
Improving Variational Autoencoder with Deep Feature
Consistent and Generative Adversarial Training

Xianxu Houa,b, Ke Sund, Linlin Shenb,c, Guoping Qiua,b,e,∗

aCollege of Information Engineering, Shenzhen University, Shenzhen, China
bGuangdong Key Laboratory of Intelligent Information Processing, Shenzhen University, Shenzhen, China

cCollege of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China
dKey Laboratory of Spatial Information Smarting Sensing and Services, Shenzhen University, Shenzhen,

China
eSchool of Computer Science, University of Nottingham, Nottingham, United Kingdom

Abstract

We present a new method for improving the performances of variational autoencoder

(VAE). In addition to enforcing the deep feature consistent principle thus ensuring the

VAE output and its corresponding input images to have similar deep features, we also

implement a generative adversarial training mechanism to force the VAE to output real-

istic and natural images. We present experimental results to show that the VAE trained

with our new method outperforms state of the art in generating face images with much

clearer and more natural noses, eyes, teeth, hair textures as well as reasonable back-

grounds. We also show that our method can learn powerful embeddings of input face

images, which can be used to achieve facial attribute manipulation. Moreover we pro-

pose a multi-view feature extraction strategy to extract effective image representations,

which can be used to achieve state of the art performance in facial attribute prediction.
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1. Introduction

Deep convolutional neural networks (CNNs) [1] have been used to achieve state

of the art performances in many computer vision and image processing tasks such as

image classification [2, 3, 4], retrieval [5], detection [6], captioning [7], human pose
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recovery [8, 9, 10], image privacy protection [11], unsupervised dimension reduction5

[12] and many other applications [13, 14, 15]. Deep convolutional generative models,

as a branch of unsupervised learning technique in machine learning, have become an

area of active research in recent years. A generative model trained with a given im-

age database can be useful in several ways. One is to learn the essence of a dataset

and generate realistic images similar to those in the dataset from random inputs. The10

whole dataset is “compressed” into the learned parameters of the model, which are sig-

nificantly smaller than the size of the training dataset. The other is to learn reusable

feature representations from unlabeled image datasets for a variety of supervised learn-

ing tasks such as image classification.

In this paper, we propose a new method to train the variational autoencoder (VAE)15

[16] to improve its performance. In particular, we seek to improve the quality of the

generated images to make them more realistic and less blurry. To achieve this, we em-

ploy objective functions based on deep feature consistent principle [17] and generative

adversarial network [18, 19] instead of the problematic per-pixel loss functions. The

deep feature consistent can help capture important perceptual features such as spatial20

correlation through the learned convolutional operations, while the adversarial train-

ing helps to produce images that reside on the manifold of natural images. We also

introduce several techniques to improve the convergence of GAN training in this con-

text. In particular, instead of directly using the generated images and the real images

in pixel space, the corresponding deep features extracted from pretrained networks are25

used to train the generator and the discriminator network. We also propose to further

relax the constraint on the output of the discriminator network to balance the image

reconstruction loss and the adversarial loss. We present experimental results to show

that our new method can generate face images with much clearer facial parts such as

eyes, nose, mouth, teeth, ears and hair textures. We show that the VAE trained by our30

method can capture the semantic information of facial attributes, which can be mod-

eled linearly in the learned latent space. Furthermore, we show that the trained VAE

can be used to extract more discriminative facial attribute representations that can be

used to achieve state of the art performance in facial attribute recognition. Concretely,

our contributions are threefold:35
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• Our model seamlessly associates the two modalities, i.e., VAE and GAN through

a common latent embedding space and we validate the effectiveness of this ap-

proach on image generation tasks.

• We show that the learned latent representations can capture conceptual and se-

mantic information of the input face images, which can be used to achieve facial40

attribute manipulation.

• Lastly we introduce a multi-view feature extraction strategy on facial attribute

recognition experiments in which we surpass state of the art.

The rest of the paper is organized as follows. We first briefly review the related lit-

erature in Section 2. Section 3 presents our method to improve variational autoencoder45

with deep feature consistent and generative adversarial training. Section 4 presents ex-

perimental results which show that our method stands out as a state of the art technique.

Finally we present a discussion and conclude the paper in Section 5 and Section 6.

2. Related Work

2.1. Variational autoencoder50

Deep convolutional autoencoder is a powerful learning model for representation

learning and has been widely used for different applications [8, 20, 21, 22, 23, 24, 25,

9]. Variational Autoencoder (VAE) [16, 26] has become a popular generative model,

allowing us to formalize image generation task in the framework of probabilistic graph-

ical models with latent variables. Firstly it encodes an input image x to a latent vector55

z = E(x) ∼ q(z|x) with an encoder network E, and then a decoder network D is used

to decode the latent vector z back to image space, i.e., x̄ = D(z) ∼ p(x|z). In order to

achieve image reconstruction we need to maximize the marginal log-likelihood of each

observation (pixel) in x, and the VAE reconstruction loss Lrec is the negative expected

log-likelihood of the observations in x. Another key property of VAE is the ability to60

control the distribution of the latent vector z, which has characteristic of being inde-

pendent unit Gaussian random variable, i.e., z ∼ N (0, I). Moreover, the difference

between the distribution of q(z|x) and the distribution of a Gaussian distribution (called
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KL Divergence) can be quantified and minimized by gradient descent algorithm [16].

Therefore, VAE models can be trained by optimizing both of the reconstruction loss65

Lrec and KL divergence loss Lkl.

Lrec = −Eq(z|x)[log p(x|z)] (1)

Lkl = Dkl(q(z|x)||p(z)) (2)

Lvae = Lrec + Lkl (3)

Several methods have been proposed to improve the performance of VAE. [27] and

[28] proposed to build variational autoencoders by conditioning on either class labels or

on a variety of visual attributes, and their experiments demonstrate that they are capable

of generating realistic faces with diverse appearances. Deep Recurrent Attentive Writer70

(DRAW) [29] combines spatial attention mechanism with a sequential variational auto-

encoding framework that allows iterative generation of images. [30] and [17] consider

replacing per-pixel loss with perceptual similarities using either multi-scale structural

similarity score or a perceptual loss based on deep features extracted from pretrained

deep networks.75

2.2. Generative adversarial network

Generative Adversarial Network (GAN) framework is firstly introduced by [18] to

estimate generative models based on a min-max game. Under the GAN framework

two models are simultaneously trained: a generator network G(z) used to map a noise

variable z to data space, a discriminator network Dis(x) designed to distinguish be-

tween the samples from the true training data and generated samples produced by the

generator G(z). The discriminator Dis(x) is optimized by maximizing the probability

of assigning the correct label for each category. The generator network G(z) is trained

simultaneously to minimize log(1−Dis(G(z))) by playing against the adversarial dis-

criminator network Dis(x). Thus the min-max game between G(z) and Dis(x) can

4



be formulated as follows:

min
G

max
Dis

V (Dis,G) = Ex[log(Dis(x))] + Ez[log(1−Dis(G(z)))] (4)

Following works [19, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41] have focused on

improving the perceptual quality of GAN outputs and the training stability of GAN

through architectural innovations and new training techniques. Our model enjoys both

the advantages of deep feature consistent VAE (DFC-VAE) [17] and Wasserstein GAN80

(WGAN) [19] to improve the perceptual quality of the output images generated by VAE

and enhance the effectiveness of VAE representations for semi-supervised learning. In

addition, a combination of VAE and GAN was also proposed by [42]. Whilst there is a

similarity, there are some differences as well. We use a pre-trained VGGNet as feature

extractor to extract features of the input image and the output image and calculate the85

loss function. In reference [42], they used the GAN discriminator network to extract

image features to calculate the loss function and this discriminator was updated during

the GAN training. Additionally, we adopt the framework of WGAN [19] to achieve

adversarial training while DCGAN [32] was adopted in [42].

2.3. Learned features for image synthesis90

Neural style transfer [43] is among the most successful applications of image syn-

thesis based on the learned convolutional features in recent years. It tries to combine

the content of one image with the style of another image by jointly optimizing content

reconstruction loss and style reconstruction loss based on the features extracted from a

pretrained convolutional neural network. Other works try to train a feed-forward net-95

work for real-time style transfer [44, 45, 46]. In addition, images can be also generated

by maximizing classification scores or individual features [47, 48] for a better under-

standing of the trained networks. Furthermore high-confidence fooling images can be

also synthesized through a similar optimizing technique [49, 50].
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Figure 1: Model overview. From left to right: The Variational autoencoder (VAE), the VGGNet used for

feature extraction and WGAN discriminator. Note that the inputs fed to the discriminator come from the first

convolutional layer of the VGGNet.

3. Method100

3.1. Overview

As shown in Figure 1, our model consists of three components: a variational au-

toencoder including an encoder network E(x) and a decoder network D(z), a pre-

trained VGGNet Φ(x) for feature extraction and a classifier network used as discrimi-

nator Dis(x). Both the encoder and the decoder are deep residual convolutional neural105

networks with a 100-dimensional latent vector. The encoder processes the input image

into the latent vector which is then decoded to an output image. In order to train a VAE,

we need two losses, one is KL divergence loss Lkl = Dkl(q(z|x)||p(z)) [16], which

is used to make sure that the latent vector z is an independent unit Gaussian random

variable. The other is a feature reconstruction loss, which is based on the features ex-110

tracted from VGGNet. Specifically we feed both of the input and output images to the

pre-trained network Φ respectively and then measure the difference between the hidden

layer representations, i.e., Lrec = L1 + L2 + ...+ Ll, where Ll represents the feature

reconstruction loss at the lth hidden layer. Furthermore, the VAE also serves as the

generator and works with the discriminator to play the GAN game. Instead of feeding115

the pixels to the discriminator, we propose to use the first layer’s output of the VGGNet

as the input of the discriminator. The purpose is to enable more stable training as well

as use as much low level image information as possible. It is worth noting that our ar-

chitecture is different from that of [42]. Whilst they use the hidden layer features of the
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256 x 8 x 8

FC 8192 

256 x 8 x 8

upsample + conv 256x3x3 + BN + LeakyReLU 

128 x 16 x 16

512 x 4 x 4

Residual block + LeakyReLU

upsample + conv 128x3x3 + BN + LeakyReLU 

Residual block + LeakyReLU 128 x 16 x 16

64 x 32 x 32

64 x 32 x 32

upsample + conv 64x3x3 + BN + LeakyReLU 

Residual block + LeakyReLU

upsample + conv3x3x3 3 x 64 x 64

conv 3 x 3, stride 1

BN

ReLU

conv 3 x 3, stride 1

BN

+

Layer Output Size

input image (x) 3 x 64 x 64

Layer Name Output Size

64 x 32 x 32

conv 64x4x4, stride 2 + BN + LeakyReLU 64 x 32 x 32

128 x 16 x 16

Residual block  + LeakyReLU

conv 128x4x4, stride 2 + BN + LeakyReLU

128 x 16 x 16Residual block + LeakyReLU

Layer Name Output Size

256 x 8 x 8

conv 256x4x4, stride 2 + BN + LeakyReLU 256 x 8 x 8

512 x 4 x 4

Residual block + LeakyReLU

conv 512x4x4, stride 2 + BN + LeakyReLU

512 x 4 x 4Residual block + LeakyReLU

FC 100 FC 100 100 100

z: sample from encoder q(z|x) [1]

Encoder network

Decoder network

 Residual block

Discriminator network

100

Layer Output Size

128 x 32 x 32

128 x 32 x 32

conv 128x4x4, stride 2 + BN + LeakyReLU

256 x 16 x 16

Residual block + LeakyReLU

conv 256x4x4, stride 2 + BN + LeakyReLU

Residual block + LeakyReLU 256 x 16 x 16

512 x 8 x 8

512 x 8 x 8

conv 512x4x4, stride 2 + BN + LeakyReLU

Residual block + LeakyReLU

conv 512x4x4, stride 2 + BN + LeakyReLU 512 x 4 x 4

512 x 4 x 4Residual block + LeakyReLU

conv 1x4x4, stride 4 + BN + LeakyReLU 1 x 1 x 1

(a)

Figure 2: The architecture of the autoencoder and discriminator network.

GAN discriminator to compute the image reconstruction loss, we adopt a pre-trained120

VGGNet. What’s more, the pre-trained VGGNet is fixed during training and it still

allows feed-forward and back-propagation computation. As a result, our model can be

trained end-to-end.
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3.2. Neural network architecture

As shown in Figure 2, both of the autoencoder and discriminator network are deep125

residual convolutional neural networks based on [4, 32]. We construct 4 convolutional

layers in the encoder network with 4 × 4 kernel and 2 × 2 stride to achieve spatial

downsampling instead of using deterministic spatial functions such as maxpooling.

Each convolutional layer is followed by a batch normalization layer and a LeakyReLU

activation layer. In addition, a residual block is added after each convolutional layer130

and all the residual blocks contain two 3× 3 kernel convolutional layers with the same

number of filters. Lastly two fully-connected output layers (for mean and variance) are

added to the encoder and will be used to calculate the KL divergence loss and sample

latent variable z (see [16] for details).

For the decoder, we use 4 convolutional layers with 3 × 3 kernels and 1 × 1 stride.135

We also propose to replace standard zero-padding with replication padding, i.e., feature

map of an input is padded with the replication of the input boundary. Similar to the en-

coder, each convolutional layer is also followed by a residual layer except the last one.

For upsampling we use nearest neighbor method by a scale of 2 instead of fractional-

strided convolutions used by other works [51, 32]. We also use batch normalization to140

help stabilize the whole training and use LeakyReLU as the activation function.

The design of the discriminator follows the architectural innovations of DCGAN

[32]. We use convolutional layers with 4 × 4 kernel and 2 × 2 stride to achieve spatial

downsampling and add a residual block after each convolutional layer except the last

layer. Like WGAN [19], the sigmoid layer is removed in the last layer and use a 4 × 4145

stride convolution layer to produce a single output, and the gradients of discriminator

is clipped between -0.01 to 0.01.

3.3. Feature reconstruction loss

Feature reconstruction loss of two images is defined as the difference between the

hidden features in a pretrained deep convolutional neural network Φ. Similar to [43],150

we use VGGNet [3] as the loss network in our experiment. The core idea of feature

reconstruction loss is to seek consistency between two images in the learned feature

space. As the hidden representations can capture important perceptual quality features
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such as spatial correlation, a smaller difference of hidden representations indicates a

better consistency of spatial correlations between the input and the output, as a result,155

we can get a better visual quality of the output image. Specifically, let Φl(x) denotes

the representation of the lth hidden layer when input image x is fed to network Φ.

Mathematically Φl(x) is a 3D volume block array of shape [Cl x Wl x Hl], where Cl

is the number of filters, Wl and Hl denote the width and height of each feature map for

the lth layer. The feature reconstruction loss for one layer (Ll) between two images x160

and x̄ can be simply defined by squared Euclidean distance. Actually it is quite like the

per-pixel loss for images except that the number of color channels is not 3 anymore.

Ll =
1

2ClWlHl

Cl∑
c=1

Wl∑
w=1

Hl∑
h=1

(Φl(x)c,w,h − Φl(x̄)c,w,h)2 (5)

Instead of only using a single layer features, we leverage visual features in different

layers and combine the outputs of the five convolutional layers of the VGGNet. The

final reconstruction loss is defined as:

Lrec =

L∑
l=1

100

C2
l

Ll (6)

where Ll and Cl are the feature loss and the number of filters at lth layer respectively,

L is total convolutional layers in the pretrained network.

Additionally we adopt the KL divergence loss Lkl [16] to regularize the encoder165

network to control the distribution of the latent variable z. To train VAE, we jointly

minimize the KL divergence loss Lkl and the feature reconstruction loss Lrec for dif-

ferent layers as follows:

Lvae = αLkl + βLrec (7)

where α and β are the weighting parameters for KL Divergence loss and feature

reconstruction loss. It is worth noting that the pre-trained VGGNet is used for feature170

extraction only and is fixed during the training. The latent representation of the image

refers to the latent variable of the autoencoder in our paper.
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3.4. Adversarial loss

In addition to the feature reconstruction loss described above, we also incorporate

variational autoencoder in the framework of generative adversarial network to encour-175

age the VAE to produce outputs that reside on the manifold of natural images. Our

adversarial training is based on WGAN [19]. In order to further improve the training

stability, instead of directly feeding the real images and generated images to a discrim-

inator, we first extract the first layer features of the pretrained VGGNet and feed them

to the discriminator network. It is because we would like to push the reconstructed180

image similar to natural images in terms of low-level information, which can be of-

ten obtained from lower layers of deep networks. In addition, we propose another

technique to further relax the constraint on the output of the discriminator network.

WGAN [19] proposes to remove the last Sigmoid layer in the generator and use 1 and

-1 as ground-truth label for real and generated images. In our experiments, we found185

that GAN training could collapse and the VAE training tends to dominate the training

when using too small labels, e.g., 1 and -1. In addition, we also found that the adversar-

ial loss would dominate the training by using too big labels like -100 and 100, which

could lead to structural changes of the reconstructed images. Using empirical values 10

and -10 to represent ground-truth labels, we can effectively balance well between the190

VAE and GAN, and generate diverse synthesized results in a more natural and flexible

manner.

Finally our entire deep model can be trained end-to-end with a combination of KL

divergence loss, reconstruction loss and adversarial loss as Equation 8 and the training

procedure is summarized in Algorithm 1.195

Lvae = αLkl + βLrec + LGAN (8)

4. Experiments

In this paper, we conduct experiments on CelebFaces Attributes (CelebA) [52] and

CIFAR-10 [53] Dataset to evaluate our method on the performance of image genera-

tion. We also study how different layer features of the pre-trained VGGNet affects the
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Algorithm 1 Training VAE-WGAN Model
Require: c, the clipping parameter; Φ, pretrained model

WEncoder,WDecoder,WDiscriminator ← Initialize parameters

repeat

X ← random mini-batch images from the dataset

Z ← Encoder(X)

Lkl ← DKL (q(Z|X)||p(Z))

X̂ ← Decoder(Z)

Lrec ← ||Φ(X)− Φ(X̂)||2

LGAN ← Discriminator(X)−Discriminator(X̂) // Wasserstein GAN

WEncoder
+← −∇WEncoder (Lkl + Lrec − LGAN )

WDecoder
+← −∇WDecoder (Lrec − LGAN )

WDiscriminator
+← −∇WDiscriminator LGAN

WDiscriminator ← clip (WDiscriminator,−c, c)

until convergence of parameters

performances of image synthesis. Furthermore, we consider manipulating the facial200

attributes in the learned latent space. Finally we apply the learned representations to

facial attribute recognition and show that we can achieve state of the art performances.

4.1. Training details

CelebA is a large-scale face attribute dataset with 202,599 face images, 5 landmark

locations and 40 binary attributes annotations per image. We build the training dataset205

by cropping and scaling the aligned images to 64× 64 pixels like [42, 32]. The CIFAR-

10 dataset consists of 60,000 images of shape 32 × 32 in 10 classes. There are 50,000

training images and 10,000 test images. For both datasets, we train our model with

a batch size of 64 for 5 epochs over the training dataset and use Adam method for

optimization [54] with an initial learning rate of 0.0005, which is decreased by a factor210

of 0.5 for the following epochs. The 19-layer VGGNet [3] is chosen as loss network Φ

to construct feature reconstruction loss for image reconstruction. The loss weighting

parameters α and β are 1 and 0.5 respectively. Our implementation is built on deep
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DCGAN

2.25 ± 0.09

2.06 ± 0.11

1.90 ± 0.07

2.18 ± 0.13

1.86 ± 0.26

1.76 ± 0.18

2.05 ± 0.04

inception score ± std.

WGAN

VAE/GAN

LSGAN

DFC-VAE

Plain-VAE

VAE-WGAN
Ours

Figure 3: Face images generated from 100-dimension latent vector z ∼ N (0, 1) by different models. We

compare our VAE-WGAN with DCGAN[32], WGAN[19], VAE/GAN[42], LSGAN[41], Plain-VAE[16]

and DFC-VAE[17].

learning framework Torch [55]. As for the computational time, it takes around 10

hours to train our models and 0.012 seconds to process an image of size 64 × 64215

during testing. The training and testing time are both benchmarked on a single GTX

1080Ti GPU.

4.2. Qualitative results for image generation

The comparison is divided into two parts: one is arbitrary image generation de-

coded from vectors z randomly drawn from N (0, 1), the other is natural image recon-220

struction.
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DCGAN

inception score ± std.

WGAN

VAE/GAN

LSGAN

Plain-VAE

DFC-VAE

VAE-WGAN

3.65 ± 0.16

3.14 ± 0.13

3.14 ± 0.13

3.62 ± 0.20

1.60 ± 0.10

3.0 ± 0.06

3.66 ± 0.04

Figure 4: Cifar images generated from 100-dimension latent vector z ∼ N (0, 1) by different models. We

compare our VAE-WGAN with DCGAN[32], WGAN[19], VAE/GAN[42], LSGAN[41], Plain-VAE[16]

and DFC-VAE[17].

4.2.1. Arbitrary image generation.

First, we compare the perceptual quality of the output face images for different

generative models. As shown in Figure 3 and 4, we compare our model VAE-WGAN

with Plain-VAE [16], DFC-VAE [17], DCGAN [32], WGAN [19], VAE/GAN [42] and225

LSGAN[41]. All the compared models are implemented with the public available code

from the corresponding papers with default settings. The final output images are pro-

duced by feeding vectors randomly drawn from a given distribution N (0, 1) to either

VAE decoder or GAN generator. We can see that DCGAN, WGAN as well as LS-

GAN can generate clean and sharp images, however the image details can be distorted,230

resulting in unsatisfactory outputs with weird appearance like unpleasing faces. It is be-
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DFC-VAE

Plain-VAE

Input

VAE-WGAN
OURS

VAE/GAN

Figure 5: Face images reconstructed by different models. We compare our VAE-WGAN with Plain-

VAE[16], VAE/GAN[42] and DFC-VAE[17].

DFC-VAE

Plain-VAE

Input

VAE-WGAN
OURS

VAE/GAN

Figure 6: CIFAR images reconstructed by different models. We compare our VAE-WGAN with Plain-

VAE[16], VAE/GAN[42] and DFC-VAE[17].

cause there no input image information for pure GAN training. In contrast, the results

produced by VAE decoder can better preserve the overall object structures. However,

Plain-VAE tends to produce very blurry images because it tries to minimize the per-

pixel loss between two images and each pixel is optimized independently. DFC-VAE235
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can produce clear and sharp images because the feature reconstruction loss contains the

perceptual and spatial correlation information in the learned feature space. VAE/GAN

and our VAE-WGAN can achieve better results than all the other models, however

VAE/GAN still suffers from observed distortions. Our method can generate more con-

sistent and realistic human faces with much clearer noses, eyes, teeth, hair textures as240

well as reasonable backgrounds. Moreover, our method can achieve highest inception

scores [34] on the two dataset as shown in Figure 3 and 4. The inception scores are

calculated based on 2,000 images for each model.

4.2.2. Image reconstruction.

We also evaluate the reconstruction performance of our method (shown in Figure 5245

and 6) by comparing with Plain-VAE, DFC-VAE [17] and VAE/GAN [42]. Pure GAN

models are not involved because of no input images in their models. Similar to arbitrary

images generated above, Plain-VAE reconstructs very blurry images because of the

shortcomings of per-pixel loss. DFC-VAE can produce better images such as faces with

clear eyes and mouths, however it still produces blurry background for CIFAR images250

and unrealistic hairs for face images. The results of VAE/GAN show that the images

are reasonably sharp and clear, however details in the original images are missing.

Again our model can produce much better reconstruction results than other models.

Our model is better at preserving the original color and overall structures of the input

images.255

4.2.3. Impact of different level reconstruction loss

We also conduct experiments to investigate how features of different level convolu-

tional layers of the loss network affect the quality of image generation. Figure 7 shows

the randomly generated face images by our five models trained with feature reconstruc-

tion loss based on layers relu1 1, relu2 1 relu3 1, relu4 1 and relu5 1 respectively. It260

can be seen that all the generated images are able to keep the overall structures of faces.

However as we reconstruct from lower level layers like relu1 1, the generated images

are very blurry especially in the hair and background area. When using higher level lay-

ers, the generated face images are much sharper and can show reasonable hair textures,

15



relu1_1

relu2_1

relu4_1

relu3_1

relu5_1

Figure 7: Generated face images from 100-dimension latent vector z ∼ N (0, 1) by 5 different models,

which are trained with feature reconstruction loss based on layers relu1 1, relu2 1 relu3 1, relu4 1 and

relu5 1 respectively.

but the exact structure of facial attributes cannot be preserved like eyes and mouths.265

One explanation for this is that the higher level features are corresponding to a coarser

space area of the encoded image. The areas covered by relu4 1 and conv5 1 layers are

too large to construct local facial attributes like mouth and eyes, but better for larger

area textures like hair. Overall we can get better results when using reconstruction loss

by combining different layers.270

4.2.4. Impact of weighting parameters α and β

We further conduct experiments to look into the influences of weighting parameters

α and β in Equation 7 in terms of image quality. Specifically we train two models with

α = 1, β = 0.01 and α = 0.01, β = 1 respectively. As shown in Figure 8 and Figure

9, we can see that the images can be better reconstructed when using bigger β, however275

the randomly generated images look weird with unusual face shapes. In addition, the

randomly generated images are similar to the reconstructed ones with bigger α while

they usually suffer from the problems of poor quality and lack of diversity. It is clear

that the α and β can be used to balance the trade-off between the latent variable dis-

tribution and image reconstruction in variational autoencoder. As shown in previous280

sections, our model works well with α = 1 and β = 0.5.

In addition, we also conduct experiments without reconstruction loss. As shown
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α=0.01, β = 1

α=1, β = 0.01

Figure 8: Randomly generated images by our method with different weighting parameters α and β.

α=0.01, β = 1

Input

α=1, β = 0.01

Figure 9: Reconstruction results by our method with different weighting parameters α and β.

Figure 10: Generated images by our method without reconstruction loss.

in Figure 10, we can see that the results are similar to those trained with DCGAN and

WGAN. This is because the latent vector distribution is similar to the pre-defined Gaus-

sian distribution without reconstruction constraint. Thus the whole training processing285

is roughly equal to a pure GAN training.

4.3. The learned latent space

In order to get a better understanding of what our model has learned, we investi-

gate the property of the learned representation in the latent space. What’s more, we

also conduct experiments to show the effectiveness of our model to learn meaningful290

feature representations beyond image generation. In particular, we visualize the la-

tent representations based on the t-SNE embedding and also apply them to the facial
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𝛂=0
zleft zright

𝛂=1

Figure 11: Linear interpolation of latent vector. Each row is the interpolation from left latent vector zleft to

right latent vector zright. e.g. (1− α)zleft + αzright.

attribute recognition task.

4.3.1. Linear interpolation of latent space

As shown in Figure 11, we have studied the linear interpolation between the gener-295

ated images from two latent vectors denoted as zleft and zright. The interpolation

is defined by a simple linear transformation z = (1 − α)zleft + αzright, where

α = 0, 0.1, . . . , 1, and then z is fed to the decoder network to generate new face

images. From the first row in Figure 11, we can see the smooth transitions between

vector(“Woman without smiling and blond hair”) and vector(“Woman with smiling300

and black hair”). Little by little the color of the hair becomes black, the distance be-

tween lips becomes larger and teeth are shown in the end as smiling, and pose turns

from looking slightly front to looking right. Additionally we provide examples of tran-

sitions between vector(“Man without eyeglass”) and vector(“Woman with eyeglass”),

as well as vector(“Man”) and vector(“Woman”).305

4.3.2. Facial attribute manipulation

The experiments above demonstrate interesting smooth transitional property be-

tween two latent vectors. In this section, instead of manipulating the overall face im-

ages, we seek to find a way to control a specific attribute of face images. In previous
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𝛂=0 𝛂=1

Bald

Black  hair

Eyeglasses

Man

Smiling

Mustache

Figure 12: Vector arithmetic for visual attributes. Each row is the generated faces from latent vector zleft

by adding or subtracting an attribute-specific vector, i.e., zleft + α zsmiling , where α = 0, 0.1, . . . , 1.

works, [56] shows that vector(“King”) - vector(“Man”) + vector(“Woman”) gener-310

ates a vector whose nearest neighbor is the vector(“Queen”) when evaluating learned

representation of words. [32] demonstrates that visual concepts such as face poses and

gender could be manipulated by simple vector arithmetics.

In this paper, we conduct experiments to manipulate the facial attributes in the

learned latent space of VAE-WGAN. For a given attribute such as smiling, 2,000 smil-315

ing face samples are fed into the trained encoder to generate 2,000 latent vectors. The

average of these vectors forms the latent representation zsmiling+. Similarly, we use

2,000 non-smiling face samples to generate a non-smiling latent vector zsmiling−. Fi-

nally the difference zsmiling = zsmiling+ − zsmiling−, which in effect takes away

any non-smiling attributes from the smiling images, is used as the semantic represen-320

tation for the attribute smiling. Similarly, we use the same approach to constructing

other semantic attribute latent reconstructions for Bald, Black hair, Eyeglass, Male and

Mustache. Thus, for a given image with latent vector z, we can manipulate the facial

attribute with the corresponding attribute vector arithmetically, e.g. z = z+αzsmiling.

Figure 12 shows the results for the 6 attributes, i.e., Bald, Black hair, Eyeglass, Male,325

Smiling, and Mustache. As shown in Figure 12, by adding a smiling vector to the la-
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Figure 13: Visualization of 25 x 25 face images based on latent vectors by t-SNE algorithm [57].

tent representation of a non-smiling man, we can observe the smooth transitions from

non-smiling face to smiling face (the first row). Furthermore, the smiling appearance

becomes more obvious when the weighting factor α is bigger, while other facial at-

tributes are able to remain unchanged. We can see that our method can achieve smooth330

image transitions for different facial attributes with high quality, demonstrating that the

face attributes can be modeled linearly in the learned latent space.
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Encoder_n Decoder_n

Input image

...

...

VGG
relu1_1

VGG
relu2_1

VGG
relun_1

Output image
facial attribute recognition

level 1
level 2

level n

Figure 14: Multi-view feature extraction. 5 VAE-WGAN models are trained with feature reconstruction loss

based on layers relu1 1, relu2 1 relu3 1, relu4 1 and relu5 1 respectively. The latent vectors for all the 5

models are concatenated as the final extracted features for facial attribute recognition.

4.3.3. Visualization of latent vectors

Considering that the latent vectors are nothing but the encoding representation of

the natural face images, it would be interesting to visualize the natural face images335

based on the similarity of their latent representations. Specifically we randomly choose

625 face images from CelebA dataset and extract the corresponding 100-dimensional

latent vectors, which are then reduced to 2-dimensional embedding by t-SNE algo-

rithm [57]. t-SNE can arrange images that have similar high-dimensional vectors (L2

distance) to be nearby each other in the embedding space. The visualization of 25 ×340

25 images is shown in Figure 13. We can see that images with a similar background

(black or white) tend to be clustered together. Furthermore, the face pose information

can be also captured even no pose annotations in the dataset. The face images in the

upper right (red rectangle) are those looking to the left and samples in the bottom left

(green rectangle) are those looking to the right.345
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Table 1: Performance comparison of 40 facial attributes recognition.
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VAE-WGAN (ours) 85 96 89 91 74 97 74 92 94 96 91 80 80 85 99 91 88 93 84 88.88

4.4. Facial attribute recognition

We further evaluate the quality of the learned latent representations of the VAE

by applying them to facial attribute recognition, which is a very challenging problem.

Like [52], 20,000 face images in the CelebA dataset [52] are used for testing while the

remaining are used as training data. We proposed to use a multi-view strategy for fea-350

ture extraction as shown in Figure 14. Specifically, 5 VAE-WGAN models are trained

independently, each uses a different convolutional layer of the VGGNet to calculate the

feature reconstruction loss. The latent vectors for all the 5 models are concatenated as
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the final extracted features which are used to train standard linear SVM classifiers to

predict the 40 facial attributes in the dataset. As a result, we train 40 binary classifiers355

for each attribute in CelebA dataset respectively.

We then compare our method with other state of the art methods, i.e., FaceTracer

[58], PANDA-w [59], PANDA-l [59], LNets+ANet [52],VAE-123 [17], VAE-345 [17].

From Table 1, It is seen that our method can achieve the highest average prediction

accuracies, which slightly beats the state of the art results. Additionally, we find that360

our method is not always the best for all the facial attributes. In particular, it does not

work very well to predict attributes like “Mouth S. O” (mouth slightly open) and “Wear

Lipstick” as shown in Table 1. One possible explanation of this is that these attributes

are hard to detect in face images and difficult to reconstruct precisely in variational

autoencoder model. As a result, the encoded latent vectors are not able to capture such365

subtle differences.

5. Discussion

For variational autoencoder model, one essential part is to define a metric to mea-

sure the inconsistency between the input and the reconstructed output. The plain VAE

adopts the per-pixel measurement, leading to unacceptably blurry outputs because it370

essentially treats images as “unstructured” input and each pixel is independent with all

the other pixels. Inspired by the recent works like image style transfer [43, 44, 45],

we propose to improve the performance of VAE by measuring the inconsistency in the

deep feature space instead of naive pixel space. The hidden representations from pre-

trained deep CNN are able to capture essential visual quality factors such as spatial375

correlation because of convolutional operations. What’s more, variational autoencoder

can be seamlessly incorporated into the framework of generative adversarial network

to enforce the output to resemble natural images. The adversarial loss can be regarded

as “structured” measurement because the GAN training is essentially performing high

level image classification, and each pixel is not treated independently at all.380

Another benefit of using deep CNNs to construct loss function is that we can

achieve multi-scale modeling implicitly. Due to the hierarchy architecture of deep con-
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volutional neural networks, a higher layer is corresponding to a coarser spatial area of

the encoded image. Thus, unlike traditional methods that try to directly use multi-scale

images as input, we can achieve another kind of multi-scale modeling by constructing385

loss function with different layers.

Another interesting part of VAE is the linear property in the learned latent space.

Different images generated by the decoder can be smoothly transformed to others by

a simple linear combination of their latent vectors. Additionally attribute specific fea-

tures could be also calculated by encoding the annotated images and used to manipulate390

the related attribute of a given image while keeping other attributes unchanged.

6. Conclusion

In this paper, we propose a more stable architecture and several effective techniques

to incorporate variational autoencoder. In particular, we employ deep feature consis-

tent principle to allow the output to have a better perceptual quality and use adversarial395

training to help produce images that reside on the manifold of natural images. Com-

pared to previous approaches, our model can generate more consistent and realistic

images with fine details and reasonable backgrounds. In addition, we further investi-

gate the quality of the learned representation to manipulate facial attributes. Finally, we

have shown that our method can be used to extract effective representations for facial400

attribute recognition and achieve state of the art performance.
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