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ABSTRACT 

 

 

 

 

The development of renewable energy sources and power electronic converters in 

conventional power systems leads to Power Quality (PQ) disturbances. This research 

aims at automatic detection and classification of single and multiple PQ disturbances 

using a novel optimal feature selection based on Discrete Wavelet Transform (DWT) 

and Artificial Neural Network (ANN). DWT is used for the extraction of useful 

features, which are used to distinguish among different PQ disturbances by an ANN 

classifier. The performance of the classifier solely depends on the feature vector used 

for the training. Therefore, this research is required for the constructive feature 

selection based classification system. In this study, an Artificial Bee Colony based 

Probabilistic Neural Network (ABCPNN) algorithm has been proposed for optimal 

feature selection. The most common types of single PQ disturbances include sag, 

swell, interruption, harmonics, oscillatory and impulsive transients, flicker, notch and 

spikes. Moreover, multiple disturbances consisting of combination of two 

disturbances are also considered. The DWT with multi-resolution analysis has been 

applied to decompose the PQ disturbance waveforms into detail and approximation 

coefficients at level eight using Daubechies wavelet family. Various types of 

statistical parameters of all the detail and approximation coefficients have been 

analysed for feature extraction, out of which the optimal features have been selected 

using ABC algorithm. The performance of the proposed algorithm has been analysed 

with different architectures of ANN such as multilayer perceptron and radial basis 

function neural network. The PNN has been found to be the most suitable classifier. 

The proposed algorithm is tested for both PQ disturbances obtained from the 

parametric equations and typical power distribution system models using 

MATLAB/Simulink and PSCAD/EMTDC. The PQ disturbances with uniformly 

distributed noise ranging from 20 to 50 dB have also been analysed. The 

experimental results show that the proposed ABC-PNN based approach is capable of 

efficiently eliminating unnecessary features to improve the accuracy and 

performance of the classifier. 
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ABSTRAK 

 

 

 

 
Pembangunan sumber tenaga boleh diperbaharui dan penukar elektronik kuasa dalam 

sistem kuasa konvensional membawa kepada gangguan Kualiti Kuasa (PQ). Kajian ini 

bertujuan untuk pengesanan automatik dan pengelasan gangguan kualiti kuasa tunggal 

dan berbilang dengan menggunakan ciri optimum baharu pemilihan berasaskan Jelmaan 

Wavelet Diskret (DWT) dan rangkaian neural buatan (ANN). DWT digunakan untuk 

pengekstrakan ciri-ciri berguna, di mana ianya digunakan untuk membezakan di antara 

gangguan-gangguan kualiti kuasa oleh pengelas rangkaian neural buatan. Pencapaian 

pengelas itu semata-mata bergantung kepada vektor ciri yang digunakan untuk latihan. 

Oleh itu, kajian ini diperlukan untuk pemilihan ciri konstruktif berdasarkan sistem 

pengelasan. Dalam kajian ini, algoritma Rangkaian Neural Kebarangkalian berasaskan 

Koloni Lebah Buatan (ABC-PNN) telah dicadangkan untuk pemilihan ciri optimum. 

Jenis-Jenis gangguan kualiti kuasa tunggal yang biasa termasuklah lendut, ampul, 

sampukan, harmonik, ayunan dan dedenyut fana, kerlipan, takuk dan pancang telah 

dianalisis. Selain itu, pelbagai gangguan yang terdiri daripada gabungan dua gangguan 

juga dipertimbangkan. DWT dengan analisis pelbagai resolusi telah digunakan untuk 

mengurai gelombang gangguan PQ ke lebih terperinci dan pekali anggaran di peringkat 

lapan menggunakan keluarga Wavelet Daubechies. Pelbagai jenis parameter statistik 

terperinci dan pekali anggaran telah dianalisis untuk ciri pengekstrakan, yang mana ciri-

ciri optimum telah dipilih dengan menggunakan rekaan algoritma ABC. Pencapaian 

algoritma yang dicadangkan itu telah dianalisis dengan seni bina ANN yang berbeza 

seperti perceptron berbilang lapisan dan fungsi rangkaian neural fungsi asas jejarian. 

PNN telah menjumpai pengelas yang paling sesuai. Algoritma yang dicadangkan diuji 

untuk kedua-dua gangguan kualiti kuasa yang diperolehi daripada persamaan parametrik 

dan model sistem pengagihan kuasa menggunakan MATLAB/Simulink dan 

PSCAD/EMTDC. Gangguan PQ dengan penjulatan hingar dari 20 hingga 50 dB juga 

telah dianalisis. Keputusan eksperimen menunjukkan bahawa pendekatan berasaskan 

ABC-PNN yang dicadangkan mampu menghapuskan ciri yang tidak perlu untuk 

meningkatkan ketepatan dan pencapaian pengelas. 
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CHAPTER 1 

INTRODUCTION 

1.1  Overview of Power Quality 

The better quality of electrical power system has become a critical concern 

for both the utilities and consumers of electricity. For this reason, research in the area 

of electric Power Quality (PQ) is gaining much interest since the last few decades 

[1]. PQ has become a significant issue for modern power industry in order to protect 

the electrical and electronic equipment by identifying the sources of the disturbances 

and providing a suitable solution to mitigate them [2, 3]. Historically, the increasing 

research interest in the field of power quality can be observed immediately from 

Figure 1.1 which shows the statistics of articles published per year indexed by the 

Scopus database [4] using the exact search phrase power quality in the title of each 

article. It is obvious that the interest in the field of PQ has increased since the year 

2001. The Renewable Energy Sources (RES) and Distributed Generation (DG) 

systems combined into the power grids utilize power electronic technology which 

may cause numerous PQ disturbances in the electric power systems. Therefore, 

further research trend in the field of PQ analysis will be increased in future due to the 

more applications of the power electronic converters used in RES and DG [5].  

The PQ is an active research area consisting of the various components. The 

main aspects of the PQ research include basic concepts and definitions, simulations 

and analysis, instrumentation and measurement, causes, effects and solutions of the 

PQ disturbances [6]. The detection and classification of the PQ problems is necessary 
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Figure 1.1 Yearly published papers on power quality 
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in order to find the sources and solutions of the PQ problems. As a result, this 

research covers the basic concepts and definitions, simulation and analysis and 

instrumentation and measurement parts of the PQ aspects. The PQ can be guaranteed 

by monitoring and classifying the disturbances using measurement instruments. The 

instruments must be able to accumulate enormous quantity of data measurement such 

as voltages, currents, frequency and disturbance occurrence time duration. Since, the 

traditional PQ measuring instruments cannot automatically discriminate the PQ 

disturbances and require offline analysis from the recorded data. Therefore, in this 

research, the idea of a computational intelligent based instrumentation is suggested to 

measure the PQ disturbances automatically. 

The attempt of PQ definition might be absolutely different in the views of 

utilities, consumers and equipment suppliers. It is actually a consumer-driven 

problem, therefore, it can be defined as, “any power problem manifested in voltage, 

current and/or frequency deviation that gives rise to failure or mal-operation of 

customer equipment [7]”. The PQ is also an important issue in new, restructured and 

deregulated power industry. A huge economic loss due to the mal-operation of 

electronic equipment is one of the most important reasons for the interest in the 

research of PQ problems [8].  
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The increasing utilization of the RES and DG technologies is one of the 

major sources of PQ disturbances in a conventional power system. In general, the 

main reasons for the PQ disturbances are the enormous implementation of switching 

equipment, capacitor energization, unbalanced loads, lighting controls, computer and 

data processing equipment as well as inverters and converters [9]. The PQ 

disturbances are created from the utilities and the customers driven loads. The 

customers' loads and equipment that create PQ disturbances consist of power 

electronic converters, pulse modulated loads, fluorescent and gas discharge lightings, 

machine drives, certain rotating machines and magnetic circuits based components. 

The grounding and resonance problems in the utility subsystems of transmission and 

distribution networks cause PQ disturbances. 

In particular, short circuit faults in power distribution network, switching 

operation of heavy industrial loads and energization of large capacitor banks may 

cause PQ disturbances. For instance, voltage sag, swell, interruption and transients 

disturbances [10].  The application of switching devices and loads such as converters 

and inverters cause steady-state waveform distortion disturbances in voltage and 

current signals such as Direct Current (DC) offset, harmonics, inter-harmonics, notch 

and noise. The utilization of the electric arc furnaces create flicker disturbance [11]. 

Ferro-resonance, transformer energization, or capacitor switching and lightning lead 

to spikes disturbances. Although the PQ disturbances are created due to the 

aforementioned types of loads yet these devices are malfunctioning due to the 

induced PQ disturbances.  

The PQ disturbances cause various problems to power utilities and 

customers; for example, malfunctions, instabilities, short life span and breakdown of 

electrical equipment. Harmonics disturbances create power losses in transmission 

lines, power transformers and rotating machines. The most important and the most 

frequent PQ disturbance is the voltage sag due to short circuits which have a huge 

economic impact on end users [7].     
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1.2 Background of Research Studies  

In order to maintain the electric PQ in a power system, the sources and causes 

of the PQ disturbances must be recognized to mitigate them appropriately. The 

monitoring of PQ disturbances consists of three main stages, namely; i) disturbances 

data collection, ii) analyses and iii) interpretation of collected data into constructive 

information. The procedure of data collection is usually accomplished by continuous 

supervision of voltage and current for an extended period.  

The traditional methods of PQ monitoring exercised by the utilities are 

normally based on visual inspections, which are indeed laborious and time-

consuming.  Therefore, a highly automated hardware and software based monitoring 

system is required which can provide sufficient information about whole system, 

recognize the main sources of the disturbances, search out better solutions and 

forecast future disturbances. The Artificial Intelligence (AI) and machine learning 

based techniques provide a better solution of an automatic classification of PQ 

disturbances to execute the intelligent PQ monitoring instruments in the power 

system. Therefore, a concentrated research is required for creating intelligent 

techniques for the PQ monitoring instruments. 

In general, the identification of the PQ disturbances involves three steps; 

signal analysis, feature extraction and disturbance classification. The time and 

frequency domain information is required to accomplish the classification.  

Conventionally, the analysis and interpretation of the PQ disturbances has 

been carried out manually, which is a difficult task for power engineers [12].  

Automatic detection, localization and classification of the PQ disturbances is, 

therefore, necessary for power engineers to determine the sources and causes of the 

disturbances. For that reason, it is required to distinguish the type of the disturbances 

automatically in order to provide an appropriate solution. The recent advances in 

digital signal-processing and artificial intelligence have made it simple to develop 

and apply intelligent systems to automatically analyze and interpret raw data into 

useful information with minimum human intervention [7].  In literature, most of the 
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researchers have attempted to use efficient and appropriate digital signal-processing 

and Computational Intelligence (CI) techniques to monitor PQ disturbances 

continuously and automatically. 

1.2.1  Overview of Power Quality Disturbances and Standards  

The PQ disturbances are defined as the sudden deviations occurring in the 

normal power system without interruption of power supply. Occurrences of more 

than one type of PQ disturbances simultaneously are called multiple PQ 

disturbances. It is quite necessary to become familiar with the categories and their 

characteristics for the detection and classification of PQ disturbances. The categories 

and characteristics of PQ disturbances including spectral content, disturbance 

duration and magnitude where applicable for each type of disturbance are described 

in Table 1.1 [7].  

There are certain international standards which set the boundaries of PQ 

disturbance values that are the sources of equipment malfunctioning.  The standards 

consist of the Institute of Electrical and Electronics Engineers (IEEE) standard IEEE 

1159-2009 [13], the International Electro-technical Commission (IEC) standard IEC-

61000-4-30 [14] and European (EN) Standard EN 50160 [15] which maintain the PQ 

to an acceptable benchmark.  The PQ standards have established the consistent 

description and electromagnetic phenomena of the PQ disturbances used in the 

monitoring data. Furthermore, these standards also provide information concerning 

the nominal operating conditions of the voltage/current supply and their parameters 

variation within the power supply and the load equipment. Likewise, the selection of 

the appropriate monitoring instruments, their limitations, application techniques and 

the interpretation of results have also been illustrated. The IEEE 1159-2009 standard 

[13] and the European EN 50160 standard [15] classify the PQ disturbances 

according to thresholds of the Root Mean Square (RMS) values of voltage and 

current deviations with respect to nominal operating conditions during the time of 

disturbance.  
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Table 1.1 : Classification of power quality disturbances 

Categories Spectral Content Duration Magnitude 

1. Transients     

1.1 Impulsive 

 a) Nanoseconds 5 ns rise < 50 ns N/A 

 b) Microseconds 1 𝜇s rise 50ns-1ms N/A 

 c) Milliseconds 0.1 ms rise > 1 ms N/A 

1.2 Oscillatory 

 a) Nanoseconds <5 kHz 0.3 – 50ms 0 – 4 pu 

 b) Microseconds 5 – 500 kHz 20 𝜇s 0 – 8  pu 

 c) Milliseconds 0.5 – 5 MHz 5 𝜇s 0 – 4 pu 

2. Short duration disturbances 

2.1 Interruption    

 a) Instantaneous N/A 0.5 – 30 cycles <0.1 pu 

 b) Momentary N/A 30 cycles – 3s <0.1 pu 

 c) Temporary N/A 3s – 1 min <0.1 pu 

2.2 Sag    

 a) Instantaneous N/A 0.5 – 30 cycles 0.1 – 0.9 pu 

 b) Momentary N/A 30 cycles – 3s 0.1 – 0.9 pu 

 c) Temporary N/A 3s – 1 min 0.1 – 0.9 pu 

2.3 Swell    

 a) Instantaneous N/A 0.5 – 30 cycles 1.1 – 1.8 pu 

 b) Momentary N/A 30 cycles – 3s 1.1 – 1.4 pu 

 c) Temporary N/A 3s – 1 min 1.1 – 1.2 pu 

3. Long duration disturbances 

 a) Interruption  N/A > 1min < 0 pu 

 b) Under-voltage N/A > 1min 0.8 – 0.9 pu 

 c) Over-voltage  N/A > 1min 1.1 – 1.2 pu 

4. Voltage Unbalance  Steady-state  

5. Waveform distortion 

 a) DC Offset N/A Steady-state 0 – 0.1% 

 b) Harmonics 0-100th harmonic Steady-state 0 – 20% 

 c) Inter-harmonics 0-6 kHz Steady-state 0 – 2% 

 d) Notch N/A Steady-state N/A 

 e) Noise  Broadband Steady-state N/A 

6. Voltage fluctuations <25 Hz Intermittent 
0.1 – 7% 

0.2 – 2 Pst 

7. Power frequency  

Variations 
N/A <10s N/A 

* N/A = Not Applicable    
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Although the IEC 61000-4-30 standard [14] provides some consistent 

methods for measurement and interpretation of electrical parameters in 50 / 60 Hz 

power systems. However, the detected PQ disturbances waveforms still require a 

classifier for the automatic classification in order to protect the equipment of utilities 

and consumers. 

1.2.2  Signal Processing Techniques for Feature Extraction 

Feature extraction process contributes a significant role in the automatic 

detection and classification of PQ disturbances. Each disturbance waveform consists 

of distinctive features. The extracted features subsequently can be used as the 

training patterns for the classifiers to complete the classification system of PQ 

disturbances. The advanced signal-processing techniques are usually concerned with 

the detection and extraction of features and information from measured discrete 

signals [16]. 

The basic signal-processing techniques, which are used for feature extraction 

of PQ disturbances, consist of Fourier Transform (FT) [17-22], Kalman Filters (KF) 

[23-26], Wavelet Transform (WT) [10, 27-54], Stockwell Transform (ST) [24, 55-

75], Gabor Transform (GT) [76], Hilbert-Huang Transform (HHT) [50, 77-81] and 

fusion of these transforms. The details of the signal-processing techniques will be 

discussed in Chapter 2.  

1.2.3  Optimization Techniques for Optimal Feature Selection 

The performance of the classification tools as well as discovering the 

distinctive features are equally important in classifying the PQ disturbances. In 

recent studies, feature selection algorithms have been used to select the most suitable 

features from a large set of features, whereas to discard the redundant features of the 

PQ disturbances.  The large feature set is extracted from the feature extraction stage, 

out of which a best suitable feature subset with a high recognition rate has been 
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selected [52]. The feature selection process is tackled by the evolutionary 

computation and swarm intelligence based optimization techniques.   

The optimization techniques have been proposed in literature for the optimal 

feature selection and improvement of recognition accuracy. The techniques proposed 

for the optimal feature selection are Genetic Algorithm (GA) [82], Particle Swarm 

Optimization (PSO) [83], Simulated Annealing (SA) [49] and Ant Colony 

Optimization (ACO) [84]. 

1.2.4  Artificial Intelligence Techniques for Classification  

The Artificial Intelligence (AI) can be defined as the computerization of the 

activities associated with human thinking such as learning from examples, 

perceptions, reasoning, decision-making and problem solving [12]. The intelligent 

techniques are required for pattern recognition and decision making. The AI 

techniques used for the classification of PQ disturbances consist of Artificial Neural 

Network (ANN) [12, 39, 41, 59, 60, 62, 68, 72, 80, 85-94], Support Vector Machine 

(SVM) [10, 38, 45, 49, 51-53, 81, 95-97], Fuzzy Logic (FL) [19, 25, 26, 57, 64, 66, 

71, 98-103], Neuro-Fuzzy [37, 71, 104-106], Hidden Morkov Model (HMM) [67, 

107-109], Nearest Neighbour (NN) [42, 110] and Decision Tree (DT) [66, 70, 111].  

The detail of several classification techniques will be explained in Chapter 2. 

1.3 Problem Statement  

Automatic classification of PQ disturbances is a challenging issue due to a 

wide range of disturbances and disorders in power system. The classification of the 

PQ disturbances is a major concern for power engineers. A high level of engineering 

expertise is required for the proper detection and classification of the PQ 

disturbances. The conventional methods of PQ disturbances monitoring are usually 

based on visual inspection. The utilities may not be able to cover huge amount of 
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records to scrutinize. Therefore, the pressing concern is required to propose a simple 

and general approach for the automatic classification.  

The modern power system can be affected by the multiple PQ disturbances 

due to the integration of renewable energy sources and power electronics loads. Most 

of the studies in literature analyse single and only two multiple PQ disturbances 

using the parametric equations rather than a practical model of any power 

distribution network. Consequently, the performance of these techniques might be 

inadequate for the reason that the multiple PQ disturbances in power networks may 

appear simultaneously.    

The feature extraction stage is the critical part due to the fact that the AI 

classifier system will perform based on the suitable features of the PQ disturbances. 

The feature extraction technique should reduce the dimension of the original 

waveform to a lower dimension, consisting of most useful information from the 

original signal. The WT has the capability to extract the constructive features of both 

the steady-state and transients PQ disturbance. Despite the fact that the WT is more 

suitable for the feature extraction of PQ disturbances but the WT alone cannot 

automatically classify the PQ disturbances. The WT can only detect the disturbances 

but it cannot accomplish the task of automatic classification without using an 

appropriate classifier.  

Feature selection is one of the main issues among the classification processes. 

In the existing PQ disturbances classification systems, some essential features have 

not been taken into account and some nonessential features might be regarded. 

Therefore, the classification performance is affected due to the unproductive 

features. In the perspective of this problem, a new optimal feature selection 

technique based on Artificial Bee Colony (ABC) algorithm has been proposed in this 

research in order to achieve effective features for improving the classification 

efficiency as well as to reduce the computational trouble.  
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1.4 Objectives of Research 

Based on the aforementioned problem statement, the main objectives of the 

proposed research study are as follows: 

i.  To develop an automatic classification system for the single and multiple 

PQ disturbances using parametric equations as well as typical distribution 

models. 

ii. To investigate the feature extraction technique using DWT for 

simplifying and improving the classification system.  

iii. To propose a novel optimal feature selection algorithm using ABC in 

order to enhance efficiency of the PNN classifier and to reduce the 

computational burden.   

1.5 Scope of Research 

The main scopes and limitations of the proposed study are as follows: 

i. This study covers the basic concepts, simulation and analysis, and 

instrumentation and measurement aspects of the PQ analysis.    

ii. The PQ disturbance data including ten (10) single and six (6) multiple 

disturbances have been simulated using IEEE standard 1159-2009 [13] 

based parametric equations as well as typical power distribution networks 

using MATLAB/Simulink and PSCAD/EMTDC software.   

iii. In a normal power system operation, the system voltages and currents are 

approximately balanced. The IEEE and IEC standards are designed for 
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the single-phase devices. Thus a single-phase approach is adequate for 

the analysis.  

iv. The DWT based MRA technique is applied for feature extraction. The 

statistical parameters are calculated from the features of the signals.  

v. The Probabilistic Neural Network is used for the automatic classification 

of PQ disturbances. 

vi. The optimal feature selection process is accomplished using the ABC 

optimization algorithm.  

1.6 Significance of Research 

The potential practical applications of this research are: 

i. The proposed algorithm is simple and could be easily integrated into 

existing distribution systems.  

 

ii. The continuous monitoring of PQ disturbances has a significant role in 

order to protect the electrical power system. The various types of faults 

and events are produced in power system due to the application of power 

electronic loads and renewable energy sources. The exact cause of the 

event can be identified, if the PQ disturbance is accurately classified.  

 

iii. The extraction of constructive features using a specific classifier is a 

problem in the automatic classification of PQ disturbance. The DWT 

based feature extraction technique is used to reduce the power system 

signal data.  
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iv. The optimal feature selection approach is useful to discriminate the 

essential and non-essential features in order to enhance the classification 

accuracy of the classifier.    

1.7 Organization of Thesis  

This thesis is organised into five chapters. The remaining chapters are briefly 

outlined as follows.  

Chapter 2 demonstrates a comprehensive overview of the existing literature. 

In the literature review a detailed study of the various types of signal-processing 

techniques, artificial intelligence techniques and optimization techniques which are 

used in the field of classification of PQ disturbances are discussed.  

Chapter 3 provides the methodology for the classification of PQ disturbances. 

The proposed methodology contains four stages, data generation, feature extraction, 

feature selection and classification. The parametric equations as well as two 11 kV 

power distribution network models are developed for PQ data generation. The DWT 

based MRA is suggested for the feature extraction of the PQ disturbances. The PNN 

classifier is proposed to evaluate the classification performance of the optimally 

selected features. The ABC algorithm is proposed for the effective feature selection.   

Chapter 4 provides the discussion on results obtained by the proposed 

methodology. The proposed algorithm is validated using a database of PQ 

disturbances. The results are obtained using original features and optimal features. 

The noise corrupted PQ data has been classified using DWT based de-noising 

technique. The results are also compared with the literature for benchmarking.   

Finally, chapter 5 consists of conclusion on the addressed issues and the 

results of the proposed solutions along with the recommendation for the future work.  
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