23 research outputs found

    An Empirical Survey on Co-simulation: Promising Standards, Challenges and Research Needs

    Full text link
    Co-simulation is a promising approach for the modelling and simulation of complex systems, that makes use of mature simulation tools in the respective domains. It has been applied in wildly different domains, oftentimes without a comprehensive study of the impact to the simulation results. As a consequence, over the recent years, researchers have set out to understand the essential challenges arising from the application of this technique. This paper complements the existing surveys in that the social and empirical aspects were addressed. More than 50 experts participated in a two-stage Delphi study to determine current challenges, research needs and promising standards and tools. Furthermore, an analysis of the strengths, weakness, opportunities and threats of co-simulation utilizing the analytic hierarchy process resulting in a SWOT-AHP analysis is presented. The empirical results of this study show that experts consider the FMI standard to be the most promising standard for continuous time, discrete event and hybrid co-simulation. The results of the SWOT-AHP analysis indicate that factors related to strengths and opportunities predominate

    Time Management of Heterogeneous Distributed Simulation

    Get PDF
    Cyber-physical systems (CPS), by their very nature, mix continuous and discrete behavior and are modeled by heterogeneous components. Formal analysis cannot always handle such complex systems and simulation is a necessary step. In particular, distributed simulation is very useful for the validation of CPS for two main reasons: either the CPS itself is distributed (e.g., a fleet of UAVs) or the CPS is too complex and/or has too much models (e.g., an aircraft). We discuss in this paper the impact of distributing the simulation of a system: which are the rules that must be applied to guarantee a correct behavior between the different simulators? If a centralized simulation already exists (using Discrete Event simulation), which hypothesis must be made for the Distributed Discrete Event simulation? The co-simulation framework used and discussed in this work is Ptolemy-HLA. It allows a Ptolemy model to be distributed using the high-level architecture (HLA) standard

    Composite modelling in 3-D mechanics utilizing Transmission Line Modelling (TLM) and Functional Mock-up Interface (FMI)

    No full text
    Composite modelling and simulation is a solution to utilize investments in models and tools, use the right tool for the right task, increase the accuracy by means of more accurate modelled boundary conditions, switch between levels in model complexity for a specific sub-system, and facilitate co-operation in organizations. With the new Functional Mock-up Interface (FMI) standardization, efforts are increasing to make this happen. SKF BEAST is an advanced dynamic simulation tool for rolling bearings and other mechanical systems with contacts. The tool incorporates a framework for composite modelling and co-simulation, i.e., a Master Simulation Tool (MST). It uses Transmission Line Modelling (TLM) to ensure robust numerical behaviour of the complete composite system model and supports the Functional Mock-up Interface (FMI) for model import, including both model exchange and co-simulation. In this paper, the tools and the techniques for composite modelling are discussed in further detail and application examples are given

    Co-simulation of cyber-physical systems using a DEVS wrapping strategy in the MECSYCO middleware

    Get PDF
    International audienceMost modeling and simulation (M&S) questions about cyber-physical systems (CPS) require expert skills belonging to different scientific fields. The challenges are then to integrate each domain's tools (formalism and simulation software) within the rigorous framework of M&S process. To answer this issue, we give the specifications of the MECSYCO co-simulation middle-ware which enables to interconnect several pre-existing and heterogeneous M&S tools, so they can simulate a whole CPS together. The middleware performs the co-simulation in a parallel, decentralized and distributable fashion thanks to its modular multi-agent architecture. In order to rigorously integrate tools which use different formalisms, the co-simulation engine of MECSYCO is based on DEVS. The central idea of MECSYCO is to use a DEVS wrapping strategy to integrate each tool into the middleware. Thus, heterogeneous tools can be homogeneously co-simulated in the form of a DEVS system. By using DEVS, MECSYCO benefits from the numerous scientific works which have demonstrated the integrative power of this formalism and gives crucial guidelines to rigorously design wrappers. We demonstrate that our discrete framework can integrate a vast amount of continuous M&S tools by wrapping the FMI standard. To this end, we take advantage of DEVS efforts of the literature (namely, the DEV&DESS hybrid formalism and QSS solvers) to design DEVS wrappers for FMU components. As a side-effect, this wrapping is not restricted to MECSYCO but can be applied in any DEVS-based platform. We evaluate MECSYCO with the proof of concept of a smart-heating use-case, where we co-simulate non DEVS-centric M&S tools

    A Problem-Oriented Approach for Dynamic Verification of Heterogeneous Embedded Systems

    Get PDF
    This work presents a virtual prototyping methodology for the design and verification of industrial devices in the field level of industrial automation systems. This work demonstrates that virtual prototypes can help increase the confidence in the correctness of a design thanks to a deeper understanding of the complex interactions between hardware, software, analog and mixed-signal components of embedded systems and the physical processes they interact with

    Large-Scale Integration of Heterogeneous Simulations

    Get PDF

    Automated Validation of State-Based Client-Centric Isolation with TLA <sup>+</sup>

    Get PDF
    Clear consistency guarantees on data are paramount for the design and implementation of distributed systems. When implementing distributed applications, developers require approaches to verify the data consistency guarantees of an implementation choice. Crooks et al. define a state-based and client-centric model of database isolation. This paper formalizes this state-based model in, reproduces their examples and shows how to model check runtime traces and algorithms with this formalization. The formalized model in enables semi-automatic model checking for different implementation alternatives for transactional operations and allows checking of conformance to isolation levels. We reproduce examples of the original paper and confirm the isolation guarantees of the combination of the well-known 2-phase locking and 2-phase commit algorithms. Using model checking this formalization can also help finding bugs in incorrect specifications. This improves feasibility of automated checking of isolation guarantees in synthesized synchronization implementations and it provides an environment for experimenting with new designs.</p

    Modelling and Simulation of the Fifth-Generation District Heating and Cooling

    Get PDF
    District heating and cooling are efficient systems for distributing heat and cold in urban areas. They are a key solution for planning future urban energy-efficient systems due to their high potential for integrating renewable energy sources. The systems also play an important role in community resilience, which makes them a multidisciplinary research topic. The continuous development of these systems has now reached the fifth-generation whereby end-customers can benefit from the intrinsic synergies this generation offers. A typical Fifth-Generation District Heating and Cooling (5GDHC) system consists of connected buildings that together have simultaneous heating and cooling demands. Local heat pumps and chillers in decentralised substations modulate the low network temperature to the desired building supply temperatures. The demands are potentially balanced by the means of recovering local waste heat from chillers, while also utilising heat pumps to provide direct cooling. The heat carrier fluid in the distribution pipes can therefore flow in either direction in the so-called bidirectional low-temperature network. A balancing unit is incorporated to compensate for network energy imbalances. The exchange of energy flows is realised at different stages within the individual building and across connected buildings. Numerous factors influence the quantity and quality of the exchanged energy flows. Demand profiles in each building, the efficiency of building energy systems, and control logics of system components are some examples of these factors. Investigating this generation using traditional computational tools developed using imperative programming languages is no longer suitable due to system complexity, size variability, and changes adopted in different use cases. Modelica is a free open-source equation-based object-oriented language used for the modelling and simulation of multi-domain physical systems. Models are described by differential-algebraic and discrete equations. The mathematical relations between model variables are encapsulated inside an icon that represents the model. Different component models interface variables through standardised interfaces and connection lines. Large complex systems are composed by the visual assembly of components in a Lego-like approach. Models developed in Modelica can be easily inherited for rapid virtual prototyping and/or edited to adopt changes in the model use. This dissertation has a fourfold objective. Firstly, it demonstrates the development of a simulation model for an installed 5GDHC system located in Lund, Sweden. Secondly, it characterises the components that constitute a 5GDHC system. Thirdly, it unravels the exchange of energy flows at different system levels and describes, in a logical progression, the modelling of 5GDHC with Modelica. Fourthly, it presents ethical risk analyses of the different role-combinations that may arise in 5GDHC business models. The developed model is used in performing annual simulations and to evaluate the system performance under two different substation design cases. The results indicate that adding a direct cooling heat exchanger in each substation can reduce the electric energy consumption at both substation and system levels by about 10 and 7 %, respectively. Moreover, the annual waste heat to ambient air can be decreased by about 17 %. The dissertation fosters an ethical discourse that engages the public and all who take part in the multidisciplinary research on 5GDHC to guarantee safe operation and appropriate services. Future research will build on the models presented in this dissertation to investigate different network temperature and pressure control strategies, in addition to adopting several design concepts for balancing units and thermal energy storage systems
    corecore