
This is a preprint: 

Pham, H.H., Khoudour, L., Crouzil, A., Zegers, P., Velastin, S.A. 
(2015). Video-based human action recognition using deep learning: a 
review, pp. 1-34.

© 2015 Autores

This work is licensed under a Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International License. 



Video-based human action recognition using deep learning: a
review

Huy-Hieu Pham · Louahdi Khoudour · Alain Crouzil · Pablo Zegers ·
Sergio A. Velastin

Received: date / Accepted: date

Abstract Human action recognition is an important
application domain in computer vision. Its primary aim

is to accurately describe human actions and their in-
teractions from a previously unseen data sequence ac-
quired by sensors. The ability to recognize, understand

and predict complex human actions enables the con-
struction of many important applications such as intel-
ligent surveillance systems, human-computer interfaces,
health care, security and military applications. In re-

cent years, deep learning has been given particular at-
tention by the computer vision community. This paper
presents an overview of the current state-of-the-art in

action recognition using video analysis with deep learn-
ing techniques. We present the most important deep
learning models for recognizing human actions, ana-
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lyze them to provide the current progress of deep learn-
ing algorithms applied to solve human action recogni-

tion problems in realistic videos highlighting their ad-
vantages and disadvantages. Based on the quantitative
analysis using recognition accuracies reported in the lit-

erature, our study identifies state-of-the-art deep archi-
tectures in action recognition and then provides current
trends and open problems for future works in this filed.

Keywords Human action recognition · deep learning ·
CNNs · RNN-LSTMs · DBNs · SDAs

1 Introduction

In recent years, human action recognition continues to
be an increasingly active research in the computer vi-

sion community due to the interest in the development
of many intelligent systems involving surveillance, con-
trol, and analysis. The main goal of this area is to de-
termine, and then predict what humans do in a video
or a sequence of images. There are many potential ap-
plications such as intelligent surveillance systems [147,
214,124], human-computer interfaces [153,191], health
care [264], virtual reality [134], or security and military
applications [167,137]. Fig. 1 shows some specific ap-
plications of human action recognition in modern day
life.

1.1 Motivation

An action can be defined as a spatio-temporal sequence
of human body movements. There are many ways to de-
fine an action from the literature [140,210,155]. Here,

we consider “an action” as a single motion or complex
sequences of motions performed by a single person or
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Fig. 1 Examples of some applications based on human action recognition techniques: (a) recognizing and tracking human
action in public transport systems [168]; (b) stealing detection based on human-object recognition [167]; (c) monitoring elderly
people living at home [264]; (d) pedestrian path prediction in self-driving cars [103]; (e) human-computer interaction using
action recognition algorithm with depth sensor [261] in the entertainment industry; (f) action detection and localization in
realistic sports videos [207].

several humans. Actions are understood as episodic ex-
amples of human dynamics that have starting and end-
ing temporal points. From the viewpoint of computer

vision, given an image sequence that contains one or
many actions, human action recognition attempts to
label each frame or a sequence of frames with a corre-

sponding name of an action. In general, human action
recognition is a hierarchical process, where the lower
levels are on human detection and segmentation. The
objective of those levels is to identify the regions of

interest (ROIs) corresponding to static or moving hu-
mans in video. The visual information of actions is ex-
tracted at the next level and represented by features.

These features are then used for recognizing actions. So,
recognizing an action from features can be considered
as a classification problem. Fig. 2 shows the flowchart
of a typical action recognition system. Early attempts
at human action recognition systems used independent
frame-by-frame analysis methods, e.g. shape matching
techniques [31], while later research has focused on the
spatio-temporal analysis of human motions.

1.2 Challenges in human action recognition

A rapid increase in the number of researchers and tech-
niques focusing on human action recognition has signif-
icantly improved its accuracy. However, action recogni-

tion is still a challenging problem due to many issues
including the large intra-class difference, fuzzy bound-
ary between classes, viewpoint, occlusion, appearance,

influence of environments and recording settings [155],
in particular from realistic videos. Moreover, to have a
complete human action recognition system, we need a
mating of several disciplines including psychology and

ontology [162,18].

1.3 Scope, taxonomy and organization

Human action recognition is a big topic in computer

vision. Many different approaches have been published
in the last two decades [17]. In recent years, the ad-
vances of computer vision algorithms, especially ma-
chine learning, has opened up a new direction for re-
searchers. Therefore, it is timely that progress in this
field is reviewed. In this paper, we focus on surveying
publications that use deep learning, a technique that

has won numerous contests in machine learning includ-
ing the recognition of human actions. Our main goal is
to present a review of the work that has been reported
in literature, compare the performance of deep learn-
ing based approaches and other existing work in or-
der to identify its advantages and limitations. To make
the analysis more accessible, we used a taxonomy as
shown in Fig. 3. For instance, we divide deep learn-



Video-based human action recognition using deep learning: a review 3

Fig. 2 Flowchart for a typical action recognition system. (image sequence (∗) from Southampton database [8])

ing approaches for action recognition based on their
architectures. The most important models are covered
including Convolutional Neural Networks (CNNs), Re-
current Neural Network with Long Short-Term mem-
ory (RNN-LSTMs), Deep Belief Networks (DBNs) and
Stacked Denoising Autoencoders (SDAs). In addition,
some combination architectures will also be discussed.

The review is organized as follows: First, we intro-
duce related surveys and publicly available datasets in
Sect. 2. Then, we present the key deep learning architec-

tures for human action recognition in Sect. 3, includ-
ing the main ideas and mathematical models behind
each architecture. Sect. 4 reviews the state-of-the-art

in using deep models for human action recognition and
related tasks. In Sect. 5, we give a quantitative anal-
ysis about the recognition accuracies of deep learning

approaches and discuss their pros and cons. In that sec-
tion, we also provide some promising directions for fu-
ture research. Finally, we conclude our paper in Sect.
6.

2 Related surveys and publicly available
datasets

2.1 Previous surveys

In this section, we first consider related earlier surveys
in human action recognition. Looking at the major con-
ferences and journals [3,4,1,5,9], several earlier surveys
have been published. Aggarwal and Cai [16] reviewed
methods for human motion analysis focusing on three
major areas including: motion analysis involving human
body parts, tracking a moving human from a single view
or multiple cameras and recognizing human activities
from image sequences. Moeslund and Granum [139] re-
viewed papers on human motion capture considering
a general structure for systems analyzing human body

motion as a hierarchical process with four steps: ini-
tialization, tracking, pose estimation and recognition.
Wang et al. [227] presented a survey of work on human
motion analysis, in which motion analysis was illus-
trated as a three-level process including human detec-
tion (low-level vision), human tracking (intermediate-
level vision), and behavior understanding (high-level

vision). Moeslund et al. [140] described the work in hu-
man capture and analysis based on 280 papers from
2000 to 2006, centered on initialization of human mo-
tion, tracking, pose estimation, and recognition.

Turaga et al. [210] considered that “actions” are
characterized by simple motion patterns typically ex-
ecuted by a single person while “activities” are more

complex and involve coordinated actions among a small
number of humans and reviewed the major approaches
for recognizing human action and activities. Poppe [155]
focused on image representation and action classifica-

tion methods. A similar survey by Weinland et al. [241]
also concentrated on approaches for action representa-
tion and classification. Popoola and Wang [154] pre-
sented a survey focusing on contextual abnormal hu-
man behavior detection for surveillance applications.
Ke et al. [96] reviewed human activity recognition meth-

ods for both static and moving cameras, covering many
problems such as feature extraction, representation tech-
niques, activity detection and classification. Aggarwal
and Xia [15] presented a survey of human activity recog-
nition based on 3D data, especially on using RGB and
depth information acquired by 3D sensors as the Kinect
[261]. Guo and Lai [66] gave a survey of existing ap-

proaches on still image-based action recognition.
Recently, Cheng et al. [36] reviewed approaches on

human action recognition using an approach-based tax-
onomy, in which all methodologies are classified into
two categories: single-layered approaches and hierar-
chical approaches. In addition, Vrigkas et al. [219] cat-
egorized human activity recognition methods into two
main categories including “unimodal” and “multimodal”.
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Fig. 3 The proposed taxonomy in our work. The size of the ellipses is correspond to the number of reviewed papers in this
research.

Then, they reviewed classification methods for each of
these two categories. The survey of Subetha and Chi-

trakala [197] mainly focused on human activity recog-
nition and human-object interaction methods. Presti et
al. [128] provided a survey of human action recognition
based on 3D skeletons, summarizing the main technolo-

gies, including both hardware and software for solv-
ing the problem of action classification inferred from
time series of 3D skeletons. In addition, another survey

was presented by Kang and Wildes [93]. It summarized
various action recognition and detection algorithms, fo-
cused on encoding and classifying features. The latest
survey on human action recognition was published in

early 2016 by Herath et al. [70], in which the authors
reviewed methods based on hand-crafted features and
some deep architectures for recognizing actions. Table 1

summarizes previous surveys on human action and ac-
tivity recognition published from 1997 to 2017 and re-
viewed in this paper. The surveys in the literature have
shown that the common approaches in human action
recognition have focused on using hand-designed local
features such as HOG/HOF [40,110], SIFT [129], or
SURF [23]. In addition, these approaches are also ex-
tended for more robustness in video processing such as
Cuboids [42], HOG3D [100].

To the best of our knowledge, there is no review
on human action recognition based on deep learning
techniques including comparisons of the performance of
deep learning based approaches with traditional meth-
ods and with each other. Moreover, deep learning is a

rapidly growing field, where novel algorithms appear in
very short time duration and change the way of un-
derstanding and recognizing actions from visual data.
That has prompted us to perform this work. Not only
to provide a comparative analysis about the current

state of human action recognition using deep learning
algorithms, but also to point out the new trends in this
field. Our survey will add to the latest reviews on hu-

man action recognition in the literature.

2.2 Benchmark datasets for human action
recognition

With the increase in study of human action recognition
algorithms, many datasets have been recorded and pub-
lished for the research community. Much of the progress

in action recognition was demonstrated on standard
benchmark datasets. These datasets allow us to de-
velop, evaluate and compare new methods. In this sec-

tion we summarize the most important public datasets
in the area. From the early dataset which contained
very simple actions and acquired under controlled en-
vironments, to recent benchmark datasets with thou-

sands of video samples and millions of frames provid-
ing complex actions and human behaviors from the real
world. Table 2 shows the datasets and their descrip-
tions. To guide readers in the selection of the most
suitable dataset for evaluating their works, we divide
benchmarks into four categories including single ac-
tion (category I), human-human interaction, human-
object interaction and behavior (category II), surveil-
lance (category III) and sport videos and other types
(category IV).

The complexity of each dataset depends much on its
recorded setting. For example, early benchmark datasets
such such as KTH [173] or Weizmann [61] were made
under laboratory conditions for idealized human ac-
tions: all of them are composed of simple and unrealistic
actions and homogeneous background. Many methods
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Table 1 Summary of previous surveys and its key
points ordered by year of publication.

Authors Year Main topics
Aggarwal et al.
[16]

1997 Human motion analysis, track-
ing.

Moeslund et al.
[139]

2001 Motion initialization, tracking,
pose estimation, recognition.

Wang et al. [227] 2003 Human detection, tracking,
activity understanding.

Moeslund et al.
[140]

2006 Human motion capture, ac-
tion, and behavior analysis.

Turaga et al. [210] 2008 Recognizing human behavior.
Poppe [155] 2010 Feature extraction and classi-

fication of human action.
Weinland [241] 2011 Full-body action segmenta-

tion, and recognition.
Popoola et al.
[154]

2012 Human motion analysis, ab-
normal behavior recognition.

Ke et al. [96] 2013 Human activity recognition
from static and moving cam-
era.

Aggarwal et al.
[15]

2014 Human activity recognition
from 3D and depth data.

Guo et al. [66] 2014 Human action recognition us-
ing still image.

Cheng et al. [36] 2015 Single-layered and hierarchical
approaches for action recogni-
tion.

Vrigkas et al. [219] 2015 Human activity classification.
Subetha et al.
[197]

2016 Human activity recognition
and human-object interac-
tions.

Presti et al. [128] 2016 Action classification based on
skeleton.

Kang et al. [93] 2016 Human action recognition and
detection.

Herath et al. [70] 2016 Human action recognition
based on handcrafted features
and deep learning approaches

have already achieved very high recognition rates on
these datasets. Performances have increased over the
years and have reached perfect accuracy, e.g., 100% on
the Weizman [61] by Ikizler et al. [85] or Brahnam et
al. [27]. In other words, we can say that the unrealistic
datasets have already solved by our action recondition
systems. Another dataset named IXMAS has also been

produced under laboratory conditions, but with multi-
ple viewpoints [240].

After the success of the action recognition systems
on benchmarks produced “in the lab”, more complex
benchmarks have been released. For instance, MSR Ac-
tion3D [120], UT-Interaction [169], Daily-Activity-3D
[224], Cornell Activity CAD-60 [2], Cornell Activity
CAD-120 [104], VIRAT 2.0 [150], SBU-Kinect Inter-
action [255]. These datasets aim to provide challeng-
ing videos of human action under unconstrained envi-

ronments with complex background and illumination
conditions. However, they are not “real” actions. Then,

Fig. 4 Household activities from the ActivityNet [45]
dataset.

many researchers have extracted realistic situations from

movie or sport videos on social networks such as YouTube
to make new realistic benchmark datasets. See for ex-
ample Hollywood-1 [111], Hollywood-2 [135], YouTube

[126], HMDB-51 [107], UCF-50 [160], UCF-101 [192],
Sports-1M [94], ActivityNet [45]. The general approach
in these datasets is to collect videos from “in-the-wild”
sources with many clips and action classes. It is easy to

see that several datasets are designed with deep learn-
ing algorithms in mind due to their very large scale.
For example, in Sports-1M [94] there are around 1 mil-

lion YouTube videos belonging to a taxonomy of 487
classes of sports, ActivityNet [45] provides more than
200 activity classes with 10,024 training videos, 4,926

validation videos and 5,044 testing videos. Fig. 4 shows
some actions in a class of the ActivityNet [45] dataset.
These large scale datasets are an important premise
for the development of deep learning methods because
they require a large number of training data and tuning
them on small and out-of-date datasets such as KTH
[173] or Weizmann [61] leads to low performance. Most
recently, Shahroudy et al. introduced NTU RGB+D
dataset [179], a very large-scale RBD-D dataset for hu-
man action recognition. The NTU RGB+D dataset con-
tains more than 56 thousand video samples, 4 million
frames with 60 different action classes and performed
by 40 different subjects. To our best knowledge, this is
the biggest RGB-D dataset for action recognition tasks.

Some samples of RGB, depth, joints, and IR image
are shown in Fig. 5. Experiments on realistic human
action datasets have so far given limited results spe-
cially when dealing with a large and varied range of
actions (e.g., Table 3 shows recognition results meth-
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Table 2 Some popular datasets for human action recognition (ordered by year of publication).

Dataset & Category Author & Year # Classes Description
KTH Schuldt et al. [173] 6 Walking, jogging, running, boxing,
(I) 2004 hand waving, and hand clapping.

Weizman Gorelick et al. [61] 10 Walk, run, jump, gallop sideways,
(I) 2005 jump in place, jumping, etc.

IXMAS Weinland et al. [240] 13 Check watch, cross arms, scratch head,
(I) 2006 wave, punch, kick, point, pick up, etc.

Hollywood-1 Laptev et al. [111] 8 Answer phone, get out car, hand shake,hug
(II) 2008 person, kiss, sit down, sit up, stand up.

Hollywood-2 Marszalek et al. [135] 12 Answer phone, drive car, eat,
(II) 2008 fight person,hug person, kiss, run,etc.

YouTube Liu et al. [126] 8 Basketball shooting, volleyball spiking,
(II) 2009 soccer juggling, cycling, diving, etc.

MuHAVi Singh et al. [187] 17 Walk turn back, run stop, punch, kick,
(II) 2010 pick up through object, walk fall, etc.

UT-Interaction Ryoo et al. [169] 6 Shake-hands, point, hug, push, kick,
(II) 2010 and punch.

MSR Action3D Li et al. [120] 20 High arm wave, horizontal arm wave, hammer,
(II) 2010 hand catch, forward punch, high throw, etc.

Daily-Activity-3D Wang et al. [224] 16 Drink, eat, read book, call cellphone,
(II) 2010 cheer up, sit still, toss paper, play game, etc.

MSR Action3D Li et al. [121] 20 High arm wave, horizontal arm wave, hammer,
(II) 2010 hand catch, forward punch, high throw, etc

Olympic Sports Niebles et al. [145] 16 High jump, long jump, triple jump, pole vault
(IV) 2010 discus throw, hammer throw, etc.

VIRAT 2.0 Oh et al. [150] 12 Loading an object to a vehicle, opening a
(III) 2011 vehicle trunk, getting into a vehicle, etc.

HMDB-51 Kuehne et al. [107] 51 Smile, laugh, chew, talk,
(II) 2011 smoke, eat, drink, etc.

Cornell Activity CAD-60 Sung et al. [199] 12 Rinsing mouth, brushing teeth,
(II) 2011 talking on the phone, drinking water, etc.

Cornell Activity CAD-120 Koppula et al. [104] 20 Making cereal, taking medicine, stacking objects,
(II) 2012 reaching, moving, pouring, eating, etc.

SBU-Kinect Interaction Kiwon et al. [255] 8 Approach, depart, push, kick, punch,
(II) 2012 exchange objects, hug, and shake hands.

LIRIS Wolf et al. [242] 10 Discussion between two or more people,
(II) 2012 put (take) an object into (from) a box (desk), etc.

UCF-50 Reddy et al. [160] 50 Diving, drumming, fencing,
(IV) 2012 tennis swing, trampoline jumping, playing piano, etc.

UCF-101 Soomro et al. [192] 101 Horse riding, hula hoop, ice dancing,
(IV) 2012 skiing, skijet, sky diving, etc.

Sports-1M Karpathy et al. et al. [94] 487 Juggling club, pole climbing, tricking,
(IV) 2014 foot-bag, skipping rope, slack-lining, etc.

ActivityNet Heilbron et al. [45] 203 Personal care, eating and drinking, household,
(II) 2015 caring and helping, working, socializing, etc.

NTU RGB+D Shahroudy et al. [179] 60 Drinking, eating, reading,
(II) 2016 punching, kicking, hugging, etc.
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Fig. 5 Some samples of RGB, depth, skeleton and IR image
from the NTU RGB+D dataset [179].

ods on the HMDB-51 [107] dataset). Therefore, the
current problem in action recognition that needs solv-
ing by computer vision community is recognizing com-
plex actions and behaviors on realistic scenarios. Fur-

thermore, there is also the need to build cost-effective
real-world applications. This explains state-of-the-art
benchmark datasets such as UCF-101 [192], HMDB-

51 [107], Sports-1M [94], ActivityNet [45] and NTU
RGB+D [179]. Researchers who want to evaluate their
algorithms on state-of-the-art benchmark datasets can

participate in the THUMOS challenge [83], a common
benchmark for action classification and detection for
computer vision community from around the world.

Recent developments in low-cost depth sensor tech-

nology have brought many opportunities for solving
human action recognition tasks. RGB-D and skeleton
data allow better understanding of the 3D structure of
human body motion. Related to RGB-D and skeleton

datasets, interested readers are referred to the recent
work of Zhang et al. [259] and Firman [50]. In the next
section, we will present deep learning-based approaches,
one of the most interesting techniques in recent years
in this field to answer the challenges highlighted here.

3 Deep learning: a short presentation

For the sake of completeness, we present this section es-
pecially for readers who might not be very familiar with
deep learning techniques. A full discussion is clearly
outside the scope of this paper. Before discussing deep
learning, we would like to briefly summarize the con-
cept of machine learning (ML). ML is the branch of al-
gorithms that allows computers to automatically learn

from data. We can use ML systems for identifying ob-
jects in images, detecting spam emails, understanding

Table 3 Accuracy (%) on the HMDB-51 dataset [107]

Approach Author Acc.
RGB+optical flow Wang et al. [237] 62.0
FST +SCI fusion Sun et al. [198] 59.1
Two-stream CNN+SVM Simonyan et al. [183] 59.4
Improved dense trajec-
tory

Wang et al. [222] 57.2

W-flow dense trajectories Jainet al. [88] 52.1
Dense trajectory Wang et al. [220] 46.6
TRAJMF Jiang et al. [92] 40.7
Binary ranking models Can et al. [29] 39.0
MIP Kliper et al. [101] 29.2
GIST 3D Solmaz et al. [189] 29.2
Action bank Sadanand et al. [170] 26.9
C2 Kuehne et al. [107] 23.0
HOG/HOF Kuehne et al. [107] 20.0

text, finding genes associated with a particular disease
and numerous other applications. The primary goal of
ML is to develop general-purpose algorithms which are
able to make accurate predictions in many different
tasks. In other words, ML algorithms try to match the

density function that produced the data. For example
in classification problems, we need to identify a set of
categories C from a space of all possible examples X .

Given any set of labeled examples (x1, c1), ..., (xm, cm)
, where xi ∈ X and ci ∈ C; the goal of ML is to find
a concept F(·) that satisfies ci = F(xi) for all i. De-
pending on the way of learning, (e.g., learn from la-

beled data or unlabeled data, learn with feedback or
non-feedback), ML methods are typically classified into
four categories including supervised learning, unsuper-

vised learning, semi-supervised learning, reinforcement
learning. Fig. 6 illustrates a typical supervised learning
process in classification tasks.

Deep Learning (DL) is a class of techniques in ma-
chine learning. In 2012, DL became a major break-
through in computer vision after the authors of AlexNet
[106] achieved record performance on a highly challeng-

ing dataset named ImageNet. AlexNet [106] was able
to classify 1.2 million high-resolution images from 1000
different classes with the best error rate. In general, DL
methods are machine learning methods that consists
and operate on multiple (multi-layer) levels of repre-
sentation. Fig. 7 illustrates a multilayer network and

the construction process of the higher layers from the
first layer. Various DL architectures have been proposed
over the years (see Table 4) and have been shown to
produce state-of-the-art results on many tasks, not least
within human action recognition. In this section, we de-
scribe the most important DL architectures for human
action recognition including Convolutional Neural Net-
works (CNNs or ConvNets) [53,166,116,105], Recur-
rent Neural Networks with Long Short-Term Memory
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Fig. 6 The supervised ML process for a typical classification problem.

(a) (b)

Fig. 7 (a) Illustration of a multilayer network model [115]. This model allows a computer to automatically determine the
representations needed for prediction tasks. The first layer (input units) is called “visible layer”, it contains natural data in
their raw form (e.g., a collection of pixels values). Starting from the visible layer, a series of hidden layers is built through
extracting increasingly abstract features from lower levels. In other words, more abstract concepts are learned from the lower
levels. The highest layer contains useful information for exploring and predicting the content of input data. (b) An example of
a deep learning model for classification problems [256,59]. Given some pictures, the first layer includes an array of pixel values.
The first hidden layer represents the presence of edges. Then, the second hidden layer can identify corners and contours from
edges in the first layer. By connecting corners and contours, the third layer can determine specific objects.

(RNN-LSTMs) [75], Deep Belief Networks (DBNs) [73],
and Stacked Denoising Autoencoders (SDAs) [217].

3.1 Convolutional Neural Networks (CNNs)

After obtaining breakthrough results in object recog-
nition with AlexNet [106] for the ImageNet project in

2012, CNNs become one of the most important deep
learning models and play a dominant role for solving
visual-related tasks. A CNN is a type of artificial neu-
ral network, designed for processing visual and other
two-dimensional data. The main benefit of this model
is that it operates directly on the raw data without any
hand-crafted feature extraction. The idea of CNNs was
firstly presented in 1980 by Fukushima [53] in which
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Table 4 Popular deep learning architectures.

Architecture Main articles
CNNs Fukushima (1980) [53];

Rumelhart et al. (1986) [166];
LeCun et al. (1989) [116];
Krizhevsky et al. (2012) [105];
Szegedy et al. (2015) [201];
Simonyan et al. (2014) [184];
He et al. (2015) [68].

RNN-LSTMs Hochreiter and Schmidhuber [75].
DBNs Hinton et al. (2006) [73].
DBMs Salakhutdinov et al. (2006)[172].
Sparse Coding Olshausen and Field (1996)[151];

Lee et al. (2006) [117].
SDAs Vincent et al. (2008) [217].

CNNs are inspired by the structure of the visual ner-
vous system [80]. CNN models continued to be proposed
and developed, e.g., by Rumelhart et al. [166], LeCun
et al. [116] and Krizhevsky et al. [105]. There are three
key ideas behind a CNN architecture including “local
connections”, “shared weights”, and “pooling”.

Local connections: In regular neural networks, each
hidden layer consists of a set of neurons, where each
neuron is fully connected to all neurons in the previous

layer (Fig. 8a). This model does not work efficiently
when the input vector has a hight dimension. To make
this more efficient, the idea is to reduce the number of
connections between the first hidden layer to the input

or each hidden layers to each other. Given an image as
an input vector, every input pixel is not connected to
every neuron in the first hidden layer. Instead, neurons

in the first hidden layer are connected to localized re-
gions of the input image. This sub-region is called the
“local receptive field”. For each local receptive field, we

can identify a neuron in the first hidden layer as shown
in Fig. 8b.

Shared weights: For standard neural networks such
as multilayer perceptrons [164] (MLP), the neurons of
the first layer are computed by the dot product func-
tion of input vector x and its weights w where many
different wi values are used. In a CNN, we use a tech-
nique called “weight sharing” which is able to reduce
the number of parameters wi. Specifically, in weight
sharing, some of the parameters in the CNN model are
constrained to be equal to each other [213]. Mathemat-
ically, the weight sharing technique can be performed
using a convolution operator. In this process, we apply

the filters to many local receptive fields in the input
image, a “feature map” is generated by sliding a filter
over the input matrix and computing the dot product.
We can use many different filters and each of them will
produce one feature map.

Pooling: “Pooling” is a sample-based discretization
process. Its main goal is to reduce the dimensionality
of the input representation while retaining the most
important information in feature maps. This process
reduces the computational cost and at the same time
it provides a form of translation invariance. Pooling is
performed by using a pooling function to replace the
output of the network at a certain location with sum-
mary statistic of the nearby outputs. Two popular pool-
ing functions include the maximum operation and the
average of a rectangular neighborhood.

These concepts above can now be put together to
form a complete CNN architecture (Fig. 9) that consists
of a series of stages. The first few stages are structured
by one convolutional layer and one pooling layer. These
layers are followed by one or more fully connected lay-
ers at the top of the model. In a CNN, the convolution
layer plays the role of a local feature extractor while
the pooling layer merges semantically similar features
into one. The last layer is a standard neural network

working as a classifier (or a standard classifier such as
an SVM). So the network learns a set of good features
(c.f. with arbitrarily chosen or hand-crafted features) to

use with a classifier. To prevent over-fitting and train
the CNNs faster, Rectified Linear Units (ReLUs) and
Dropout Layers [194,39] have also been used. However,
we do not discuss these two layers here as it is be-

yond the scope of this paper. Further details on the
development of the CNNs can be found for example on
AlexNet [106], ZF Net [257], GoogLeNet [201], VGGNet

[184], ResNets [68], Inception-v3 [202], Dense-Net [79]
and Inception-v4 [200] (see Fig. 10).

3.2 Recurrent Neural Networks with
Long-Short Term Memory (RNN-LSTMs)

Recurrent Neural Network (RNN) is a good choice to
model the complex dynamics of various actions in video
because its architecture allows to store and access the
long range contextual information of a temporal se-

quence. The main difference between an RNN and a
multilayer perceptron is the presence of cyclical con-
nections (Fig. 11). This way, an RNN can learn to map
from the entire history of previous inputs to each out-
put [62]. However, they are very difficult to train due
to the “vanishing gradient problem” [25,102]. The Long
Short-Term Memory (LSTM) [75] approach has been
proposed to solve these problems. Fig. 12 describes the
LSTM’s structure and its information flow. RNNs not
only are able to make use of previous context in data

sequences but also able to exploit future context as well.
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(a) (b)

Fig. 8 (a) Illustration of a full-connected model in a regular 3-layer neural network. (b) Illustration of the local receptive
field in the input neurons [6].

Fig. 9 Illustration of the typical block diagram of a CNN [176].

Fig. 10 Some important architectures in the literature of
convolutinal neural network.

Bidirectional RNNs [174] has been proposed to do this

by processing and storing both past and future con-
text of data with two separate hidden layers. All the
information are then sent forwards to the same output
layer. By replacing the nonlinear units in the Bidirec-
tional RNNs architecture by LSTM cells, we can obtain

Bidirectional-LSTM as shown in Fig. 13. In the Sect. 4,
we will see how to apply Bidirectional-LSTMs to model
and recognize human actions in video.

3.3 Deep Belief Networks (DBNs)

DBNs [73] have been used successfully for many recog-
nition tasks such as handwritten digits recognition [72],

object recognition [142], or modeling human motion
[206]. DBNs are probabilistic generative models that are
constructed by stacking several restricted Boltzmann
machines (RBMs) [188,74] (Fig. 14b). RBMs are shal-
low networks containing two layers: one layer of “visi-
ble” units that represents the input data and one layer
of “hidden” units that learns to represent features. In an
RBM architecture, all visible units of the visible layer
are connected to all hidden units of the hidden layer,
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(a) (b)

Fig. 11 Illustration of: (a) a Multilayer Perceptron and (b) a Recurrent Neural Network.

it = σ(Wxixt +Whiht−1 +Wcict−1 + bi)
ft = σ(Wxfxt +Whfht−1 +Wcf ct−1 + bf )
ct = ftct−1 + ittanh(Wxcxt +Whcht−1 + bc)
ot = σ(Wxoxt +Whoht−1 +Wcoct + bo)
ht = ottanh(ct)

Fig. 12 Diagram of an LSTM unit [62]. A typical LSTM
unit contains an input gate it, a forget gate ft, an output
gate ot, an output state ht and a memory cell state ct. The
information flow is described by the above equations where
σ is the sigmoid activation; xt is the input to the network at
time t; all the matrices W are the connection weights between
units. � denotes element-wise product; and ut denotes the
modulated input function.

Fig. 13 Architecture of a Bidirectional-LSTM. The circular
nodes represent LSTM cells.

but there are no connections between two units of the
same layer (Fig. 14a). The standard type of RBM has
binary-valued hidden and visible units, meaning that
each unit can only be in one of two states, “0” or “1”.
The probability of setting a unit to “1” is a sigmoid
function of its bias, weights on connections, and the
state of other units. More detail, given a binary RBM
with m visible units V = {vi}, i ∈ (1, ...,m) and n hid-

den units H = {hj}, j ∈ (1, ..., n), where vi and hj are
the binary states of visible unit i and hidden unit j or
(vi, hj) ∈ (0, 1)m+n, the joint probability distribution

for visible and hidden units is defined as [71]:

P (vi, hj) =
1

Z
e−E(vi,hj) (1)

where Z is the partition function computed by summing
over possible pairs of (vi, hj):

Z =
∑
vi,hj

e−E(vi,hj) (2)

and E(vi, hj) is the energy function given by:

E(vi, hj) = −
m∑
i=1

aivi −
n∑

j=1

bjhj −
∑
i,j

vihjwi,j . (3)

In Eq. (3), ai and bj are biases, wi,j is the weight be-
tween vi and hj units. In a binary RBM model, there
are no direct connections between visible units nor be-
tween hidden units. So, given the input data v through
the visible units, the binary state of each unit hj is 1
with probability:

p(hj = 1|v) = σ(bj +
∑
i

viwi,j). (4)

Given a hidden vector h, we can also reconstruct the
states of a visible unit by:

p(vi = 1|h) = σ(ai +
∑
j

hjwi,j) (5)
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(a) (b)

Fig. 14 (a) An example of a RBM with m visible units and n hidden units. (b) The schematic overview of a deep belief
networks composed of d RBMs. W1,W2,...,Wh are the weights matrices between the connections.

where σ(x) is the sigmoid function with form:
1

1 + e−x
.

For estimating the weights wi,j and biases ai, bj , we
use:

∂ log p(v)

∂wi,j
= 〈vihj〉data − 〈vihj〉model (6)

∂ log p(v)

∂ai
= 〈vi〉data − 〈vi〉model (7)

∂ log p(v)

∂bj
= 〈hj〉data − 〈hj〉model (8)

The conditional distribution p(hj |v) in Eq. (4) shows
that the hidden layer can be constructed by updating

the state of units hj when given a data vector v. In
practice, since all units in the hidden layer are condi-
tionally independent given the visible layer, the state of
each unit can be computed by using block Gibbs sam-
pling [73]. This technique allows to update the state of
all the units in parallel. As shown in Fig. 14b, a DBN
could be viewed as a stack of several RBMs. Therefore,
training a DBN is performed through training each of
its RBM. The work of Hinton et al. [73] provided an
efficient procedure for training DBNs. In this process,

the units of the current hidden layer are regarded as
visible layer for the next hidden layer and training a
DBN starts from the lowest RBM. The procedure is re-
peated layer-to-layer until the highest RBM is reached
and known as the “greedy layer-wise training strategy”.
Each component (an RBM) of the DBNs acts as a fea-
ture extractor on inputs. It extracts “low level” features
at the bottom hidden layer, as well as more “abstract”
features at the higher hidden layers. To improve the
performance of DBNs for classification tasks, the DBN

model could be extended by adding a soft-max layer on
the top of its architecture.

Fig. 15 The typical structure of an autoencoder.

3.4 Stacked Denoising Autoencoders (SDAs)

SDA is another important technique in DL. It is an
extension of a classical autoencoder [165] and was first
introduced in 2008 by Vincent et al. [217]. The idea of

an autoencoder is shortly described here: Given a set
of data points x = {x1, x2, ..., xm}, map x to another
set of data points y = {y1, y2, ..., yn} where n < m.
From the compressed set y, we reconstruct a set of x̃,
which approximates the original data x. The mapping
x 7→ y is called “encoding” and the mapping y 7→ x̃ is
called “decoding”. Formally, the processes of encoding
and decoding are performed as follows:

y = W1xi + b1 (9)

x̃ = W2yi + b2. (10)

where W1 ∈ Rm×m,W2 ∈ Rn×n. Fig. 15 illustrates

the network architecture of a typical autoencoder. To
achieve the goal of reconstructing x̃ to approximate the
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original data x, we minimize the difference between x
and x̃ by minimizing the function:

J(W1, b1,W2, b2) =
m∑
i=1

(x̃i − xi)2. (11)

From Eqs. (10) and (11), we have:

J(W1, b1,W2, b2) =
m∑
i=1

(W1W2xi − 1)xi + b1W2 + b2)2.

(12)

SDAs are constructed by stacking several autoencoders
together to create a “deep” architecture. The weights
are fine-tuned with a back-propagation algorithm [38].
The “unsupervised pre-training” of each autoencoder is
performed in a greedy layer by layer manner. Once the
a SDAs is learnt, its output will then be used as the
input representation of a supervised learning algorithm

for recognition tasks.

4 Human action recognition approaches based
on DL

This section reviews current studies of deep learning
on human action recognition. We categorized publica-

tions based on the proposed taxonomy shown in Fig. 3,
including: human action recognition based on CNNs
(Sect. 4); human action recognition based on DBNs

(Sect. 4); human action recognition based on SDAs (Sect.
4); human action recognition based on RNN-LSTMs
(Sect. 4), and some other architectures (Sect. 4).

4.1 Human action recognition based on CNNs

Many works on human action recognition and related
tasks based on DL models have been proposed and re-
ported in the literature. Among them, one of the most
used deep models is CNNs (see Sect. 3 and Fig. 3)
and its extensions. Researchers have successfully ap-
plied CNN-based architectures for many visual tasks

such as people detection and tracking [46,175,228], pose
estimation [148,86,87,58,208,37], action recognition [56,
182,90,99,91,183,226,229,209,234,41,125,30,138,186],
event detection and crowded scene understanding [54,
180,32,248]. Early work on applying CNNs was made
in 1995 by Nowlan et al. [148] for hand tracking and
recognizing. In their work, a CNN model is proposed
to locate the hand and recognize whether it is close or
open with accuracies of 99.7% and 99.1% on a dataset
of 900 video images from 18 different subjects for each

task. However, the complex structured backgrounds of
images may have a significant impact on the recognition

accuracy. Starting from the work of Fukushima [53],
Giese and Poggio [56] proposed a hierarchical feedfor-
ward architecture for the recognition of biological move-
ments such as walking, running or various full-body ac-
tions. In a related paper, Sigala et al. [182] also devel-
oped a hierarchical model for detecting a walker based
on the use of the neural detectors that are able to ex-
tract motion features with different levels of complex-
ity. Jhuang et al. [90] proposed an extension model from
the work of Giese and Poggio [56] for the recognition
of actions from video sequences (Fig. 16). This model
is close to the standard architecture of a CNN shown
in Fig. 9 but it does not use the convolutional layer. In
2007, Kim et al. [99] used a modified CNN model and a
weighted fuzzy min-max neural network (WFMM) [98]
for human action recognition. In their paper, the CNN
generates a set of feature maps from the pretreated data
and a WFMM [98] plays the role of a classifier.

An important study on applying a CNN for rec-
ognizing human actions in videos has been presented
by Ji et al. [91]. Normally, the CNNs have been pri-

marily applied on two-dimensional data (2D-CNN) in
which these models compute features from the spa-
tial dimensions only. In order to exploit the tempo-

ral information of human motion, Ji et al. [91] used
a novel three-dimensional convolutional neural network
(3D-CNN) architecture for recognizing human action.
This architecture used 3D kernels in the convolution

stages to extract motion features from both spatial and
temporal dimensions. This improvement can be applied
to contiguous frames in video to extract multiple fea-

tures. Fig. 17 illustrates the architecture of 3D-CNN
and the function of each component. Experiments on
TRECVID-2008 [11] datasets have shown that this model
outperforms the frame-based 2D-CNN model and two
other methods proposed by Lazebnik et al. [113] and
Yang et al. [252] which follow the state-of-the-art bag-
of-words (BoW) [112]. Motivated by Ji et al. [91], Wang

et al. [226] has also used 3D-CNN for building a deep ar-
chitecture which is able to recognize actions from RGB-
D data. In addition, Tran et al. [209] investigated in
detail the 3D-CNN model and showed that it outper-
forms the 2D-CNN in modeling human motion infor-
mation on various recognition tasks. Moreover, Tran et
al. [209] found that the best kernel length for 3D-CNN

is 3×3×3 size. Varol et al. [216] also used 3D-CNN for
learning action representation in video but with long-
term temporal convolutions at the input layer. This
study demonstrated that this solution can significantly
improve the performance on some state-of-the-art ac-
tion recognition datasets. A visible disadvantage of 3D-
CNN model is the increasing number of parameters of
the network. To reduce the complexity of the model,
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Fig. 16 The framework for recognizing human action proposed by Jhuang et al. [90]. Given a gray-value video sequence
as input data, the S1 stage locates the object in image frame by using spatio-temporal filters. Each C1 unit is computed by
applying a local max over for each S1 unit for down-sampling. From the C1 stage, we perform a template matching operation
for identifying intermediate-level features of the model. The C2 stage is constructed by computing the global max over each
S2 unit. The high-level features are extracted in S3 through a template matching and the C3 features are computed from S3

using the same way like computing C2. The last stage is a linear multiclass SVM classifier that is able to recognize the actions
using the C3 features as input.

Fig. 17 The 3D-CNN architecture for human action recognition proposed by Ji et al. [91]. The first layer (hardwired layer)
is used for generating multiple channels of information from the input frames (e.g. the information of gray-level, gradient, or
optical flow). The model applies 3D convolutions for each channel for computing the feature maps in C2 layer. The S3 layer is
obtained by applying subsampling operation on each feature map in the C2 layer. The procedure is repeated until obtaining
feature maps in the S5 layer that is then connected with a full connection layer.

Sun et al. [198] proposed a factorized spatio-temporal
convolutional network that factorizes the 3D convolu-

tion kernels into 2D spatial kernels and followed by 1D
temporal kernels. Another limitation of 3D-CNN mod-
els in these work above is that they need to be trained
using supervised learning algorithm, and it requires a
very large number of labeled data. Therefore, exploring
the unsupervised training of 3D-CNN models is a new
direction for future research.

After finding more efficient ways to train CNNs us-
ing GPU computing [196] and the success of AlexNet

[106] in the ILSVRC-2012 competition, much work on
human action recognition has been published. Ijjina et
al. [84] recognized human actions in videos by using
the standard action bank [171] as a feature detector
and a CNN as a classifier. Gkioxari et al. [58] gave
state-of-the-art performance for predicting and classi-
fying human actions on the PASCAL VOC 2012 ac-
tion dataset [7] by using the same CNN architecture as
AlexNet [106] and extracting region proposals on input
image with R-CNN technique [57]. Chéron et al. [37]
designed a new CNN-based pose descriptor for human
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action recognition from RGB and optical flow informa-
tion. Two distinct CNNs with an architecture similar
to AlexNet [106] have been used.

The two-stream convolutional network proposed by
Simonyan and Zisserman [183] has shown strong per-
formance for human action recognition in videos. This
model is a two-stream architecture including the spa-
tial stream and the temporal stream where each stream
is executed by a CNN. The first stream recognizes ac-
tions from a single frame, while the second recognizes
actions from motion information of multi-frame opti-
cal flow. These two streams are then combined for the
classification task. The experimental results show that
using multi-frame optical flow for training model allows
to achieve very good performance with limited training
data. This architecture has been seen as the most ef-
fective approach of applying DL to action recognition
with limited training data. In subsection 5, the reader
can find a quantitative performance analysis of action
recognition models based on DL where two-stream con-
volutional architecture based approaches play a promi-

nent role. Inspired by the work of Simonyan and Zis-
serman et al. [183], many different authors have devel-
oped two-stream convolutional networks for solving ac-

tion recognition problems, e.g., Wang et al. [238,232,
14], Xiong et al. [247]. Unlike the two-stream architec-
ture developed by Simonyan and Zisserman et al. [183],

Liu et al. [125] added a module called stCNN (Spatio-
Temporal Convolutional Neural Network) to the stan-
dard CNN model for exploiting motion and content-
dependent features concurrently. Experiments on KTH

[173] and UCF-101 [193] datasets showed that the recog-
nition accuracy for motion-content combined was bet-
ter when compared with motion alone. Singh et al.

[186] addressed the problem of understanding egocen-
tric activities by using a three-stream CNN architec-
ture. More specifically, the authors proposed a frame-
work for the recognition of wearer’s actions. First, a
CNN model called “Ego Convnet” is trained for learn-
ing features from egocentric cues including hand mask,
head motion, and a saliency map. Then, Ego Convnet
is extended by adding two more streams correspond-
ing to spatial and temporal streams as the model pro-
posed by Simonyan and Zisserman et al. [183]. Exper-
iments showed that the model with the Ego Convnet
stream alone achieved state-of-the-art accuracy on dif-
ferent egocentric videos datasets. In addition, the three-
stream architecture (see Fig. 18) is able to improve the

accuracy of Ego ConvNet. In a recent study, Wang et
al. [237] divided an input video consisting of t frames
X = {x1, x2, ..., xt} into two sets: the precondition state
frames Xp = {x1, ..., xzp} and effect state frames Xe =
{xze , ..., xt}. The Siamese network architecture has been

designed for learning action features. In fact, this is
a two-stream CNN models where the first stream is
trained on the precondition state frames and the sec-
ond is trained on the effect state frames as shown in
Fig. 19.

The key ideas behind CNNs such as “local connec-
tions” or “shared weights” and the improvements on
GPU computing technology have enabled CNNs to train
on very large scale datasets. Karpathy et al. [95] studied
the performance of CNNs by trying to predict and clas-
sify on Sports-1M [10] dataset which consists of more
than one million sport videos. A multiresolution CNN
architecture with two-streams of processing has been
proposed for reducing training time. The results show
that CNNs are capable of learning powerful features
and significantly outperform the feature-based baseline.
Fig. 20 shows some examples of predictions on Sports-
1M dataset [10].

Advances of 3D sensors such as Microsoft Kinect
[261] brings up new opportunities in computer vision,

even though they tend to be limited to small indoor
environments. RGB-D data is able to provide addi-
tional information about human motion. Take advan-

tage of depth maps provided by Kinect sensors, Wang
et al. [233] proposed the use of CNNs to learn actions
from sequences of depth maps. Given a sequence of

depth maps, 3D points are created and three Depth
Motion Maps (DMMs) are constructed by projecting
the 3D points to the three orthogonal planes. Three
CNNs are constructed based on AlexNet architecture

[106] to extract motion features from each DMM and
then classify them into classes. This study is extended
in [235] and [234]. State-of-the-art results have been

shown on MSR Action3D Dataset [120], an extension of
the MSR Action3D Dataset, UTKinect-Action Dataset
[245], and MSR-Daily-Activity3D Dataset [224]. Ex-
ploiting DMMs from depth sensors and learning human
action features with a CNN model can also be found in
the works of Yang et al. [253] and Dobhal et al. [41].

In addition to RGB-D information, the acquisition
of the skeleton data has become easier with the sup-
port of RGB-D sensor. Mo et al. [138] presented a deep

model which combines a CNN with a multilayer per-
ceptron [164] for recognizing the human activities based
on skeleton data acquired from a Kinect sensor [261].
Skeleton data has been used by Wang et al. [236]. Firstly,
the spatio-temporal information of the joint trajecto-
ries is encoded into color images. Then, a CNN based
on the AlexNet architecture [106] is used to learn the
color distribution and to classify actions. The experi-
mental results on the large NTU RGB+D dataset [179]
and three other public datasets have shown the effi-
cacy of this approach. The idea of encoding the spatio-
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Fig. 18 Three-stream CNN architecture for the recognition of wearer’s actions proposed by Singh et al. [186].

(a) (b)

Fig. 19 The Siamese network architecture proposed by Wang et al. [237].

Fig. 20 Action prediction on Sports-1M dataset [10]. The first row indicates ground truth label and the bars below show
model predictions. Green and red distinguish correct and incorrect predictions, respectively [95]. (We encourage the reader to
view this figure on the screen of a computer and zoom in.)



Video-based human action recognition using deep learning: a review 17

temporal information of a skeleton sequence into color
texture images and using a standard CNN architeture
such as AlexNet [106] can also be found in the work of
Hou et al. [76].

Among the local space-time features, trajectories
are one of the best ways to describe motion [221,222,
24]. Wang et al. [229] combined the benefits of im-
proved trajectories [222] and two-stream CNN architec-
ture from the work of Simonyan and Zisserman et al.
[183] for designing an effective representation of video
feature called “Trajectory-Pooled Deepconvolutional De-
scriptor”. The experimental results show that this frame-
work has obtained state-of-the-art performance for rec-
ognizing action on the UCF-101 [193] and HMDB-51
datasets [108]. Inspired by the work of Wang et al.
[229], Cao et al. [30] proposed a novel 3D deep con-
volutional descriptor based on joint positions named
“Joints-Pooled 3D Deep Convolutional Descriptors”. The
proposed method was evaluated on sub-JHMDB [89],
Penn Action [260], and Composable Activities [123] and

have shown that using joint-based descriptor with deep
model is an effective and robust way for understanding
human action.

A new powerful and simple representation of videos
for action recognition based on DL, especially CNNs,
called “Dynamic Image” has been presented in the work

of Bilen et al. [26]. The idea of this paper is summariz-
ing the video content in a single standard RGB image,
then using a pre-trained CNN model such as AlexNet

[106] on on a dataset of dynamic images with fine-
tuning technique. The authors also proposed to train
CNN from scratch by generating more dynamic images

from video segments. Experiments on HMDB-51 [108]
and UCF-101 [193] datasets shown the effectiveness of
the “Dynamic Image” representation.

Very deep convolutional neural networks such as
VGGNet [184], GoogLeNet [201] have achieved signif-
icant success for object recognition and classification
tasks. Several authors started to exploit these archi-
tectures for action recognition problems. Wang et al.
[231] introduced very deep two-stream CNNs for ac-
tion recognition based on VGG-16 (VGGNet C with

13 convolutional layers and 3 fully-connected layers)
and GoogLeNet [201] with 22-layers network. Feicht-
enhofer et al. [48] proposed a CNNs-based novel archi-
tecture for spatio-temporal fusion of two stream net-
works in which the deep CNN model VGG-M-2048 [33]
and very deep model VGG-16 [184] have been used.
The performance comparison between deep (VGG-M-
2048) and very deep (VGG-16) models on UCF-101
[193] and HMDB-51 [108] datasets shown that the use
of deeper networks improves performance. In addition,

GoogLeNet [201] and VGGNet [184] have also been

used to design the two-stream CNNs in the work of
Wang et al.[230]. Fernando et al. [49] trained VGG-
16 [184] on HMDB-51 [108], UCF-101 [193] and Holly-
wood2 [136] datasets for obtaining VGG-16 CNN fea-
tures. The CNN feature vectors are then encoded by a
method called “Hierarchical Rank Pooling”. This method
allows encoding the temporal dynamics of a video se-
quence for action recognition. A video sequence is en-
coded at multiple levels in which the output of the each
level is a sequence of vectors which captures higher-
order dynamics of its previous level. The final repre-
sentation can be used to learn an SVM classifier for
activity recognition as descriptors.

Table 5 Performance (%) comparison of deep model
VGG-M-2048 with very deep model VGG-16 on the
UCF-101 [193] and HMDB-51 [108] reported by Fe-
ichtenhofer et al. [48].

Dataset UCF101 HMDB51
Model VGG-M-2048 VGG-16 VGG-M-2048 VGG-16
Spatial 74.22 82.61 36.77 47.06
Temporal 82.34 86.25 51.50 55.23
Spatio-
Temporal

85.94 90.62 54.90 58.17

Very recently, the residual learning (ResNet) [68],
a state-of-the-art CNN and one of the deepest CNN

model at the moment has been exploited for human
action recognition by Feichtenhofer et al. [47]. In the
main ResNet paper [68], authors have suggested differ-

ent architectures of ResNet with 18, 34, 50, 101, 152,
and 1202 layers. The underlying network with 50 layer
ResNet has been used in the work of Feichtenhofer et
al. [47] to design a two-stream network. Experiments

shown a state-of-the-art performance on UCF-101 [193]
and HMDB51 [108] datasets. Some interesting improve-
ments in ResNet architecture are studying by many
researchers [204,178,200]. Therefore, we believe that
ResNets have a big influence on the future of CNN and
will be widely applied for human action recognition.

CNNs are also applied for solving more complex

tasks related to human action recognition such as event
detection, crowd analysis or behavior prediction. Xu et
al. [249] proposed a CNN-based approach for event de-
tection on the large scale video datasets, i.e. TRECVID
MED 13 [12] and TRECVID MED 14 [13] datasets. The
encoding technique is used for improving the perfor-
mance and the video representation is compressed for
reducing the computation costs. Gan et al. [54] pre-
sented a CNN-based framework called “DevNet” for
detecting events in videos. Shao et al. [180] built a
large-scale crowd dataset called WWW Crowd Dataset
and designed a CNN model to learn and recognize at-
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Fig. 21 The framework for action recognition proposed by Wang et al. [229]. Given an input video, the model extracts trajec-
tories. Multiscale convolutional feature maps are extracted by a CNN at the same time. Trajectory Pooled deep-Convolutional
Descriptors (TDDs) are then estimated from a set of improved trajectories and convolutional feature maps.

tributes prediction in crowd video. A similar study can

be found in the work of Castro et al. [32]. Xiong et al.
[248] presented a CNN-based approach which contains
two-channels CNN for recognizing complex events from

static images. This system is able to detect the objects,
predict events, and has given a state-of-the-art result
on a challenging dataset.

4.2 Human action recognition based on

RNN-LSTMs

As pointed out in Sect. 3, the main advantage of RNN-

LSTMs is the capacity to model the long-term contex-
tual information of temporal sequences. This advantage
puts RNN-LSTM at one of the best sequence learners
for time-series data including visual information of hu-
man action. Grushin et al. [63] has demonstrated the
robustness of the LSTM network’s performance on the
human action recognition task with the hand-crafted
feature HOF [110]. As discussed in Sect. 4, CNNs has
been shown its effectiveness in learning features from
raw data. Therefore, the works of Baccouche et al. [21],
Ng et al. [144], Donahue et al. [43], Giel et al.[55],
Sharma et al. [181], Ibrahim et al. [82], Singh et al.
[185], Li et al. [119], Wu et al. [244], Wang et al. [239],
Chen et al. [34] tackle the question of understanding hu-

man actions by combining a CNN and an RNN-LSTM
network. The general idea of these papers is to use
the standard CNN models such as AlexNet [106], VG-
GNet [184], or GoogLeNet [201] for extracting motion
features from input video. Then, RNN-LSTM network

Fig. 22 DL framework combining CNN and RNN-LSTM
for action recognition proposed by Donahue et al. [43]

is connected to the output of the CNN to classify se-
quences using learned features. Fig. 22 shows an exam-
ple of using CNN and RNN-LSTM for human action
recognition from the work of Donahue et al. [43]. While
all the work above just uses RNN-LSTMs as a sequence

classification, several studies have proposed the use of
RNN-LSTMs as an end-to-end learning framework for
skeleton based action recognition. E.g., the work of Du
et al.[44], Song et al.[190], Zhu et al. [262], Li et al. [122],
Liu et al. [127]. RNN-LSTMs learn directly motion fea-
tures and classify them into classes from 3D human-
skeleton sequences provided by depth sensors. Experi-
ments on the state-of-the-art datasets demonstrate the
effectiveness of these methods. In another study of Ma-
hasseni et al. [133] used a parallel architecture to recog-

nize actions with multi-source data. A RNN-LSTM is
trained in unsupervised manner on 3D human-skeleton



Video-based human action recognition using deep learning: a review 19

Fig. 23 The parallel DL architecture with RNN-LSTM pro-
posed by Mahasseni et al. [133].

sequences. In the same time, another RNN-LSTM with

a CNN is trained on 2D videos. The outputs are then
compared to improve the ability of the system. One
drawback with RNN-LSTMs based approaches is that
LSTMs are composed of a lot of parameters per unit.

It makes these models more complex, specially in per-
forming actions recognition on very large-scale dataset.

4.3 Human action recognition based on DBNs

DBNs have become the popular DL models after the
key paper by Hinton et al. [73] was presented in 2006.
A comparative evaluation by Tang [203] showed that

DBNs seem ideal for semi-supervised learning, in which
we do not need much labeled data. Early work on DBNs
was successfully applied for handwritten digits recogni-

tion [73] and object recognition [142,118]. In 2007, Tay-
lor et al. [206] extended the RBM model by connecting
two more visible layers to the hidden layer for modeling
human motion. The new model, called the conditional

RBM (cRBM) allows to finds a single set of parameters
that simultaneously capture several different kinds of
motion after training on skeleton data. Then, the au-
thors successfully constructed a DBN from cRBMs. Ex-
periments on two motion datasets have demonstrated
that this model is able to effectively learn different kinds
of action, as well as the transitions between these kinds.
In another research, Zhang et al. [258] used a modified
DBN model for recognizing human actions in real-time
from skeleton data. To achieve this goal, the authors
used cRBMs as proposed by Taylor et al. [206] to cre-
ate the new DBN architecture with two hidden layers
as shown in Fig. 24. The proposed model is trained

and tested by using the skeletal representation of MSR
Action3D [120] and MIT datasets [77]. Results show

that the recognition accuracy depends on the num-
ber of frames. For example, on the MIT datasets [77],
the accuracy when using one frame is 98.34%. Mean-
while, when the number of frames is more than 30, ac-
curacy can reach 100%. Foggia et al. [52] proposed a
DBN-based method for recognizing human actions with
depth images. A DBN model is constructed as shown
in Fig. 25. Three types of well-known feature including
the Average Depth Image (ADI), the Motion History
Image (MHI), and the Depth Difference Image (DDI)
are computed and encoded as low-level data represen-
tation in the first layer. The high level representation is
then extracted by the proposed model for recognition
task. The achieved results on MIVIA [51] and MHAD
[149] datasets are very promising. Ali and Wang [20]
presented a framework based on DBN to recognize and
identify human actions. To speed up learning time, the
Fast Fourier Transform (FFT) [69] technique is used for
converting images to the frequency domain. The model
is first pre-trained with KTH dataset [173] and then is
used for predicting actions. Experiments showed that

the proposed model is better than all published ap-
proaches in the literature. More details about this com-
parison are shown in Table 6. We can also find in the

Table 6 Average recognition accuracy (%) of human
action on KTH [173] dataset.

Approach Acc.
DBN [20] 94.3
ISA + Norm-thresholding [114] 93.9
Harris3D + HOF [223] 92.1
Harris3D + HOG/HOF [223] 91.8
HMAX [90] 91.7
3D-CNN [91] 90.2
Cuboids + ISA [223] 90.0
GRBM [205] 90.0
Dense + HOF [223] 88.0
pLSA [146] 83.3
Volumetric [97] 62.7

literature some other human action recognition applica-
tions based on DBNs. E.g., Glatt et al. [163] developed a
DBN-based gesture recognition system for understand-
ing the sign language. Nam et al. [143] employed a DBN

for developing a real-time human activity recognition
using 3D joint positions from RGB-D sensor.

4.4 Human action recognition based on SDAs

As pointed out in Sect. 3 SDAs can be trained to recon-
struct the input from a corrupted version of it. The first
successful application based on the encoder-decoder model
is presented in 2007 by Huang et al. [78] for object
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(a) (b)

Fig. 24 (a) The cRBM model proposed by Taylor et al. [206]. (b) A modified DBN model designed by Zhang et al. [258].

Fig. 25 An overview of the DBN architecture for human ac-
tion recognition proposed by Foggia et al. [52]. Three derived
images (ADI, MHI, DDI) are computed from depth images
and feed into the first level of the network. A more abstract
representation is obtained at higher level. Finally, the classi-
fication is done using a feed-forward neural network.

recognition tasks. A few years later, based on the prin-
ciple of the model of Huang et al. [78], Baccouche et al.
[22] proposed a solution for learning of sparse spatio-
temporal features based on autoencoder scheme. Ex-
periments on KTH [173] and GEMEP-FERA datasets
[215] showed the best results when compared to meth-
ods using hand-crafted features. Some other autoencoder-

based approaches have also been proposed in the works
of Wu et al. [243], Xie et al. [246], Hasan et al. [67],
and Budiman et al. [28]. For instance, Wu et al. [243]
constructed a 3-layer SDA architecture for human ac-
tion recognition using skeleton information captured by
Kinect [261] sensor. Budiman et al. [28] have also per-
formed a similar study when using a SDA model to
learn skeleton feature for human body pose classifica-
tion. To recognize human action, Xie et al. [246] used a

SDA architecture with 3-hidden layers to learn contour
features from a single depth frame. Hasan et al. [67]
presented an autoencoder-based framework for learn-

ing human activity models continuously from streaming
videos. This method is executed through two phases:
“initial learning” phase and “incremental learning” phase.

Given a streaming video with a few labeled activities,
the first phase will extract space-time interest points
(STIP) [109] of the motion then encode these feature
vectors by a sparse autoencoder. A softmax function is

used as a classification model that provides action label.
To recognize human activities in unlabeled frames, the
incremental learning phase uses the sparse autoencoder

and the parameters of activity classification model in
initial learning phase, but in an unsupervised manner.
In this phase, the active learning technique [177] has

also been used to reduce the amount of manual label-
ing of classes.

The long training time is a disadvantage of SDAs
when working with large-scale datasets. To overcome
this limitation, Chen et al. [35] proposed a novel vari-
ant of SDAs named “mSDA”. Experiments on the same
dataset showed that mSDA matched the performance
of SDA but reducing the training time down to 450
times. Taking advantage of the mSDA, Gu et al. [64]
trained an mSDA network for multi-view action recog-

nition. An mSDA is trained over all the camera views
and the trained network is then used to generate fea-
tures for each camera view respectively. These obtained
features from all the camera views are then combined
to create a single integrated representation, which can
then be used as the input of a classifier. The evalu-
ation on three benchmark multi-view action datasets
provided that this model achieved the state-of-the-art
recognition performance.
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4.5 Other deep architectures for human action
recognition

Some other deep architectures have also been used for
human action recognition and related recognition tasks
such as group activity analysis, or prediction of physi-
cal interactions. Sparse coding [151,117,254] is also an-
other potential deep model for recognizing human ac-
tion. The success of the sparse representation in vari-
ous fields including pattern recognition [159,251] or im-
age classification [250] have shown that it could flexibly
adapt to diverse low level natural signals. The sparse
representations of the signals are then used as image
features which are sent directly into the classifiers. There-
fore, many authors [263,130,131,65,19] have exploited
the advantages of sparse coding for solving human ac-
tion recognition problems. Recently, some novel deep
architectures for recognizing human action have been

published in the literature [211,212,158]. For instance,
Ullah and Petrosino [211] employed a CNN and a pyra-
midal neural network (PyraNet) [152] to recognize hu-

man action. A strict 3D pyramidal neural network or
“3DPyraNet” was constructed which allows to learn
spatio-temporal features of human motion. These works
continued to be expanded by the same authors [212] and

achieved competitive results on some action datasets.
Rahmani et al. [158] presented the “Robust Non-Linear
Knowledge Transfer Model (R-NKTM)”, a deep fully-

connected neural network which is capable of under-
standing human action from cross-view by learning fea-
tures from dense trajectories of synthetic 3D human
models and real motion capture data. Fig. 26 illus-
trates the procedure to train this network. Experiments
on cross-view human action datasets including IXMAS
[240], UWA3DII [157], N-UCLA Multiview Action3D

[225], and UCF Sports [161] have shown that this method
outperforms existing state-of-the-art.

The paper published by Le et al. [114] reports that
we can combine the different network models to build a
single deep architecture for improving its performance.
Based on two key ideas, “convolution” and “stacking”
in CNN architecture (Sect. 3), the authors constructed
a deep model by using the Independent Subspace Anal-
ysis (ISA) [81] (see Fig. 27a) and Principal Component
Analysis (PCA) [141]. The ISA is trained on small in-
put patches for learning feature directly from unlabeled
video data. It is then convolved with a larger region of
the input image. The PCA algorithm is applied on the
top of ISA for reducing dimensions. The responses are
then used as the input layer for another ISA. Fig. 27b
shows the architecture of the network. The method is

evaluated on KTH [173] , Hollywood2 or HOHA2 [136],

UCF sports [161] and YouTube datasets [126]. Table 7
shows that this deep architecture advanced the state-
of-the-art in human action recognition when the paper
was published.

Table 7 Accuracy (%) comparison between Le’s
method and the best result reported before.

Method KTH HOHA2 UCF YouTube
Measure AA Mean AP AA AA

Le et al. [114] 93.9 53.3 86.5 75.8
Best result 92.1 50.9 85.6 71.2

Improvements 1.8 2.4 0.9 4.6

Here, the average accuracy is noted by AA.

Srivastava et al. [195] constructed a model which
consists of two LSTMs - the encoder LSTM and the
decoder LSTM to learn representations of sequences of
images. The state of the LSTM encoder is the repre-
sentation of the input video. Then, the LSTM decoder

will reconstruct the input sequence from this represen-
tation. It can be used for reconstructing the input se-
quence as well as predicting the future sequence. Very
recently, Luo et al. [132] combined many different mod-

els to build a deep learning framework for recognition
human motion in Videos. The idea is designing a net-
work which is able to predict the future 3D motions

in videos (see Fig. 28). Given input frames, the model
will predict 3D flows in future frames, then use the fea-
tures to recognize activities. To do that, a RNN based
Encoder-Decoder framework has proposed. During the

encoding process, CNNs (the standard VGG-16 net-
works) are used for extracting a low-dimensionality fea-
ture from the input frames. Then, the LTSMs have been
used to learn the temporal representation of motion.
The learned representation is then decoded in the de-
coding process to generate the atomic 3D flows. This

approach achieved the state-of-the-art result on NTU-
RGB+D dataset [179] and MSR Daily Activity3D [121].
To the best of our knowledge, this model is the best
learning framework at the moment for action recog-
nition using different input modalities (RGB, Depth,
RGB-D).

A new unsupervised learning approach called Gen-
erative Adversarial Networks (GANs) was proposed by
Ian et al. [60]. In 2016, Radford et al. [156] introduced
a set of architectures called Deep Convolutional GANs
(DCGANs) in order to train GANs in a better way.
This study showed that GANs can learn good represen-
tations of images for supervised learning and generative
modeling. After that, GANs have started to show their

real potential. E.g., Vondrick et al. [218] capitalized on
recent advances in GANs for both action classification
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Fig. 26 Architeture of R-NKTM and its learning process [158]. Firstly, 3D human models are fitted to real motion capture
data for generating realistic 3D videos. These 3D videos are then projected on 2D planes for calculating dense trajectories.
A general codebook is learned from trajectories which is then used as the input of R-NKTM. By this way, the R-NKTM can
learn features of human action videos and use it for testing process.

(a) (b)

Fig. 27 (a) The structure of an ISA network [114]. (b) Stacking ISA network for building deep architecture [114].

Fig. 28 (a) Illustration of the idea of learning a video representation by predicting a sequence of basic motions described
as atomic 3D flows. The learned representation is then used for action recognition. (b) The learning framework architecture
based on the Recurrent Neural Network based Encoder-Decoder proposed in the work of Luo et al. [132]
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and prediction in video. A two-stream generative model
has built for learning scene dynamics. This study is an
open research opportunity for designing of predictive
models for understanding human actions.

5 Discussion

Human action recognition has become one of the most
active research topics in computer vision during the last
two decades. In particular, the appearance of the DL
models as well as the advances of parallel computing
techniques, e.g., GPU computing, opened up more new
opportunities for this field. Many DL based approaches
have developed and applied for various applications re-
lated to human action recognition. Their studies in-
dicate various methods to learn motion features from
videos and use them to recognize and classify actions.
In this section, we provide a detailed analysis of the

mentioned classes of architectures. The pros and cons of
each class and the link between them will be discussed.
Based on these analyses, we point out challenges, cur-
rent trends and potential directions future research in

this field.

After reviewing more than two hundred papers, our
study shows that human action recognition has ad-
vanced rapidly from recognition in controlled environ-
ment with small size benchmark datasets to recogni-

tion of actions in realistic videos with very large scale
benchmarks. DL techniques play an important role in
this progress. In the literature of human action recogni-

tion based on DL, CNNs seem to be the most important
model for learning spatio-temporal features of human
action directly from RGB and RGB-D videos without
pre-processing. Almost outstanding architectures, such

as networks proposed by Ji et al. [91], Tran et al. [209],
Simonyan et al. [183], Wang et al. [14], Feichtenhofer et
al. [47], Luo et al. [132], etc. have used 3D convolutional

filters to extract motion features. The key ideas behind
CNNs allow them to work directly on image structure
and obtaining high-level features by composing lower-
level ones. CNNs are not only working as an end-to-
end solution, they were also used as a feature extractor
and were a part in another frameworks. However, CNNs
achieve very good performance when they were trained
on very large datasets. If not, overfit will happen. Some
techniques have been developed to prevent overfitting
in convolutional layers such as dropout, data augmenta-
tion (e.g., random cropping, flipping, color effect, etc).
When training a very deep CNN architecture, millions
of connections between neurons will be involved. There-
fore, another limiting factor of CNNs is the high energy

consumption due to its high computational complexity.

Normally, GPU computing is required to work with this
type algorithm.

Recurrent Neural Networks with Long Short-Term
Memory (LSTM-RNNs) have been designed for solving
time series problems. LSTM-RNNs have been used suc-
cessfully in modeling the long-term context information
of motion sequences, specifically with skeleton data as
the work of Du et al.[44], Song et al.[190], Zhu et al.
[262], Li et al. [122], Liu et al. [127]. The success of
LSTM-RNNs for human action recognition comes from
their ability to take advantage the entire history mo-
tion frames. Even so, most of LSTM-RNN based mod-
els can not work directly on raw data. For example,
skeleton data need to be preprocessed before feeding
into LSTM-RNNs. It is difficult to build an LSTM-
RNN based end-to-end learning framework with RGB-
D data. Consequently, many authors used CNN to ex-
tract color features and then fed into the LSTM for
sequences learning and prediction.

Deep Belief Network (DBNs) and Stacked Denoising
Autoencoders (SDAs) are also very promising choice for

action recognition tasks. For DBNs, these networks can
be trained in an semi-supervised way with less labeled
data from a set of examples to classify its inputs. The
limitation of DBNs is that they require hand-crafted

features [52] or converting input data to appropriate
form [20]. SDAs can learn motion features in unsuper-
vised manner and are capable of generating robust fea-

tures. However, it has several drawbacks related to its
optimization process.

5.1 A quantitative analysis

• Hand-crafted approaches and deep learning
approaches: A comparison

In order to have a general view on recognition accu-
racies reported by hand-crafted approaches and deep
learning approaches, we have carried out a small perfor-
mance comparison on KTH [173] dataset. This dataset
has been used to evaluate many action recognition so-
lutions, both the traditional approaches based on hand-
crafted features and deep learning based approaches
over many years. The classification accuracy curve in
Fig. 29 showed that in many cases, DL methods out-
perform existing traditional methods. With the ability
of learning directly from raw data and working with the

large number of action classes, we can confirm that DL
algorithms are at the moment the best choice for future
work of action recognition.
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Fig. 29 The recognition performance of hand-crafted and deep learning approaches reported on KTH [173] dataset. The
traditional approaches are marked in red. The deep learning based approaches are marked in blue.

Fig. 30 The recognition performance of different deep learning based solutions on HMDB-51 and UCF-101 datasets.

• A performance comparison between deep learning
models

We provide a quantitative analysis of the deep learning
approaches on a state-of-the-art benchmark for human
action recognition in realistic and challenging settings.
Fig. 30 shows our comparison based on the performance

of many deep learning solutions on UCF-101 dataset
that have been reviewed in our study. This comparison
helps us to see clearly the current state of this field and
also provide the best architectures proposed in the lit-
erature. The accuracies are reported directly from the

original papers and all of these work use the same mea-
sure. We found that the networks proposed by Varol et
al. [216], Feichtenhofer et al. [48], and Tran et al. [209].

5.2 The future of deep learning for human
action recognition

• Developing unsupervised learning models

As labeling of data is very costly in terms of money
and manpower, we expect that learning features di-
rectly from videos in an unsupervised manner is a very
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important research direction [115]. Unsupervised learn-
ing procedures such as DBNs or deep autoencoders will
continue to be developed strongly because they could
learn features without requiring labeled data or requir-
ing very limited labeled data in pre-training process.

• Deeper CNNs

The success of some very deep learning models such as
VGGNet [184], GoogLeNet [201], and ResNets [68] pro-
vided that deeper CNN models can boost the recogni-
tion accuracy. It appears that the new algorithms allow
us to train deeper network easier. For example, He et
al. [68] released ResNets in which it has fewer filters
and lower complexity than VGGNet [184]. Therefore,
we expect deeper CNNs will be more fully exploited in
this field.

• Combining different deep learning models

Taking full advantage of the different deep learning
models and combining them into a single learning frame-
work is a trend in action recognition. Specifically, the

use of CNNs with LSTM-RNNs has improved the stare-
of-the-art in many benchmark datasets [21,144,43,55,
181,82,185,119,244,239,34]. We believe that this trend

will be continued in the future.

• Fusion of hand-crated and deep learning solutions

We found that hand-crafted features such as the trajec-
tory descriptors or optical flow frames have been used
in most of state-of-the-art DL models as reported in the

work of Varol et al. [216], Feichtenhofer et al. [48], Tran
et al. [209], and Wang et al. [237]. We expect much of fu-
ture progress in human action recognition to come from

systems that use both hand-crafted and DL solutions
to solve challenges in this field.

• Transfer learning

One of the main difficulty in training deep networks

comes from the scarcity of data. To solve this prob-
lem, many authors explored a technique called “trans-
fer learning”. Instead of training an entire deep network
from scratch, we pre-train the network on a very large
dataset, and then use the network either as an initial-
ization for the task of interest. We believe that this
trend will be continued in computer vision, including
the human action recognition in video.

6 Conclusion

Our goal in carrying out this research is to bring read-
ers a detailed view of the development process and es-
pecially of current progress of deep learning models ap-
plied to recognize human action in video. A comprehen-

sive review of various DL architectures and their appli-
cations in action recognition and related tasks has been

provided over more than two hundred related publica-
tions. Our analysis and comparisons about the recogni-
tion accuracy between DL based approaches and other
techniques shown that deep learning is at the moment
the best choice for recognizing and classifying human
action as well as predicting human behavior. In ad-
dition, the characteristics of the most important DL
architectures for action recognition have been also ana-
lyzed to provide current trends and open problems for
future works in this field. With a list of datasets in
different complexity levels, this paper will help inter-
ested readers in choosing approximate algorithms and
datasets to develop new solutions. Although there has
been significant progress over the last years, there are
still many challenges in applying DL models to build
vision-based action recognition systems and to bring
their benefits to our life. We are still looking forward to
new DL based approaches to improve the performance
of recognition systems while decreasing computational
cost and requiring less labeled data. We hope that our
survey is helpful for researchers in this field.
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