4 research outputs found

    Research on Chaotic Firefly Algorithm and the Application in Optimal Reactive Power Dispatch

    Get PDF
    Firefly algorithm (FA) is a newly proposed swarm intelligence optimization algorithm. The original version of FA usually traps into local optima like many other general swarm intelligence optimization algorithm. In order to overcome this drawback, the chaotic firefly algorithm(CFA) is proposed. The methods of chaos initialization, chaos population regeneration and linear decreasing inertia weight have been introduced into the original version of FA so as to increase its global search mobility for robust global optimization. The CFA is calculated in Matlab and is examined on six benchmark functions. In order to evaluate the engineering application of the algorithm, the reactive power optimization problem in IEEE 30 bus system is solved by CFA. The outcomes show that the CFA has better performance compared to the original version of FA and PS

    Parameter identification of BIPT system using chaotic-enhanced fruit fly optimization algorithm

    Get PDF
    Bidirectional inductive power transfer (BIPT) system facilitates contactless power transfer between two sides and across an air-gap, through weak magnetic coupling. Typically, this system is nonlinear high order system which includes nonlinear switch components and resonant networks, developing of accurate model is a challenging task. In this paper, a novel technique for parameter identification of a BIPT system is presented by using chaotic-enhanced fruit fly optimization algorithm (CFOA). The fruit fly optimization algorithm (FOA) is a new meta-heuristic technique based on the swarm behavior of the fruit fly. This paper proposes a novel CFOA, which employs chaotic sequence to enhance the global optimization capacity of original FOA. The parameter identification of the BIPT system is formalized as a multi-dimensional optimization problem, and an objective function is established minimizing the errors between the estimated and measured values. All the 11 parameters of this system (Lpi, LT, Lsi, Lso, CT, Cs, M, Rpi, RT, Rsi and Rso) can be identified simultaneously using measured input–output data. Simulations show that the proposed parameter identification technique is robust to measurements noise and variation of operation condition and thus it is suitable for practical application

    Identification of parameters in photovoltaic models through a runge kutta optimizer

    Get PDF
    Recently, the resources of renewable energy have been in intensive use due to their environmental and technical merits. The identification of unknown parameters in photovoltaic (PV) models is one of the main issues in simulation and modeling of renewable energy sources. Due to the random behavior of weather, the change in output current from a PV model is nonlinear. In this regard, a new optimization algorithm called Runge–Kutta optimizer (RUN) is applied for estimating the parameters of three PV models. The RUN algorithm is applied for the R.T.C France solar cell, as a case study. Moreover, the root mean square error (RMSE) between the calculated and measured current is used as the objective function for identifying solar cell parameters. The proposed RUN algorithm is superior compared with the Hunger Games Search (HGS) algorithm, the Chameleon Swarm Algorithm (CSA), the Tunicate Swarm Algorithm (TSA), Harris Hawk’s Optimization (HHO), the Sine–Cosine Algorithm (SCA) and the Grey Wolf Optimization (GWO) algorithm. Three solar cell models—single diode, double diode and triple diode solar cell models (SDSCM, DDSCM and TDSCM)—are applied to check the performance of the RUN algorithm to extract the parameters. the best RMSE from the RUN algorithm is 0.00098624, 0.00098717 and 0.000989133 for SDSCM, DDSCM and TDSCM, respectively
    corecore