486 research outputs found

    Surfaces, depths and hypercubes: Meyerholdian scenography and the fourth dimension

    Get PDF
    An appreciation of Meyerhold’s engagement with theatrical space is fundamental to understanding his directorial and pedagogic practice. This article begins by establishing Meyerhold’s theoretical and practical engagement with theatre as a fundamentally scenographic process, arguing for a reconceptualisation of the director as ‘director-scenographer’. Focusing on the construction of depth and surface in Meyerholdian theatre, the article goes on to identify trends in the director’s approach to space, with an emphasis on the de-naturalisation of depth on stage. This denaturalisation is seen as taking three forms: the rejection of depth as a prerequisite in theatrical space, the acknowledgement of the two-dimensional surface as surface, and the restructuring of depth space into a series of restricted planes. The combination of these trends indicates a consistent and systematic process of experimentation in Meyerhold’s work. In addition, this emphasis on depth and surface, and the interaction between the two, also highlights the contextualisation of Meyerhold’s practice within the visual, philosophical and scientific culture of the early twentieth century, echoing the innovations in n-dimensional geometry and particularly, the model of the fourth spatial dimension seen in the work of Russian philosopher P. D. Ouspensky

    Exact Results for Amplitude Spectra of Fitness Landscapes

    Full text link
    Starting from fitness correlation functions, we calculate exact expressions for the amplitude spectra of fitness landscapes as defined by P.F. Stadler [J. Math. Chem. 20, 1 (1996)] for common landscape models, including Kauffman's NK-model, rough Mount Fuji landscapes and general linear superpositions of such landscapes. We further show that correlations decaying exponentially with the Hamming distance yield exponentially decaying spectra similar to those reported recently for a model of molecular signal transduction. Finally, we compare our results for the model systems to the spectra of various experimentally measured fitness landscapes. We claim that our analytical results should be helpful when trying to interpret empirical data and guide the search for improved fitness landscape models.Comment: 13 pages, 5 figures; revised and final versio

    Uniform sampling of steady states in metabolic networks: heterogeneous scales and rounding

    Get PDF
    The uniform sampling of convex polytopes is an interesting computational problem with many applications in inference from linear constraints, but the performances of sampling algorithms can be affected by ill-conditioning. This is the case of inferring the feasible steady states in models of metabolic networks, since they can show heterogeneous time scales . In this work we focus on rounding procedures based on building an ellipsoid that closely matches the sampling space, that can be used to define an efficient hit-and-run (HR) Markov Chain Monte Carlo. In this way the uniformity of the sampling of the convex space of interest is rigorously guaranteed, at odds with non markovian methods. We analyze and compare three rounding methods in order to sample the feasible steady states of metabolic networks of three models of growing size up to genomic scale. The first is based on principal component analysis (PCA), the second on linear programming (LP) and finally we employ the lovasz ellipsoid method (LEM). Our results show that a rounding procedure is mandatory for the application of the HR in these inference problem and suggest that a combination of LEM or LP with a subsequent PCA perform the best. We finally compare the distributions of the HR with that of two heuristics based on the Artificially Centered hit-and-run (ACHR), gpSampler and optGpSampler. They show a good agreement with the results of the HR for the small network, while on genome scale models present inconsistencies.Comment: Replacement with major revision

    Evolutionary accessibility of mutational pathways

    Get PDF
    Functional effects of different mutations are known to combine to the total effect in highly nontrivial ways. For the trait under evolutionary selection (`fitness'), measured values over all possible combinations of a set of mutations yield a fitness landscape that determines which mutational states can be reached from a given initial genotype. Understanding the accessibility properties of fitness landscapes is conceptually important in answering questions about the predictability and repeatability of evolutionary adaptation. Here we theoretically investigate accessibility of the globally optimal state on a wide variety of model landscapes, including landscapes with tunable ruggedness as well as neutral `holey' landscapes. We define a mutational pathway to be accessible if it contains the minimal number of mutations required to reach the target genotype, and if fitness increases in each mutational step. Under this definition accessibility is high, in the sense that at least one accessible pathwayexists with a substantial probability that approaches unity as the dimensionality of the fitness landscape (set by the number of mutational loci) becomes large. At the same time the number of alternative accessible pathways grows without bound. We test the model predictions against an empirical 8-locus fitness landscape obtained for the filamentous fungus \textit{Aspergillus niger}. By analyzing subgraphs of the full landscape containing different subsets of mutations, we are able to probe the mutational distance scale in the empirical data. The predicted effect of high accessibility is supported by the empirical data and very robust, which we argue to reflect the generic topology of sequence spaces.Comment: 16 pages, 4 figures; supplementary material available on reques

    Coastal Tropical Convection in a Stochastic Modeling Framework

    Full text link
    Recent research has suggested that the overall dependence of convection near coasts on large-scale atmospheric conditions is weaker than over the open ocean or inland areas. This is due to the fact that in coastal regions convection is often supported by meso-scale land-sea interactions and the topography of coastal areas. As these effects are not resolved and not included in standard cumulus parametrization schemes, coastal convection is among the most poorly simulated phenomena in global models. To outline a possible parametrization framework for coastal convection we develop an idealized modeling approach and test its ability to capture the main characteristics of coastal convection. The new approach first develops a decision algorithm, or trigger function, for the existence of coastal convection. The function is then applied in a stochastic cloud model to increase the occurrence probability of deep convection when land-sea interactions are diagnosed to be important. The results suggest that the combination of the trigger function with a stochastic model is able to capture the occurrence of deep convection in atmospheric conditions often found for coastal convection. When coastal effects are deemed to be present the spatial and temporal organization of clouds that has been documented form observations is well captured by the model. The presented modeling approach has therefore potential to improve the representation of clouds and convection in global numerical weather forecasting and climate models.Comment: Manuscript submitted for publication in Journal of Advances in Modeling Earth System

    Quantitative analyses of empirical fitness landscapes

    Full text link
    The concept of a fitness landscape is a powerful metaphor that offers insight into various aspects of evolutionary processes and guidance for the study of evolution. Until recently, empirical evidence on the ruggedness of these landscapes was lacking, but since it became feasible to construct all possible genotypes containing combinations of a limited set of mutations, the number of studies has grown to a point where a classification of landscapes becomes possible. The aim of this review is to identify measures of epistasis that allow a meaningful comparison of fitness landscapes and then apply them to the empirical landscapes to discern factors that affect ruggedness. The various measures of epistasis that have been proposed in the literature appear to be equivalent. Our comparison shows that the ruggedness of the empirical landscape is affected by whether the included mutations are beneficial or deleterious and by whether intra- or intergenic epistasis is involved. Finally, the empirical landscapes are compared to landscapes generated with the Rough Mt.\ Fuji model. Despite the simplicity of this model, it captures the features of the experimental landscapes remarkably well.Comment: 24 pages, 5 figures; to appear in Journal of Statistical Mechanics: Theory and Experimen

    Neutral Evolution of Mutational Robustness

    Get PDF
    We introduce and analyze a general model of a population evolving over a network of selectively neutral genotypes. We show that the population's limit distribution on the neutral network is solely determined by the network topology and given by the principal eigenvector of the network's adjacency matrix. Moreover, the average number of neutral mutant neighbors per individual is given by the matrix spectral radius. This quantifies the extent to which populations evolve mutational robustness: the insensitivity of the phenotype to mutations. Since the average neutrality is independent of evolutionary parameters---such as, mutation rate, population size, and selective advantage---one can infer global statistics of neutral network topology using simple population data available from {\it in vitro} or {\it in vivo} evolution. Populations evolving on neutral networks of RNA secondary structures show excellent agreement with our theoretical predictions.Comment: 7 pages, 3 figure
    • …
    corecore