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Abstract

This study addresses image processing techniques for two medical imaging
modalities: Positron Emission Tomography (PET) and Magnetic Resonance
Imaging (MRI), which can be used in studies of human body functions and
anatomy in a non-invasive manner.

In PET, the so-called Partial Volume Effect (PVE) is caused by low
spatial resolution of the modality. The efficiency of a set of PVE-correction
methods is evaluated in the present study. These methods use information
about tissue borders which have been acquired with the MRI technique. As
another technique, a novel method is proposed for MRI brain image segmen-
tation. A standard way of brain MRI is to use spatial prior information
in image segmentation. While this works for adults and healthy neonates,
the large variations in premature infants preclude its direct application.
The proposed technique can be applied to both healthy and non-healthy
premature infant brain MR images. Diffusion Weighted Imaging (DWI) is
a MRI-based technique that can be used to create images for measuring
physiological properties of cells on the structural level. We optimise the
scanning parameters of DWI so that the required acquisition time can be
reduced while still maintaining good image quality.

In the present work, PVE correction methods, and physiological DWI
models are evaluated in terms of repeatabilityof the results. This gives in-
formation on the reliability of the measures given by the methods. The
evaluations are done using physical phantom objects, correlation measure-
ments against expert segmentations, computer simulations with realistic
noise modelling, and with repeated measurements conducted on real pa-
tients. In PET, the applicability and selection of a suitable partial volume
correction method was found to depend on the target application. For MRI,
the data-driven segmentation offers an alternative when using spatial prior is
not feasible. For DWI, the distribution of b-values turns out to be a central
factor affecting the time-quality ratio of the DWI acquisition. An optimal
b-value distribution was determined. This helps to shorten the imaging time
without hampering the diagnostic accuracy.
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volving injected contrast agent
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Chapter 1

Introduction

In the field of medicine, in addition to anatomical changes, the assessment
of a disease is commonly based on changes on the cellular and molecular
level. With molecular imaging one can identify states that are known to
precede a particular disease or are signs of early stages of the disease. It
also allows monitoring the effects of treatments and can be used to develop
more efficient treatments for diseases. Molecular imaging is a general term
for methods that produce images representing molecular level states of a
target object. By the means of these methods, biological processes can be
analysed in vivo. Molecular imaging aims to detect molecular and cellular
changes in living tissues in a non-invasive manner, and it has currently a
direct effect on patient care. The particular interest in molecular imaging
is to find anomalies that are related to disease processes. There is currently
a range of techniques that can be used for performing molecular imaging,
creating images mainly at a specific region of the electromagnetic spectrum
acquired from a target object.

Current modalities in molecular imaging include Positron Emission To-
mography (PET), Single Photon Emission Computed Tomography (SPECT),
Magnetic Resonance Imaging (MRI), and Computed Tomography (CT).
The PET technique measures photons that travel to nearly opposite direc-
tions from a decaying radioactive molecule. A similar, more traditional tech-
nique is the SPECT, in which the emitted photons are measured [Dh2003].
Unlike PET, the SPECT is not so restricted to the availability of a nearby
cyclotron that provides the source material for the radiolabelled tracers. In
comparison to PET, SPECT has fewer tracers available, lower spatial reso-
lution and sensitivity, which limit its usage, particularly in research. CT is
another modality that involves radiation [Dh2003]. It has high contrast and
is often used in conjunction to PET to give a corresponding anatomical ref-
erence image. MRI differs from the techniques above as it does not involve
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radiation exposure, whereas the signal is acquired from changes in atomic
spins under a large magnetic field.

As a specific application in this field, development of algorithms and op-
timisation of imaging sequences for quantification of Prostate Cancer (PCa)
with Diffusion Weighted Imaging (DWI) of MRI can potentially have an
effect on the treatment of PCa. Accurate characterisation of findings could
have a major effect on the management of the disease. In brain imaging with
PET, the quantification of Binding Potential [LaHu1997] of neuroreceptors
can be improved by correcting the so-called Partial Volume Effect (PVE)
in the images. In imaging the brains of small children, the large variations
in the shape and size of the brain segments, and the existence of motion
artefacts are challenging, since techniques to improve the image quality dur-
ing scanning of infants are more limited than with adults. As an important
step in the brain data analysis procedures, segmentation of the brain tissue
of small children helps to build an understanding of brain development and
related environmental factors.

1.1 Image Analysis

Reconstructed medical images may contain 3D or 4D information. In PET,
the 4th dimension represents the time and for DWI, the 4th dimension
stands for the gradient weighting which relates to the distance which the
water molecule travels in the random walk like manner [Dh2003]. The 3D
or 4D images are created in a workstation that accompanies the scanning
device, even though the image reconstruction can also be performed else-
where. The images are stored and analysed in the DICOM [Gr2005] data
format, which contains essential information about data interpretation, ad-
ditional information on the target subject and image acquisition process.
All vendors offering imaging devices are required to provide a DICOM 3.3
Conformance statement [Na2011], which describes which parts of the DI-
COM standard their device supports. In principle, the DICOM data can
be analysed in conventional personal computers or workstations. However,
for quality reasons, in a clinical setting, the imaging data has to be analysed
by an expert using a system which includes specific software (operating sys-
tem, libraries, application) and hardware (CPU, high performance display
device(s) for viewing). The performance of the imaging system has to be val-
idated according to some international standard, such as the US Food and
Drug Administration (FDA) in the U.S., or CE marking for MEdical Devices
in Europe. While reliable quantitative and qualitative measures depend on
the whole process starting from the image acquisition, software constitutes
a fundamental part of the total imaging system, thus imposing the need for
rigorous validation procedures regarding the software components [Le2006].
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1.2 Structure of the Thesis

The data acquisition processes of PET and MRI are explained in Chapter 2,
followed by a brief description of the physiological models of the techniques
in Chapter 3. The data analysis techiniques of PET and MRI are surveyed
in Chapter 4 followed by a literature review of these in Chapter 5. In chap-
ter 6, the main effects that hamper the quantification of PET and MRI are
explained. Chapter 7 gives a summary of the main results of the publications
included in this work, which are then discussed in Chapter 8.

1.3 Aims of the Thesis

This thesis work addresses the analysis techniques of medical image data of
PET and MRI devices. In PET imaging, repeatability of the kinetic model
parameters can be improved by proper selection of the Partial Volume Effect
(PVE) correction method, that recovers lost activity concentration.

In this study, a set of PVE correction methods are evaluated for brain
PET images. For MRI, a new segmentation method that does not utilise at-
las is developed for premature infant T1 weighted data. Finally, for Diffusion
Weighted Imaging (DWI) of prostate in MRI, repeatability is improved by
a design of the data acquisition setting in terms of gradient field weightings
that are suited to the accompanying DWI model. Improved repeatability al-
lows more reliable separation of normal and abnormal states in the prostate,
and characterization of abnormal states in terms of severity of the cancer.

The main aims of this thesis are:

1. Evaluation of Partial Volume Effect (PVE) correction techniques for
repeatability in brain PET studies

2. Segmentation algorithm for premature infant brain MR images

3. Methodological improvements for DWI of prostate MRI in terms of
model evaluation and optimization of b-value distribution

3





Chapter 2

Principles of Image
Formation

This work aims to present methods for analysing medical imaging data in
a reliable manner that will eventually allow improved diagnostic accuracy.
For PET and MRI we evaluate image analysis algorithms using image sets
of humans and phantoms, whereas for DWI, the diagnostic accuracy is ad-
dressed by AUC which is described in Chapter 3. In order to achieve this,
the methodologies themselves need to be studied, and are presented here in
short detail. In section 2.1, we explain the principle of PET detection and
reconstruction. In section 2.2, we discuss how information at a molecular
level can be acquired by imaging spins of protons, i. e. by using the MRI
technique. As there are various MRI scanning sequences, two basic ones are
explained in section 2.2.1, while a more dedicated sequence that measures
specifically the diffusion of water molecules, is explained in section 2.2.2.

2.1 Positron Emission Tomography Image Data
Acquisition

Positron Emission Tomography (PET) technique measures the amount of
(gamma) photons emitted as a result of a decaying process of radioactive
isotopes [Dh2003]. The strength of PET is in the accuracy and sensitivity of
measurements of molecular quantities. On the other hand, its main limita-
tion is the relatively poor spatial resolution, affectedby the Partial Volume
Effects (PVE). The organ movements (such as respiratory movement) and
PVE together reduce the precision of the acquired data.

The PET technique uses a small amount of radioactively labelled molecules,
i. e. a tracer that is inserted into the biological system under study by the
means of injection, or inhalation. The tracer functions as its natural stable
analog, which allows the imaging of various different functions of a living
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organisms, depending on the tracer in question. Currently, there are a great
number of PET tracers available both for clinical and for research use. The
most common use of PET is in the detection and therapy responce of cancer.

2.1.1 Detection of Positron Emitters in PET

The source of information in a PET image is the decaying nucleus of radioac-
tive isotopes (i. e. radioisotopes). The isotopes are commonly placed into a
substance that is found in the biological system under study. When an iso-
tope in molecule is replaced, the resulting molecule is called radiotracer. The
most common radiotracer in PET is Fluorodeoxyglucose [18F]FDG which is
a glucose analog.

The production of a radiotracer starts with a cyclotron that produces
radioactive nuclides, which are synthesized in a hot cell to radiolabelled
molecules. The process is conducted according to Good Manufacturing
Practise (GMP) [Eu2009] to allow injecting the resulting radiopharmaceu-
tical safely into the subject prior to actual scanning with a PET, PET/CT
or PET/MR device.

In the imaging process, the nucleus of an isotope decays and emits a
positron, which then combines with an electron after travelling a short dis-
tance which depends on the excitation energy of the nuclide. When the
travelling positron and an electron combine, they annihilate resulting in two
photons travelling in nearly opposite directions (up to 0.25◦). These photons
are then detected with a cylindrical PET scanner as coincidence events, con-
sisting of information about paired detectors located cylindrically. A straight
line between a pair of detector pair is called a line of response (LOR). The
activated LORs are stored in the computer memory. After acquiring a large
number of events (conventionally 1-10 million) all LORs are histogrammed
to a so-called sinogram (see Fig. 2.1).

2.1.2 Reconstruction of Event Data to 3D/4D Images

The sinograms from 2D planes (forming image slices) perpendicular to the
scanner z-axis (straight line going through the scanner cylinder) and 2D
planes at different angles are further reconstructed into a 3D image for
visualization and further analysis, see Figure 2.2 for illustration of the pro-
cess.
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Figure 2.1: Illustration of the PET imaging process. A radionuclide emits
a positron, which collides with an electron after travelling some distance
(0-2 mm). In the collision, after annihilation, the resulting two gamma rays
(photons) travel in nearly opposite directions. These events take place in
the subject under study, and gamma rays are detected with a PET scanner,
with which a 3D image can then be reconstructed.

The acquired sinogram contains several error factors which must be cor-
rected before image reconstruction. Random events means that sometimes
a coincidence is detected, which did not originate from a single annihilation,
but instead from two distinctive random annihilations that were detected
simultaneously. Attenuation and scatter depend on the subtances that are
located between the annihilation event and the detectors, where attenuation
causes reduction in the number of detected gamma photons, and scatter
causes detection in a wrong detector, thus hampering proper localization of
the annihilation events. A scanner device has limits in its sampling frequency
for recording valid coincidence events. This effect is called the deadtime and
it causes underestimation of intensities in the reconstructed PET image.

7



Figure 2.2: PET image reconstruction process. First, photons that are
observed in PET scanner detectors are recorded as a sinogram (A). In the
sinogram, each horizontal line of the sinogram has LORs at a particular
angle. The sinograms are reconstructed to a static image volume with a
reconstruction algorithm (B). The process can be repeated within various
consecutive time windows, thus composing a time series of 3D images (i. e.
dynamic imaging (4D)).

After sinograms have been corrected for random events, attenuation,
scatter and deadtime, they are reconstructed to a 3D image. Mathemati-
cally, the sinogram data are acquired in the Radon space [Ra1917,De2007].
Each 2D slice can therefore be reconstructed as its corresponging xy-slice in
spatial space with the inverse Radon transform

f(x, y) =
∫ π

0
ĝ(x ∗ cos(θ) + y ∗ sin(θ), θ)dθ (2.1)

where f(x, y) is the intensity of a 2D slice at the position (x, y), and ĝ(s, θ)
is the filtered Radon domain signal of g(s, θ), and s is the location at the
projection angle θ in [0..π]. In practise, the data are reconstructed as discrete
approximation of Eq. 2.1.

Inversion of the Radon transform can be done in several ways. A com-
monly used technique for this is the Filtered Back Projection (FBP) [ShLo1974].

In present devices, an iterative Ordered Subsets Expectation Maximiza-
tion (OSEM) [HuLa1994] approach is used instead of FBP. In the iterative
OSEM reconstruction, the basic reconstruction step is iterated several times
in order to get a better quantitative result. Another more recent approach
uses a more complex system matrix to describe the relationship between the
image space and the projection space, including position variant resolution.
Further, in the newest reconstruction techniques, this kind of system matrix
is utilized during each iteration of the reconstruction [Ir2016].
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2.2 Magnetic Resonance Imaging

The Magnetic Resonance Imaging (MRI) technique is based on the detection
of protons subjected to a large magnetic field. In this situation, nuclear
spins of protons alter their direction and their radio frequency radiation
is observed when the spins return to their original states under the large
magnetic field. MRI provides structural and physiological information about
the target tissue, but without involvement of ionising radiation. In MRI,
the images give information about locations and properties of atomic nuclei,
most commonly hydrogen nuclei H1.

The image data of MRI are three or four dimensional like in PET. The
fourth dimension depicts some characteristics of the scanning sequence (such
as the b-value to be explained later), or time in the case of using a contrast
agent (e. g. Gadolidium). Figure 2.3 (right) shows a charged proton with
the direction of magnetic moment depicted by an arrow. When there is no
external magnetic field affecting the nuclei, the orientations of the magne-
tization fields are completely random (A). However, when the target object
is placed into a MRI scanner, the nuclei in the object have their magnetic
fields aligned with (either along or against) the so-called B0 field that is
constantly present in the scanner (Fig. 2.3 (B)).

When the target object reaches a thermal equilibrium in the presence
of the B0 field, there are slightly more nuclei orientation along the B0 than
against it, which generates a net magnetization vector along the B0 field.
Then, a radiofrequency (RF) pulse can be transmitted to the object. The
frequency of the pulse is determined by the gyromagnetic ratio of the target
nuclei. The RF pulse affects the nuclei so that some of the nuclei oriented
along B0 flip their alignment against it. This results in a change in the net
magnetization vector so that its orientation now deviates from the static B0
field. With specific types of RF pulses the net magnetization field can be
flipped in specific directions. This, in combination with the reading of the
energy emitted during the relaxation process of the nuclei back to orientation
along the B0 field, allows the creation of various scanning sequences that
reveal specific information about the locations and physiological properties
of the target object.

9



Figure 2.3: Principle of Magnetic Resonance Imaging (MRI). First, the spins
of the protons are randomly oriented (A), but when brought under the effect
of a strong magnetic field B0 (Z) that is constantly on, they become aligned
(B). A radiofrequency wave is used to flip the spins from the alignment (C).
When the radiofrequency is turned off, the spins return back to equilibrium
(D, relaxation to alignment with B0), which can be measured by receiver
coil in the MRI scanner.

Using different MRI pulse RF sequences, it is possible to reveal different
characteristics at the molecular level, such as motion of the molecules and
proton density, which furthermore can be utilised as indirect indicators of
other features of the tissue. The Signal-to-Noise Ratio (SNR) [Di2007]
of these observations can furthermore be enhanced by injecting so-called
contrast agents, which react specifically to the magnetization field due to
their particular paramagnetic characteristics. In total, normal anatomical
MRI sequences have higher spatial resolution and soft tissue contrast in
comparison to PET. However, the main challenges in MRI imaging are noise
and various imaging artefacts that hinder more accurate measurements.
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2.2.1 Principle of T1 and T2 Imaging

T1- and T2- imaging are basic MRI imaging techniques, which reveal dif-
ferent characteristics about tissues The T1 signal represents the amount of
time that is required for proton spins in water molecules to return to the
alignment with the B0 field. The T2 represents the loss of coherence in the
water molecule spins after ceasing of the RF pulse that caused them to be
in the same phase. In terms of magnetization vectors (Mz,Mx,y), the T1
and T2 signals can be expressed as [Dh2003]:

Mz(t) = M0
z ∗ (1− e−t/T1) +Mz(0) ∗ e−t/T1 (2.2)

Mx,y(t) = Mx,y(0) ∗ e−t/T2 ∗ e−i∗ω0∗t

where

Mx,y(0) = Mx′,y′(0) ∗ e−i∗ω0∗τp

(2.3)

In (2.2), t is time, and T1 refers to ”longitudinal relaxation” by which the
net magnetization returns to the alignment with the B0 field with original
maximum value M0

z of the vector. Correspondingly, T2 in (2.3) refers to
”transverse relaxation”, loss of dephasing of spins that makes the total net
sum magnetization vector of all spins to deviate from zero. Mx,y(0) is the
initial transverse magnetization vector at time zero. τp is the RF pulse
duration. For the transverse relaxation, ω0 is Larmor frequency which refers
to the rate of precession of the spin axis around the direction of B0. The
frequency is related to the field strength of B0 and gyromagnetic ratio of
the imaged nuclei.

The T1 and T2 signals are used to recognize various pathologies in the
target tissue. For brain imaging, T1 is often favoured due to its better
Contrat to Noise Ratio (CNR) between brain gray and white matter, while
T2 can be used for separating the skull from the brain tissue. See Fig. 2.4
for sample images of T1 and T2 weighted images in premature infant brain.

T1 and T2 images are not to be confused with other techniques such as
T1-weighted imaging (T1*) and T2-weighted imaging (T2*) (not presented
here).
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Figure 2.4: T1 and T2 -images of premature infant brain. Top row: T1-
image. Bottom row: T2-image. Slice orientations are (A,D) transaxial,
(B,E) coronal, (C,F) sagittal (1.5T Philips Intera, Philips Medical Systems,
Best, the Netherlands).

2.2.2 Principle of Diffusion Weighted Imaging

Diffusion Weighted Imaging (DWI) [Mo1990, Ha2006] is a MRI technique
that is targeted to reveal the proton mobility. The attenuation in the mo-
bility of water protons can be used to characterize cellular properties such
as cell density, cell boundaries, and shapes such as tubular shapes of nerve
fibres in brain. The displacements of the water molecules appear in three
modes. Completely free diffusion is Brownian motion, i. e. random thermal
displacements of the molecules in the absence of any restrictions. When
occuring in tissue, the displacements may be slowed down due to constant
hinderance, causing hindered diffusion. Lastly, when the displacements may
are completely blocked by the structure, restricted diffusion occurs. In prac-
tise, the measured attenuation in the DWI signal is often a mixture of these,
and restriction of the diffusion may apply more to one orientation than to an-
other. Figure 2.5 illustrates two types of diffusion; completely free diffusion
(on the left) where the distribution of particle displacements is spherical, and
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diffusion under tubular boundaries (on the right) which causes the shape of
the distribution to be ellipsoid, i. e. anisotropic. Isotropic diffusion can be
assumed for some tissue such as prostate [Re2005], while brain white matter
contains fibers which cause anisotrophic diffusion.

An essential difference from conventional MRI (T1, T2) that utilises the
H1 signal from water is that the DWI signal presented in this section is
based on the displacements of water mocelules. The technique is currently
in widespread clinical use.

Expressed in terms of the magnetization vectors with T1 and T2, the
diffusion can be explained by the Bloch-Torrey equation [To1956] as:

dM
dt = γ(M ∗B)− Mx

−→
i +My

−→
j

T2
− (Mz−M0)

−→
k

T1
+5 ∗ (D5M),

where

D =



Dxx Dyx Dzx

Dxy Dyy Dzy

Dxz Dyz Dzz



(2.4)

There, M is the vector defining the orientation of the spin in the (x,y,z)-
space and D is the 3x3 matrix of diffusion tensor. Product (D5M) denotes
the flow of particles in spin direction and 5∗ (D5M) is the rate of change
in the concentration of particles. γ is the gyromagnetic ratio of the target
particle or system.

In the case of DWI, the variable D is a scalar multiplied by a 3x3 identity
matrix (i. e. all tensor directions have the same magnitude). Assuming that
the diffusion occurring in the target tissue is isotropic (Fig. 2.5 left panel),
three averaged measurements of orthogonal directions are conventionally
used in DWI for defining D.
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Figure 2.5: Principle of Diffusion Weighted Imaging (MRI). (A) Brownian
motion in case of free diffusion. (B) Brownian motion in tissue with bound-
aries (here, tubular shapes). (C) Diffusion kernel in isotropic diffusion that
is utilised in DWI. (D) Diffusion kernel in non-isotropic diffusion.

In Diffusion Tensor Imaging (DTI), a minimum of six directions are re-
quired to reconstruct the distribution of the ellipsoid shape (see Fig. 2.5
right panel). The signal is measured with two pulsed gradient fields. The
first pulse makes the spins deviate (dephase). The second pulse cancels
the first one in case of non-moving water molecules, but for freely moving
protons (i. e. free diffusion) random phase shifts occur which causes signal
attenuation without an altering phase shift (Eq. 2.3). For describing the
phase shift of the molecules leads to signal attenuation. The so-called Diffu-
sion sensitizing factor (b, i. e. b-value [s/mm2]) can be used to describe the
attenuation of the signal. The b-value is calculated for a spin echo sequence
with the Stejskal-Tanner equation [StTa1965] as:

b = γ2 ∗G2 ∗ δ2 ∗ (∆− δ

3), (2.5)

where δ is the duration of the pulsed gradient field, G is the strength of
the gradient and ∆ is the time interval between two gradient pulses (see
Fig. 2.6 for a diagram of pulse sequence). The DWI signal intensity decays
with increased b-value, which represents restriction of the tissue to the free
diffusion (see Figure 3.1, top row for examples of b-value images).

The signal intensity of the b-value depends on restricted mobility of the
water protons in relation to free diffusion. In addition to diffusion, the
strength of the gradient G in Eq. 2.5, and T2-relaxation time at higher b-
values (e. g. b-values higher than 500 s/mm2) also affect the signal [Ko2010].
Both of these effects can be addressed by measuring the amount of decay be-
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tween the b-values. The easiest method for this is the calculation of the slope
of mono-exponential fit of the signal, which is called the Apparent Diffusion
Coefficient (ADC). The number of b-values required for ADC calculation
is two at minimum (b=0 and one non-zero b-value), but more b-values are
needed depending on the DWI model in question.

Figure 2.6: Pulse sequence diagram of Diffusion Weighted Imaging (DWI).
RF: radiofrequency pulses. Gz: gradient pulses. Two diffusion sensitizing
gradients (dark gray) are applied before and after 180◦ refocusing pulse.
G: amplitude of diffusion gradient (millitesla/meter). δ: duration of the
diffusion gradient (milliseconds). ∆: time interval between onset of the first
and second gradient pulses (milliseconds).
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Chapter 3

Quantification of the
Physiological Parameters

The information in the medical imaging data is most commonly transformed
into some clinically relevant output, preferably to measures of some physi-
ological quantities. In order to obtain these measures, a model of the un-
derlying physical and biological processes must be assumed. The model
parameters are then adjusted so that the representation of the data with
the model is as close as possible to what is observed. In PET, interaction
of components of a natural system together with the decay of radioactive
substance defines how the spatio-temporal signal behaves. This signal can
be represented by Time Activity Curves (TAC), and then analysed with ki-
netic modelling. For DWI, decay curves generated from measurements with
different b-values are affected by the movement of water molecules in time.
Finally, after fitting a model to the data, the parameters of the model can
be used to determine the underlying physiological state of the tissue under
study.

3.1 Analysis of the Parameter Values

Conventionally, a Region of Interest (ROI) is delineated on the original data.
If available, anatomical reference data of the same object can be aligned to
match the position and orientation of the data modelled, and a visualization
of the results can be created to help ROI delineation. The analysis of the
data can be based on the mean or voxelwise intensities of the ROI. The
first approach (use of mean intensities) is more widely used in research. In
the voxelwise approach parameters of the model are determined for each
individual voxel and statistics can be determined inside the ROI. Voxelwise
analysis can also be applied to a so-called parameter map where each voxel
represents a model parameter value calculated from the signal intensity curve
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(e. g. b-value in DWI) at that location. If the SNR and resolution are high
enough, this potentially allows us to perform additional analysis of the image
data, such as texture [Ch2013, Ca2004] and shape analysis [Le2009].

In order to avoid inter-reader variability, automatic ROI placement (i. e.
segmentation of organ area) can be applied to the image data, if a suitable
segmentation algorithm is available for the medical image modality in ques-
tion. For conventional adult MR T1 brain images, various segmentation
techniques (e. g. ”New Segment” tool in SPM8 [AsFr2005]) are available.
On the other hand, for brain images with anomalies or in small children
with different contrasts and motion artefacts the situation is more compli-
cated, because a universal model is hard to create. A common technique is
to use a standard brain map which is morphologically matched to the image
[Ca2011]. Some efforts have recently been made to build such templates
and use them for segmentation of normal brain images [Ku2011, Ha2010,
WaKuSc2012]. This technique is however not so usable in cases with greater
deviation from the standard shape, e. g. in anomalies (such as tumour) in
the brain structure. For moving tissues such as the heart, the segmentation
is difficult to carry out due to motion and PVE and other effects that lower
the SNR (i. e. shorter scanning times at the cost of lowered SNR).

3.2 Modelling of the DWI Signal

In DWI, the signal is commonly modelled with one or more exponential
functions. Apart from analytical methods, the simplest exponential model
of the signal intensity S(b) for a given gradient weighting b (i. e. b-value) is
mono-exponential [Le1986, Th2007]:

S(b) = S(0) ∗ e−b∗ADCm, (3.1)

where ADCm denotes Apparent Diffusion Coefficient of monoexponential
decay. The ADC can be considered to correlate negatively with the density
of the tissue. In addition to the ADCm, kurtosis K of the Gaussian proba-
bility function for displacement of water molecules can be modelled with a
kurtosis model:

S(b) = S(0) ∗ e−b∗ADCk+ 1
6∗b

2∗ADCk2∗K (3.2)

The K parameter shows deviation from pure monoexponential decay, and
can be understood to correspond to the amount of structure within the tissue
[Je2005]. The third model for the decay curve is the so-called stretched
model:

S(b) = S(0) ∗ e−(b∗ADCs)α , (3.3)
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where α varies between 0 and 1. Smaller α-values indicate larger deviation
from mono-exponential decay, i. e. the signal consists of multiple mono-
exponentials in multiple water pools [Be2004]. For measuring separately
two exponential components of the DWI curve for perfusion (occurring at
b-values from 0 to around 150 s/mm2) and so-called slow (from 0 to around
500) and fast diffusion (from 500 s/mm2 onwards), a bi-exponential model
can be used:

SIV IM (b) = S(0) ∗ (fIV IM ∗ e−b∗Dperfusion + (1− fIV IM )e−b∗Dfast)

Sbiexp(b) = S(0) ∗ (fbiexp ∗ e−b∗Dfast + (1− fbiexp)e−b∗Dslow),

(3.4)

where the former model (SIV IM , intravoxel incoherent motion model [Le1986])
has parameter Dperfusion for measuring perfusion (also referred as pseudo
diffusion D∗ in the literature). The latter model (Sbiexp) measures fast dif-
fusion Dfast and slow diffusion Dslow. The fbiexp parameter is the fraction of
the faster component of the biexponential (i. e. perfusion fraction fIV IM for
the IVIM model). Each model parameter expresses a different signal from
the decay curve, which allows us to investigate various different character-
istics from the DWI image. For parameter maps calculated from voxels of
prostate DWI images, see Figure 3.1.

3.3 Fitting the Model to the Data

For a dataset consisting of N observed data pairs (xi, yi), i = 1, ..., N , a
model describing the data can be given in the form of function y = f(x, λ),
where x is a sampling point in data (e. g. time in time series), and λ denotes
the M model parameters λ1, ..., λM . The setting of λ so that model fits the
data as well as possible can be obtained by solving a constrained nonlinear
optimization problem. The task here is to minimize the distances between
the observed data samples and values from the model described by function
f . A commonly used distance is the Mean Square Error (MSE) between the
intensity values of the observed data y and corresponding data points of the
model f(x, λ):

MSE(x, y, λ) = 1
N
∗

N∑
i=1

(yi − f(xi, λ))2 (3.5)

The MSE represents how much the model is expected to deviate from the
original signal. Model fitting may also be performed with other objective
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functions, such as different weighting schemes for samples [Mu2006], and
considering non-normally distributed noise [Kr2012].

Figure 3.1: DWI image of prostate, and parameter maps of three DWI
models. Original DWI signal samples are: (A) B0-weighted image (b=0
ms/mm2), and (B) B2000-weighted image (b=2000 ms/mm2). Sample im-
ages for parameter maps calculated with DWI models are kurtosis ADC
(C) and K (D), monoexponential ADC (E) and biexponential fbiexp (F),
Dfast (G) and Dslow (H). The images show a tumour on the left side of the
central zone of the prostate (bright spot in B2000 image). The parameter
maps allow us to make measurements in the tissue for tumour detection and
characterization.
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In optimization, λ is iteratively modified until the correspondence of f to
the observed data is maximized. A common method for finding minimum of
the fitting error is the Levenberg-Marquardt method [GiMuWr1981] which
uses the gradient of f in respect to λ. In another approach, Nelder-Mead
[NeMe1965] iterations are based on the evaluation points arranged as a sim-
plex. If the objective function is quadratic, Newton’s method [Ya2010] has
potentially faster convergence. For regulating the length of steps in iterative
optimization, the Trust Region Strategy for minimization procedure may be
used [ByScSc1987]. Variations exist for all of these approaches. Their suit-
ability for the given optimization task depends on the convergence between
iterations and computational cost of evaluating the value of the objective
function.

A limitation of these methods is that they often find only local minima
of the objective function. This can be addressed with global optimization
methods [FlGo2009] that try to maximise the chances that the global mini-
mum is found. Another more simplistic technique is to start the optimiza-
tion at multiple starting locations, and then choose the solution that has
the smallest Sum of Squared Error (SSE). With low dimensionality of the
parameter space (M) one can arrange the starting locations of the search in
a grid form. With the assumption that the objective function’s ’landscape’
is not too mountainous between the grid points, the density of the grid limits
the maximum amount of error that can occur for fitting [Si2006, Pi2013].

Finding a global minimum for the SSE(x, y, f, λ) (see Eq. 3.9 below)
does not mean that the parameters λ give reliable measurement that is
relevant to the clinical question being evaluated. The parameter values
at global minima of the SSE(x, y, f, λ) may be biased or imprecise due to
inaccuracies in the observed data y that the fitted model f does not address.
This occurs when the model is overfitted to data that contains physiological
and measurement noise.

Instead of minimizing the distance between the function and the ob-
served data, one can search for parameter values that are most likely to
have produced the observed data. This method is called Maximum Like-
lihood Estimation (MLE). In MLE, λ is optimised so that the likelihood
function

L(λ|y1...yN ) = f(y1...yN |λ) (3.6)
has its maximum value [Pr2009]. The likelihood L is used for inference about
λ. The f is a function of the observed y values for a given parameter setting
λ. Assuming that all observed values y1...yN have the same probability
distribution and that they are mutually independent, the Eq. 3.6 can be
simplified to a product of samples:

L(λ|y1...yN ) =
N∏
i=1

P (yi|λ) (3.7)
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where P (yi|λ) is the conditional probability of yi-values on parameter setting
λ. Logarithm of Eq. 3.7 is used for facilitating the computations:

ln(L(λ|y1...yN )) =
N∑
i=1

ln(P (yi|λ)) (3.8)

Because logarithm is a monotonically increasing function, maximising Eq. 3.8
also maximises Eq. 3.7. The task of finding MLE can be further converted
to the minimisation of − ln(L(λ|x)).

3.4 Model selection by Goodness of Fit

For a model in molecular imaging to be useful for research and diagnostics,
it should be robust enough to separate unwanted variation (i. e. noise)
from the signal, and sensitive enough for its parameters to carry relevant
information about the characteristics of the target tissue. The quality of
the model parameters can be evaluated using computer simulations and
real data. Numerical measures are utilised in these tests. In addition to
these two, it is desirable that the model fitted to the data properly explains
the data, i. e. the observed signal can be understood to originate from the
process described by the model. For this, the data points given by the model
should be close to the observed data points, while still avoiding overfitted
models. Common statistics in the related literature measuring the Goodness
of Fit (GoF), are MSE, SSE and Root Mean Squared Error (RMSE):

SSE(x, y, f, λ) =
∑N
i=1(yi − f(xi, λ))2 = N ∗MSE

RMSE =
√
MSE

(3.9)

The RMSE (Root Mean Squared Error) is derived from MSE, representing
standard deviation of residuals. Another common statistics is R2 which
stands for the ratio of the Sum of Squares Residuals (SSR) of the model
and the Total Sum of Squares (TSS) of the data:

R2 = SSR
TSS

SSR =
∑N
i=1(f(xi, λ)− y)2

TSS =
∑N
i=1(yi − y)2

(3.10)
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where y is the average of the observed data. The R2 expresses how large
a proportion of the variance in the observed data (e. g. 0.7 means 70%)
is explained by the model. The underlying assumption for R2 is that the
fitted model is linear because for nonlinear data, the value of SSR + SSE
(Eq. 3.9, i. e. unexplained variance) is not TSS [SpNe2010]. In medical
image data, the fitted models are often nonlinear. Also, the distribution of
errors SSR may differ from normal. For model selection purposes, an ad-
justed version (adjusted R2) can be used to penalize overly complex models.
In the univariate linear least squares regression, R2 is equal to the square
of the Pearson correlation coefficient r.

A model containing as many parameters as there are observed data
points can be expected to always produce a perfect fit, but a model of this
kind generalizes very poorly. It is therefore important to penalize models
that have numerous parameters. Parameter values may contain mostly noise
and not the true signal that could be used for making a correct diagnosis.
A commonly used measure in model comparison is the Akaike Information
Criteria (AIC) [BuAn1998]:

AIC = −2 ∗ ln(L(λ̂|y)) + 2 ∗K, (3.11)

where L(λ̂|y) is the likelihood Eq. 3.6 with estimator λ̂ of parameter setting
λ of the model, and K is the number of model parameters. In the case
of least squares estimation with independent, identically distributed (i.i.d.)
errors between the model and observed data, the AIC can be expressed with
SSE as:

AIC = N ∗ ln(SSE
N

) + 2 ∗K, (3.12)

where N is the number of samples. Assuming that the residuals are Gaus-
sian distributed, the SSE/N can be considered to be the MLE of the model
fit to the data. The AIC can be used for comparison of both nested and non-
nested models [Gl2007]. Two models are nested if the more complex model
can be created from the simpler one by adding new parameters without re-
moving existing ones. Another very similar approach, Bayesian Information
Criteria (BIC) [BuAn2004], differs from AIC only in how much it penalizes
the model complexity.

For a small number of samples in relation to the number of parameters
(NK < 40), the AIC values are biased to favour models that contain more
parameters [BuAn1998]. This is the case e. g. in DWI prostate datasets
where the number of sample points is small. In such cases, a variant of AIC
with a correction term has been proposed [BuAn2004]:

AICc = N ∗ ln(SSE
N

) + 2 ∗K + 2 ∗K ∗ (K + 1)
N −K − 1 (3.13)
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The AICc was originally proposed for linear regression with normally
distributed errors [Su1978]. When used with nonlinear regression models
(such as exponential DWI models), the unbiasedness of AICc is only ap-
proximate [HuTs1989].

The AIC and AICc are measures on a relative scale, i. e. their values are
usable only within a given observation dataset where they are calculated and
are not transferrable to other datasets. Therefore in practise, for a group of
models with a given observation dataset under comparison, the differences
∆AIC and ∆AICc values need to be calculated in comparison to the model
having the smallest AIC, i. e. the model that has the best fit to the data in
SSE sense. This means that for two models A and B, where A is simpler
(containing fewer parameters) than B, the difference of AICc is defined as:

∆AICc = N ∗ (ln(SSEBN )− ln(SSEAN )) + 2 ∗ (KB −KA)+

2 ∗ (KB∗(KB+1)
N−KB−1 −

KA∗(KA+1)
N−KA−1 )

(3.14)

Testing of the statistical significance between the models A and B in terms
of their fits to the data can be done with the F-ratio :

F-ratio = (SSEA − SSEB)/SSEB
(DFA −DFB)/DFB

(3.15)

where SSEA and SSEB are the unexplained variances (3.9) of the simpler
and more complex models, respectively. The Degrees of Freedom DF is
the number of independent pieces of information that are used to calculate
SSE, and it is smaller for the more complex model (B) that involves more
parameters. In PET and DWI signals, DF is calculated as the number of
adjusted parameters minus one.

With the F-ratio, the null hypothesis is that the fit with the more com-
plex model is not better than that of the simpler model. If the null
hypothesis is not rejected, the simpler model should be preferred, following
the parsimonian principle. Rejecting of the null hypothesis would indicate
that the data contain information that would be lost to the residuals if a
simpler model were used. The F-ratio compares the simpler and more com-
plex model that are nested within each other. It cannot be used to test e. g.
two models with an equal number of parameters, or models that are not
nested. Then, AIC may be used.
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Chapter 4

Motivation

In order to use molecular imaging in an efficient way in scientific and clinical
studies, various processing steps are required which in turn needs various
image analysis techniques. Some of them are addressed here for different
applications.

4.1 Partial Volume Effect Correction Used for Im-
proving Quantification of PET

Partial Volume Effect (PVE) due to resolution loss hampers the quantifi-
cation of PET signal and requires correction. The PVE displaces the true
uptake that is acquired, mixing intensity values of neighbouring regions, and
reducing intensity in small regions. In addition to PVE due to resolution,
PVEs is also caused by cardiac and respiratory motion of the patient, which
can cause additional challenges in organs that are affected by them. In ad-
dressing the PVE, Partial Volume Effect Correction (PVC) in its various
forms has been proved important in the analysis of real patient data. There
are three major applications where PVC has been used. In brain studies,
there is loss of signal intensity due to the thin cortex. In tumour imaging,
loss of intensity affects the SUV (Standardized Uptake Value). In heart,
PVE affects distortion in the activity of myocardium or the coronaries.

When evaluating a PVC technique with [11C]carfentanil receptor binding
study with temporal lobe epilepsy [Mü1992], regional increase of intensity
values was observed after PVC. In brain atrophy, the cortex is thin and
thus PVE reduces intensity, making it difficult to know if its true intensity
has reduced. In [Sa2007], there was reduced FDG uptake in Alzheimer’s
disease (AD) patients having atrophy. After PVC, it was concluded that
the decrease in the signal activity was not due to the PVE, which helped
studying early AD. The PVE smoothens PET images so that differences be-
tween subjects are not so clearly recognized. Further, in [Th2011] increase in

25



intersubject variability was reported with PVC in [18F]flutemetamol PET
study of the AD, and also an improvement was observed in quantitative ac-
curacy with a phantom study. Moreover, a PVC method [Al2004] increased
intersubject variability, indicating its usefulness in group comparison stud-
ies. More recently, the importance of PVE correction for more reliable and
accurate quantification of PET has been highlighted in [Bo2014].

When PET is used in the planning of radiotherapy treatments, it is im-
portant to correct activities for PVE because the effect affects the apparent
tumour size and the measures characterizing uptake, e. g. SUV. The effect
of PVE in PET tumour imaging has been discussed in [So2007]. In [Ho2010],
PVC was demonstrated to improve the accuracy of tumour SUV estimation
without decreasing the test-retest variability. In [Ty2010], the SUV values
calculated after PVC had improved accuracy and reproducibility. Further,
the mean uptake value of tumour region was improved in 18F-FDG and 11C-
CO data [Te2007]. The importance of PVE correction in the diagnosis of
tumour has been further noted in [Sh2006, Al2008, Pe2014].

The need for using PVC also in PET heart images has been presented in
the literature. In myocardial perfusion imaging, the PVE affects a normally
perfused heart wall [Pr2009b]. Also spillover from neighbouring organs is to
be avoided [Re2016], which highlights the need for PVC. There are many
PV correction methods but practiocioners are faced with the dilemma as
to which approach is best. There is little published on cross-comparison of
methods and therefore this ex explored in this thesis.

4.2 Infant Brain Image Segmentation Enabling Fur-
ther Analysis

The brain MRI segmentation generally means labeling of the voxels into
three tissue classes of Gray Matter (GM), White Matter (WM), and Cere-
brospinal Fluid (CSF). The segmentation is usually done with T1 and T2
weighted MRI, that have good contrast between tissue classes. As an im-
portant step in the MRI brain data analysis procedures, segmentation of the
brain tissue of small children helps in the study of brain development and
related environmental factors. While there is a clear need for segmentation
of neonatal brain images, there are some additional challenges in comparison
to adult brain segmentation, which need to be addressed.

The neonatal brain goes through rapid changes including myelination.
In myelination process, myelin forms around axons in brain. Myelination
and other changes are visible in the changes of MRI signal intensity [Ha1991]
and the brain volume [Hü1998], and therefore the segmentation of brain im-
ages of small children (i. e. less than approximately 2 years) differs from
segmentation of adult brain images. More specificly, the intensity distribu-
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tions of the brain regions are overlapping [Pr2005], and they change over
time. In addition to the changes in the MR signal intensities, there are also
changes in relative volumes of brain tissues and increase in the folding of the
cortex. The smaller size of the brain requires smaller resolution, increasing
noise levels in the image data. The infants cannot be sedated or constrained
for ethical reasons, and therefore the scanning times need to be short, which
further decreases the image quality. Even with short scan times, a infant
may not stay still during the sequence, resulting in motion. Despite these
challenges, there has been increase in neonatal brain MRI examinations,
which requires new tools that address these problems.

4.3 Diffusion Weighted MRI Modelling for Cancer
Diagnosis

Prostate cancer (PCa) continues to be a major health problem for men. For
definitive diagnosis of the PCa risk, the two commonly applied methods are
Prostate Specific Antigen (PSA) and Digital Rectal Examination (DRE).
The systematic transrectal ultrasound (TRUS) guided prostate biopsy re-
mains the most common way of the actual PCa diagnosis. While TRUS-
guided biopsy is widely used, it is an unnecessary procedure when clinically
insignificant cancer are detected [Ha2007, Ca2011b]. In addition, about
25-35% of cancers are missed on the first systematic TRUS guided biopsy
[Dj2001]. When the biopsy is repeated with patients having continuously
elevated or increasing PSA and previous negative TRUS-guided biopsy, it
can lead into the increase of complications [La2009].

Diffusion Weighted Imaging (DWI), offers promising possibilities for the
study of PCa [Ve2011]. DWI is noninvasive, easy to implement and has
relatively short acquisition times. The process of DWI imaging involves
typically few minutes scan during which the patient should be still in the
MRI scanner. The DWI signal usually consists of at least two samples.
When an exponential function is fitted across the samples, the resulting
slope of the curve can be interpreted as attenuation of the water molecules.
This allows qualitative and quantitative measurements of the signal.

Development of algorithms and optimisation of the imaging sequence for
quantification of PCa with DWI of MRI can potentially have an effect on
its treatment. The proper placement of the b-values may eliminate the need
for Dynamic Constrast-Enhanced MRI (DCE-MRI) [Pa2013]. This would be
an important advancement, because intravenous contrast media cannot be
administered to patients that have severe allergies for the injected contrast
agent. For the above reasons it is hypotized that accurate characterisation of
findings could have a major effect on the management of the disease [La2010,
Tu2011]. In addition to prostate cancer, the same DWI models have been
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used in study conditions in brain [Pr1999], kidney and liver, which suggests
that the results in prostate cancer may be applied to study of other diseases
as well.
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Chapter 5

Literature Review

5.1 PVE Correction in PET

Various approaches and modifications to previously presented methods have
been proposed, see [Er2012] for a general review and [So2007] for discussion
on the application of PVC in PET tumour imaging. In the correction pro-
cedure, supplementary information about the target object anatomy (e. g.
from CT or MRI) may be used to improve the correction effect. The ma-
jority of the PVC methods have been developed by using PET brain data.
For other source data, [Pr2009b] presented a method for cardiac SPECT
imaging. Instead of image processing, PVC can also be included in PET
kinetic modelling [Ii1991].

For validation of a PVC technique, there is commonly no golden stan-
dard. Therefore, phantom experiments (i. e. scanning containers modelling
PVE effects) are often involved in these studies to show the performance
of PVC, while the technique will finally be used for real in vivo data. In
what follows, a short overview is given for techniques to apply PVC in PET
and for the main factors affecting its performance. Details of most common
approaches are left to be described later in Chapter 6.

From parameters affecting the performance of PVC, Point Spread Func-
tion (PSF) is known to vary across the scanner Field of View (FOV) [Ho1982,
Ba2010]. In practise, however, this is considered to only contribute a small
error to the results. Lately, an iterative EM technique involving spatially
variant PSF has been implemented [Ba2010]. In comparison to uniformly
distributed PSF, similar results were observed in [Ba2010] when a spatially
variant PSF was used. However, an arbitrary selection of the parameters in
PVC with spatially invariant PSF resulted in large differences. In [Al2010],
more edge artefacts were observed with invariant PSF when PVC was in-
cluded in the image reconstruction process.

Another, even more important factor affecting the performance of a PVC
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technique is the way of utilizing the supplementary information on the edges
in the images (i. e. delineation of anatomical regions). While the supple-
mentary information is potentially beneficial, these methods may be affected
by misregistration and segmentation errors. It has been observed that these
errors hamper the performance of the PVC. The topic has been studied ear-
lier in [Me1999], and later in [Qu2004, Za2006b]. The sensitivity of PVC
to segmentation and coregistration errors has led the research interest to
methods that are based on PET signals, only.

Correction for PVE was first applied in [Go1986] to CT, requiring knowl-
edge of two contributing substance intensities, and their proportion. In
PET, the development of PVC started with methods based on anatomy
from MRI in 90’s when spill out from GM+WM region of brain was applied
in [11C]carfentanil µ opiate receptor PET studies of AD patients [Me1990].
In [Mü1992], the correction involved GM for spill-out and WM for spill-in.
Instead of producing a PVE corrected image, an approach using a geometric
transfer matrix (GTM) was developed in [Ro1998]. The GTM estimates are
accurate and suitable in situations where the mean intensity values inside
ROIs are sufficient for further analysis. The technique of [Mü1992] depends
on the estimate of the mean WM intensity when correcting the GM intensity.
That estimation was further developed in [Al2004].

A multiresolution approach with undecimated wavelet transform was
used in [Bo2006], allowing PVC without delineation of homogenous regions.
A model which relates the wavelet coefficients of low (PET, SPECT) and
high (CT, MRI) resolution images was used to recover lacking details in the
image. The same technique was later enhanced by involving additional in-
formation from co-registered CT data [Bo2008]. Wavelet transform was used
also in [Sh2009], where the wavelet coefficients of the details were recovered
by using anatomical information from a segmented anatomical atlas that
was co-registered to PET. The dual-tree complex wavelet transform (CWT)
was used, and anatomical information was from T1 MRI in [Sh2009].

Another approach for performing PVE correction is to apply the decon-
volution operation for which various methods have been proposed [Pa2007].
A well-known method for iterative deconvolution is the Van Cittert al-
gorithm [Va1931]. Another common image intensity based approach is
the Richardson-Lucy algorithm [Ri1972, Lu1974]. Comparing the two ap-
proaches, the Richardson-Lucy method is a Bayesian-based approach, which
models the image and the PSF values by probability distributions [Lu1974].
In case of additive Poisson noise, Van Cittert method converges to the max-
imum likelihood estimate of the image [Sh1982]. The approach in [Va1931]
searches for the solution by successive increments. It has similarities to other
iterative methods of Landweber and steepest descent (see e. g. [Be1998,
De2014]). It differs from them in the construction of the iteration step that
is added to the current estimate. In both algorithms the iterations are con-
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tinued until a convergence criterion is reached, e. g. the maximum number of
iterations have been performed or the rate of change in the results becomes
lower than a predetermined limit [GuLi2012]. A limitation for these algo-
rithms as presented in [Va1931] and [Lu1974] is that in the presence of noise
they generally do not find a realistic solution or they diverge as the noise
propagates. Limiting the number of iterations may be used to regularize the
solution.

For addressing the noise amplification in the iterations, constraints may
be applied. One such method is the Jansson Van Cittert algorithm [Ja1970]
where the updates are constrained between iterations. Other regularization
methods (see e. g. [Pa2007]) can be applied to the iterative and Bayesian-
based approaches. In PET, these include the Total Variation approach
[ToRe2008] and wavelet-based noise removal [Bo2009]. Other voxel-wise
PVE correction techniques include 3D wavelet decomposition [Bo2007], Hid-
den Markov Random Tree modelling for combining CT or MR with PET
[Po2011], and recently, using GTM (Eq. 6.12) for delineation of homogenous
structures from PET in an iterative manner [Xu2015].

PVC with deconvolution was used in [Te2007], where Volumes of Inter-
est (VOIs) were used in Van Cittert’s iterative procedure to estimate the
PVE corrected maximum and mean intensity values. Similarly to other
PVC approaches, the deconvolution procedure suffers from noise amplifica-
tion of the input signal. In [Ki2008], the deconvolution technique was used
with regularization for addressing noise amplification between iterations. In
[ToRe2008], a reblurred variant of the Van Cittert iterative deconvolution
technique was presented. This variant applies total variation-based regu-
larization for noise. Another type of deconvolution algorithm (Richardson-
Lucy) in combination with partial segmentation of homogenous regions was
used in [Se2010]. The technique suits for situations where accurate segmen-
tation is challenging, such as in the case of pathological abnormalities. A
hybrid GTM and deconvolution based method was presented in [Th2011],
where anatomical information was from MRI. As another method using
MRI with PET, [Wa2012] used Maximum A Posteriori (MAP) approach,
with edge preserving smoothness constraint from co-registered MRI.

In [Bo2014], more simple PVC methods were compared with some of the
newer methods (e. g. [Al2004, Sh2009]), noting that the newly proposed
techniques do not necessarily improve reliability. More recently, Local Re-
gression Analysis (LoReAn)[Co2013] was applied; segmentation of anatom-
ical regions from MRI was used with PSF in a linear PVE model for each
voxel.

In addition to applying PVC as a post-processing step, it can also be
included in the actual PET image reconstruction. In [Hu2007], the recon-
struction algorithm (blob-based LOR-RAMLA) involved resolution preser-
vation with noise suppression. PVC in the ordered subsets expectation max-
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imization method was shown to have superior performance in comparison to
more conventional reconstruction techniques in [Re2003], when the method
was implemented in GE Advance PET scanner (GE HealthCare, Millwake,
USA). This approach considers physical properties of the data acquisition
process in system matrix, which describes the relationship between data and
its sources (see [Ir2016] for review). The system matrix is used in an itera-
tive reconstruction process to perform PET image reconstruction with PVC.
The PVE correction with this approach has also been applied to correcting
the respiratory motion [Pe2014] by using supplementary information from
MRI. In [Al2006], the system matrix was created with Monte Carlo simu-
lations and applied to reconstruction of simulated and measured data. The
system matrix can be created with empirical measurements [Pa2006], with
Monte Carlo simulations [Va2006], or analytically [OlGo1996, Lo2014]. The
system matrix contains characteristics which vary between scanner produc-
ers (and between models within a vendor). Therefore, the system matrix
must be created separately for each scanner model. The system matrix
with PSF modelling was created for Siemens Biograph (Hi-Rez) scanner in
[Pa2006] from empirical measurements. Also with empirical measurements
in [Al2010], a spatially variant system matrix was created for GE Discovery
STE (GE DSTE). In [Cl2010] the system matrix was created for a Philips
Gemini 16 Power scanner, with a model of spatially variant, non-Gaussian
PSF.

5.2 Infant Brain MR Segmentation

Neonatal brain MRI segmentation has additional challenges in comparison
to adult brain segmentation, and most of the methods have been devel-
oped quite recently for it. The majority of the more recently developed
techniques rely on anatomical a priori information, while some of the data-
driven methods allow the cortex shape to deviate more from the normal
brain. Currently, the segmentation of neonatal brain is considered to be in
its early stages [De2015] of development. In particular, there are difficulties
in segmentation of the myelinated white matter, and abnormalities in the
brain are not considered, with only few exceptions.

In [To1995], the regions of GM and WM were segmented with semi-
automatic discriminant analysis from Proton Density weighted and T2 weighted
MR images. In [Hü1998] semiautomatic segmentation was performed with
k-nearest-neighbour (k-NN) classification of the voxels into GM, WM, CSF,
myelinated WM and subcortical GM. Another semi-automatic segmentation
method using k-NN was presented in [Wa2000]. The segmentation proce-
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dure classifies the features of the image, by using localization information
from a template. In addition to segmentation of normal brain images, the
method was also applied to brain including anomalies.

A maximum likelihood approach was used in [Co2000] to segment GM,
WM and CSF of small children (of the age 26 months) MR images. The
first fully automatic method for neonates was tested on 4 cases in [Pr2005].
Probabilistic a priori brain atlas was aligned to the image with affine co-
registration by the means of Maximum Likelihood Estimation (MLE) with
Expectation Maximization (EM). The method was specific for neonatals and
involved the separation of the myelinated and non-myelinated brain seg-
ments. The MLE approach with a priori information was used again in
[We2006]. The k-NN classifier was combined with a spatial homogeneity
constraint from Markov Random Field (MRF) model. The related atlas
was built from 20 cases. The EM-MRF scheme was applied in [Xu2007],
where cortical surface reconstruction was created. The MRF was used for
removing mislabeled voxels in the EM algorithm. Triangularized mesh re-
construction of the cortex region allowed calculation of the volume, surface
area, curvature and thickness for the cortex. In [Sh2009b], imaging of neona-
tals involved specific head coil equipment in the MRI data acquisition. An
atlas was created with rigid co-registration to standard adult atlas, followed
by iterations of non-rigid co-registrations with the HAMMER tool [Sh2002].
Multiple atlases were used later together with a k-NN classifier in [Sr2012].
The initial segmentation with atlases provided spatial priors, which were
then refined. The performance of atlas-based segmentation depends on the
quality of the atlas and on the co-registration of the atlas to the image to be
segmented [Sh2010]. Low CNR (Contrast to Noise Ratio) in neonatal im-
ages, variation in brain shape and size makes the use of an atlas challenging.

In [So2007b] the Maximum A Posteriori (MAP) segmentation was ap-
plied. The a priori information was acquired with fuzzy nonlinear Support
Vector Machine (SVM), which was used in learning features from 9 images.
In comparison to atlas-base spatial prior, the intensity-based prior with SVM
was found to be more effective. Another approach without predefined brain
atlases was presented in [Gu2011]. Instead of a priori information, morpho-
logical constraints were derived from anatomical knowledge.

5.3 DWI Modelling

The mathematical framework for stating the relation of experimental vari-
ables of the pulsed field gradient in MRI experimental variables was es-
tablished in [StTa1965], and later, the principle of DWI was introduced in
1980’s [Le1986, Le1988]. Since then, DWI has gained popularity because of
its ability to estimate tumour cellularity with quantitative diffusion images.
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For the quantification, the DWI signal must be modelled. However, the true
biophysical meaning of the DWI signal is yet to be established, which makes
challenges to the modelling and has resulted in various advanced techniques
to interpret the signal. In the cancer studies, the modelling of the DWI sig-
nal focuses on models that describe the isotropic diffusion in the tissue. This
is in contrast to the Diffusion Tensor Imaging (DTI) technique that mea-
sures the anisotropic diffusion. The DTI is mostly used to study features in
the brain tissue with fibers in the White Matter (WM).

In the following, we give a short review of the modelling of the DWI signal
focusing on prostate cancer studies, while the references to the literature of
brain studies are used to reveal additional properties of DWI related models.
The most commonly used DWI models are explained in more detail later in
Chapter 3.2.

The DWI technique was initially presented with the Intra-voxel Inco-
herent Motion (IVIM) model [Le1986] Eq. 3.4. This model involves two
components of perfusion (or pseudo-diffusion) Dperfusion, and fast diffusion
Dfast. The IVIM model was further studied with Monte Carlo simulations
in [Pe1992]. It was observed that a small proportion of perfusion fraction
fIV IM in IVIM contributes to the difficulty in measuring perfusion in the
presence of noise, making Dperfusion even harder to estimate from the signal
than fIV IM , independent of the applied fitting procedure. For the monoex-
ponential model Eq. 3.1, the slope ADCm of the monoexponential curve was
used [Pr1999] to address the effect of T2-relaxation to individual b-values
in the analysis of cerebral infarct. As distinct from physiological models,
in [Be2004], a statistical fitting function called the stretched exponential
model (Eq. 3.3) was evaluated, in a preclinical study of rat brain. Specifi-
cally, the α parameter of the model was shown to differ significantly between
tumour and normal regions in the Gray Matter (GM). A model Eq. 3.2 that
measures the deviation of the signal from Gaussian diffusion ADCm was
presented in [Je2005]. The kurtosity parameter K was used as a measure of
the tissue structure.

5.3.1 Evaluation of the Models

In order to resolve the most suitable modelling technique, the above pre-
sented methods have been compared in various application fields. Starting
from evaluations of how well a DWI model explains the observed DWI de-
cay curve, monoexponential and biexponential models were evaluated in
[Mu2006b]. The biexponential model is mathematically similar to IVIM,
but it has bigger highest b-value in the DWI signal. It thus measures only
the fast diffusion Dfast and the slow diffusion Dslow, without perfusion com-
ponent Dperfusion. It was concluded in [Mu2006b] that the biexponential
model characterizes the DWI curve in prostate better than the conventional
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monoexponential model on the basis of F-test between residuals after fitting
operations.

In [Ki2007], the biexponential model was compared againts the cumulant
expansion model which has been derived from the formulation of DWI signal
as power series. The cumulant expansion model was observed to describe
the brain data equally well as the biexponential model, while it had less
parameters. This in turn suggests that some parameters of the biexponential
model may not be necessary in DWI modelling, at least in brain tissue.

In liver, the monoexponential and IVIM models were evaluated in [Lu2008].
While this pilot study was lacking comparisons on goodness-of-fits or perfor-
mance measures, the DWI curve was considered to follow the biexponential
pattern better in comparison to monoexponential curve.

Using multiple b-values, [Le2009b] showed that the fIV IM parameter of
the IVIM model was more suitable in the classification of healthy and non-
healthy pancreatid tissues. In contrast, the IVIM model with prostate data
was not found to have so good performance as the monoexponential model.

The IVIM model was compared to the monoexponential model in [Ri2009]
with prostate data. They found that the IVIM model described the data bet-
ter than the monoexponential model in b-value range from 0 to 800s/mm2.
However, it was noted that there was large variation in the parameter es-
timates of IVIM, which limits the utility of this model for prostate tumour
diagnosis.

In continuation of DWI studies to prostate, it was observed that in
[Sh2009c] the biexponential model provided better fit than monoexpoential
according to F-test for cancer data.

The AIC performance measure (Eq. 3.12) considers also the number
of model parameters. This measure was used in kidney data in [Wi2010],
including also noise simulations. The monoexponential, stretched, kurtosis
and biexponential functions were compared using AIC and F-ratio. While
the biexponential model had the best fit when considering these statistical
measures, the monoexponential model was the most robust againts noise.

For direct evidence from visual observations on the target tissue, the
ADCm parameter was evaluated together with pathology measures of prostate
in [La2010]. It was observed that the value of ADC correlates with various
structural features of the tissue.

Noise robustness of the IVIM model was considered in [Dö2011]. Simi-
larly to the comparison with the biexponential model in [Wi2010], in [Dö2011]
the IVIM described the DWI curve better, and monoexponential was more
robust against noise in the low b-value range of 0-800s/mm2. It was fur-
ther observed in [Dü2011] that the value of ADCm depends strongly on
the range of the b-values in DWI, because the signal in prostate is clearly
nonmonoexponential at higher b-values.

The study in [Tu2011] addressed the capability of ADCm in the pre-
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diction of the aggressiveness of the PCa. The ADCm parameter correlated
negatively with the Gleason score gradings, which suggests that the ADCm
can be useful in the prediction of aggressiveness. This observation was con-
firmed in [Ha2011], where the ADCm had high classification performance
between different grades of tumours located in the periferal zone of the
prostate.

For characterizing the progression of the prostate cancer, different b-
value fractions of 0-300s/mm2, 300-800s/mm2 and 0-800s/mm2 were com-
pared in [Gi2011]. The part of b-value range corresponding to the slow
component of IVIM (0-800s/mm2) was found to be a significant predictor
for cancer progression (Cox’s regression for hazard rate).

Physical validity of the IVIM model was tested with mouse in [Ki2012b].
The interstitial fluid pressure (IFP) correlated with Dperfusion, while for the
monoexponential model this was not observed. The observation is notable
for the use of the IVIM model. The IFP is an important variable in cancer
treatment because it impedes the delivery of therapeutic drugs to the core
of the tumours. Another mice study for IVIM was done in [Le2014]. The
estimated model parameters were compared to histological property of mi-
crovessel density (MVD). Interestingly, the Dperfusion and fIV IM parameters
had significant correlation (Spearman’s ρ) with MVD, while Dfast did not.
This suggests potential usefulness of the Dperfusion and fIV IM parameters
in the future if noise can be solved for those parameters in in vivo human
data.

An additional parameter fIV IM for the monoexponential model was pro-
posed in [Ma2012]. They suggested that Dfast in IVIM is more accurate with
AUC measures than ADCm in the classification of malignant from benign
tissue in prostate.

5.3.2 Recent DWI Models

Lately, also the other DWI models have attained attention. The kurtosis
model was evaluted in [Ro2012] for characterizing the prostate tumour ag-
gressiveness. The K parameter of the model performed better than ADCm
when the classification performance was measured with the AUC values of
the low and high grade cancers.

The stretched exponential function was compared in [Ma2012b] to IVIM
model using Monte Carlo simulations and real DWI prostate images. Like
the kurtosis model, the stretched function is less complex than IVIM. This
may explain the better reproducibility of the stretched function in com-
parison to IVIM in terms of ICC(3, 1). When noise was increased in the
simulations, also its precision and bias were superior to IVIM.

All four models, monoexponential, stretched, kurtosis and biexponential
were compared in [Qu2012], with a set of 11 b-values ranging from 0 to
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800s/mm2 for fittings in ROIs delineated inside prostate tumours. The
more complex models were shown to fit better to the signal curve than the
simple monoexponential model. This was reported earlier [Mu2006b] for the
monoexponential and biexponential models. However, the performance of
the models for clinical context was not evaluated.

For liver, [An2013] evaluated the IVIM using the Bland-Altman analysis.
The reproducibility was acceptable in Dfast, but fIV IM and Dperfusion had
poor repeatability.

A very high range of b-values (up to 8252 s/mm2) was used in [Bo2014b].
The study considered the goodness of fit and difference between normal
and cancerous tissue, and compared the four models (of monoexponential,
stretched exponential, kurtosis and biexponential) in prostate. The biexpo-
nential and kurtosis models had better fits than the stretched and monoex-
ponential models when evaluated with AIC. The fit of the biexponential
model was improved when largest b-value was set up to 8252 s/mm2 in
comparison to a lower b-value range. This suggests the use of high b-values,
although the study did not make any attempt to address the repeatability
of the parameter values or the actual correlation to pathology.

A study reporting limitations in robustness against noise of the IVIM
model was in [Wu2015]. Overall, the biexponential and IVIM models have
demonstrated to be more sensitive to the noise than the less complex models,
which limits their usability for cancer studies. However, it can be expected
that their performance improves with higher SNR in the DWI data (e. g.
with advanced scanner technology).

A recently developed model (VERDICT) was proposed for DWI of prostate
in [Pa2015]. The model considers restricted, hindered and restricted isotropic
diffusions simultaneously. The model successfully differentiated between be-
nign and cancer regions.

Recently, also another model for DWI signal modelling in prostate data
was suggested in [Sh2015]. This so-called ’Gamma Distribution’ model takes
statistical measures from the distribution of diffusion decay coefficients of
the DWI curve. Measures in area under the Gamma distribution curve of
the diffusion coefficients were found to differ between cancer, benign and
healthy tissue.

5.3.3 The Number of b-values

The samples of the DWI signal affect the performance of all of the models,
and if a model provides parameter estimates of good quality, the number of
b-values can be reduced in order to lessen the time spent in the MRI scanner.
This has led to various studies aiming to optimise the b-value settings in
such a way that the best trade-off between the performance and scanning
time is achieved. Optimal b-value setting was determined by calculation
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for ADCm in [Sa2011]. The method needed an estimate of SNR and was
applied to the DWI image acquisition scheme with two b-values for high
resolution DWI data of the spinal cord. Curiously, this study addressed also
the noise statistics in the DWI signal after taking logarithm, which is often
omitted when DWI modelling is applied to transformed signal.

For the IVIM model, the b-value positioning was optimised in [Le2011].
In this study, Monte Carlo simulations were used to evaluate different com-
binations of the b-values. The authors suggested the use of 10 b-values for
clinical setting, and noted that the parameter estimation depends strongly
on the SNR level.

The selection of the b-value setting was studied for the biexponential
model also in [Zh2012b] with Monte Carlo simulations and with real DWI
acquisitions in kidney data. The estimation error reduced in comparison
to conventional uniform distribution of the b-values, which highlights the
importance of optimization for the placement of b-values when using the
biexponential model. In more recent development [Pa2013], different b-value
combinations were evaluated for the IVIM model using prostate DWI data.
The considered b-value settings were limited to include up to 4 b-values.

The placement of b-values has also been optimised for the kurtosis model.
In [Ya2013], 3 b-values were suggested for each gradient direction in the
context of brain DTI studies.

The distribution of b-values was also optimised in [Dy2014], for liver
data. The authors concluded that 4 b-values can be used to estimate the
IVIM parameters in the liver tissue. The reproducibility of Dslow parameter
did not substantially degrade when only 4 b-values were used instead of 16.
However, the reproducibility was less for the other parameters of fbiexp and
Dfast in the IVIM model.

The IVIM was further evaluated in [Co2015] with Monte Carlo simula-
tions and liver data. They showed that excluding low b-values (0 < b-value
< 50 s/mm2) can lead to underestimation of Dperfusion in liver studies.

5.3.4 Other DWI Analysis Techniques

It is evident that the individual DWI curve has low SNR with commonly
used MR systems (i. e. for systems with 3T or below), making it challenging
to obtain useful parameter estimates for otherwise promising biexponential
and IVIM models. This invites development of other techniques for obtain-
ing useful information from DWI image data. Instead of acquiring model
parameters from a one-dimensional signal by fitting a model in the least
squares sense, other techniques have also been proposed that either supple-
ment or replace the traditional signal fitting procedure.
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In [Mo2010], the prostate cancer diagnosis was carried out with a proce-
dure involving segmentation, feature extraction and classification with MRF.
In [Ca2012], the ADCm was estimated in non-parametric manner, by us-
ing the Monte Carlo strategy to learn the underlying statistics of the DWI
signal.

Monoexponential and two alternative approaches of biexponential fit
were used in [He2013], for kidney DWI data. They used a parameter fitting
without fixing any parameters, fixing Dfast, and fixing Dslow. The param-
eters that were not fixed were fitted in normal way. In the last approach,
fbiexp was determined analytically. It was found that not only the model,
but also the fitting procedure contributes to the parameter values. As an
effect of image data processing, the performance of IVIM model parameter
fIV IM was found to increase when rigid co-registration was applied to pan-
creatic cancer images [Gr2013]. In [Pa2013], the IVIM model was fitted in
similar manner as in [He2013] so that the parameters of Dslow and fIV IM
were estimated after taking logarithm of the DWI signal, while fIV IM was
extrapolated directly from the slope Dslow.

Still another variation of the IVIM fitting scheme was proposed in [Ma2013b],
where the fIV IM and Dperfusion were fitted together by using fixed value of
Dfast. The Dfast was obtained from fitting of the tail of the decay curve with
monoexponential model. Multiple fitting steps were used also in [Ch2015],
where the fIV IM was extrapolated from the slope Dslow that was first fitted
to the tail of the DWI curve. The approach had higher precision in voxelwise
fitting in breast cancer than the conventional fitting method.

The ADCm was used in [Ma2013] to extrapolate high b-value DWI
images from low b-value data. Similar contrast-to-noise ratio was observed
between normal and cancer tissue when extrapolated DWI images were com-
pared to directly measured DWI images. However, this study presented no
evaluation for clinical performance.

5.3.5 Noise in the DWI Signal

For a noisy DWI signal, it was shown in [Di2014] that Rician noise affects the
parameter estimates when SNR is low. However, the authors failed to find
any improvement after considering Rician type of noise when discriminating
between benign and metastatic lymph nodes. Another study for Rician noise
in the signal was done in [An2008] for DTI. The Rician noise was studied
in diffusion-weighted MR image data when estimating the diffusion tensor.
Addressing this type of noise in the fitting was noted to reduce bias in the
results. However, the precision was weaker with the Rician noise model,
and therefore it was speculated that the Gaussian estimates may be more
reliable when the objective is to compare diffusion related parameters over
time or across patient groups, which is the situation in cancer diagnostics.
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Noise was considered also in [Or2014], where the parameters of the IVIM
model were obtained with the Bayesian estimation approach. The distribu-
tion of the parameter values inside liver was assumed to be normal. Spatial
neighbourhood of fitted voxels was considered in [Ku2014] for the IVIM
model. The method reduced the parameter estimation errors for all IVIM
parameters in Monte Carlo simulations and improved discrimination of pa-
tient groups of inflammatory bowel disease.

5.3.6 Some Other Developments in DWI Modelling

As other developments, an application tool to diagnosis was developed in
[Vi2008]. As an example of other types of the MRI signal analysis, DCE-MRI
(Dynamic Contrast-Enhanced MRI) heterogeneity index values are analysed
from the parameter map of dynamics of the contrast agent. In[Ro2009],
DCE-MRI was used with T2 weighted images to build a Computer Aided
Diagnostic (CAD) scheme for prostate cancer, which was evaluated on the
voxel-level.

Another specific approach for acquiring information from DWI the sig-
nal was presented in [Zh2015], where the IVIM model evaluation included
an analysis of the parameter value histograms. The Dperfusion and fIV IM
parameters were less useful in the classification of tumour aggressiveness,
while Dfast parameter measuring slow diffusion was considered promising.

To sum up, the development of DWI modelling started with ADCm
of single exponential. While the more complex models of IVIM and the
biexponential model provide closer fits to the data in least squares sense
and are thus inviting, their performance has been weak in clinical settings.
This suggest a clear need for improvements in either the scanning event or
in the subsequent image analysis, or in the optimization of both of them.
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Chapter 6

Algorithmic Analysis
Techniques for Medical
Images

The data acquisition processes of PET and MRI contain systematic and
non-systematic observational errors, that must be accounted for. The for-
mer type of error affects the accuracy of the measurement, while the latter
affects precision. If the systematic errors are known, they can be addressed
with calibration for improved quantification. The precision may be improved
with repeated measurements or techniques that improve the SNR of the ac-
quisition process. In this chapter we explain the most essential error sources,
and then provide techniques to quantify the quality of the measurements.
Finally, we discuss some methods for reducing errors in order to improve
the quality of the medical image data.

6.1 Numerical Measures

Image quality is often evaluated by visual inspection or by analyzing param-
eter values derived manually during image analysis. However, all methods
containing manual interventions are vulnerable to subjectiveness from the
operator, i. e. they contain intra- and inter-reader variance. Computed mea-
sures for image quality always produce the same output when assuming that
the same input data and method was given. Measuring quality of medical
images differs from that of ordinary photographs due to its intended purpose
of helping to produce an accurate diagnosis, preferably based on measured
physical characteristics rather than merely pleasing the eye, which is more
subjective. In this chapter, we review common measures for the inaccuracy
that reflects the quality of image data and its diagnostic accuracy in a math-
ematical manner. While the diagnosis of a disease is often performed by a
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medical doctor by visual assessment of medical images, numerical quanti-
tative values are also used when available as they bring more detailed in-
formation on the molecular level. Also, measures made by a human reader
have repeatability of less than 1 (optimal repeatability), while computed
measures always produce the same output, when assuming that the same
input data and method was given.

Standard deviation is the most commonly used measure to depict dis-
persion of measurements x = {xi|i = 1 to N} around their mean x:

SD(x) =

√∑
i(xi − x)2

n− 1 (6.1)

When SD is expressed in proportion to the mean it is called the Relative
Standard Deviation (RSD):

RSD(x) = SD(x)
x

(6.2)

CV (x) = SD(x)
x ∗ 100% (6.3)

The Coefficient of Variation (CV ) is a commonly used measure as it is
unitless and allows comparisons between systems.

Another unitless measure is the Intraclass Correlation Coefficient (ICC).
ICC can be used for evaluating the reliability of repeated measurements.
There are six different forms of ICC, which are discussed in [ShFl1979].
ICC(3, 1) measures the expected reliability of a single measurement event,
i. e. the consistency of measurements with a single scanning device without
averaging over the repetitions:

ICC(3, 1) = (MSB−MSE)
(MSB+(k−1)∗MSE) ,

(6.4)

where MSB is the mean squared difference between two groups of measure-
ments, and MSE is the mean residual around the mean measurement of k
repetitions of each case. The values of ICC(3, 1) vary in the range [−1..1]
where values are close to 1 when the measurements have high reliability
for the purpose of differentiating between groups (e. g. measurements from
normal tissue). Characterizing what is an acceptaple ICC(3, 1) value is a
question that depends on the application and is therefore partially subjec-
tive. However, generally speaking, values below 0.4 have been considered
unacceptable while values greater than 0.75 are excellent [Lo2015].
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For individual subjects, variability between measurements can be mea-
sured by calculating test-retest variability (VAR) or Coefficient of Repeata-
bility (CR) [Bl1999, Ko2009]:

VAR = 100% ∗ |scan2−scan1|
0.5∗|scan2+scan1|

RMSD =
√∑N

i=1
d2
i

(N−1)

CR = 1.96 ∗RMSD,

(6.5)

where scan1 and scan2 are the parameter values of the first and second rep-
etition and di stands for the difference between two repeated measurements
of the same variable. VAR gives the relative difference of the repetitions
in percentages, while RMSD (Root Mean Squared Difference) and CR are
expressed in absolute values.

Validation of an image processing technique can be based on statistics
which are calculated from the available image data that has accompanied
Golden standard (i. e. measures from the best reasonable analysis). Then,
it becomes important to know how well the technique will generalize to
newly introduced, independent data sets. This can be done with the cross-
validation technique [Ar2010]. First, the available dataset is divided into
training and testing datasets. Then, only the training dataset is used when
creating the analysis procedure which is then evaluated (cross-validated)
against the testing dataset. In order to address the variability from the
selection of the datasets, the final results for the evaluation come from mul-
tiple cross-validation rounds using different partitions of the original data.
This allows to build models and techniques which are partially or completely
based on statistically expected performance. The cross-validation technique
can be used when knowledge-based (e. g. knowledge about physiological
phenomena) modelling is hard to build in such a way that it provides high
enough performance.

In order to obtain measures that relate more closely to the diagnosis of
diseases in real life situations, the relevance of a parameter can be evaluated
by making a binary classifier from it with dichotomization, e. g. defining
each value below a certain threshold limit to indicate a healthy case, and
all values higher than the limit to indicate the presence of the disease. The
classifier can then be evaluated against the Golden standard to evaluate its
performance.
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A classification result belongs then to one of four categories in relation
to the Golden standard: True Positive (TP), True Negative (TN), False Pos-
itive (FP) and False Negative (FN). Two conventional statistical measures
of Sensitivity and Specificity can be derived from these, see Figure 6.1. Sen-
sitivity of a technique represents the classifier’s ability to detect a disease if
it is present, (Number of True Positives found by the classifier in relation
to the total number of positive cases in the population, i. e. diseased sub-
jects). Specificity is the classifier’s ability not to be wrong when it classifies
a case to be negative (Number of True Negatives found by the classifier in
relation to the total number of negative case in the population, i. e. healthy
subjects). Letting the threshold limit grow from small values to its highest
value, we can generate a Receiver Operating Characteristic (ROC) curve
[Br2006], see Figure 6.1 for illustration. The ROC curve is essentially a plot
of the False Positive Rate (FPR, i. e. 1 - Specificity) on the x-axis, and the
True Positive Rate (TPR, Sensitivity) on the y-axis.

Figure 6.1: Receiver Operating Characteristics (ROC) curve. ROC curve
gives the value of sensitivity for a given False Positive Rate. The dashed
line depicts a random classifier. Area Under Curve (AUC) can be calculated
with the trapezoid rule.

The ROC curve always grows monotonically. When the threshold gets
higher numbers, more subjects are classified as disease cases (positives) and
the Specificity is gradually lost (until all cases are determined as disease
cases with Specificity 0), while at the same time Sensitivity increases (until
all cases are classified as disease cases, including all true disease cases, thus
making Sensitivity 1). To measure the diagnostic accuracy, the Area Under
Curve (AUC) may be calculated for the ROC curve [Me2006]. It gets values
in [0.0..1.0], where the AUC value 1.0 means that the classification with
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the evaluation set did not show any errors (and 0.0 means perfect negative
correlation that can be inverted to get AUC of 1.0), while the value 0.5
indicates that the usefulness of the classifier is equal to that of using a
completely random classifier, i. e. flipping a coin. AUC can be used for
testing the clinical relevance of a variable.

The AUC may be computed in a number of different ways [MaCr2005],
including the ML-estimation (Maximum Likelihood) method requiring sev-
eral iterations [DoAl1969]. When there is a large number of responses
(i. e. Golden standard classifications), estimating AUC by the trapezoid
rule [PoHs1969] gives a good estimate of the performance. Its calculation
is fast and easy to understand, which makes it feasible to use when boot-
strap instances of the AUC area are calculated. AUC expresses the general
ability of the classifier to classify data into two groups. In practise, setting
the threshold for positive-negative decisions depends on the needs of the
particular application; costs of false decisions should be considered carefully
here.

Another statistical measure used is Spearman’s rank correlation coeffi-
cient (ρ). The statistics can be used for comparison of two sets of observa-
tions if the compared variables are not approximately normally distributed,
which may often be the case for physiological quantities. The Spearman’s ρ
is defined between two sets of ranked (i. e. ordered) variables as:

ρ = 1− 6 ∗
∑
d2
i

n ∗ (n2 − 1) , (6.6)

where d is the difference between rank numbers of the variable values. The
value of ρ varies in [−1..1], where −1 denotes negative and 1 positive mono-
tonic association between the two sets of variables.

Digital images contain quantization errors because the real world phe-
nomena that are represented by the images have been rounded and trun-
cated in the image acquisition processes and stored into digital form. This
may affect that two or more different observations have identical numbers
in Eq. 6.6 (i. e. numbers are tied in the ranking). The identical numbers
affect that the ρ may show too high association, because the true real data
values are likely to have rankings that are different between the compared
data sets. In such cases all of their values can be assigned to their average
rank before calculation of the d.

6.2 Confidence Intervals of Statistical Descriptors

Medical imaging data are in most of cases very noisy and therefore individ-
ual observation includes uncertainty in relation to its assumed true value.
In addition, the statistical descriptors contain uncertainties, which can be
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expressed by the means of Confidence Intervals (CI). The CI is associated
with a value range and a confidence level. The value range is around the
value of the descriptor. The confidence level indicates the frequency for the
true value to fall within the value range (e. g. 95% CI meaning 95% of time)
when the process of obtaining sample data and calculation of the CI is re-
peated. The length of the CI can be used to represent the precision for the
value, and it decreases when sample size increases. An analogue to the CI
is the Bayesian concept of credible interval, where the interval is associated
with a probability for the descriptor value to be inside the interval.

For Spearman’s rank correlation (6.6), the CI value can be calculated
analytically with Fisher’s transformation [Fi1921]. It has been observed
in [Ru2008] that bootstrapping (explained below) provides equally good or
better CIs than analytical methods when the sample size is large enough
(e. g. N ≥ 50). With the assumption that sampling errors of the Fisher-
transformed ρ (6.6) are normally distributed with variance σ(zρ), the confi-
dence interval of Spearman’s rank correlation coefficient ρ is [Ru2008]:

zρ = 1
2 ∗ ln(1+ρ

1−ρ) = arctanh(ρ) (6.7)

CI(ρ) = tanh(zρ ± (σ(zρ) ∗ t(1−CL)/2,n−2)) (6.8)

where zρ is the transformed estimate of ρ, t is t-distribution value with
confidence level CL (e. g. 0.025 for CL=0.05), and n − 2 is degrees of
freedom. Adjustments for estimate of the variance σ(zρ) have been evaluated
in [Ru2008]. It was observed in [Ru2008] that the estimate (1+z2

ρ/2)/(n−3)
earlier presented in [BoWr2000] performed well among evaluated analytical
methods.

For other parameters such as ICC or AUC, constructing an analytical
CI may lead to difficulties. For ICC, analytical methods have shown poor
performance [Uk2002], and well performing analytical methods are lacking.
For AUC, there is the widely used Wald method which uses the CI of the
difference between two AUCs [De1988]. However, this method may lead
to questionable performance when the sample size is not large [Ob1998,
De2012, Zo2013, Ko2014].

The value of CI can be calculated experimentally by resampling in-
stances of the sample set, i. e. by bootstrapping. In the bootstrapping
method, random subsets (called bootstrap instances) of the original samples
are created and the subsets are treated as if they were the original sample
in the calculation of the statistical descriptor. In percentile bootstrapping,
the bootstrap distribution of statistics is calculated from the bootstrap in-
stances. Then, percentiles (i. e. 2.5% and 97.5% percentiles) are used to
approximate the CI. This method is easy to use, while it is to be noted
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that it is based on the assumption that the bootstrap distribution is a good
approximation to the true distribution of the statistics. The sample statis-
tic may be compared to the mean (or median) of the bootstrap distribution
to roughly evaluate the approximation. In the related jackknife method
[Tu1958], the sampling is done by leaving out one or more items from the
original sample set.

The replicates in bootstrapping can be created with replacement as orig-
inally proposed in [Ef1979] or without replacement (also called plainly ’sub-
sampling’) [PoRo1994]. In the former, a replicate of the same size as the
original sample is created by taking random items from it using uniform
distribution for generating the item indices. This allows the occurrence of
duplicates, whereas in sampling without replacement, each object of the
original sample may occur at most once. Because of replacement, the repli-
cates in sampling with replacement are from a distribution that differs from
the distribution of the original sample. In subsampling without replacement,
the subsample size is smaller than the original sample size, but the samples
are from the distribution of the original sample.

The subsampling technique is more generally usable than bootstrapping
with replacement (i. e. when items are dependent, as in time series). When
the sample size is small, bootstrapping with replacement is advisable. This
is because the number of different replications is limited by the size of the
original sample. This limitation may bring inaccuracies to the bootstrapped
value for small sample sizes. When bootstrapping is applied to a descriptor
that uses more than one group, i. e. AUC of a binary classifier or ICC,
stratification may be applied for improving the accuracy of the statistics.
Stratification of the sample set means that the replicates are created sep-
arately for each group (e. g. healthy, non-healthy), thus keeping the ratio
of the group sizes the same as in the original sample. This in turn allows
estimation of the bootstrapped descriptor value with a smaller number of
replicates, because unrealistic replicates have been excluded. For example in
the case of AUC, we are only interested in the classification of the samples
into two groups, and therefore replicate samples that contain items from one
group only do not contribute to the estimate.

For a bootstrapping procedure to work, it has to be assumed that the
bootstrapped distribution approaches asymptotically the distribution of the
whole population. For this assumption to hold, the original sample is re-
quired to represent the population properly. For example in a situation
where the population does not consist of independent, identically distributed
values, the bootstrap sampling fails because random sampling does not pre-
serve the characteristics of the whole population.

In situations where bootstrapping fails, subsampling may be applied. It
requires only that the convergence rate of the estimator for the statistic
is known, the limiting distribution is continuous, and that its replicate size
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tends to infinity with the sample size so that the ratio of these sizes converges
to zero [Be1999]. For this reason bootstrapping can be used with various
statistical descriptors where analytical solutions are lacking. This property
is particularly useful for descriptors for which it is difficult to define CI in
an analytic form, such as ICC.

It is common that a number of different variations of classifiers have
been constructed on the basis of the same data set. The AUC values of the
classifiers can then be statistically tested (compared) with the bootstrapping
method as originally described by Hanley and McNeil [HaMc1983] and later
modified in [Ro2011]. Consider two variants 1 and 2 of a classifier. Let θ1r
and θ2r be the bootstrapped instances of two AUC values θ1 and θ2 that
are compared. Then, a distibution can be generated for the bootstrapped
differences D = D1, ..., DN (where N is the number of bootstrap replicates)
between the two AUCs θ1 and θ2:

Z = θ1r−θ2r
SD(D)

(6.9)

In Eq. 6.9, Z is approximately normally distributed and then one- or two-
tailed p-values of t-test may be calculated for the significance of Z.

6.3 Distortions in the Intensity Distribution of the
Data

The intensities of an image may be distorted. Sometimes the distortion has
negligible contribution to the image quality, when compared to other effects
(e. g. in the presence of small movements in an image with large PVE).
Some of these effects are mentioned here for the sake of completeness. In
scanning situations where the target object moves, motion artefacts occur
in the image. For PET, the time required to acquire a single 3D time frame
(with adequate SNR) is relatively long (e. g from few seconds to tens of
minutes), which may add motion blur to the acquired data.

For MRI, motion artefacts are different within and between slices. This
is due to data that are acquired in Fourier Space before being transformed
to spatial images. Depending on the MRI scanning sequence, the movement
is distributed differently, i. e. the image slices may be obtained in transaxial,
coronal or sagittal direction, or multiple slices are taken simultaneously (as
in multiband echo planar imaging).

The images are blurred by rigid and non-rigid motion of the objects.
Rigid motion is relatively easy to correct by applying rigid image co-registration
procedures between time frames, but non-rigid motion is harder to address
if the quality of the acquired data is not sufficient for detecting anatomical
(structures) information.
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In addition, PET data are also blurred by PVE, where intensity is blurred
by Point Spread Function (PSF) to neighbouring regions. The PVE blurs
intensity for a point shaped object to the whole voxel volume, and corre-
spondingly, increases the observed intensity for neighbouring regions. PVE
includes a voxel effect where the signal reflects the average value within the
voxel.

6.4 Phantom Objects and Computer Simulations
for Method Evaluations (P1)

While the true signal intensity and imaging errors are both not known in
a scanning situation, the imaging errors imaging can be estimated by using
data from physical and digital phantoms. Phantom image data are arti-
ficially created either by placing an artefact into the scanner FOV (Field
of View), or by adding noise and distortions to a digital, artificially pro-
duced image. In this manner, the true intensity values are known, and thus
deviations from it can be measured.

In order to use a physical phantom in PET, (Fig. 6.2), the true local-
ization and activity concentration of the inserted source must be known.
The latter can be calculated from the half-life of the inserted tracer and the
time elapsed from external measurement to the acquisition event. For the
localization, an anatomical reference image needs to be obtained from the
accompanied CT or MRI device, or else the quantification on the PET im-
age must take into account the PVE by taking samples from locations which
are unaffected by the PVE (i. e. they are far from the edges of homogenous
region).

For a digital PET phantom, the true intensity and its localization are
simple to generate, since the image is digitally created. Various digital
phantom images with different levels of detail including motion simulation
are available for free and commercially [Xu2014].

When suitable digital data are available, the challenge is to simulate the
noise and other artefacts in a realistic manner. When small computational
cost is desirable, PVE can be simulated by applying Gaussian smoothing
to the phantom data (denoted here by IPhantom). The phantom contains a
predetermined activity distribution that is compared to the measurements
after simulation. The IPhantom is smoothed with the convolution operation
”⊗” to create a smoothed image IPSFSimulated.
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For including noise in the simulation, Poisson noise Poisson() can be
added to the image IPSFSimulated in Radon domain <(). PET image
IPSFandNoiseSimulated is then reconstructed as follows:

IPSFSimulated = IPhantom ⊗ IPSF

IPSFandNoiseSimulated = <−1(Poisson(Cnoise ∗ <(IPSFSimulated))) ∗ 1
Cnoise

(6.10)

Figure 6.2: PET images of the so-called Hoffman brain phantom. First
row: GE Advance scanner. Second row: High resolution Siemens (HRRT)
scanner. Images are in transaxial (A,D), coronal (B,E) and sagittal (C,F)
orientations.

A more exhaustive but also computationally more costly approach is the
Monte Carlo simulation [Ro2006, Gi2016]. Widely used software packages
for that purpose are PET-SORTEO [Re2004], and GATE [Ja2004]. Both of
these simulate the PET acquisition process in detail including simulation of
the gamma ray trajectories in 3D space. Challenges in them are the excess
amount of computations and the complexity of the system. These limit
the use of simulation when numerous phantoms are needed. In addition,
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the simulations become specific to the particular PET system, thus making
results less easily generalizable. Nevertheless, Monte Carlo simulators are
used in various applications in PET, such as in calculation of the system
matrix used in the PET image reconstruction [Bu2016].

6.5 Effects that Affect the Quality of PET Images
and Correcting them (P1)

In addition to the error factors mentioned above (random events, attenua-
tion, scatter), there are other sources of errors which hamper the PET image
quality. Before annihilation, the positron travels a distance depending on
the radioactive nuclide. The length of the motion is in average from less
than one millimeter to several millimeters in a random direction from of the
decaying point. In annihilation, the emitted gamma photons are not ori-
ented in exactly opposite directions, which leads to a minor additional error
in the localization data. The signal itself consists of photons, and the type
of related noise is Poisson [Sa2009]. Noise can be reduced to some extent by
injecting more radioactive tracers into the subject, but this may be costly,
and it is not desirable due to the extra radioactivity exposure, particularly
in the case of humans.

A notable factor affecting the image quality is the Partial Volume Effect
(PVE) where images are blurred due to limited resolution of PET devices.
PVE can be modelled as a convolution between the true signal ITrue and
the Point Spread Function (PSF). In addition, the observed image IObserved
includes additive noise:

IObserved = ITrue ⊗ IPSF + noise (6.11)

Because of the noise, the solution of ITrue (2.1) becomes an ill-posed prob-
lem which is hard to solve analytically. The problem can be partially solved
with the High Resolution Research Tomograph brain PET scanner (HRRT,
Siemens Healthcare Inc. Knoxville, U.S. [Jo2007]). Due to advanced hard-
ware components and smaller FOV of HRRT than conventional PET devices,
HRRT has, a better physical resolution of around 3 mm in contrast to 5-6
mm, of conventional scanners. The strength of PET is in its quantitative
accuracy on molecular level, and the relatively low spatial resolution can
partially be compensated by accompanying CT of MRI imaging. Unfor-
tunately, the PVE hampers quantification of the activity intensities, and
motion artefacts are often unavoidable in PET imaging due to the low tem-
poral resolution [Bo2010] in situations where high temporal sampling rate
cannot be achieved while maintaining adequate SNR of samples. Therefore,
the need for PVE correction for better absolute quantification is evident.
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Various PVE correction methods have been suggested for PET and
SPECT. Spatial resolution blur can be corrected by using supplementary
anatomical information from CT or MRI [Me1990, Mü1992, Al2004, Co2013],
or by relying only on the PET image data [Bo2009, Te2009]. Another tech-
nique is to correct the PVE already on the sinogram level and in this way
avoid the distortion caused by the PET reconstruction process [Pa2006].

The PET modality has a rather low temporal resolution due to the rel-
atively low signal count rate in order to obtain enough statistics for a
reasonable SNR. It is therefore unavoidable that motion artefacts occur,
particularly when the target organ under study is constantly moving, such
as lungs or heart. The motion can be corrected before image reconstruction
with supplementary information about motion acquired with monitoring de-
vices for head, chest and cardiac movements [Ra2007]. The motion can also
be measured with other modalities like CT and MRI. When the motion has
been measured along with the PET data, it can be corrected by reconstruct-
ing the data in phases or gates within cardiac or respiratory cycles [Ne2003].
The idea here is that each gate contains multiple observations of the signal
within the same phase of the cycle in order to increase SNR of the data.
Another method for correcting motion artefact is to use inversion technique
for motion blur, given that the motion is properly measured on the voxel
level [Na2006].

6.6 Correcting for Partial Volume Effect (P1)

The correction for PVE (called shortly PVC) is an inverse problem for the
generation of the source data that is inherently ill-posed, meaning that no
unique solution exists, and small change to the image with PVE to be cor-
rected produces large changes to solution. Therefore, various approaches
have been proposed for correcting PVE. The Geometric Transfer Matrix
(GTM) method by Rousset et al. [Ro2000] assumes that the image can be
divided into a set of regions (indexed from 1 to n).
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The observed intensities are expressed as a system of linear equations
which are solved by inverting the GTM [Th2001]. These can be expressed
as: 

IObserved1

IObserved2

...
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=
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(6.12)

where the weights w compose the GTM matrix, and represent the transfer
of intensity values between the regions. The main limitation of this method
is the assumed homogeneity of the intensities inside each region [1..n]; di-
vision of a PET image into such segments (with homogenous activity dis-
tributions) can be challenging. Errors from segmentation may be avoided
with the deconvolution approach that does not use segmentation (see be-
low) [ToRe2008]. Given that the assumption about homogeneity holds, this
method produces accurate estimates of the true mean intensities inside the
regions.

The task of PVC in voxelwise manner can be divided into two parts;
correcting the effect of spill-out activity from a ROI, and correcting the
opposite spill-in effect. Considering the spill-out effect alone, the corrected
activity is obtained by dividing the observed activity with the simulated
spilled out activity distribution [Me1990]:

ICorrected = IObserved
XROI ⊗ IPSF

, (6.13)

where XROI is a binary mask that defines the voxels belonging to the ROI.
Correspondingly, the spill-in activity from a neighbouring region can be
removed from the observed activity giving [Mü1992]:

ICorrected = IObserved − (CNeighbour ∗ (XROI ⊗ IPSF )), (6.14)
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where CNeighbour is the estimated true intensity of the neighbouring region.
The intensity CNeighbour can be estimated by taking average of the region.
Both of the above methods (6.13) and (6.14) require accurate segmentation
of the underlying anatomy in XROI . Accurate segmentation may be hard to
carry out, particularly if the target object moves or complementary images
for anatomy are not available.

For brain imaging, an estimation method was suggested to estimate WM
region intensity [Al20014], because voxels that are not contaminated by spill-
in from GM may not exist in the image. The estimation for WM was defined
as the intercept of linear fitting line of PET intensity values in brain image
voxels against fraction of GM intensity in voxel after smoothing. The linear
regression line is fitted to scatter plot (GMfraction, Y ) of PET image voxels,
where:

Y = PETintensity (6.15)

GMfraction = CGM
(CGM + CWM ) (6.16)

CWM = XWMROI ⊗ IPSF (6.17)
CGM = XGMROI ⊗ IPSF (6.18)

XGMROI and XWMROI refer to binary segmentations of Gray Matter and
White Matter, and CGM and CWM are the corresponding convoluted im-
ages as in (6.13) and (6.14). The intercept at GMfraction = 0 is then the
estimation of true WM intensity.

6.7 Data-driven Segmentation for Premature In-
fant Brain MR Images (P2)

In MR images, PVE is due to the limited spatial resolution of the technique
(i. e. resolution is set low for sake of reasonable acquisition time), even
though it is higher than in PET. MR images are reconstructed from noisy
signals in the Fourier space. The main source of noise is thermal noise due
to thermal vibrations of ions and electrons and movements of the objects
during data acquisition. The noise is of Gaussian type in real and imaginary
channels after inverse Fourier transform in the image reconstruction. It
then becomes Rician after calculating magnitude of the signal. Therefore
the noise is generally Rician distributed in the MR images, even though
at higher SNR levels the distribution can be approximated with Gaussian
distribution [GuPa1995]. Often a logarithm is taken from the MR signal
consisting of decay curve. This operation cahnges also the noise distribution
[Sa2011].

MRI has relatively high temporal resolution for acquisition of a single
data item, e. g. a slice of k-space. Because of this, the individual data items
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contain less motion. If motion occurs during the acquisition, the data are
collected from a wrong spatial position. As a result of this, the reconstructed
image in the spatial domain contains so-called ghosting artefacts due to miss-
ing coefficients in the Fourier domain. Considering post-processing methods,
motion artefacts can be corrected with the help of external devices [Za2006]
or so-called navigator frames [Ke2008]. It may also be possible to detect
motion from the image data themselves, under the assumption that motion
in the image is small so that there is only minor loss of data [Lo2015]. With
small children, the motion is largely an unavoidable problem that can par-
tially be addressed by repeated measurements (see e. g. [Fu2003]). However,
depending on the study question, it can be possible to extract meaningful
information even from the corrupted MRI data [P2].

The data-driven segmentation technique in [P2] begins with inhomo-
geneity correction for removing large-scale variation in the image in T1 and
T2 weighted input data. Then, the watershed algorithm is applied to an
averaged gradient calculated from the T1 and T2. Finally, the Gaussian
Mixture Model (GMM) including special handling of myelination segments
is applied to the image.

Figure 6.3: Examples of transaxial slices in steps of a data-driven segmen-
tation technique using the algorithm of [P2]. From left to right: original T1
image, N3 inhomogeneity corrected image and watershed labelled image.

6.8 Comparison of DWI Models with Simulations
and Real Data (P3 to P6)

The DWI signal is reconstructed from complex data by the means of in-
verse Fourier Transform. The performance of different DWI models can
be evaluated by simulations where different levels of oise are added to the
input signal. For this let S(b) be a DWI signal without noise. A noisy
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signal is created with two independent Gaussian distributions nreal(b) and
nimaginary(b) ∼ N (0, σ2(b)) as:

S(b)simulated =
√

(S(b) + nreal(b))2 + (nimaginary(b))2 (6.19)

After added noise, the simulated signal is fitted and acquired model param-
eters in Eqs. (3.1), (3.2), (3.3), (3.4) are compared to the values used when
creating original signal without noise.

Computer simulations with different levels of noise were used in [P3-P6]
to evaluate a set of fitting procedures, followed by real data evaluations to
test the usability of models in clinical context. In the simulations the noise
levels were below and above the noise level estimated from the real DWI
data. The noise in a real DWI signal is basically Rician distributed (and
Rayleigh at lower SNR levels, such as background). Both simulated and
real DWI signal were fitted with RMSE (Eq.3.9) assuming uniform noise
distributions among b-values. This approach is an approximation of a real
situation as noise in the higher b-values is larger than in lower b-values.
However, the same fitting procedures were applied to simulated and real
data, which makes possible biases from Rician noise to be similar to both
data. In practise, normality of the residuals can be assumed when SNR
of the signal is high. one can then use a measure that assumes normality
of residuels. In [P4] the evaluation of imaging data models was based on
∆AICc and ICC. Out of these the two last ones relate closely to clinical
usability of the techniques.

For real data in [P5], 12 b-values were used in the original scan. From
these 12, 210 subsets were created with six b-values each. The subsets were
then used in evaluations. For observing the distribution of performance
measures from all subsets, they were ordered by the goodness measure such
and RMSE and ICC(3, 1), and then plotted against those measures (having
order at x axis and goodness measure at y axis, see Fig. 7.4). The shape
of the curve shows then the performance of the DWI model parameters in
relation to the placement of the b-value. For a flat curve, the placement
of the b-values has little relevance, while a steeply descending curve means
that the placement is crucial and setting of the b-value should be considered
more carefully.

In model fittings, the multiple-initialization technique was used. Global
optimization procedures were left for future studies, as for sake of model
comparison it was considered crucial to avoid local minima. The initializa-
tions were spaced evenly so that balance was maintained between reasonable
computation speed and avoiding local minima in fitting of the noisy signal.
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Chapter 7

Results

The current thesis contains publications (P1) to (P6), which address over-
lapping areas of medical imaging. The topics are summarized in the table
below:

Addressed topic P1 P2 P3 P4 P5 P6
Repeatability of measurements X X X X
Diagnostic accuracy X X X
Image segmentation X
Partial Volume Effect X

7.1 Comparison of Partial Volume Effect Correc-
tion Techniques for Brain PET (P1)

In publication [P1] four PVE correction techniques were compared [Al2004,
Ro2000, Mü1992, Me1990] in PET brain imaging when using the [18F]FDG
tracer with phantom and the [11C]-raclopride tracer for repeatability. In the
phantom studies, the correction techniques were compared for quantification
accuracy. In the repeatability tests with real PET brain data, each patient
was scanned twice. It was shown that selection of the most suitable PVC
technique depends on the study question. Namely, a more complex method
that tends to produce accurate results in quantitative measures, may be out-
performed by other methods when considering the reliability of the results
in real data.

In [P1], Hoffman Brain Phantom was scanned with three different scan-
ners differing particularly in their PSF, which gives some generality to the
performance evaluation. The phantom consisted of plastic plates that had a
human brain -like container carved into them. The container was filled with
[18F]FDG liquid, and then scanned with three PET scanners, GE Advance
(GE Healthcare, Millwaukee U.S.), GE DSTE (GE Healthcare, Millwaukee
U.S.) and Siemens HRRT (Siemens Healthcare, Knoxville, Tennessee, USA),
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of which the last one has particularly high (2.5-3.0 mm) and the two for-
mer lower (5-6 mm), more conventional resolution. The voxel sizes of the
reconstructed images for scanners were, correspondingly: 1.17x1.17x1.17,
1.82x1.82x3.27 and 1.22x1.22x1.22 mm. The phantom experiments showed
that the PVC method with sophisticated estimation of the mean brain white
matter activity [Al2004] produced the best overall results when evaluted in
all the three scanners. The method has the favorable capability of per-
forming the PVE correction in a voxel-wise manner in comparison to the
region-wise correction in [Ro1998].

Test-retest setting of patient data was used to evaluate the performance
of the correction methods for the in vivo situation. The data consisted
of eight healthy volunteers. Each of them was scanned twice with [11C]-
raclopride, which is a dopamine antagonist. The analysis was performed
at ROI level in four subcortical regions that accumulate the tracer. The
SD was observed to rise after correction which can be considered to be due
to noise amplification of PVC. The ICC(3, 1) values revealed that noise
amplification in PVC propagates to affect also the ROI level analysis (see
SD values of the ROI mean intensities over subjects in Table 7.1), and the
increase of noise is therefore an issue to consider when making corrections,
even if only mean ROI values are considered after PVC.

Table 7.1: Effect of the positron emission tomography PVC methods on
binding potential estimated by a reference tissue model for two brain re-
gions.1

Method Putamen Mean±SD Putamen ICC(3, 1)
No correction 1.31±1.22 0.91
[Al2004] 2.27±1.81 0.94
[Mü1992] 1.86±1.70 0.88
[Ro2000] 1.28±1.60 0.92
[Me1990] 1.33±1.24 0.92

Lateral thalamus Mean±SD Lateral thalamus ICC(3, 1)
No correction 2.10±1.69 0.83
[Al2004] 2.71±2.50 0.98
[Mü1992] 2.40±2.26 0.93
[Ro2000] 2.24±2.30 0.94
[Me1990] 2.19±1.71 0.87

1Adapted from ”Evaluation of partial volume effect correction methods for brain
positron emission tomography: Quantification and reproducibility”, by Merisaari H., Teräs
M., Hirvonen J., Nevalainen O.S., Hietala J., 2007. Journal of Medical Physics, 32(3), pp.
108-117. Copyright 2006-2016 by Journal of Medical Physics.
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7.2 Segmentation of Anatomical MR Images Hav-
ing Low Signal-To-Noise Ratio (P2)

The segmentation method in [P2] represents one of few segmentation tech-
niques for neonatal MR images that do not use spatial prior. In the tech-
nique, the image data are first segmented with the watershed transform.
The result is then clustered according to the intensity values in order to cre-
ate a rough segmentation of the watershed regions. The rough segmentation
is used as a priori information in the final segmentation by the Expectation
Maximization -algorithm that operates on voxel intensities.

The segmentation method was validated against manual volume mea-
surements of the combined brain tissue (brain white matter (WM) and gray
matter (GM)) of 11 newborn subjects some of whom had large anomalies in
brain shape, see [P2], Fig. 7.1.

Figure 7.1: Segmentation of the CSF and GM+WM regions of MR images
from premature infants without and with anomaly.2

2Adapted with permission from ”Gaussian mixture model-based segmentation of MR
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Correlation of the volume measures between the algorithm using both
T1- and T2-weighted images and manual segmentation was 0.94 for GM+WM
region and 0.95 for CSF. In addition, cases for voxelwise comparison be-
tween the proposed and manual segmentation are presented in Table 7.2.
The method uses both T1 and T2 weighted images for the segmentation,
and it has slightly inferior performance when run with T2 images, only.

Table 7.2: Confusion matrices of the data-driven segmentation method
(WSEG) against expert segmentation for three premature MR images.
The agreement of segmentation is shown on the diagonal in each matrix.
GM+WM: Union of Gray and White Matter. CSF: Cerebrospinal Fluid.3

GM+WM CSF Non-brain
Subject 5
GM+WM 92.3% 1.5% 6.1%
CSF 24.3% 75.7% 0.0%
Non-brain 0.4% 0.0% 99.6%
Subject 8
GM+WM 81.5% 2.2% 16.3%
CSF 17.2% 82.8% 0.0%
Non-brain 0.3% 0.0% 99.7%
Subject 9
GM+WM 86.6% 5.7% 7.7%
CSF 18.6% 72.8% 8.6%
Non-brain 0.9% 0.0% 99.1%

7.3 The Effect of Sample Points for DWI Mod-
elling in Terms of Repeatability (P3 to P6)

Publications [P3-P6] address the repeatability of DWI measurements in the
context of prostate imaging. Good repeatability of the DWI technique is
essential for reliable diagnosis, such as detection and characterization of
Prostate Cancer (PCa).

[P3]: Optimization of b-value distribution for biexponential diffusion-
weighted MR imaging of normal prostate. We simulated the DWI decay

images taken from premature infant brains”, by Merisaari H., Parkkola R., Alhoniemi E.,
Teräs M., Lehtonen L., Haataja L., Lapinleimu H., Nevalainen O.S., 2009. Journal of
Neuroscience Methods, 182(1), pp. 110-122. Copyright 2009 Elsevier B. V.

3Adapted with permission from ”Gaussian mixture model-based segmentation of MR
images taken from premature infant brains”, by Merisaari H., Parkkola R., Alhoniemi E.,
Teräs M., Lehtonen L., Haataja L., Lapinleimu H., Nevalainen O.S., 2009. Journal of
Neuroscience Methods, 182(1), pp. 110-122. Copyright 2009 Elsevier B. V.
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curves on various Rician noise levels, and found that placing the b-values
in three clusters minimizes the amount of errors in the parameters fbiexp,
Dfast and Dslow (fraction term, fast diffusion, and slow diffusion) of the
biexponential model. This result is consistent with the results from real
data evaluations of healthy prostate tissue in fbiexp and Dslow, see Fig. 7.2.

Figure 7.2: ICC calculated using Shrout and Fleiss analysis for fbiexp and
Dslow values derived from the clustered and equally distributed b-values of
Periferal Zone (PZ) and Central Zone (CZ). ICC with 95% confidence are
shown.4

The ’clustered’ placing of b-values produced higher ICC(3, 1) values
than conventional uniform positioning of b-values (’uniform’ approach). Par-
ticularly, the ’clustered’ approach improved ICC(3, 1) of the fbiexp param-
eter in the central zone of the prostate. The fbiexp parameter was the
only parameter with good overall reliability in terms of ICC(3, 1), while
the Dslow parameter had the best reliability in the periferal zone of the
prostate. In this zone, the ’clustered’ approach did not improve fbiexp. On
the other hand, the relialibity of the fbiexp parameter was excellent already
when using the conventional method of uniformly distributed b-values. The
’clustered’ setting of b-values produced parameter map images of Dfast that
had more larger-scale variation caused by susceptibility artefacts, than with
the ’uniform’ approach. That was speculated to be the reason for a lower
ICC(3, 1) value with the Dfast parameter which is seemingly most sensitive
to variations in data. For minimizing the DWI acquisition time, the effect

4Adapted with permission for academic use from ”Optimization of b-value distribu-
tion for biexponential diffusion-weighted MR imaging of normal prostate” by Jambor I.,
Merisaari H., Aronen H.J., Järvinen J., Saunavaara J., Kauko T., Borra R., Pesola M.,
2014. Journal of Magnetic Resonance Imaging, 39(5), pp. 1213-1222. Copyright 2013
Wiley Periodicals, Ins.
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of the number of b-values on the error of the parameter estimates was in-
vestigated, see Fig. 7.3. It was found that the use of 5 or 6 b-values is of
benefit in comparison to fewer b-values, while adding more than 10 b-values
to the scanning sequence led to only a negligible decrease in the error of the
parameter values.

Figure 7.3: Dependence of the mean total error (Etot) on the number of
b-values used in the fitting procedures when the standard deviation of the
noise was 0.1, 0.02, 0.01, and 0.001. The parameter set by [Mu2006b] was
used in simulations.5

[P4]: Evaluation of different mathematical models for diffusion-weighted
imaging of normal prostate and prostate cancer using high b-values: A re-
peatability study. In continuation to [P3], in [P4] the biexponential diffusion
model (Eq. 3.4) was compared with three other DWI models (monoexponen-
tial (Eq. 3.1), kurtosis (Eq. 3.2) and stretched (Eq. 3.3) exponential models).
To do this, two repetitions of DWI images from 8 healthy volunteers and
16 PCa patients were analysed to test the reliability of the model parame-
ters to separate between healthy and PCa cases. All available b-values were
used for healthy (16 b-values) and for PCa (12 b-values) subjects. Table 7.3
compares the four DWI models in terms of AICc (Eq. 3.13) and percentage
of cases in which a simpler model is rejected with the significance level 0.01
with F-ratio. For PCa patients, in only slightly over half of the cases the

5Adapted with permission for academic use from ”Optimization of b-value distribu-
tion for biexponential diffusion-weighted MR imaging of normal prostate” by Jambor I.,
Merisaari H., Aronen H.J., Järvinen J., Saunavaara J., Kauko T., Borra R., Pesola M.,
2014. Journal of Magnetic Resonance Imaging, 39(5), pp. 1213-1222. Copyright 2013
Wiley Periodicals, Ins.
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biexponential model gave a better fit than the kurtosis model.
From tests with humans and from simulations with different noise levels,

it is evident that the biexponential model overfits the data, and therefore
better fits (Table 7.3) are actually due to noise in the parameters. It turned
out that the monoexponential model was the most robust model against
noise at high noise levels. Still, the AICc values of the four models ap-
proach each other when the noise level increases, thus making their ∆AICc
difference to disappear. The noise level of the in vivo data is low; e. g. in
the human data the SNR was estimated to be between 0.01 and 0.02 with
a conventional 3T MR scanner.

Table 7.3: Selection of preferred DWI model for PCa diagnostic. ’PCa’
stand for % of cases with cancer and ’Normal’ for % of cases of normal
tissue samples.6

Region
AICc PCa Normal
Stretched vs monoexponential 100% 100%
Kurtosis vs monoexponential 100% 100%
Biexponential vs monoexponential 100% 100%
Kurtosis vs stretched 43.8% 60.9%
Biexponential vs stretched 57.8% 81.2%
Biexponential vs kurtosis 85.9% 81.2%

Region
F-ratio PCa Normal
Stretched vs monoexponential 98.4% 100%
Kurtosis vs monoexponential 98.4% 100%
Biexponential vs monoexponential 98.4% 100%
Biexponential vs stretched 48.4% 65.6%
Biexponential vs kurtosis 56.3% 53.1%

[P5]: Optimization of the b-value distribution for four mathematical DWI
models. We studied the placement of b-values for the four DWI models
used in [P4]. The placement of b-values was studied in terms of GoF and
ICC(3, 1) for b-values in the range of [0..2000s/mm2] by using Monte Carlo
simulations and real data of ten PCa patients. It was found that the relia-
bility of the DWI measurements can be improved in most of these models,

6Adapted with permission for academic use from ”Evaluation of different mathematical
models for diffusion-weighted imaging of normal prostate and prostate cancer using high
b-values: A repeatability study”, by Jambor I., Merisaari H., Taimen P., Boström P., Minn
H., Pesola M., Aronen H.J. 2015. Magnetic Resonance in Medicine, 73(5), pp. 1988-1998.
Copyright 2014 Wiley Periodicals, Inc.
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by using a proper number of b-values: 4-5 for the monoexponential, 6-7 for
stretched and kurtosis models and 8-10 for the biexponential model. Fur-
ther, our results suggest that using six b-values results in high repeatability
of measurements (ICC(3,1) > 0.8) independent of their placement, see [P5],
Fig. 7.4 (D). The placement of b-values affects the goodness of the fit more
when measured with the RMSE (Eq. 3.9) (Fig. 7.4 (A)).

Figure 7.4: The root mean square error (RMSE) (A, G) and intraclass
correlation coefficient. (ICC(3, 1)) values (D, J) for the ADCm parameter
of the monoexponential model calculated using different sets of six b-values.
Results for PCa patients (A) and normal cases (G) are shown. The best
10 b-value distributions based on the RMSE (A, G) and ICC values (D,
J) are separated by the solid line. The dashed line is used to mark the
best 100 b-value distributions. The dotted line marks b-value distributions,
consisting of six equally distributed b-values (0, 100, 700, 1500, 1700, 2000
s/mm2, in addition to the initial two b-values that were kept fixed in all
b-value distributions).7

7Adapted with permission for academic use from ”Optimization of b-value distribution
for four mathematical models of prostate cancer diffusion-weighted imaging using b values
up to 2000sec/mm2: Simulation and repeatability study”, by Merisaari H., Jambor I.,
2014. Magnetic Resonance in Medicine, 73(5), pp. 1954-1969. Copyright 2014 Wiley
Periodicals, Inc.
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As shown in [P4], in comparison to the monoxponential model, the kur-
tosis model explains the decay curve better (considering RMSE) with one
added parameter K. With the kurtosis model, the parameter representing
simple diffusion (ADCk) behaves similarly to the ADCm in the monoexpo-
nential model. For the K parameter, optimal placement of b-values results
in better repeatability (i. e. ICC(3, 1)), particularly in healthy controls.

[P6]: Correlating mathematical models with Gleason score and repeata-
bility. By using the same DWI models as in [P3-P5], we compared the
model parameters to the Gleason scores (Gs) [Ep2005] which are currently
used to make a prognosis of PCa. Gleason scores (Gs) were assigned to each
prostate according to the consensus of two experienced pathologists. The
Gleason scores were divided into less aggressive (Gs ’3+3’) and more agres-
sive cases (Gs > ’3+3’), and used as a ground truth for the classification of
the subjects into these two groups. The AUC of the agressiveness levels was
used as an overall measure of the classification accuracy of the DWI model
parameters. As another measure for relation to Gs, we applied nonparamet-
ric Spearman’s rank correlation (Eq. 6.6). For repeatability of the model
parameters, the study involved a patient population of 55 patients which
had two repeated DWI acquisitions. Repeatability was measured with the
Coefficient of Repeatability divided by the median CR/Median (Eq. 6.5),
and with ICC(3, 1).

The findings from [P3] and [P4] were verified for repeatability. There
was four repeatable DWI model parameters (ADCm, ADCk, K, ADCs,
see Table 7.4) that had also the highest associations with the Gleason score,
as shown in Fig. 7.5.

The same parameters had the best AUC values for making a classifica-
tion between the tumour agressivity classes ’3+3’ and > ’3+3’, see Fig. 7.6
(b) in [P6]. However, the confidence intervals of the AUC values wide and
overlapping. It was shown (Fig. 7.6 (a)) that Dslow for slow diffusion could
be used in classifying between normal and cancer tissues.
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Table 7.4: Repeatability of fitted parameters. PZ: Periferal Zone ROI. CG:
Central Gland ROI.8

Region
Parameter all PCa PZ PCa CG PCa

CR/Median (%) ADCm 20.6 21.8 15.1
ADCk 23.1 25.1 16.5
K 16.4 15.6 19.8
ADCs 23.8 25.2 18.1
α 12.7 12.8 10.2
fbiexp 87.4 90.1 85.8
Dfast 143.2 156.7 98.0
Dslow 82.4 86.8 70.9

Figure 7.5: Spearman correlation ρ of DWI model parameters against Glea-
son score values of different aggressiveness levels in PCa.9

8Adapted with permission for academic use from ”Mathematical models for diffusion-
weighted imaging of prostate cancer using b values up to 2000 sec/mm2: Correlation with
Gleason score and repeatability of region of interest analysis”, by Toivonen J., Merisaari
H., Pesola M., Taimen P., Boström P.J., Pahikkala T., Aronen H.J., Jambor I., 2015.
Magnetic Resonance in Medicine, 74(4), pp. 1116-1124. Copyright 2014 Wiley Periodicals,
Inc.

9Adapted with permission for academic use from ”Mathematical models for diffusion-
weighted imaging of prostate cancer using b values up to 2000 sec/mm2: Correlation with
Gleason score and repeatability of region of interest analysis”, by Toivonen J., Merisaari
H., Pesola M., Taimen P., Boström P.J., Pahikkala T., Aronen H.J., Jambor I., 2015.
Magnetic Resonance in Medicine, 74(4), pp. 1116-1124. Copyright 2014 Wiley Periodicals,
Inc.

66



Figure 7.6: Classification capability of parameters of four DWI models.
Classification between normal (Normal) and cancer tissue (PCa) is on the
left (A), and between less aggressive tumours (’3+3’) and more aggressive
(> ’3+3’) is on the right.10

10Adapted with permission for academic use from ”Mathematical models for diffusion-
weighted imaging of prostate cancer using b values up to 2000 sec/mm2: Correlation with
Gleason score and repeatability of region of interest analysis”, by Toivonen J., Merisaari
H., Pesola M., Taimen P., Boström P.J., Pahikkala T., Aronen H.J., Jambor I., 2015.
Magnetic Resonance in Medicine, 74(4), pp. 1116-1124. Copyright 2014 Wiley Periodicals,
Inc.
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Chapter 8

Discussion

Molecular imaging techniques are widely used for studying functions of hu-
man body in vivo in a non-invasive manner. In this thesis, we have addressed
problems related to postprosessing the imaging data from PET and MRI.
This facilitates to acquire information that would be otherwise lost due to
noise or other artefacts. The results of the publications [P1]-[P6] are dis-
cussed in this chapter. In PET, low spatial resolution must be addressed
with PVC, and [P1] compared conventional PVE correction methods for
this, as expained in Chapter 8.1. For MRI, [P2] proposed a data-driven seg-
mentation technique as an alternative approach to atlas-based techniques.
This is discussed in Chapter 8.2. In DWI, the noise and the desire for shorter
acquisition times are of major importance. This topic has been addressed in
[P3]-[P6]. Chapter 8.3 discusses various DWI models together with b-value
placement which is applied in the DWI data acquisition.

8.1 Comparison of Partial Volume Effect Correc-
tion Techniques for Brain PET (P1)

Our results shows that a quantitatively accurate PVC method may be sensi-
tive to inherent noise and artefacts in PET images. A proper PVC method
should therefore be chosen depending on the application, considering the
distribution of the tracer in the target tissue, and placement and size of the
ROI.

Since low spatial resolution is the major cause for PVE, the HRRT scan-
ner produces the least amount of PVE to be corrected, while the other two
scanners used in our study (GE Advance and GE DSTE) are more depen-
dent on PVE correction (80% recovery rate without PVC in comparison to
61% and 65% in Table 1 [P1]). It should be also noted that the best per-
forming A-PVC method also amplifies voxel-wise noise in the PET images
(see SD values in Table1 [P1]). It outperforms other methods at ROI level,
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but works weakly at voxel level. At voxel-wise spatial resolution level, the
issue of PVC for quantification purposes still remains to be resolved.

Another aspect of PVC is that for the purpose of group comparison stud-
ies (e. g. between patients and controls), quantification in absolute terms
may not be of the main concern, as long as the group differences are re-
peatable between acquisitions with the same scanner. For this, test-retest
analysis provides important information about the repeatability of measure-
ments. Whilst the use of [18F]FDG tracer gives an even activity distribution,
in [11C]-raclopride BP studies the distribution is more concentrated to spe-
cific receptor sites. Therefore, the simplest (and most robust) PVC method
[Me1990] emerges as the safest choice, giving a moderate increase in the
binding potential of the SRTM model, while still improving ICC(3, 1) in all
subcortical regions. This is seen in table 7.1 as the proportional increase
of SD in ROI level is moderate (in comparison to other methods). It is to
be noted that the method should not be picked with one option in mind,
only. The recovery rate is the main motivation for the PV correction, and is
therefore considered when choosing between doing or not doing the PV cor-
rection (i. e. between [Me1990] and ’No correction’). The presented results
can easily be applied to other organs (i. e. in abdomen region), with the
assumption that smoothing of the signal induced by the motion is small.

Since [P1] was published, more voxelwise methods have been proposed
[Bo2008, Sh2009, Ki2008, Th2011, Wa2012, Co2013, Ir2016]. However, the
observation about noise amplification in PVC has generally been made in
the literature and it has been remarked, that the PVC should be applied
with caution. Comparison of PVC techniques helps in making a decision
about which technique to use with specific PET data. For PVC, the safest
option is often the simplest, but the final decision depends on the exact
application in question. When observing the repeatability of the extracted
parameter estimates, more sophisticated methods may be more prone to
errors as they are more sensitive to variations in the input image data. The
same cautiousness should be used with the use os system matrix approach
available with the newest present imaging devices.

8.2 Segmentation of Anatomical MR Images Hav-
ing Low Signal-To-Noise Ratio (P2)

Segmentation of adult brain from T1 weighted MR images is a well es-
tablished, although the three most commonly used methods (FAST, SPM5,
SPM8) have some differences [Va2015]. Development of segmentation meth-
ods for newborn brain is a more complicated task, since the brain undergoes
myelinization during early development.

As a result of myelination in normal brain maturation, water diffusion
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in white matter reduces, which changes the intensity values in Gray and
White Matters (see [Ba2000]). In T1 weighted images, the intensity of the
White Matter changes from hypointense to hyperintense relative to the Gray
matter intensity. In T2 weighted images, the change is from hyperintense
to hypointense relative to the Gray Matter. State-of-art methods for adult
brain (SPM5, SPM8, and lately SPM12) utilise a priori probability maps
of brain structures that assist in the segmentation. The probability maps
are developed with a combination of manual, semi-automatic and automatic
procedures [Ma1995, Ma2001, Ku2011], while the preference here is in the
automatic or semi-automatic methods because of their feasibility.

Segmentation of the brain of newborn infants has recently been applied
by the means of a template that is adjusted according to the age of the pa-
tient [Ku2011]. Templates for small children have also been created [Ha2010,
Ro2012]. However, their data is from small populations and they must be
matched to the exact age of the subject, that is not a trivial task as there are
variations in the development of the brain, and also the shapes vary more.
A further problem for general applicability of spatial priors in segmentation
is caused by the anomalies in brain structures; a general template is hard
to map to this kind of MR images.

The strength of the data-driven approach in [P2] is that it does not
make any assumptions about the topology of the analysed brain in contrast
to the methods relying on spatial priors. The novel algorithm segments the
joint area of GM and WM. The success with the quite challenging dataset,
and other published data-driven methods make the data-driven approach an
inviting alternative to consider when spatial prior approach is not applicable
in neonatal MRI.

8.3 The Effect of Sample Points for DWI Mod-
elling in Terms of Repeatability (P3 to P6)

Publications [P3-P6] address the repeatability of DWI measurements in the
context of prostate imaging. Good repeatability of the DWI technique is
essential for reliable diagnosis, such as detection and characterization of
Prostate Cancer (PCa).

[P3]: Optimization of b-value distribution for biexponential diffusion-
weighted MR imaging of normal prostate. This publication deals with the
optimization of the b-value positioning in biexponential modelling of diffu-
sion. While the evaluation was performed for one MRI scanner only, dif-
fusion as a physical property is independent of the magnetic field strength
[Ch2011]. The measured signal depends on multiple factors, not only on
selection of b-values (e. g. pulse duration in Eq. (2.5)). Thus, the results in
this study are not generally applicable to arbitrary pulse sequences. How-
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ever, the results are generalizable to other scanning environments where the
same physical property of diffusion is measured. The developed methodol-
ogy can be applied to optimise protocols for other diffusion weighted MRI
acquisition pulse sequences.

The main benefit of applying the ’clustered’ approach in b-value place-
ment was more visible in Dslow where ICC(3, 1) was higher. When com-
paring different DWI models, the biexponential model did not improve the
ICC(3, 1). This was even expected because the simpler monoexponential
model (ADC parameter) is more robust against noise in the diffusion de-
cay curve. Even with lower reliability of the parameters, the biexponential
model is still interesting due to its potential to obtain more clinically rel-
evant information from the decay curve. It is therefore beneficial to study
possibilities to improve the performance of the biexponential model even if
the repeatability of its individual parameters would not exceed or would be
even somewhat lower than that of ADC.

[P4]: Evaluation of different mathematical models for diffusion-weighted
imaging of normal prostate and prostate cancer using high b-values: A re-
peatability study. The i.i.d. assumption of the fit residuals may be violated,
making model comparison measures (AICc, F-ratio) not to work efficiently.
In particular, the SNR generally decreases when the b-value is increased in
diffusion weighted MRI. Thus, the model comparison was used to answer
only to the question of how well the models explain the diffusion decay of the
DWI data. To further understand which model is to be preferred, measure-
ments for robustness against noise, and repeatability were also considered.

The biexponential model uses the greatest number of parameters and one
can therefore expect that it would give the best fit to the data. However, in
PCa patients, only slightly over half of the cases showed better fit with the
biexponential model than with the kurtosis model. For this evaluation, the
general interest was in the performance in in vivo data rather than in fits of
individual curves.

The in vivo DWI data experiments consisted of 384 ROIs in healthy
volunteers and 128 in PCa patients. Relating the simulations to the real
image data, the parameters of the kurtosis models were observed to be robust
against noise in the SNR range of the in vivo data, while all parameters of the
biexponential data showed large deviation for the same noise levels (Fig. 3).
This suggests that the noise is a smaller problem for the kurtosis model it is
for the biexponential model when the SNR is similar to that in the ROI data
of [P4]. This observation about the noise robustness of the kurtosis model is
also indicated by the relatively high ICC(3, 1) values for the ADCk and K
parameters. Based on the above observations the use of the kurtosis model
can be recommended; it fits better to the data than the monoexponential
model and is robust when noise in the decay curve increases.

[P5]: Optimization of the b-value distribution for four mathematical mod-
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els. Apart from the articles presented here, the ICC(3, 1) is currently a quite
rarely used measure of the data quality, maybe due to the requirement for
repeated examinations which are demanding to arrange. In [P5], the mea-
surements of ICC(3, 1) suggest that studies using fewer than four b-values,
(e. g. [Va2011, Ue2013, Ki2010, Ka2011, Ki2012]) could potentially benefit
from an increased number of b-values. As in [P3], a generalization to other
studies can be expected due to the same measured physiological quantity.
However, it is stressed that the diffusion decay curve depends also on other
parameters than the b-value. Another observation was that optimizing the
placement of b-values (Fig. 1 (B) in [P5]) improves fittings, but quite sur-
prisingly, this gives only a small improvement to the repeatability of the
results, particularly with the commonly used monoexponential model. The
placement of b-values contributed more to the repeatability in the more
complex models where the parameters were in general more noisy. As a
promising model that may give additional information to the conventional
ADCm parameter, the kurtosis model with parameter K has good robust-
ness against noise, and it may thus give additional information for separating
cancer from normal tissue in the prostate.

[P6]: Correlating mathematical models with Gleason score and repeata-
bility. Repeatability of measurements is vital for diagnostic relevance. It
was observed in [P6] that the most repeatable parameters were ADCm,
ADCk, ADCs and K in the kurtosis model. The regions of the CIs of
ICC(3, 1) of these parameters were located notably higher than the CIs
of the other parameters. In addition, they gave a superior classification
accuracy. Publication [P6] concentrated on evaluations against the Gs mea-
sures from pathology. The analysis goes thus further than common studies
where only goodness of fits or groups are compared, because it considers the
clinical applicability with AUC as a measure for classification performance.
According to observations in [P6], there is no good reason to prefer more
complex models to monoexponential in conventional 3T MRI scanner. How-
ever, the general expectation is that a newer technology will produce higher
SNR for the parameter estimates, allowing more meaningful information to
be extracted from the DWI data with more complex DWI models.

To sum up, a general contribution of [P3-P6] is the observation that the
placement of b-value distribution has an important role in DWI. This holds
true in particularly for more complex DWI models. Another major contri-
bution was to provide evaluations in terms of clinical usability of the DWI
fitting parameters. These evaluations are crucial in the data analysis of im-
ages in medical context, because the clinical applicability finally determines
the value and overall performance of the image analysis.
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8.4 Author’s Contribution

All the publications of this work are the result of a group effort. Particular
collaboration was done with I. Jambor in [P3-P6] in designing and writing
the manusripts. For the PV correction evaluation in PET [P1], the author
analysed the data, implemented image processing methods, performed sta-
tistical analysis of data, and was the first writer of the manuscript. The
author developed the data-driven brain MR segmentation technique, and
was first writer in the corresponding manuscript [P2]. In DWI modelling
articles [P3-P6] the author designed and implemented the modelling and
following data analysis procedures, and had an important role in writing
the corresponding manuscripts. Publication [P1] has been included in the
thesis work of M. Teräs. Publications [P5] and [P6] are planned to be in-
cluded in thesis works of I. Jambor and J. Toivonen, correspondingly.
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