4,090 research outputs found

    Comprehensive Review on Detection and Classification of Power Quality Disturbances in Utility Grid With Renewable Energy Penetration

    Get PDF
    The global concern with power quality is increasing due to the penetration of renewable energy (RE) sources to cater the energy demands and meet de-carbonization targets. Power quality (PQ) disturbances are found to be more predominant with RE penetration due to the variable outputs and interfacing converters. There is a need to recognize and mitigate PQ disturbances to supply clean power to the consumer. This article presents a critical review of techniques used for detection and classification PQ disturbances in the utility grid with renewable energy penetration. The broad perspective of this review paper is to provide various concepts utilized for extraction of the features to detect and classify the PQ disturbances even in the noisy environment. More than 220 research publications have been critically reviewed, classified and listed for quick reference of the engineers, scientists and academicians working in the power quality area

    Automatic classification of power quality disturbances using optimal feature selection based algorithm

    Get PDF
    The development of renewable energy sources and power electronic converters in conventional power systems leads to Power Quality (PQ) disturbances. This research aims at automatic detection and classification of single and multiple PQ disturbances using a novel optimal feature selection based on Discrete Wavelet Transform (DWT) and Artificial Neural Network (ANN). DWT is used for the extraction of useful features, which are used to distinguish among different PQ disturbances by an ANN classifier. The performance of the classifier solely depends on the feature vector used for the training. Therefore, this research is required for the constructive feature selection based classification system. In this study, an Artificial Bee Colony based Probabilistic Neural Network (ABCPNN) algorithm has been proposed for optimal feature selection. The most common types of single PQ disturbances include sag, swell, interruption, harmonics, oscillatory and impulsive transients, flicker, notch and spikes. Moreover, multiple disturbances consisting of combination of two disturbances are also considered. The DWT with multi-resolution analysis has been applied to decompose the PQ disturbance waveforms into detail and approximation coefficients at level eight using Daubechies wavelet family. Various types of statistical parameters of all the detail and approximation coefficients have been analysed for feature extraction, out of which the optimal features have been selected using ABC algorithm. The performance of the proposed algorithm has been analysed with different architectures of ANN such as multilayer perceptron and radial basis function neural network. The PNN has been found to be the most suitable classifier. The proposed algorithm is tested for both PQ disturbances obtained from the parametric equations and typical power distribution system models using MATLAB/Simulink and PSCAD/EMTDC. The PQ disturbances with uniformly distributed noise ranging from 20 to 50 dB have also been analysed. The experimental results show that the proposed ABC-PNN based approach is capable of efficiently eliminating unnecessary features to improve the accuracy and performance of the classifier

    Advances in power quality analysis techniques for electrical machines and drives: a review

    Get PDF
    The electric machines are the elements most used at an industry level, and they represent the major power consumption of the productive processes. Particularly speaking, among all electric machines, the motors and their drives play a key role since they literally allow the motion interchange in the industrial processes; it could be said that they are the medullar column for moving the rest of the mechanical parts. Hence, their proper operation must be guaranteed in order to raise, as much as possible, their efficiency, and, as consequence, bring out the economic benefits. This review presents a general overview of the reported works that address the efficiency topic in motors and drives and in the power quality of the electric grid. This study speaks about the relationship existing between the motors and drives that induces electric disturbances into the grid, affecting its power quality, and also how these power disturbances present in the electrical network adversely affect, in turn, the motors and drives. In addition, the reported techniques that tackle the detection, classification, and mitigations of power quality disturbances are discussed. Additionally, several works are reviewed in order to present the panorama that show the evolution and advances in the techniques and tendencies in both senses: motors and drives affecting the power source quality and the power quality disturbances affecting the efficiency of motors and drives. A discussion of trends in techniques and future work about power quality analysis from the motors and drives efficiency viewpoint is provided. Finally, some prompts are made about alternative methods that could help in overcome the gaps until now detected in the reported approaches referring to the detection, classification and mitigation of power disturbances with views toward the improvement of the efficiency of motors and drives.Peer ReviewedPostprint (published version

    Dynamic Power Quality Disturbance Classification in Grid-Integrated PV Systems: Leveraging Clark Transformed Modal Voltage and Subspace Weighted KNN

    Get PDF
    AuthorsThis study focuses on detecting Power Quality Disturbance Events (PQDE) in microgrids integrated with a Solar Energy Conversion System (SECS). The research proposes a novel signal reduction technique called Clark Transformed Modal, which reduces three-phase voltage to a single unit signal, optimizing memory utilization and reducing computational load during feature extraction. A total of 16 features are extracted from the proposed modal signal by performing multi-resolution analysis through Maximum Overlap Discrete Wavelet Transform (MODWT). Various disturbances, including sag, swell, transients, notches, and flicker, are intentionally simulated in a PV-grid tied MATLAB/Simulink model to obtain a dataset of 10800 samples. Further, the dataset is randomly divided into training-testing subsets to verify the classification ability of a novel ensemble classifier called subspace weighted k-nearest Neighbor (SWKNN). In addition to that the optimum mother wavelet (dmay) is identified to even further boost the classifier performance. The results demonstrate the superior classification capabilities of the proposed MODWT-SWKNN classifier in terms of various performance metrics like precision, recall and F1-score. It also outperformed when compared with several competitive PQ classification models based on PV-integrated systems both under ideal and noisy conditions. Additionally, the disturbance detection system is validated in an OPAL-RT real-time environment to demonstrate its efficiency in terms of detection time. The accuracy of detection is found to be 99.74% in ideal case and fall back to no more than 3% regulation i.e., 97.28% even in dense noise of 20dB with as low as 8 WKNN subspaces. Further, average detection time with 500 trails is found to be 0.0285 seconds. The efficacy of the proposed PQ detection algorithm is also tested in a large PV integrated IEEE 13-bus system

    A Review of Classification Problems and Algorithms in Renewable Energy Applications

    Get PDF
    Classification problems and their corresponding solving approaches constitute one of the fields of machine learning. The application of classification schemes in Renewable Energy (RE) has gained significant attention in the last few years, contributing to the deployment, management and optimization of RE systems. The main objective of this paper is to review the most important classification algorithms applied to RE problems, including both classical and novel algorithms. The paper also provides a comprehensive literature review and discussion on different classification techniques in specific RE problems, including wind speed/power prediction, fault diagnosis in RE systems, power quality disturbance classification and other applications in alternative RE systems. In this way, the paper describes classification techniques and metrics applied to RE problems, thus being useful both for researchers dealing with this kind of problem and for practitioners of the field

    Fault Management in DC Microgrids:A Review of Challenges, Countermeasures, and Future Research Trends

    Get PDF
    The significant benefits of DC microgrids have instigated extensive efforts to be an alternative network as compared to conventional AC power networks. Although their deployment is ever-growing, multiple challenges still occurred for the protection of DC microgrids to efficiently design, control, and operate the system for the islanded mode and grid-tied mode. Therefore, there are extensive research activities underway to tackle these issues. The challenge arises from the sudden exponential increase in DC fault current, which must be extinguished in the absence of the naturally occurring zero crossings, potentially leading to sustained arcs. This paper presents cut-age and state-of-the-art issues concerning the fault management of DC microgrids. It provides an account of research in areas related to fault management of DC microgrids, including fault detection, location, identification, isolation, and reconfiguration. In each area, a comprehensive review has been carried out to identify the fault management of DC microgrids. Finally, future trends and challenges regarding fault management in DC-microgrids are also discussed

    AN INTELLIGENT PASSIVE ISLANDING DETECTION AND CLASSIFICATION SCHEME FOR A RADIAL DISTRIBUTION SYSTEM

    Get PDF
    Distributed generation (DG) provides users with a dependable and cost-effective source of electricity. These are directly connected to the distribution system at customer load locations. Integration of DG units into an existing system has significantly high importance due to its innumerable advantages. The high penetration level of distributed generation (DG) provides vast techno-economic and environmental benefits, such as high reliability, reduced total system losses, efficiency, low capital cost, abundant in nature, and low carbon emissions. However, one of the most challenges in microgrids (MG) is the island mode operations of DGs. the effective detection of islanding and rapid DG disconnection is essential to prevent safety problems and equipment damage. The most prevalent islanding protection scheme is based on passive techniques that cause no disruption to the system but have extensive non-detection zones. As a result, the thesis tries to design a simple and effective intelligent passive islanding detection approach using a CatBoost classifier, as well as features collected from three-phase voltages and instantaneous power per phase visible at the DG terminal. This approach enables initial features to be extracted using the Gabor transform (GT) technique. This signal processing (SP) technique illustrates the time-frequency representation of the signal, revealing several hidden features of the processed signals to be the input of the intelligent classifier. A radial distribution system with two DG units was utilized to evaluate the effectiveness of the proposed islanding detection method. The effectiveness of the proposed islanding detection method was verified by comparing its results to those of other methods that use a random forest (RF) or a basic artificial neural network (ANN) as a classifier. This was accomplished through extensive simulations using the DigSILENT Power Factory® software. Several measures are available, including accuracy (F1 Score), the area under the curve (AUC), and training time. The suggested technique has a classification accuracy of 97.1 per cent for both islanded and non-islanded events. However, the RF and ANN classifiers\u27 accuracies for islanding and non-islanding events, respectively, are proven to be 94.23 and 54.8 per cent, respectively. In terms of the training time, the ANN, RF, and CatBoost classifiers have training times of 1.4 seconds, 1.21 seconds, and 0.88 seconds, respectively. The detection time for all methods was less than one cycle. These metrics demonstrate that the suggested strategy is robust and capable of distinguishing between the islanding event and other system disruptions

    Estimation of real traffic radiated emissions from electric vehicles in terms of the driving profile using neural networks

    Get PDF
    The increment of the use of electric vehicles leads to a worry about measuring its principal source of environmental pollution: electromagnetic emissions. Given the complexity of directly measuring vehicular radiated emissions in real traffic, the main contribution of this PhD thesis is to propose an indirect solution to estimate such type of vehicular emissions. Relating the on-road vehicular radiated emissions with the driving profile is a complicated task. This is because it is not possible to directly measure the vehicular radiated interferences in real traffic due to potential interferences from another electromagnetic wave sources. This thesis presents a microscopic artificial intelligence model based on neural networks to estimate real traffic radiated emissions of electric vehicles in terms of the driving dynamics. Instantaneous values of measured speed and calculated acceleration have been used to characterize the driving profile. Experimental electromagnetic interference tests have been carried out with a Vectrix electric motorcycle as well as Twizy electric cars in semi-anechoic chambers. Both the motorcycle and the car have been subjected to different urban and interurban driving profiles. Time Domain measurement methodology of electromagnetic radiated emissions has been adopted in this work to save the overall measurement time. The relationship between the magnetic radiated emissions of the Twizy and the corresponding speed has been very noticeable. Maximum magnetic field levels have been observed during high speed cruising in extra-urban driving and acceleration in urban environments. A comparative study of the prediction performance between various static and dynamic neural models has been introduced. The Multilayer Perceptron feedforward neural network trained with Extreme Learning Machines has achieved the best estimation results of magnetic radiated disturbances as function of instantaneous speed and acceleration. In this way, on-road magnetic radiated interferences from an electric vehicle equipped with a Global Positioning System can be estimated. This research line will allow quantify the pollutant electromagnetic emissions of electric vehicles and study new policies to preserve the environment
    corecore