297 research outputs found

    Leveraging Supervoxels for Medical Image Volume Segmentation With Limited Supervision

    Get PDF
    The majority of existing methods for machine learning-based medical image segmentation are supervised models that require large amounts of fully annotated images. These types of datasets are typically not available in the medical domain and are difficult and expensive to generate. A wide-spread use of machine learning based models for medical image segmentation therefore requires the development of data-efficient algorithms that only require limited supervision. To address these challenges, this thesis presents new machine learning methodology for unsupervised lung tumor segmentation and few-shot learning based organ segmentation. When working in the limited supervision paradigm, exploiting the available information in the data is key. The methodology developed in this thesis leverages automatically generated supervoxels in various ways to exploit the structural information in the images. The work on unsupervised tumor segmentation explores the opportunity of performing clustering on a population-level in order to provide the algorithm with as much information as possible. To facilitate this population-level across-patient clustering, supervoxel representations are exploited to reduce the number of samples, and thereby the computational cost. In the work on few-shot learning-based organ segmentation, supervoxels are used to generate pseudo-labels for self-supervised training. Further, to obtain a model that is robust to the typically large and inhomogeneous background class, a novel anomaly detection-inspired classifier is proposed to ease the modelling of the background. To encourage the resulting segmentation maps to respect edges defined in the input space, a supervoxel-informed feature refinement module is proposed to refine the embedded feature vectors during inference. Finally, to improve trustworthiness, an architecture-agnostic mechanism to estimate model uncertainty in few-shot segmentation is developed. Results demonstrate that supervoxels are versatile tools for leveraging structural information in medical data when training segmentation models with limited supervision

    Human-Centric Machine Vision

    Get PDF
    Recently, the algorithms for the processing of the visual information have greatly evolved, providing efficient and effective solutions to cope with the variability and the complexity of real-world environments. These achievements yield to the development of Machine Vision systems that overcome the typical industrial applications, where the environments are controlled and the tasks are very specific, towards the use of innovative solutions to face with everyday needs of people. The Human-Centric Machine Vision can help to solve the problems raised by the needs of our society, e.g. security and safety, health care, medical imaging, and human machine interface. In such applications it is necessary to handle changing, unpredictable and complex situations, and to take care of the presence of humans

    Approche robuste pour la segmentation et la classification d’images m´edicales

    Get PDF
    Image segmentation is a vital process in various fields, including robotics, object recognition, and medical imaging. In medical imaging, accurate segmentation of brain tissues from MRI images is crucial for diagnosing and treating brain disorders such as Alzheimer’s disease, epilepsy, schizophrenia, multiple sclerosis, and cancer. This thesis proposes an automatic fuzzy method for brain MRI segmentation. Firstly, the proposed method aims to improve the efficiency of the Fuzzy C-Means (FCM) algorithm by reducing the need for manual intervention in cluster initialization and determining the number of clusters. For this purpose, we introduce an adaptive splitmerge technique that effectively divides the image into several homogeneous regions using a multi-threshold method based on entropy information. During the merge process, a new distance metric is introduced to combine the regions that are both highly similar within the merged region and effectively separated from others. The cluster centers and numbers obtained from the adaptive split-merge step serve as the initial parameters for the FCM algorithm. The obtained fuzzy partitions are evaluated using a novel proposed validity index. Secondly, we present a novel method to address the challenge of noisy pixels in the FCM algorithm by incorporating spatial information. Specifically, we assign a crucial role to the central pixel in the clustering process, provided it is not corrupted with noise. However, if it is corrupted with noise, its influence is reduced. Furthermore, we propose a novel quantitative metric for replacing the central pixel with one of its neighbors if it can improve the segmentation result in terms of compactness and separation. To evaluate the effectiveness of the proposed method, a thorough comparison with existing clustering techniques is conducted, considering cluster validity functions, segmentation accuracy, and tissue segmentation accuracy. The evaluation comprises comprehensive qualitative and quantitative assessments, providing strong evidence of the superior performance of the proposed approach

    Pattern Recognition

    Get PDF
    Pattern recognition is a very wide research field. It involves factors as diverse as sensors, feature extraction, pattern classification, decision fusion, applications and others. The signals processed are commonly one, two or three dimensional, the processing is done in real- time or takes hours and days, some systems look for one narrow object class, others search huge databases for entries with at least a small amount of similarity. No single person can claim expertise across the whole field, which develops rapidly, updates its paradigms and comprehends several philosophical approaches. This book reflects this diversity by presenting a selection of recent developments within the area of pattern recognition and related fields. It covers theoretical advances in classification and feature extraction as well as application-oriented works. Authors of these 25 works present and advocate recent achievements of their research related to the field of pattern recognition

    Algorithmic Analysis Techniques for Molecular Imaging

    Get PDF
    This study addresses image processing techniques for two medical imaging modalities: Positron Emission Tomography (PET) and Magnetic Resonance Imaging (MRI), which can be used in studies of human body functions and anatomy in a non-invasive manner. In PET, the so-called Partial Volume Effect (PVE) is caused by low spatial resolution of the modality. The efficiency of a set of PVE-correction methods is evaluated in the present study. These methods use information about tissue borders which have been acquired with the MRI technique. As another technique, a novel method is proposed for MRI brain image segmen- tation. A standard way of brain MRI is to use spatial prior information in image segmentation. While this works for adults and healthy neonates, the large variations in premature infants preclude its direct application. The proposed technique can be applied to both healthy and non-healthy premature infant brain MR images. Diffusion Weighted Imaging (DWI) is a MRI-based technique that can be used to create images for measuring physiological properties of cells on the structural level. We optimise the scanning parameters of DWI so that the required acquisition time can be reduced while still maintaining good image quality. In the present work, PVE correction methods, and physiological DWI models are evaluated in terms of repeatabilityof the results. This gives in- formation on the reliability of the measures given by the methods. The evaluations are done using physical phantom objects, correlation measure- ments against expert segmentations, computer simulations with realistic noise modelling, and with repeated measurements conducted on real pa- tients. In PET, the applicability and selection of a suitable partial volume correction method was found to depend on the target application. For MRI, the data-driven segmentation offers an alternative when using spatial prior is not feasible. For DWI, the distribution of b-values turns out to be a central factor affecting the time-quality ratio of the DWI acquisition. An optimal b-value distribution was determined. This helps to shorten the imaging time without hampering the diagnostic accuracy.Siirretty Doriast
    • …
    corecore