714 research outputs found

    Probabilistic and artificial intelligence modelling of drought and agricultural crop yield in Pakistan

    Get PDF
    Pakistan is a drought-prone, agricultural nation with hydro-meteorological imbalances that increase the scarcity of water resources, thus, constraining water availability and leading major risks to the agricultural productivity sector and food security. Rainfall and drought are imperative matters of consideration, both for hydrological and agricultural applications. The aim of this doctoral thesis is to advance new knowledge in designing hybridized probabilistic and artificial intelligence forecasts models for rainfall, drought and crop yield within the agricultural hubs in Pakistan. The choice of these study regions is a strategic decision, to focus on precision agriculture given the importance of rainfall and drought events on agricultural crops in socioeconomic activities of Pakistan. The outcomes of this PhD contribute to efficient modelling of seasonal rainfall, drought and crop yield to assist farmers and other stakeholders to promote more strategic decisions for better management of climate risk for agriculturalreliant nations

    A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series

    Get PDF
    Author name used in this publication: Chun-Tian Cheng2009-2010 > Academic research: refereed > Publication in refereed journalAccepted ManuscriptPublishe

    Modelling Multi Regression with Particle Swarm Optimization Method to Food Production Forecasting

    Get PDF
    Tempe was one of the perishable foods with a durability of 2 to 3 days. Tempe home-based industry must take into account its production in order to avoid losses. Suitable planning and forecasting can determine the ways for the production process is implemented. Previously, regression analysis was used as the method to improve the process. This research proposed the particle swarm optimisation (PSO) and multiple regression for production forecasting. PSO is used for optimisation value of regression variable of the tempe productions while multiple regression is used to determine the best coefficients for forecasting. The result of the research showed that the combination of multiple regression and particle swarm optimisation method performed quite well, indicated by the RMSE value of 2.081641

    Simulated annealing coupled with a Naïve Bayes model and base flow separation for streamflow simulation in a snow dominated basin

    Get PDF
    Streamflow simulation in a snow dominated basin is complex due to the presence of a high number of interrelated hydrological processes. This complexity is affected by the delayed responses of the catchment to snow accumulation and snow melting processes. In this study, long short-term memory (LSTM) and artificial neural network (ANN) models were utilized for rainfall–runoff simulation in a snow dominated basin, the Carson River basin in the United States (US). The input structure of the models was determined using the simulated annealing algorithm with a naïve Bayes model from a high dimensional feature space to represent the long-term impacts of historical events (i.e. the hysteresis effect) on current observations. Further, to represent the different responses of the catchment in the model structure, a base flow separation method was included in the simulation framework. The obtained performance indices, root mean square error, percentage bias, Nash–Sutcliffe and Kling–Gupta efficiencies are 0.331 m3 s−1, 13.00%, 0.848, and 0.852 for the ANN model and 0.235 m3 s−1, − 0.80%, 0.923, and 0.934 for the LSTM model, respectively. The proposed methodology was found to be promising for improving the streamflow simulation capability of LSTM and ANN models by only considering precipitation, temperature, and potential evapotranspiration as input variables. Analysing the flow duration curves indicated that the LSTM model is more efficient in representing different flow dynamics within the basin due to embedded cell states. Further, the uncertainty and reliability analyses were conducted by using expanded uncertainty (U95), reliability, and resilience indices. The obtained U95, reliability and resilience indices are 1.78–1.72 m3 s−1, 31.28–66.67% and 11.58–38.27% for the ANN and LSTM models, respectively, showed that the LSTM model produced less uncertainty and is more reliable. However, while lacking a memory component, the proposed methodology significantly contributes to the simulation capability of the ANN model in rainfall–runoff modelling. The results of this study indicated that the proposed methodology could enhance the learning capabilities of machine learning models in rainfall–runoff simulation.</p

    Long-Term Load Forecasting Considering Volatility Using Multiplicative Error Model

    Full text link
    Long-term load forecasting plays a vital role for utilities and planners in terms of grid development and expansion planning. An overestimate of long-term electricity load will result in substantial wasted investment in the construction of excess power facilities, while an underestimate of future load will result in insufficient generation and unmet demand. This paper presents first-of-its-kind approach to use multiplicative error model (MEM) in forecasting load for long-term horizon. MEM originates from the structure of autoregressive conditional heteroscedasticity (ARCH) model where conditional variance is dynamically parameterized and it multiplicatively interacts with an innovation term of time-series. Historical load data, accessed from a U.S. regional transmission operator, and recession data for years 1993-2016 is used in this study. The superiority of considering volatility is proven by out-of-sample forecast results as well as directional accuracy during the great economic recession of 2008. To incorporate future volatility, backtesting of MEM model is performed. Two performance indicators used to assess the proposed model are mean absolute percentage error (for both in-sample model fit and out-of-sample forecasts) and directional accuracy.Comment: 19 pages, 11 figures, 3 table

    Rainfall-rinoff model based on ANN with LM, BR and PSO as learning algorithms

    Get PDF
    Rainfall-runoff model requires comprehensive computation as its relation is a complex natural phenomenon. Various inter-related processes are involved with factors such as rainfall intensity, geomorphology, climatic and landscape are all affecting runoff response. In general there is no single rainfallrunoff model that can cater to all flood prediction system with varying topological area. Hence, there is a vital need to have custom-tailored prediction model with specific range of data, type of perimeter and antecedent hour of prediction to meet the necessity of the locality. In an attempt to model a reliable rainfall-runoff system for a flood-prone area in Malaysia, 3 different approach of Artificial Neural Networks (ANN) are modelled based on the data acquired from Sungai Pahang, Pekan. In this paper, the ANN rainfall-runoff models are trained by the Levenberg Marquardt (LM), Bayesian Regularization (BR) and Particle Swarm Optimization (PSO). The performances of the learning algorithms are compared and evaluated based on a 12-hour prediction model. The results demonstrate that LM produces the best model. It outperforms BR and PSO in terms of convergence rate, lowest mean square error (MSE) and optimum coefficeint of correlation. Furthermore, the LM approach are free from overfitting, which is a crucial concern in conventional ANN learning algorithm. Our case study takes the data of rainfall and runoff from the year 2012 to 2014. This is a case study in Pahang river basin, Pekan, Malaysia

    Establishment of Landslide Groundwater Level Prediction Model Based on GA-SVM and Influencing Factor Analysis

    Get PDF
    The monitoring and prediction of the landslide groundwater level is a crucial part of landslide early warning systems. In this study, Tangjiao landslide in the Three Gorges Reservoir area (TGRA) in China was taken as a case study. Three groundwater level monitoring sensors were installed in different locations of the landslide. The monitoring data indicated that the fluctuation of groundwater level is significantly consistent with rainfall and reservoir level in time, but there is a lag. In addition, there is a spatial difference in the impact of reservoir levels on the landslide groundwater level. The data of two monitoring locations were selected for establishing the prediction model of groundwater. Combined with the qualitative and quantitative analysis, the influencing factors were selected, respectively, to establish the hybrid Genetic Algorithm-Support Vector Machine (GA-SVM) prediction model. The single-factor GA-SVM without considering influencing factors and the backpropagation neural network (BPNN) model were adopted to make comparisons. The results showed that the multi-factor GA-SVM performed the best, followed by multi-factor BPNN and single-factor GA-SVM. We found that the prediction accuracy can be improved by considering the influencing factor. The proposed GA-SVM model combines the advantages of each algorithm; it can effectively construct the response relationship between groundwater level fluctuations and influencing factors. Above all, the multi-factor GA-SVM is an effective method for the prediction of landslides groundwater in the TGRA

    Hybrid Advanced Optimization Methods with Evolutionary Computation Techniques in Energy Forecasting

    Get PDF
    More accurate and precise energy demand forecasts are required when energy decisions are made in a competitive environment. Particularly in the Big Data era, forecasting models are always based on a complex function combination, and energy data are always complicated. Examples include seasonality, cyclicity, fluctuation, dynamic nonlinearity, and so on. These forecasting models have resulted in an over-reliance on the use of informal judgment and higher expenses when lacking the ability to determine data characteristics and patterns. The hybridization of optimization methods and superior evolutionary algorithms can provide important improvements via good parameter determinations in the optimization process, which is of great assistance to actions taken by energy decision-makers. This book aimed to attract researchers with an interest in the research areas described above. Specifically, it sought contributions to the development of any hybrid optimization methods (e.g., quadratic programming techniques, chaotic mapping, fuzzy inference theory, quantum computing, etc.) with advanced algorithms (e.g., genetic algorithms, ant colony optimization, particle swarm optimization algorithm, etc.) that have superior capabilities over the traditional optimization approaches to overcome some embedded drawbacks, and the application of these advanced hybrid approaches to significantly improve forecasting accuracy

    Prediction of permanent deformation in asphalt pavements using a novel symbiotic organisms search-least squares support vector regression

    Get PDF
    The prediction of asphalt performance can be very important in terms of increasing service life and performance while saving energy and money. In this study, a new hybrid artificial intelligence (AI) system, SOS-LSSVR, has been proposed to predict the permanent deformation potential of asphalt pavement mixtures. SOS-LSSVR utilizes the symbiotic organisms search (SOS) and the least squares support vector regression (LSSVR), which are seen as a complementary system. The prediction model can be established from all input and output data pairs for LSSVR, while SOS optimizes the systems tuning parameters. To avoid sampling bias and to partition the dataset into testing and training, a cross-validation technique was chosen. The results can be compared to those of previous studies and other predictive methods. Through the use of four error indicators, SOS-LSSVR accuracy was verified in predicting the permanent deformation behavior of an asphalt mixture. The present study demonstrates that the proposed AI system is a valuable decision-making tool for road designers. Additionally, the success of SOS-LSSVR in building an accurate prediction model suggests that the proposed self-optimized prediction framework has found an underlying pattern in the current database and thus can potentially be implemented in various disciplines
    corecore