationship information.

5.3.1 Notations

We use boldface underlined letters, such as X, to denote tensors and simple upper case
letters, such as U, to denote matrices. Let ⊙ represent the ”Khatri-Rao” product [85]
defined as

U ⊙ V = (Ui j ⊗ Vi j)i j (5.3)

where, U ∈ RL×R and V ∈ RM×R are arbitrary matrices and ⊗ is the Kronecker Product.
The resulting matrix U ⊙ V is an expanded matrix of dimension LM × R on the columns
of U and V .
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5.3.2 Representing Cross-Modal Inter-Relations using Hypergraphs

Hypergraphs have been proven extremely efficient in depicting higher-order and heteroge-
neous relations. A hypergraph is the most efficient way to represent complex relationships
between a multitude of diverse entities, as it minimizes any loss of available information
[12, 32, 185]. Given multimodal data, we construct a unified hypergraph H(V , E) by
building hyperedges (E) around each of the individual multimodal items which are
represented on a set of nodes (V). These hyperedges correspond to the cross-modal
relations between items of different modalities as illustrated in Figure 16.

A more formalised mathematical interpretation of this unified hypergraph is given by
its adjacency tensor X, where the number of components of the tensor is equal to the
number of modalities in the hypergraph. Further, each hyperedge corresponds to an entry
in the tensor whose value are the weights of the hyperedge. For simplicity, in this work
we focus on unweighted hypergraphs.

Thus, a multimodal data with K modalities is depicted on a tensor X ∈ RN1×N2.....×NK ,
where each component Nθ (1 ≤ θ ≤ K) of this tensor represents one of the K heteroge-
neous modalities. A single element x of X is addressed by providing its precise position
by a series of indices n1, n2, .., nK i.e.

x
n1n2..nK

≡ X
n1n2..nK

; 1 ≤ n1 ≤ |N1|, ..., 1 ≤ nK ≤ |NK | (5.4)

Further, a hyperedge around a set of nodes can be represented as binary values such
that x

n1n2..nK
= 1 if the relation (n1, n2, ...., nK) is known i.e. if there exists a mutual

relation between the K modalities for that instance. For example, in the social network
use case, with a possible corresponding image-tag-user associated tensor X ∈ RN1×N2×N3 ,
the images (n1) are represented on rows, users (n2) on columns and tags (n3) on tubes. If
the lth image uploaded by the mth user is annotated with the nth tag, then x

lmn
= 1 and 0

otherwise.

5.3.3 Representing Intra-Relations Between the Items of the Same Modality

Relationships between items of the same modality are dependent on the nature/properties
of the modality. For instance, relationships between users in a social network is defined
based on their common interests. To make our framework flexible, each modality
(θ; 1 ≤ θ ≤ K) is represented on a separate graph Gθ whose connections can be defined
independently. For example: relations among images can be established based on their
visual features, for tags it can be calculated based on their co-occurrence and for users it
can very well be based on their mutual likes/dislikes. We denote the adjacency matrix of
Gθ by Λθ where each of its entries Λi, j

θ = 1, if there exists a relation between the ith and
jth element and 0 otherwise. The corresponding normalized graph laplacians (Lθ) are
given by

Lθ = D
1
2
θΛθD

− 1
2
θ (5.5)

where, Dθ = diag(
∑

j,i Λi, j
θ ) is known as the degree matrix.

67



U N S U P E RV I S E D S C A L A B L E L E A R N I N G O N H Y P E R G R A P H S

A1
GKG1 A2 G2 A3 G3 AK

LSTM LSTM LSTMLSTM

Factorized 
Matrices

Feature 
Extraction

Update

GPU 1 GPU 2 GPU 3 GPU K

Modality K

Modality 3

Modality 2

Modality 1

Multimodal Hypergraph Kth order Adjacency Tensor

Figure 17: Proposed HyperLearn framework deployed on K modalities with a distributed
learning approach

5.3.4 Combined Inter-Intra Relational Feature Extraction

Tensor X can be factorized using Candecomp/Parafac(CP) - decomposition [67] which

decomposes a tensor into a sum of outer products of vectors (a(θ)r ).
The CP-decomposition X̃ of X is defined as

X̃ =
R∑

r=1

a(1)r ◦ a(2)r ◦ ... ◦ a(K)
r (5.6)

= I ×1 A1 ×2 A2 ×3 ... ×K AK (5.7)

where ◦ is the outer product and ×i represents mode-i multiplication (Tensor matrix
product). Matrices Aθ ∈ R|Nθ |×R are called factor matrices of rank R and I is an Rth order
identity tensor. Matrices Aθ are essentially the latent lower dimensional representations
for each of the Nθ components of the tensor and therefore, for each of the K modalities.

Subsequently, we introduce an approach that can learn robust representations Aθ by
combining intra relational information. We extract spatial features that merge information
from each of the graphs Gθ with the latent representation matrices Aθ using Multi-Graph
Convolutional Network (MGCNN) layers given by

Ãθ =
q∑

j, j′=0

θ j j′T j(Lθ)Aθ (5.8)

where, the output Ãθ ∈ R|Nθ |×R×q has q output channels. Similar to [125], we use an
LS T M to implement the feature diffusion process which essentially iteratively predicts
accurate changes δAθ for the matrix Aθ. Due to its ability to keep long-term internal
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states, this LS T M architecture is highly efficient in learning complex non-linear diffusion
processes.

5.3.5 Loss Function Incorporating Cross-Modality Inter-Relations and Within-Modality
Intra Relations

In standard CP decomposition of a tensor, its factor matrices are approximated by finding
a solution to the following equation

min
A1,..,AK

||X − (I ×1 A1 ×2 A2 ×3 ... ×K AK)||
2
F (5.9)

This equation essentially tries to find low dimensional factor matrices Aθ such that
their combination is as close as possible to the original tensor X. Further, to add
relational information among items within each of these Aθ, we extend the ”within-mode”
regularization term introduced in [105] for matrices and [128] for third order tensors to
generic Kth order tensors. The basic idea is to add a regularization term to Equation 5.9
such that it can force two similar objects in each modality to have similar factors, so that
they operate similarly. Thus, the combined loss function is given by:

min
A1,..,AK

1
2
(tr

K∑
θ=1

AT
θLθAθ) + λ||X − (I ×1 A1 ×2 .. ×K AK)||

2
F (5.10)

where, tr(.) returns the trace of a matrix. In Equation 5.10, the first term ensures
closeness between items of the same modalities and the second term consolidates the
relative similarities between items across modalities. Minimizing Equation 5.10 is a
non-convex optimization problem for a set of variables A1, .., AK . Apart from being an
NP-hard problem, computationally it is also expensive to perform even simple operations
like element wise product on a Kth order tensor. To get a more robust solution, we
introduce an alternating method to tensor decomposition similar to [88, 93]. The key
insight of such a method is to iteratively solve one of the K components of the tensor
while keeping the rest fixed. We exploit this kind of alternating optimization solution
to parallelize our framework across multiple GPUs, by placing each modality on one
of them. This creates an independent pipeline for all of the K modalities as shown in
Figure 17 which summarizes our distributed learning framework for multimodal datasets.

5.3.6 Distributed Training Approach for Learning Latent Representations

The separable feature extraction process for each modality makes our methodology
unique and scalable to multiple modalities. These separate pipelines are combined by
a joint loss function. Consider solving Equation 5.10 by keeping all other components
except Nθ0 as constant. Since, all but one component of the tensor is a variable, unfolding
original tensor X into a matrix along the Nθ0 component results in matrix X(0)

θ with
dimensions |Nθ0 | × |N1N2.....Nθ| (where 1 ≤ θ ≤ K s.t. θ , θ0). So, the loss function
in Equation 5.10 can be rewritten for each of the K components (Nθ) as
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Table 4: Table showing the total number of intra and inter-relations between items on
MovieLens, MIR Flickr and OmniArt datasets.

Movie
Lens

R(U)
12,594

R(M)
28,928

R(U-M)
100,000

MIR
Flickr

R(I)
93,695,167

R(T)
25,170

R(U)
9,900,716

R(I-T-U)
48,760

Omni
Art

R(I)
4,628,009

R(A)
849,482

R(M)
21,178

R(T f )
144

R(I-A-M-T f )
28,399

Lossθ = λ||Xθ − AθΩθ||2F +
1
2

tr(AT
θLθAθ) (5.11)

, where Ωθ = A1 ⊙ A2 ⊙ .. ⊙ Aθ−1 ⊙ Aθ+1.. ⊙ AK and ⊙ represents the ”Khatri-Rao”
product.

5.4 E X P E R I M E N T S

We start our experimental evaluation showing the performance of our approach on a
2-dimensional standard matrix completion task and then extend it to 3 and 4 dimensional
cases. For 2D, 3D and 4D case, we use MovieLens [121], MIR Flickr [76] and OmniArt
[158] datasets respectively. We conjecture that our framework can be generalized to
datasets with even more modalities. Table 4 summarizes the number of inter and intra
relations for the three above mentioned cases. Here, R(.) represents the number of
relations. As seen from the table, even relatively small datasets feature a multitude of
relations, which makes learning them even more challenging.

5.4.1 Task 1: Matrix Completion on Graphs

(a) Time (in ms) taken for each training itera-
tion

(b) Convergence rate of RMSE Loss over time

Figure 18: Illustration of the convergence rate of HyperLearn against sRGCNN. Our
method clearly requires a much lower training time per iteration and also converges
much faster than sRGCNN.
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Figure 19: Detailed performance comparison in terms of Average Precision over 18
concepts on the MIRFlickr dataset

We show the computational advantage of our approach against a matrix completion
method that makes use of side information as a baseline. For this, we use the standard
MovieLens 100K dataset [121], which consists of 100,000 ratings on a scale of 0 to 5
corresponding to 943 users (U) and for 1,682 movies (M). We follow the experimental
setup of Monti et.al. [125] for constructing the respective user and movie intra-relation
graphs as unweighted 10-nearest neighbor graphs.

We compare the performance of HyperLearn with separable Recurrent Graph Convo-
lutional Networks (sRGCNN) as proposed in [125]. As can be seen from Figure 18, our
approach attains comparable performance to the state of the art alternative, while being
much faster. The feature extraction approach alternating between movie and item graphs
reduces the time complexity (although not linearly) considerably as can be seen from
Figure 18(a) which in turn increases the rate of convergence for the algorithm as depicted
in Figure 18(b). However, due to continuous alternating loss calculations, sometimes the
back-propagated gradients tend to get biased towards one of the modalities resulting in
some higher peaks for HyperLearn in Figure 18(b).

5.4.2 Task 2: Social Image Understanding

In this experiment, we test the performance of our model on a 3rd order multimodal
relational dataset. We apply our method to uncover latent image representations by
jointly exploring user-provided tagging information, visual features of images and user
demographics. We conduct experiments on the social image dataset: MIR Flickr [76].
The MIR Flickr dataset consists of 25,000 images (I) from Flickr posted by 6,386 users
(U) with over 50,000 user-provided tags (T ) in total. Some tags are obviously noisy and
should be removed. Tags appearing at least 50 times are kept and the remaining ones
are removed as in [108, 166]. To include user information, we crawl the groups joined
by each user through the Flickr API. Some images have broken links, or are deleted
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by their users. We remove such images from our dataset which leaves us with 15,662
images, 6,618 users and 315 tags. The dataset also provides manually-created ground
truth image annotations at the semantic concept level. For this filtered dataset, there
are 18 unique concepts such as animals, bird, sky etc. for the images which we adopt
to evaluate the performance. We create an intra-relation graph for images by taking
10-nearest neighbors based on their widely used standard SIFT features. For users, we
create edges between them if they joined the same groups and for tags a graph is created
based on their co-occurrence.

To empirically evaluate the effectiveness of our proposed method, we present the
performance of the latent representation of images in classifying them into 18 concepts.
We compare our model with the following methods:

• OT: The user-provided tags from Flickr as baseline.

• TD: The conventional CANDECOMP/PARAFAC (CP) tensor decomposition [67]

• WDMF: Weakly-supervised Deep Matrix Factorization for Social Image Under-
standing [106]

• MRTF: Multi-correlation Regularized Tensor Factorization approach [144]

Table 5: Comparison of the training times (in hours) on MIR Flickr dataset

Model Training Time (in hours)
WDMF 4.2 ± 0.4
MRTF 2.7 ± 0.3

HyperLearn 1.8 ± 0.3

These methods, to the best of our knowledge, cannot provide the flexibility of per-
forming distributed training for each modality using multiple GPUs. We report Average
Precision (AP) scores for comparing our HyperLearn approach against all of these meth-
ods. Average Precision (AP) is the standard measure used for multi-label classification
benchmarks. It corresponds to the average of the precision at each position where a
relevant image appears. Figure 19 shows the comparative performance for all the 18
concepts. We also compare HyperLearn with MRTF and WDMF in terms of the training
time and report the results in Table 5. As can be seen from this table, HyperLearn
executes faster than MRTF and WDMF while its performance is at par or even better for
most of the concepts in the multi-label classification task shown in Figure 19.

Through this experiment we show that - (a) the performance of our approach is at par
with the existing methods in understanding social image relationships (b) by introducing
a distributed approach we can cut down training time of the model significantly.

5.4.3 Task 3: OmniArt

In the last experiment, we show the performance of our model in learning relations that
go beyond 3rd order of connections. For this we require a highly multimodal dataset
containing complex relations that are hard to interpret. One such dataset is OmniArt, a
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large-scale artistic benchmark collection consisting of digitized artworks from museums
across the world [158, 159]. OmniArt comprises millions of artworks coupled with
extensive metadata such as genre, school, material information, creation period and
dominant color. This makes the dataset extremely multi-relational and, at the same time,
very challenging to perform learning tasks.

For the purpose of comparison with related work, we first perform the artist attribution
task in which we attempt to determine the creator of an artwork based on his/her inter-
relations with artworks, media (e.g., oil, watercolor, canvas etc.) and creation period
(timeframe), along with their intra-relations. To this end we select artworks corresponding
to the most common artists in the collection. Considering each of these data streams -
artworks (I), artist (A), media (M) and their timeframe (T f ) in centuries as a separate
modality, we create the inter-relation hypergraph between them. Subsequently, intra-
relation graphs are created for each of the 4 modalities in the following way:

• GI: Based on color palettes similarity

• GA: Based on the schools the artist belongs to

• GM: Based on the co-occurrence in all artworks

• GT f : Based on the style and genre prevalent in that century

We take a sub-sample of the OmniArt dataset consisting of 10,000 artworks from 2,776
artists in the time period ranging all the way from 8th to 20th century along with 63
prominent media types. On this sampled dataset, we achieve an accuracy of 61.7% for
the artist attribution task. The performance of our model is at par with the benchmark
accuracy of 64.5% [158]. In addition, we conjecture that Hypergraph has an important
advantage – the ability to learn even higher order relations, i.e. 5th, 6th and beyond,
something that we intend proving in future work.

In the particular case of OmniArt, such higher-order relations would include informa-
tion about e.g., artist, school, timeframe, medium, dominant colour use, semantics and
(implicit) social network. For example, Figure 20 shows the well-known “Olive Trees
with Yellow Sky and Sun” painted by Vincent van Gogh in 1889 and Claude Monet’s
masterpiece “Marine View with a Sunset” from 1875. As nicely portrayed by these two
examples, while the two artists exhibit many stylistic similarities, sharing motives and
a time period, their materialization is very different. Influenced by Monet, Van Gogh
changed both his colour palette and coarseness of brushstrokes, so technically, his work
became closer to the French Impressionism. Detecting “tipping points” in the artist’s
opus would require multimedia representations capable of capturing information about
e.g. colour, texture and semantic concepts depicted in the paintings, but also information
about school, social network, relevant locations and timeframe and historical context. We
believe that our proposed framework is a significant and brave step forward in ultimately
deploying multimedia analysis for solving such complex tasks.

5.5 C O N C L U S I O N A N D F U T U R E W O R K

In this paper we propose HyperLearn, a hypergraph-based framework for learning
complex higher-order relationships in multimedia datasets. The proposed distributed
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(a) Vincent van Gogh –
Olive Trees with Yellow
Sky and Sun, 1889

(b) Claude Monet – Marine
View with a Sunset, 1875

Figure 20: Van Gogh (a) and Monet (b) have many stylistic similarities, but their materi-
alization is different. Capturing their similarities, differences and influences requires the
ability to model higher-order relations.

training approach makes this framework scalable to many modalities. We demonstrate
benefits of our approach with regards to both performance and computational time
through extensive experimentation on MovieLens and MIRFlickr datasets with 2 and
3 modalities respectively. To show the flexibility of HyperLearn in encoding a larger
number modalities, we perform experiments on 4th order relations from the OmniArt
dataset. In conclusion, on the examples of very different datasets, domains and use cases,
we demonstrate that HyperLearn can be extremely useful in learning representations
that can capture complex higher order relations within and across multiple modalities.
For future work we plan to test the approach on even higher number of heterogeneous
modalities and further extend this approach to much larger datasets by solving sub-tensors
derived from slicing hypergraph into multiple smaller hypergraphs.
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A DA P T I V E N E U R A L M E S S AG E PA S S I N G F O R I N D U C T I V E
L E A R N I N G O N H Y P E R G R A P H S

Graphs are the most ubiquitous data structures for representing relational datasets and
performing inferences in them. They model, however, only pairwise relations between
nodes and are not designed for encoding the higher-order relations. This drawback is
mitigated by hypergraphs, in which an edge can connect an arbitrary number of nodes.
Most hypergraph learning approaches convert the hypergraph structure to that of a graph
and then deploy existing geometric deep learning methods. This transformation leads to
information loss, and sub-optimal exploitation of the hypergraph’s expressive power. We
present HYPERMSG, a novel hypergraph learning framework that uses a modular two-
level neural message passing strategy to accurately and efficiently propagate information
within each hyperedge and across the hyperedges. HYPERMSG adapts to the data and
task by learning an attention weight associated with each node’s degree centrality. Such a
mechanism quantifies both local and global importance of a node, capturing the structural
properties of a hypergraph. HYPERMSG is inductive, allowing inference on previously
unseen nodes. Further, it is robust and outperforms state-of-the-art hypergraph learning
methods on a wide range of tasks and datasets. Finally, we demonstrate the effectiveness
of HYPERMSG in learning multimodal relations through detailed experimentation on a
challenging multimedia dataset.

6.1 I N T RO D U C T I O N

Modelling the intrinsic properties of many real-world datasets, such as their structure
and connections between the data points, requires relational data structures. Graphs
are a popular data structure for discovering useful information in relational datasets
due to their capability to combine object-level information with the underlying inter-
object relations [187]. Data encountered in many real-world scenarios, however, contain
relationships among objects which are not dyadic (pairwise) but triadic, tetradic or
higher. As an example, consider a research community, where authors publish papers in
groups of more than two. Representing such groups of collaborators using just pairwise
edges specific to ordinary graphs inevitably leads to information loss. In such cases, the
interactions among the objects can be fully modelled by including higher-order relations
instead of pairwise relations only [185]. Some example domains where graphs are already
shown to be insufficiently expressive are social networks [161], video surveillance [193]
and neuroscience [64]. In all such domains the information at group level contributes to
understanding the data and solving tasks. Group level and other higher-order relationships
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Figure 21: Illustration of the difference between traditional methods that require an
intermediate graph representation and our method (HYPERMSG). The left side shows
the reduction of a hypergraph to a graph using clique, star and functional metric
based (arg-max) [53] [191] expansion methods. The clique expansion loses the unique
information associated with the hyperedge defined by the set of nodes {v2, v3}, and it
cannot distinguish it from the hyperedge defined by the nodes {v1, v2, v3}. Star expansion
creates a heterogeneous graph that is difficult to handle using most well-studied graph
methods [195]. Functional metric (in particular arg-max) based expansion [191]
does not exploit the full structural information within hypergraph. On the other hand,
HYPERMSG formulates neural message passing framework on hypergraphs without any
reduction to graphs and directly learns node representations. Hence, it provides a much
better basis for hypergraph representation learning.

can be readily represented with hypergraphs [26], where a hyperedge can connect an
arbitrary number of nodes as opposed to just two nodes in a graph.

Hypergraphs have already been shown to provide a flexible and natural framework to
represent higher-order relations within homogeneous data [206]. Real-world datasets,
however, often consist of objects with multiple modalities. Traditional graph- or
hypergraph-based representations for multimodal data model relations in each modality
independently, ignoring the heterogeneous relations between objects. Yet, such relations
in the multimodal data can provide complementary information revealing fundamental
characteristics of objects and their context. For instance, consider a social media platform
which has users, tweets, hashtags, and images. Representing multimodal relations in the
collective information generated when a user posts a tweet with an image containing
multiple hashtags is infeasible using binary pairwise relations [100] or by considering
tweets, users, and images as non-related channels. Hypergraphs efficiently represent
multimodal objects with higher-order relations inside a channel and among channels
in various domains such as visual arts [10], discussion forums [11], visual question an-
swering systems [87], music recommender systems [32] and protein-protein interaction
networks [92].

Apart from being multimodal, in real-world datasets the objects and relations among
them are dynamically evolving. That is, during training time there will be nodes which
are unseen and relations which are partially observed. Such instances often exist in
scenarios such as finding the most promising target audience for a marketing campaign
or making movie recommendations with new movies appearing all the time. Performing
inference on unseen nodes is challenging and requires an inductive learning framework.

Making inferences in relational datasets represented on a graph or hypergraph requires
means to accurately propagate information across the nodes. Recent advances in geomet-
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ric deep learning [30] resulted in several techniques to do so by using spectral or spatial
convolution on graphs. Spectral graph convolution is based on spectral graph theory [31]
and provides a well-founded mathematical framework for designing translation-invariant
operators (filters). It requires, however, computing eigenvectors of large matrices, which
is computationally expensive. Another shortcoming is that these filters are not localized
i.e. to compute the output of a node, the convolution operation does not consider a
limited number of neighborhood hops. Hence, its complexity grows with the size of
the graph and therefore the method is not scalable to large datasets. This led to works
applying approximation to the spectral graph convolution using K-localized filters which
use a Kth-order polynomial, like in ChebNet [43] and GCN [91]. Such filter localization
techniques can be interpreted as spatial methods that perform message passing on local
neighborhoods which are a certain number of steps away from a node. Due to their effi-
ciency, spatial graph convolution approaches have received most attention in recent years.
The resulting neural network model performs message passing operations informed by
the structure of the graph to distribute encoded feature information among connected
nodes [62] [90]. Message passing has proven to be effective for graph inference, but has
yet to be researched for hypergraphs.

Several approaches for devising message passing in hypergraphs have been proposed
aiming to exploit their expressive power [53, 190, 191]. A common implicit assumption
they make is that a hypergraph is a specific type of ordinary graph. If the assumption
holds, reducing the hypergraph learning problem to that of a graph should suffice.
Strategies to reduce a hypergraph to a graph include transforming the hyperedges into
multiple edges using clique expansion [53] [79] [201], converting to a heterogeneous
graph using star expansion [1], and replacing every hyperedge with a weighted edge
created using a certain predefined metric on the functional properties of the node [191].
By using a graph as an intermediate (proxy) representation, these approaches make
existing graph-based message passing methods [62, 187] applicable to hypergraphs, as
can be seen in the left part of Fig. 21. However, a hypergraph is not a special case
of graph. The opposite is true, graphs are simply a specific type of hypergraph [26],
where the hyperedges are a superset of the pairwise edges. The complex relations in a
hypergraph cannot be viewed as an instantiation of an ordinary graph, thus reducing the
hypergraph problem to that of a graph cannot fully utilize the available information [47].
To address tasks in datasets with higher-order relations, a truly hypergraph-based message
passing formulation is needed that ensures information propagation within and across
hyperedges.

Another major limitation of the existing hypergraph representation learning frame-
works is their inherently transductive nature [191] [15], thus they are inapplicable for
making any inferences on unseen nodes. Often, the injection of new unseen nodes can
lead to the introduction of noisy features in the message passing framework [55]. We
introduce a probabilistic neighborhood sampling approach which acts as a regularizer and
facilitates the proposed inductive learning framework. In a hypergraph, message passing
operation on a node is different from regular graphs. This is because in a hypergraph
the message propagation from the neighborhood of a node is performed at two levels -
within a hyperedge and across hyperedges. Thus unlike regular non-weighted graphs, in
a hypergraph not all neighborhood nodes hold equal importance. To quantify the role of
a node, we identify that the uniqueness of a hypergraph lies in the detailed structure of
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its hyperedges as well as the distribution of nodes across them. In a graph, each edge
is only shared between two nodes. A hyperedge, however, can contain a large set of
nodes, and each node could have different contributions within the hyperedge based on
its relations with neighboring nodes. This is often defined by empirical measures, such as
the degree centrality [83] [23]. Degree centrality captures how popular or active a node
is in a hypergraph. Since such a paradigm is sensitive to the choice of dataset as well
as the task, choosing an empirical measure is not optimal. We introduce a deterministic
neighborhood attention mechanism which quantifies the importance of a node in terms
of its neighborhood and the number of hyperedges to which it belongs. The proposed
attention mechanism is self-adaptive to the choice of task, dataset and to any variation
in the hypergraph structure. Combining such an attention mechanism with our message
passing framework, we propose an inductive learning framework that exploits the full
structure of hypergraphs, without any hypergraph-to-graph conversion, to perform several
tasks such as node classification, link prediction, and hypergraph classification.

The points below highlight the contributions of this paper.

• We present HYPERMSG, a hypergraph learning framework with a two-level
message passing scheme that jointly captures the relations within a hyperedge and
across the hyperedges.

• HYPERMSG is inductive in nature, and facilitates probabilistic sampling of both
seen and unseen nodes, based on their importance in message passing.

• HYPERMSG adapts to the dataset and task by implicitly learning the importance
of neighborhood nodes in representation learning.

• We demonstrate that HYPERMSG outperforms the state-of-the-art methods by
remarkable margins on standard benchmarks consisting of citation networks. In
addition, we show that HYPERMSG is highly efficient in exploring the complex
heterogeneous interactions in multimodal hypergraphs to perform tasks such as
multi-label classification, link prediction and recommendation. The robustness and
general applicability of HYPERMSG is further validated on the task of hypergraph
(brain) classification in an extremely noisy neuroimaging dataset.

6.2 R E L AT E D W O R K

Message passing on hypergraphs aims at learning low-dimensional representations for
signals (features) defined on the nodes. Recently, several methods have been proposed
for message passing on graphs, and deployed for modeling physical systems, learning
molecular fingerprints, predicting protein interfaces, and classifying diseases [207].
However, there is a lack of an accurate message passing framework for hypergraphs.
The biggest challenge in hypergraph-based learning is posed by the high variation in
hyperedge cardinality i.e. the number of nodes in each hyperedge, which limits the
accurate and efficient information propagation from one node to another along the
hyperedges. For better understanding of message passing neural networks, we first
provide a brief overview of some popular graph-based message passing neural networks.
We will then discuss the existing techniques for representation learning on hypergraphs
that are related to our proposed framework HYPERMSG.
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Message Passing in Graphs The general idea behind a graph convolutional neural
network is to define convolution on graphs, where the input is a graph instead of e.g. a
2-D image grid. Methods for performing convolution on graphs can be broadly classified
into spatial (message passing) or spectral methods [30]. As mentioned in the introduction,
the major drawbacks of spectral approaches is their rigidity in generalizing to new graph
structures and their high computational complexity [204, 207]. In this work, we focus
on spatial approaches that use message passing neural networks. The basic framework
of any message passing network takes in a graph with signals (i.e. features) on each
of its nodes as input and learns embeddings for each node by aggregating information
from its neighbors [189]. Message passing neural networks outline a general message
passing framework for learning such an aggregation mechanism on graphs. It passes
information (messages) from one node to another along edges and repeats it in K-steps
to let information propagate through the graph. Several variants of this general approach
have been proposed, such as [62, 63, 66, 91, 107]. Recently, it has been further extended
to heterogeneous graphs in which nodes (and edges) are typed, allowing graphs to
incorporate auxiliary information. Some of these ideas include using attention-based
mechanism such as typed attention [112], neighbour attention [198], vertex-level and
semantic-level attention [178] across different types of nodes or using metapath based
aggregations [57]. Unlike graph-based models with only binary relations, hypergraph
learning models need to explore the higher-order relations in the data [197].

Message Passing in Hypergraphs Since the introduction of learning with hyper-
graphs [206], several such methods have been introduced [59], and successfully deployed
in various tasks, such as link prediction [100], community detection [37] and visual object
tracking [184]. In spectral theory of hypergraphs, methods have been proposed that fully
exploit the hypergraph structure using non-linear Laplacian operators [33, 68]. However,
these methods have similar drawbacks to spectral graph methods with regard to their
computational complexity and scalability. Learning on the hypergraph can also be seen
as the process of message passing along the hypergraph structure in analyzing the struc-
tured data. Emulating a graph-based message passing framework for hypergraphs is not
straightforward since a hyperedge involves more than two nodes which makes the interac-
tions inside each hyperedge complex. Hypergraphs are mathematically represented using
either an incidence matrix or an adjacency tensor. Incidence matrix based representations
of hypergraphs are rigid in describing the structures of higher order relations [101]. On
the other hand, formulating message passing on a higher-dimensional representation of a
hypergraph using adjacency tensors makes it computationally expensive and restricted to
small datasets and uniform hypergraphs [203].

To circumvent the above issues, [53] and [15] reduce a hypergraph to a graph using
clique expansion and perform graph convolutions on them. Further, [79] assume the
initial hypergraph structure is weak, and extend the work of [53] to construct dynamic hy-
pergraphs. Recently proposed HyperGCN replaces a hyperedge with pair-wise weighted
edges between vertices called mediators [191]. The weights are calculated by comparing
the functional properties of neighboring nodes (e.g., using arg-max over them) and
hence lose the structural information within a hypergraph. With the use of mediators,
HyperGCN can be interpreted as an improved variant of clique expansion, and to the best
of our knowledge, is also the state-of-the-art method for all the hypergraph representation
learning methods, where a graph based message passing neural network is eventually
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used. However, it still suffers from the same limitation as the clique expansion [47].
These limitations are further discussed on the example of a Fano plane in the Appendix.
Furthermore, these approaches are inherently transductive and thus, as indicated earlier,
cannot perform inference on unseen nodes. In [136] a generalized hypergraph learning
framework is presented that uses random walks, however its message passing framework
is not robust for heterogeneous hypergraphs and its validity for inductive setting is still
unexplored. None of the above approaches utilize the complete structural information in
the hypergraph, leading to sub-optimal learning performance.

In our preliminary work we introduced HyperSAGE [7], an inductive representation
learning framework for hypergraphs that can exploit their full structure by aggregating
messages in a two-stage procedure. It managed to achieve near state-of-the art perfor-
mance on benchmark datasets. However, it suffers from lack of adaptability to datasets
and structural variation in hypergraphs and poor parallelism. Huang et al. [75] further
built over our proposed HyperSAGE framework to circumvent these issues and generalize
the aggregation approach. Recently, [46] proposed message passing in hypergraphs using
a dual attention mechanism for classifying text in documents by constructing multiple
types of hyperedges (sequential, syntactic and semantic). The proposed message passing
framework combines both types of neighborhood information (within hyperedges and
across hyperedges) separately and thus mitigates the shortfall of hypergraph to graph con-
version. However, the proposed dual attention mechanism uses the functional properties
(i.e. node features) of the hypergraph. This leads to insufficient information propagation
as it fails to quantify the importance of a node with respect to its neighbors within and
across hyperedges, which is an important aspect for capturing the structural properties
of a hypergraph. In this work, we propose HYPERMSG, which eliminates matrix- or
tensor-based formulations in its neural message passing scheme for hypergraphs. It is
further inductive and utilizes all the available information in a hypergraph.

6.3 H Y P E R G R A P H P R E L I M I NA R I E S

In this section, we first introduce some of the preliminary definitions and notations of
hypergraphs which will be used to formulate the HYPERMSG framework.

Definition 1 (Hypergraph). A hypergraphH is represented asH = (V,E,X), where
V = {v1, v2, ..., vN} denotes a set of N nodes and E = {e1, e2, ..., eK} a set of hyperedges,
with each hyperedge comprising a non-empty subset from V. X ∈ RN×d denotes the
feature matrix, with the feature vector xi corresponding to the respective vi column.

The cardinality of any hyperedge el is the number of nodes contained in that hyperedge,
given by |el|. Unlike in a graph, the hyperedges of H can contain different number of
nodes i.e. 1 ≤ |ei| ≤ |V|. Definition 1 makes it clear that graphs are simply a special case
of hypergraphs with a fixed cardinality of 2 for all the edges.

We define three different types of neighborhoods as follows.
Definition 2 (Intra-edge neighborhood). The intra-edge or local neighborhood of a

node vi ∈ V for any hyperedge e ∈ E is defined as the set of nodes v j belonging to e and
is denoted by N(vi, e).
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The intra-edge neighborhood of a node captures the higher order relationships and
provides localized group level information to it. Further, let E(vi) = {e ∈ E|vi ∈ e} be
the set of hyperedges containing node vi. The degree of node vi is thus given by |E(vi)|.

Definition 3 (Inter-edge neighborhood). The inter-edge or global neighborhood of a
node vi ∈ V, is defined as the neighborhood of vi spanning across the set of hyperedges
E(vi) and is given by N(vi) =

⋃
e∈E(vi)N(vi, e).

The inter-edge or global neighborhood of a node captures its global positioning
and gathers information from hyperedges similar to the node. Finally, the condensed
neighborhood parameterized by α gives a subset of nodes within a hyperedge.

Definition 4 (Condensed neighborhood). The condensed neighborhood of any node
vi ∈ V is defined as the sampled set N(vi, e;α) comprising of α nodes from a hyperedge
e ∈ E(vi), if α < |e|, or all nodes in e if α >= |e|.

6.4 P RO P O S E D M O D E L

The main concept behind devising a message passing neural network on hypergraphs is
to aggregate feature information from the neighborhood of a node which spans across
multiple hyperedges with varying cardinality. In this section we propose HYPERMSG, a
framework that performs message passing at two levels for a hypergraph. Further, we
discuss our adaptive framework that implicitly learns the importance of each node in
the representation learning process. Our approach inherently allows inductive learning,
which makes it also applicable on hypergraphs with unseen nodes.

6.4.1 Two-level Message Passing Framework

We propose to interpret the propagation of information in a given hypergraph as a
two-level aggregation problem, where the neighborhood of any node is divided into its
intra-edge neighbors and inter-edge neighbors. This information is present in the form of
signals on each node often referred to as message as mentioned in the previous section.
For message aggregation, we define the aggregation function as a permutation invariant
set function on a hypergraphH = (V,E, X) that takes as input a countable unordered
message set and outputs a reduced or aggregated message of the same dimension as
the original message. Further, for two-level aggregation, let F1(·) and F2(·) denote the
intra-edge and inter-edge aggregation functions, respectively. Schematic representation
of the two functions is provided in Fig. 22. Similar to X, we also define Z ∈ RN×l as the
aggregated feature matrix built using the outputs zi with dimension l from the aggregation
functions. Message passing at node vi can then be expressed as

s1 ← {x j | v j ∈ N(vi, e;α)}, (6.1)

s2 ← {F
(e)

1 (s1) | e ∈ E(vi)}, (6.2)

zi ← xi + F2(s2), (6.3)

where s1 and s2 denote the unordered sets of feature vectors and intra-edge aggregations,
respectively.
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Figure 22: Schematic representation of the two-level message passing scheme of HYPER-
MSG, with aggregation functions F1(·) and F2(·). It shows information aggregation
from two hyperedges eA and eB, where the intra-edge aggregation is from sampled sets of
5 nodes (α = 5) for each hyperedge. The function C(N , E) is used to compute attention
weight C for quantifying the importance of node v j during intra-edge aggregation on eA.
For node vi, xi and zi denote the input and aggregated feature vector, respectively.

To ensure that the expressive power of a hypergraph is preserved or at least the
information loss is minimized, the choice of aggregation function should comply with
certain properties. First, it should capture the features of neighborhood nodes in a manner
that is invariant to permutation of nodes and hyperedges within its neighborhood. This
ensures the final message propagation to a node does not depend on the sequence in which
we pick up its neighbors. Many graph-based methods use aggregation functions, such
as mean and max functions [91]. Mean and max-pooling aggregators are well-defined
multiset functions because they are permutation invariant and these functions learn
different attributes of the neighborhood (max learns distinct elements and mean learns
distributions). These aggregations have proven to be successful for node classification
problems [66, 91]. However, they are not injective and hence have their limitations in
learning unique representations in various cases such as when the nodes have repeating
features [189] or when the features are continuous [40]. There are other non-standard
neighbor aggregation schemes that we do not cover, e.g., weighted average via attention
[176], LSTM pooling [66,127] and stochastic aggregations [181]. We emphasize that our
theoretical framework is general enough to characterize the representational power using
a family of generalized mean aggregation functions. In the future, it would be interesting
to apply our framework to analyze and understand other aggregation schemes.

Property 1 (Hypergraph Isomorphic Equivariance). A message aggregation function
F (·) is equivariant to hypergraph isomorphism, if for two isomorphic hypergraphsH =
(V,E, X), H∗ = (V∗,E∗, X∗), and permulation operator σ, given that H∗ = σ •H ,
and Z and Z∗ represent the aggregated feature matrices obtained using F (·) onH and
H∗ respectively, the condition Z∗ = σ • Z holds.

Secondly, the aggregation function should also preserve the global neighborhood
invariance at the ‘dominant nodes’ of the graph. Here, dominant nodes refer to nodes
that act as hubs in power-law networks, possessing many more connections than their
neighbors [3]. The aggregation function should ideally be insensitive to whether the
provided hypergraph contains a few large hyperedges, or a large number of smaller
ones obtained from splitting them. Generally, a hyperedge would be split in a manner
that the dominant nodes are shared across the resulting hyperedges. In such cases,
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global neighborhood invariance would imply that the aggregated output at these nodes
before and after the splitting of any associated hyperedge stays the same. Otherwise, the
learned representation of a node will change significantly with each split. Based on these
considerations, we define the following properties for a generic message aggregation
function.

Property 2 (Global Neighborhood Invariance). A message aggregation function F (·)
satisfies global neighborhood invariance at any node vi ∈ V for a given hypergraph
H = (V,E, X), if for any hyperedge e ∈ E(vi) being split into multiple hyperedges
without changing N(vi), and zi and z∗i denoting the aggregated feature vectors obtained
before and after splitting, the condition z∗i = zi holds.

Aggregation using Generalized Means. One major advantage of our strategy is that
the message passing module is decoupled from the choice of the aggregation method
itself. This allows our approach to be used with a broad set of generalized means
aggregation functions, a powerful and rich family of aggregation functions that have been
shown to perform well for graph representation learning [102]. The permutation invariant
nature of generalized means makes them satisfy Property 1. Further, we show that with
appropriate combinations of the intra-edge and inter-edge aggregations, Property 2 is
also satisfied.

Mathematically, generalized means can be expressed as Mp =
(

1
n
∑n

i=1 xp
i

) 1
p , where n

refers to the number of elements to aggregate, and p denotes its power. The choice of
p allows providing different interpretations to the aggregation function. For example,
p = 1 denotes arithmetic mean aggregation, p = 2 refers to mean squared estimate
and a large value of p approximates max pooling from the group. Similarly, Mp can be
used for approximating geometric means with p → 0. We use generalized means for
intra-edge as well as inter-edge aggregation. The two functions F1(·) and F2(·) as stated
in Section 6.4.1, for aggregation at node vi are then defined as

F
(e)

1 (s1) =

 1
|N(vi)|

∑
v j∈N(vi,e)

w jx
p
j


1
p

, (6.4)

where, w j =
1

|N(vi, e)|
∗

|E(vi)|∑
m=1

1
|N(vi, em)|


−1

,

F2(s2) =

 1
|E(vi)|

∑
e∈E(vi)

s2
p


1
p

. (6.5)

For Property 2 to hold in in Eq. 6.4 and Eq. 6.5 above, power term p needs to be the
same for F1 and F2. Also, the scaling term w j needs to be added to balance the bias in
the weighting introduced in intra-edge aggregation due to varying cardinality across the
hyperedges. The related mathematical proof is presented in the Appendix.
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6.4.2 Learning the Importance of Nodes

Commonly, the contributions from the neighboring nodes within a hyperedge are
weighted equally through the choice of simple aggregation functions such as mean
and max, among others. Thus, the importance of any node is defined by only its func-
tional characteristics - the values that are contained in its feature vector. However,
hypergraphs also possess a complex structure, and this component is almost unused in
the learning process.

We hypothesize that analyzing the structural information can reveal the importance
of each node and enhance the message passing process. The structural information of a
node v in a hypergraph can be primarily defined by two terms: its global neighbourhood
set N(v) and its hyperedge set E(v). To quantify this information for a node in any
graph, [56] introduced a degree centrality measure which is simply the total number
of edges incident on that node. However, compared to graphs where |N(v)| = |E(v)|,
these two terms can be significantly different for a hypergraph depending on its structure.
Defining empirical degree centrality functions to measure the importance of any node
in hypergraphs was shown to be effective, however, such functions are sensitive to the
choice of dataset and task [83].

We introduce a learnable function to quantify the importance of a node which is
expressed in terms of N and E as C(N , E). For hypergraphs, node importance function
C(N , E) is a complex non-linear mapping. Thus, rather than empirically choosing
a single function, we learn the importance value for each node using a small fully-
connected neural network comprising two hidden layers. For any node v, the output of
C(·, ·), denoted by C, can be interpreted as an attention weight that defines the importance
of that node in the message passing process (see Fig. 22). Let C j denote the attention
weight for node v j ∈ N(vi, e). We conjecture that using C as a weighting term for each
node during message passing can improve the learned node embeddings in a hypergraph
irrespective of dataset or task.

6.4.3 Inductive Learning on Hypergraphs

Inductive learning of nodes is a challenging problem for hypergraphs as it requires
the model to generalize on previously unseen nodes with a diverse set of features and
associated sub-hypergraphs. Most existing approaches are inherently transductive as
they make predictions on nodes in a single, fixed hypergraph. These approaches directly
optimize the node representations using matrix-factorization-based objectives, and thus
do not generalize to unseen data. HYPERMSG tackles this challenge through the use of
a neural message passing framework as described in section 4.1 that learns to generate
embeddings by sampling and aggregating features from a node’s local neighborhood. Our
approach uses a neural network comprising L layers, and feature-aggregation is performed
at each of these layers, as well as across the hyperedges. Algorithm 1 describes the
forward propagation mechanism, which implements the aggregation function introduced
above. At each iteration, nodes first aggregate information from their neighbors within
a specific hyperedge. This is repeated over all the hyperedges across all the L layers.
The trainable weight matrices W l with l ∈ L are used to aggregate information across
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the feature dimension and propagate it through the hypergraph. The representation on
any unseen node can then be obtained by an aggregation process similar to that on seen
nodes.

Algorithm 1: HYPERMSG Inductive Message Passing
Input :H = (V,E, X); depth L; weight matrices W l for l = 1 . . . L;

non-linearity σ; intra-edge aggregation function F1(·); inter-edge
aggregation function F2(·); node importance function C(·, ·)

Output :Node embeddings zi| vi ∈ V

h0
i ← xi ∈ X | vi ∈ V

for l = 1 . . . L do
hl

i ← hl−1
i ; s2 = {∅}

for e ∈ E(vi) do
s1 ← {C(N(v j), E(v j)) ⊙ x j,l−1 | v j ∈ e}
s2 ← F1(s1)

end
hl

i ← hl
i + F2(s2)

hl
i ← σ(W

l(hl
i/||h

l
i||2))

end
zi ← hL

i | vi ∈ V

Probabilistic Sampling-based Aggregation. The modular framework of HYPER-
MSG provides flexibility in adapting the message aggregation module to fit a desired
computational memory. This is achieved through aggregating information from only a
condensed neighborhood set (Definition 4) N(vi, e;α) instead of the full neighborhood
N(vi, e). We propose to apply sub-sampling only on the nodes from the training set, and
use information from the full neighborhood for the test set. The advantages of this are
twofold. First, a reduced number of samples per aggregation at training time reduces
the memory capacity requirement. Second, similar to dropout [155], it serves to add
regularization to the optimization process. Using the full neighborhood on test data
avoids randomness in the test predictions, and generates consistent output.

For the sampling process, we choose to perform probabilistic selection of the nodes
for aggregation based on their importance in the hypergraph using the learned attention
weights as described in section 4.2. The probability P j that the node v j gets selected in
the sampled subset at any iteration is then given by

P j =
C j∑|N(vi,e)|

j=0 C j

(6.6)

implying that the neighbor node judged as more important for vi should be sampled more
often.

Time complexity analysis. The time complexity for training HYPERMSG isO(T |E|(1+
h(d + c))) where, T is the total number of training iterations, d denotes the dimension-
ality of the input feature vector, h is the number of hidden layers, and c is the number
of classes. Thus, the time complexity of HYPERMSG is at par with HGNN [53] and
HyperGCN [191], with an added advantage of probabilistic sampling by using α that can
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reduce the memory constraints while also acting as a regularizer. Additional details are
provided in the supplementary material.

6.5 E X P E R I M E N T S

We perform a variety of experiments to evaluate HYPERMSG and compare its perfor-
mance with other hypergraph based learning methods. Firstly, the performance of HY-
PERMSG is evaluated on the task of semi-supervised node classification in hypergraphs
through several experiments on representative benchmark datasets. This experiment
is performed to test the node-level representative learning capability of HYPERMSG
and analyze all its possible variants. The results are compared with the state-of-the-art
hypergraph representation learning methods. Secondly, we study the stability of HYPER-
MSG by proposing the task of hypergraph classification on an extremely noisy brain
neuroimaging dataset. Finally, to show the efficiency of HYPERMSG in performing mul-
timodal learning, we compare its performance with recent hypergraph learning methods
on a social multimedia dataset. We further show the advantage of using our inductive
framework to perform node classification of previously unseen nodes in the multimedia
dataset.

6.5.1 Semi-supervised Node Classification in an Academic Network

Experimental setup. We use the standard co-citation and co-authorship network datasets:
CiteSeer, PubMed, Cora [146], DBLP [141] and arXiv [38] for this experiment where the
task is to predict the topic to which a document belongs (multi-class classification). The
input feature vector xi corresponds to a bag of words, where xi, j ∈ xi is the normalized
frequency of occurrence of the jth word. Further, for all experiments, we use a two-
layered neural network. All models are implemented in Pytorch and trained using Adam
optimizer [89]. Additional implementation details are provided in the Appendix.

Significance of learning the importance of nodes. For a better understanding on the
significance of learning a node importance function for hypergraphs, we show example
distributions of |N(v)|/|E(v)| for CORA co-citation and co-authorship datasets (see Fig.
23). For the CORA co-citation dataset, |N(v)|/|E(v)| is mostly close to 1. For this
data, we found that the performance gain with message passing using HYPERMSG over
the graph-based model is relatively small. On the contrary, for CORA co-authorship,
the distribution of |N(v)|/|E(v)| is right-skewed, and has values significantly higher
than 1 as well. For this data, HYPERMSG outperforms graph-based models for node
classification by more than 5%. This experiment illustrates that even with the same
functional characteristics (features) of nodes, the structural information encoded within a
hypergraph plays a key role in learning better node embeddings. Additional analysis is
presented in the Appendix.

Effect of generalized mean aggregations. We study here the effect of different
choices of p in the proposed two-level aggregation function on the performance of
HYPERMSG. Fig. 24 shows the accuracy scores obtained for 4 different choices of p
and α on DBLP and Pubmed datasets. Across all values of p, we observe that p = 1
works best for both datasets. For other choices of p, the performance of the model is
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Figure 23: Distribution of |N(v)|/|E(v)| values across CORA co-citation and CORA-co-
authorship datasets.

Table 6: Performance scores (in terms of accuracy %) for various hypergraph learning
methods on co-authorship or co-citation datasets. The term ‘Hom.’ denotes homogeneous
networks that use either of co-citation and co-authorship datasets, and ‘Het.’ refers to
those using the combination of both datasets.

Data Method Cora DBLP arXiv Pubmed Citeseer

MLP + HLR [191] 63.1 ± 1.8 61.6 ± 2.1 61.7 ± 2.3 69.1 ± 1.5 62.3 ± 1.6

HGNN [53] 66.3 ± 2.8 73.8 ± 2.1 68.1 ± 2.7 68.1 ± 3.5 62.6 ± 1.6

Hom. HyperGCN [191] 69.7 ± 3.7 74.2 ± 5.2 68.2 ± 3.6 73.4 ± 3.8 62.7 ± 4.6

UniGAT [75] 75.0 ± 1.1 87.8 ± 1.1 77.2 ± 1.3 74.6 ± 1.2 63.8 ± 1.5

UniGCN [75] 75.3 ± 1.3 88.0 ± 1.1 77.3 ± 1.8 74.1 ± 1.0 63.7 ± 1.5

Het.

HetGNN [198] 72.6 ± 1.3 77.9 ± 2.0 74.5 ± 2.0 - -

HAN [178] 72.8 ± 1.9 77.9 ± 1.4 75.0 ± 2.2 - -

MAGNN [57] 73.3 ± 1.5 78.3 ± 1.8 75.8 ± 1.8 - -

MPNN-R [190] 74.7 ± 1.5 78.6 ± 1.7 77.7 ± 1.7 - -

Hom.
HYPERMSG (non-adaptive, ours) 74.9 ± 1.0 80.4 ± 1.1 78.6 ± 1.4 76.2 ± 1.6 66.4 ± 1.8

HYPERMSG (ours) 77.7 ± 1.2 85.7 ± 1.1 79.1 ± 1.6 77.1 ± 1.2 66.8 ± 1.6

reduced. For α = 2, performance of the model seems to be independent of the choice of
p for both the datasets. A possible explanation could be that the number of neighbors is
very small, and change in p does not affect the propagation of information significantly.

Effect of probabilistic sampling. We study here the effect of number of samples per
aggregation on the performance of the model (Fig. 24). For DBLP, model performance
increases with increasing value of α. However, for Pubmed, we observe that performance
improves up to α = 8, but then a slight drop is observed for larger sets of neighbors.
Note that for Pubmed, the majority of the hyperedges have cardinality less than or equal
to 10. This means that for α = 16, information will be aggregated from almost all the
neighbors, thereby involving almost no random sampling. Stochastic sampling of nodes
can serve as a regularization mechanism and reduce the impact of noisy hyperedges. This
is possibly the reason that performance for α = 8 is higher than for 16.

Performance comparison with existing methods. In Table 6, we compare the
results of HYPERMSG with state-of-the-art hypergraph learning methods. Among these,
the homogeneous networks use either the co-citation or co-authorship datasets. The
heterogeneous networks combine information from both co-citation and co-authorship
datasets. For HYPERMSG, we use homogeneous network for a fair comparison. We
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Figure 24: Performance of HYPERMSG for different choices of generalized means (p)
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Figure 25: Accuracy scores for HYPERMSG and HyperGCN obtained for different
train-test ratios.

report the results with arithmetic mean p = 1 using the complete neighborhood i.e.,
α = |e|. To show the significance of learning importance of nodes, we report the results
for HYPERMSG as well as its non-adaptive variant in Table 6. For all models, 10 data
splits over 8 random weight initializations are used, totalling 80 experiments per method
for every dataset. The data splits are the same as in HyperGCN and are described in the
Appendix. Note that for Pubmed and Citeseer dataset, the co-authorship information
does not exist and hence, the heterogeneous models are not applicable.

From Table 6, we observe that both variants of HYPERMSG outperform the ho-
mogeneous networks by remarkable margins. Interestingly, our implementations of
HYPERMSG with only homogeneous information are able to outperform the heteroge-
nous networks that use information from two different sources. This clearly demonstrates
that HYPERMSG exhibits strong representative power and is able to extract information
from the hypergraphs at levels beyond the existing baselines.

Stability analysis. We further study the stability of our method in terms of the
variance observed in performance for different train-test split ratios. We compare the
results with HyperGCN under similar settings, as it is the state-of-the-art method of a
broad set of hypergraph learning methods which are based on some sort of hypergraph
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Table 7: Performance of HYPERMSG and its variants on nodes which were part of the
training hypergraph (seen) and nodes which were not part of the training hypergraph
(unseen).

DBLP Pubmed Citeseer Cora (citation)

Method Seen Unseen Seen Unseen Seen Unseen Seen Unseen

MLP + HLR 64.5±2.5 58.7±3.1 66.8±2.4 62.4±3.5 60.1±1.2 58.2±1.9 65.7±2.3 64.2±2.5
UniGCN 88.5±1.2 82.6±2.2 83.7±1.1 83.3±1.3 71.2±1.2 70.6±1.9 74.3±2.3 71.5±2.5

HYPERMSG (α = 4) 84.7±2.8 72.2±2.9 79.2 ± 3.1 70.4 ± 2.6 69.3±1.9 68.8±2.9 74.8 ± 1.5 73.2 ± 2.0
HYPERMSG (α = 8) 87.5±1.9 77.7±1.1 84.4±1.4 83.5±1.2 70.8±1.8 69.6±1.6 75.4 ± 0.8 74.6 ± 1.7
HYPERMSG (α = 16) 88.0±1.3 81.5± 1.1 83.6±0.8 81.7±0.9 71.7±0.8 70.6±1.0 75.1 ± 0.5 74.8 ± 1.3

to graph conversion. Fig. 25 shows results for the two learning methods on 5 different
train-test ratios. We see that the performance of both models improves when a higher
fraction of data is used for training, and the difference in their performances decreases
at the train-test ratio of 1/3. However, for smaller ratios, we see that HYPERMSG
outperforms HyperGCN across all datasets. Further, the standard deviation for the
predictions of HYPERMSG is lower than that of HyperGCN. Clearly, this implies
that HYPERMSG is able to better exploit the information contained in the hypergraph
compared to HyperGCN, and can thus produce more accurate and stable predictions.
Results of the experiment on Cora and Citeseer, which exhibit a similar trend, can be
found in the Appendix.

Classification of unseen nodes. To test the performance of HYPERMSG on unseen
nodes, we create inductive learning datasets for DBLP, Pubmed and Citeseer. To do
so, we split each dataset into a ratio of 1:3:1 for the training, validation (seen) and test
(unseen) sets, respectively. To obtain the unseen test set, we break the hypergraph into
two sub-hypergraphs. Note that this splitting leads to several node connections being
disregarded as well as a relatively sparse test hypergraph. This can induce noise in the
learning process, which we tackle by employing our probabilistic sampling mechanism
in message passing. We show that by capturing all the structural and functional properties
of a hypergraph, HYPERMSG performs better than the other models.

Table 7 presents the performance scores of HYPERMSG for different choices of α. To
the best of our knowledge, no competitive baseline inductive learning method existed
before our preliminary work HyperSAGE [7] which introduced a two-level message
aggregation framework. Recently, [75] further extended the two-level message aggrega-
tion framework and proposed a set of inductive learning methods. In this experiment,
we compare the performance of HYPERMSG with the base MLP+HLR approach and
UniGCN [75] as a reference. A general observation is that HYPERMSG works well for
unseen nodes and significantly outperforms the other models except in the case of DBLP.
Further, the difference between performance scores for seen and unseen nodes is stable
across all datasets. Based on these observations, it can be concluded that HYPERMSG
works well in an inductive setting, i.e. on unseen nodes, as well.
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Figure 26: Example slices of a brain sample from the autism neuroimaging data [41] for
the three planes showing the construction of a hypergraph.

Table 8: Performance scores for HYPERMSG and baseline hypergraph learning methods
for the task of brain classification for autism spectral disorder based on neuroimaging
data.

Method AUC-ROC

HGNN [53] 62.5 ± 4.9
HyperGCN [191] 59.2 ± 5.8
HYPERMSG (non-adaptive, ours) 64.3 ± 4.4
HYPERMSG (ours) 67.2 ± 5.3

6.5.2 Hypergraph classification on neuroimaging data

To demonstrate the generality of HYPERMSG, we use it on the task of hypergraph
classification. For performing hypergraph classification, the model needs to integrate the
learned features from each node in a way that the combined features are significantly
dissimilar across hypergraphs. This makes hypergraph classification a challenging task as
compared to the previous node classification tasks. Further, to also study the robustness
of the proposed model under noisy scenarios, we choose an extremely noisy brain neu-
roimaging dataset [41], where each brain image is a hypergraph. It involves classification
of control subjects for autism spectrum disorder (ASD) using 4D resting-state func-
tional magnetic resonance imaging (fMRI) data. Typically, an fMRI sample comprises
about 20,000 voxels with 300 time points, making it extremely high-dimensional with a
significant level of inherent noise [51, 134].

Some earlier methods have sought to mitigate this problem through aggregating
information along one of the dimensions, thus leading to a 3D volume [49, 169]. Other
approaches involve summarization of the data as cross-correlation matrix between macro
regions of the brain [9, 135]. Although these solutions simplify data handling, they come
at the expense of significant information loss. Hypergraphs can be used to handle this
task without any such approximations. An example representation of a brain hypergraph
is shown in Fig. 26. More details about the processing steps and data preparation are
provided in the Appendix.

Table 8 shows the performance scores for the various hypergraph-based methods. Due
to class imbalance in the dataset, we use AUC-ROC to measure the performance. We
see that both variants of HYPERMSG outperform HGNN, HyperGCN and UniGCN
methods, with our adaptive variant showing an improvement of around 5% over HGNN.
The results show the robustness and stability of HYPERMSG in utilizing the information
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Figure 27: An example of the proposed multimodal hypergraph analysis on the Flickr
dataset. The input to the model is an image-tag hypergraph (left) where each image is
represented on a node and the hyperedges correspond to the tags associated with the
images. The goal is to classify an image into its respective class which can be the ground
truth labels in case of Task 1, users in case of Task 2 and groups in case of Task 3. Unlike
previous methods such as [12], HYPERMSG can perform inferences on unseen images
as well.
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Figure 28: Task 1 (Multi-Label Image Classification) Detailed performance comparison
in terms of Average Precision over 18 concepts on the MIRFlickr dataset

within hypergraphs. The large variance observed in performance for all the methods can
be attributed to the low signal-to-noise ratio of the dataset.

6.5.3 Multimodal Hypergraph Analysis

Social networks are rich with multimodal information and learning an effective represen-
tation for the entities of interest in them, such as users, images and text, has gained a great
attention in different applications. Examples include node classification [27, 119], link
prediction [100, 110], community detection [11, 98], and network visualization [54, 163].
In this section, we evaluate the performance of HYPERMSG on MIR Flickr [76], a social
multimedia dataset commonly used for multimodal learning on hypergraphs [10,12,188].
Experimental setup. The MIR Flickr dataset contains heterogeneous entities and
relationships among them. In particular, the dataset consists of 25,000 images (I) from
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(a) Task 2: Image-User Link Prediction
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(b) Task 3: Group Recommendation

Figure 29: Receiver Operating Characteristics (ROC) curve showing the performance of
the models on (a) Image-User Link Prediction and (b) Group Recommendation. On both
tasks HYPERMSG consistently outperforms alternative multimodal hypergraph learning
methods.

Flickr posted by 6,386 users (U) to 10,575 groups (G) and annotated with over 50,000
user-provided tags (T ). The dataset also provides manually-created ground truth image
annotations at the semantic concept level. There are 25 such unique concepts in the
dataset. Similar to the related multimedia works [10, 108], we remove noisy tags occur-
ring less than 50 times and obtain a vocabulary consisting of 457 tags. Accordingly, 18
concepts are preserved and utilized to validate the performance in our experiments. In
this work, we follow [12] as a testbed for demonstrating multimodal learning capabilities
of HYPERMSG by performing 3 types of tasks: Task 1: Multi-Label Image Classification,
Task 2: Image-User Link Prediction and Task 3: Group Recommendation.

Hypergraph Construction We create a hypergraph where each node represents an
image and the hyperedges (relations between images) are formed using the tags, similar
to our previous work [12]. For all the three tasks hyperedges correspond to the image-
tag relationships i.e. a hyperedge is constructed among images sharing a common
tag. Subsequently, each image is associated with ground truth labels, users and groups
respectively for the corresponding three tasks. Figure 27 shows the image-tag hypergraph
(left) and the predicted classes (right) i.e. the ground-truth labels in case of Task 1, users
in case of Task 2 and groups in case of Task 3.

Performance comparison with existing methods. We compare the performance
of our proposed HYPERMSG model with the following hypergraph learning methods:
HyperGCN [191], HGNN [53], HyperLearn [10] and HGDL [12]. For a fair and thorough
comparison, we conduct the experiments using only structural information and hence
we assign identity features to each image (node of the hypergraph). In the case of
Task 1, we provide a detailed performance analysis on each of the concepts. We report
the performance of our proposed HYPERMSG approach and the alternatives in terms
of Average Precision (AP), a standard evaluation measure used for multi-label image
classification benchmarks. For the other two tasks, we combine the classification scores
for all the users/groups and plot their respective Receiver Operating Characteristics (ROC)
curves. The ROC curve depicts how well a model is able to predict the presence/absence
of a class among images with the corresponding metadata. Figure 28 shows that both
variants of HYPERMSG consistently outperform the other hypergraph learning methods
in Task 1, i.e. classifying images into the 18 concepts. The results of this experiment
suggest that our proposed approach is more effective in modeling social image-tag
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Table 9: Average precision of HYPERMSG and baseline hypergraph learning methods
for the task of multi-label image classification on MIR Flickr dataset on both seen and
unseen nodes.

Method Seen Unseen

MLP + HLR 0.64 ± 1.3 0.61 ± 1.4
UniGCN 0.70 ± 1.1 0.67 ± 1.3
HYPERMSG (non-adaptive, ours) 0.70 ± 1.1 0.68 ± 1.3
HYPERMSG (ours) 0.73 ± 0.9 0.69 ± 1.1

relationships than the state-of-the-art alternatives. The advantage of HYPERMSG in
learning multimodal relations as compared to the other hypergraph methods is further
confirmed by the ROC curves shown in Figure 29 for Task 2 and Task 3. In all three
experiments we observe that the adaptive version of HYPERMSG utilizing attention-
based mechanism comes out as the best performer. We hypothesize that this can be
attributed to the significance of global and local neighborhoods in social multimedia
networks where the nodes that have many connections (high-degree nodes) tend to be
connected to the other nodes with many connections, while they are surrounded by many
small clusters of low-degree nodes [123].

Inductive Learning. To evaluate the performance of HYPERMSG on unseen nodes,
we perform multi-label image classification on the MIR Flickr dataset. For this ex-
periment, we include the features of the images as well, which we extract from the
penultimate layer of a pre-trained VGG-16 network [151]. Similar to Section 6.5.1, we
compare our method with inductive learning methods, MLP+HLR and UniGCN and
report the average precision (AP) scores averaged over all the classes. We split the dataset
into the training, validation (seen) and test (unseen) samples according to a 1 : 3 : 1
ratio. To obtain the unseen test set, we break the hypergraph into two sub-hypergraphs,
ensuring that the training set contains at least one image from each class. Table 9 shows
that the HYPERMSG performs better than the alternatives on both seen and unseen nodes,
while also producing a lower standard deviation in the performance level.

6.6 C O N C L U S I O N

In this paper, we have presented HyperMSG, a two-level neural message passing frame-
work for inductive learning on hypergraphs. HyperMSG fully utilizes the inherent
higher-order relations in a hypergraph structure without reducing it to an intermediate
graph representation. It adaptively learns the importance of each node during the learn-
ing process, thereby improving the message passing process. Through experiments on
several representative datasets, we have shown that HyperMSG outperforms the existing
methods for hypergraph learning. We have demonstrated that HyperMSG generates
stable predictions for very sparse sampling as well as when the nodes are unseen during
the training process. From the results on the challenging task of brain image classification
for autism, we conclude that HyperMSG yields accurate and robust results in hyper-
graph classification even on extremely noisy time-series datasets. Finally, HyperMSG is
suitable for performing mutimodal representation learning tasks and can outperform all
existing hypergraph based learning methods on information rich multimedia data.
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7

C O N C L U S I O N S

7.1 T H E S I S S U M M A RY

This thesis investigates the potential of hypergraphs for capturing higher-order relations between
objects in a multimodal dataset. These relations are often sub-optimally represented by pairwise
connections used in a graph. Hence, in order to unlock the full potential of relational information
within a multimodal dataset, this thesis proposes several geometric deep learning approaches for
capturing and learning higher-order relations.

Chapter 2 focuses on determining the degree to which deep learning on hypergraphs can
exploit higher-order relations in a multimodal dataset and make predictions solely by capturing
relational information among the objects. This is a challenging problem as the significance of
capturing these relations grows rapidly with the increase in the number of objects. Traditional
graph-based representation of these relations leads to a loss in information, as it does not capture
higher-order relations. The chapter investigates the advantage of using a hypergraph over a graph
in representing multimodal datasets. To this end we propose a geometric deep learning framework
which truly captures relational information between objects and learns representations of these
objects. The proposed representation learning approach explores the potential of hypergraph
topology, without looking at the content of the nodes. We demonstrate through experiments that a
hypergraph-based representation is the most efficient way to build a model for learning the same
volume of information in a relational dataset as compared to a graph.

Chapter 3 proposes a framework that amalgamates the content of an object into the hypergraph
learning framework proposed in Chapter 2. We show that incorporating content-based analysis
can further enhance the representation learning capabilities of a hypergraph model and provide
flexibility in performing several tasks. This chapter paves the way forward for combining the
content of an object with its relations using a hypergraph. As a case study, we perform an analysis
of a violent online political extremism discussion forum, which poses major challenges for
domain experts. These challenges arise from the complexity of relations and interactions between
the users of the forum and the difficulty in understanding the content they share in the form of text,
images and videos. We demonstrate the generalizability and flexibility of our hypergraph learning
framework in jointly modeling content with relations and conducting extensive experimentation
around four practical use cases.

Chapter 4 focuses on the increasingly relevant challenge of interactive deep learning. It aims
at designing algorithms that can facilitate training of deep learning models with a human expert
in the loop. We propose a hypergraph-based methodology HYPER-MATRIX, that can overcome
the rigidity of geometric deep learning models in adapting to any structural change in terms of
addition or removal of edges in a hypergraph structure. In real world scenarios, these structural
changes can occur with evolving relations between objects over time. We evaluate our approach
in a case study and through formative evaluation with law enforcement experts using real-world
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communication data. The results show that our approach surpasses existing solutions in terms of
scalability, interactivity and accuracy.

Chapter 5 examines the problem of scaling hypergraph learning models to large-scale datasets
with many modalities. In this chapter, we propose HYPERLEARN, a hypergraph-based framework
which uses a distributed training approach for learning complex higher-order relations. Adding
new modalities to HYPERLEARN requires only an additional GPU unit, keeping the computational
time unchanged, which brings representation learning to truly multimodal datasets. Through
extensive experiments, we demonstrate benefits of our approach with regards to both accuracy
and computational time through extensive experimentation.

Finally, Chapter 6 addresses the major limitation of existing hypergraph learning frameworks -
their inherently transductive nature. This implies that these methods can only perform inference
on objects that were present in the hypergraph at training time, and fail to infer on previously
unseen objects. The transductive nature limits the ability of existing approaches to adapt to
any structural change in terms of addition or removal of nodes and edges in hypergraphs. In
this chapter, we propose HYPERMSG that paves the way for an inductive learning solution for
learning on hypergraphs. HYPERMSG can perform inferences on previously unseen nodes, and
can thus be used to model evolving hypergraphs. It comprises a message passing scheme which is
capable of jointly capturing the intra-relations (within a hyperedge) as well as the inter-relations
(across hyperedges) between objects (nodes). Through quantitative experiments on several
representative datasets such as citation networks, social multimedia networks and a neuroimaging
dataset, we show that HYPERMSG outperforms the existing methods for hypergraph learning.
Further, we conclude that HYPERMSG yields accurate and robust results for multiple tasks and
is thus suitable for performing multimodal representation learning on constantly evolving real
world datasets.

7.2 R E FL E C T I O N A N D F U T U R E W O R K

Given that the field of geometric deep learning is still in its early years, we view this thesis as
early work on the topic of deep learning on hypergraphs. We have made the following three
distinct contributions to the topic:

• An iterative learning framework that connects matrix and tensor completion with deep
learning for capturing higher-order relations using a hypergraph. We introduced methods to
exploit relational information between objects in multimodal datasets and perform several
tasks such as classification, link prediction and recommendation. We show the advantage
of using hypergraphs over graphs to capture both the pair wise and high-order relations
among objects, yielding more and without any information loss compared to graphs.

• An interactive learning framework for incorporation of expert knowledge and seamless
refinement of hypergraph models. The proposed approach can be directly used in rele-
vance feedback and active learning scenarios in multimedia analytics systems, and can
accommodate any structural changes of a hypergraph.

• An inductive learning framework that uses a modular two-level neural message passing
strategy on hypergraphs to accurately and efficiently propagate information within a
hypergraph. The proposed approach allows inference on previously unseen nodes. It can
accurately quantify both the local and global importance of a node, thus capturing the
structural properties of a hypergraph.

Bearing in mind these contributions, we believe the thesis constitutes the first complete
framework for multimodal deep learning on hypergraphs: we can now deploy an efficient,
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scalable, generic and inductive learning approach for a multimodal dataset represented on a
hypergraph.

Much of this thesis involves multiple modalities. In particular, this thesis emphasized the
importance of higher-order relations among objects in multimedia datasets. These relations are
defined by either using the common intrinsic (content-based) characteristics of the objects or by
grouping them based on their metadata derived from another modality. Many questions are still
open, and we believe geometric deep learning for multimedia analytics is the way forward.

The first major question that we will like to investigate in future research is extending the
message passing mechanism to objects belonging to different types of modalities. This is
a challenging task as objects (nodes) belonging to different modalities contain features with
dissimilar nature and distributions. This makes the flow of message across objects non-uniform
and unstable. Information flow by message passing between objects belonging not only to the
same modality, but also between modalities, will further improve the learned representations,
making the model versatile and a truly intelligent multimedia analytics tools.

Along other lines, we can turn ourselves to the future of using hypergraphs for video analytics.
Even though many recent works have introduced hypergraphs for capturing long term spatio-
temporal dependencies for multi-object tracking in videos [184, 193], further research on the use
of hypergraphs for video intelligence in scenarios with overlapping relations between objects
is still inadequate. Some of the prominent directions of research where a hypergraph structure
can be used are - (a) in grouping of points over time in point cloud object tracking for visually
similar objects encountered in video surveillance applications, (b) in combining actions, images
and background scenes for action recognition especially in ambiguous videos and (c) in aiding
long-term multi-object trackers with valuable long-term group based relations among objects.

Overall, while the road of multimodal learning is still wide open, as is the role of hypergraphs
in the journey on it, we believe this thesis significantly contributes to the first kilometers in
developing a multimodal deep learning framework for hypergraphs. We hope that the comprehen-
sive frameworks presented in this thesis empower further research advancing the capabilities of
hypergraphs in multimodal learning for insight gain, in turn also advancing the field of geometric
deep learning.
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M U LT I M O DA L D E E P L E A R N I N G O N H Y P E R G R A P H S

Wij vatten dit proefschrift samen door de belangrijkste bevindingen en onderzoeksvragen van de
vorige hoofdstukken nogmaals lands te gaan.

Hoofdstuk 2 richt zich op het bepalen van de mate waarin deep learning op hypergrafen hogere-
orde relaties in een multimodale dataset kan benutten en voorspellingen kan doen, uitsluitend
door relationele informatie tussen de objecten vast te leggen. Dit is een uitdagend probleem,
aangezien het belang van het vastleggen van deze relaties snel groeit wanneer het aantal objecten
toeneemt. Traditionele, op graaf-gebaseerde weergave van deze relaties leidt tot een verlies aan
informatie omdat het geen hogere-orde relaties vastlegt. Dit hoofdstuk onderzoekt het voordeel
van het gebruik van een hypergraaf boven een graaf voor het weergeven van multimodale datasets.
Hiertoe stellen we een geometrisch deep learning-raamwerk voor dat echt relationele informatie
tussen objecten vastlegt en representaties van deze objecten leert. De voorgestelde benadering
voor het leren van representaties verkent het potentieel van hypergrafietopologie, zonder naar
de inhoud van de knooppunten te kijken. We laten door middel van experimenten zien dat een
hypergraaf-gebaseerde representatie de meest efficiënte manier is om een model te bouwen voor
het leren van dezelfde hoeveelheid informatie in een relationele dataset als in een graaf.

Hoofdstuk 3 stelt een raamwerk voor dat de inhoud van een object samenvoegt in het
hypergraaf-leerraamwerk dat in hoofdstuk 2 is voorgesteld. We laten zien dat het opnemen
van op inhoud gebaseerde analyse de representatieleermogelijkheden van een hypergraaf- model
verder kan verbeteren en flexibiliteit kan bieden bij het uitvoeren van verschillende taken. Dit
hoofdstuk maakt de weg vrij voor het combineren van de inhoud van een object met zijn relaties
met behulp van een hypergraaf. Als case study voeren we een analyse uit van een gewelddadig
online discussieforum over politiek extremisme, dat grote uitdagingen vormt voor domeinexperts.
Deze uitdagingen komen voort uit de complexiteit van relaties en interacties tussen de gebruikers
van het forum en de moeilijkheid om de inhoud die ze delen in de vorm van tekst, afbeeldingen en
video’s te begrijpen. We demonstreren de generaliseerbaarheid en flexibiliteit van ons hypergraaf-
leerraamwerk door gezamenlijk inhoud te modelleren met relaties en uitgebreide experimenten
rond vier praktische use- cases.

Hoofdstuk 4 richt zich op de steeds relevantere uitdaging van interactief deep learning. Het
is gericht op het ontwerpen van algoritmen die de training van deep learning-modellen kunnen
vergemakkelijken met een menselijke expert in het proces. We stellen een hypergraaf-gebaseerde
methodologie HYPER-MATRIX voor, die de starheid van geometrische deep learning-modellen
kan overwinnen bij het aanpassen aan elke structurele verandering in termen van toevoeging of
verwijdering van randen in een hypergraaf-structuur. In real- world scenario’s kunnen deze struc-
turele veranderingen optreden met veranderende relaties tussen objecten in de tijd. We evalueren
onze aanpak in een case study en door formatieve evaluatie met wetshandhavingsexperts met
behulp van real-world communicatiegegevens. De resultaten laten zien dat onze aanpak bestaande
oplossingen overtreft op het gebied van schaalbaarheid, interactiviteit en nauwkeurigheid.

Hoofdstuk 5 onderzoekt het probleem van het schalen van hypergraaf-leermodellen naar
grootschalige datasets met veel modaliteiten. In dit hoofdstuk stellen we HYPERLEARN voor,
een op hypergrafen gebaseerd raamwerk dat een gedistribueerde trainingsbenadering gebruikt
voor het leren van complexe hogere-orderelaties. Het toevoegen van nieuwe modaliteiten aan
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HYPERLEARN vereist slechts een extra GPU-eenheid, waardoor de rekentijd ongewijzigd blijft,
wat representatieleren naar echt multimodale datasets brengt. Door middel van uitgebreide experi-
menten demonstreren we de voordelen van onze aanpak met betrekking tot zowel nauwkeurigheid
als rekentijd door middel van uitgebreide experimenten.

Tot slot gaat hoofdstuk 6 in op de belangrijkste beperking van bestaande hypergraaf- leer-
raamwerken - hun inherent transductieve aard. Dit houdt in dat deze methoden alleen geëvalueerd
kunnen worden op objecten die aanwezig waren in de hypergraaf tijdens de trainingstijd, en
er niet in slagen om conclusies te trekken over voorheen onzichtbare objecten. De transduc-
tieve aard beperkt het vermogen van bestaande benaderingen om zich aan te passen aan elke
structurele verandering in termen van toevoeging of verwijdering van knooppunten en randen
in hypergrafen. In dit hoofdstuk stellen we HYPERMSG voor dat de weg vrijmaakt naar een
inductieve leeroplossing voor het leren op hypergrafen. HYPERMSG kan gevolgtrekkingen
uitvoeren op voorheen onzichtbare knooppunten en kan dus worden gebruikt om evoluerende
hypergrafen te modelleren. Het omvat een schema voor het doorgeven van berichten dat in staat
is om de onderlinge relaties (binnen een hyperrand) en de onderlinge relaties (over hyperranden)
tussen objecten (knooppunten) gezamenlijk vast te leggen. Door kwantitatieve experimenten op
verschillende representatieve datasets zoals citatienetwerken, sociale multimedianetwerken en
een neuroimaging-dataset, laten we zien dat HYPERMSG beter presteert dan de bestaande meth-
oden voor hypergraaf-leren. Verder concluderen we dat HYPERMSG nauwkeurige en robuuste
resultaten oplevert voor meerdere taken en dus geschikt is voor het uitvoeren van multimodaal
representatieleren op constant evoluerende real-world datasets.

Hoewel de weg naar multimodaal leren nog steeds openligt, evenals de rol van hypergrafen
in de reis hierover, geloven we dat dit proefschrift een significante bijdrage levert aan de eerste
kilometers bij het ontwikkelen van een multimodaal deep learning-raamwerk voor hypergrafen.
Dit proefschrift vormt een compleet raamwerk voor multimodaal deep learning op hypergrafen:
door een efficiënte, schaalbare, generieke en inductieve leerbenadering voor te stellen voor een
multimodale dataset weergegeven op een hypergraaf. We hopen dat de uitgebreide kaders die in
dit proefschrift worden gepresenteerd, verder onderzoek mogelijk maken dat de mogelijkheden
van hypergrafen in multimodaal leren voor het verkrijgen van inzichten bevordert, en op hun
beurt ook het gebied van geometrisch deep learning bevorderen.
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