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Abstract: Rainfall-runoff model requires comprehensive 
computation as its relation is a complex natural phenomenon. 
Various inter-related processes are involved with factors such as 
rainfall intensity, geomorphology, climatic and landscape are all 
affecting runoff response. In general there is no single rainfall-
runoff model that can cater to all flood prediction system with 
varying topological area. Hence, there is a vital need to have 
custom-tailored prediction model with specific range of data, type 
of perimeter and antecedent hour of prediction to meet the 
necessity of the locality. In an attempt to model a reliable 
rainfall-runoff system for a flood-prone area in Malaysia, 3 
different approach of Artificial Neural Networks (ANN) are 
modelled based on the data acquired from Sungai Pahang, 
Pekan. In this paper, the ANN rainfall-runoff models are trained 
by the Levenberg Marquardt (LM), Bayesian Regularization 
(BR) and Particle Swarm Optimization (PSO). The performances 
of the learning algorithms are compared and evaluated based on 
a 12-hour prediction model. The results demonstrate that LM 
produces the best model. It outperforms BR and PSO in terms of 
convergence rate, lowest mean square error (MSE) and optimum 
coefficeint of correlation. Furthermore, the LM approach are 
free from overfitting, which is a crucial concern in conventional 
ANN learning algorithm. Our case study takes the data of 
rainfall and runoff from the year 2012 to 2014. This is a case 
study in Pahang river basin, Pekan, Malaysia. 
 

Index Terms: Artificial neural network; rainfall-runoff; 
Levenberg Marquardt; Bayesian Regularization; Particle Swarm 
Optimization. 
 

I. INTRODUCTION 
 

The research on earth-related systems have gain more 
attention as there are developing concern about natural and 
environmental changes. Important system such as rivers and 
their discharge give enormous impact on human 
activities[1], as it directly affects the community placement 
and sustenance. One of the common solutions of river 
related problem is to make a prediction model of rainfall-
runoff system.  

Rainfall-runoff is a perplexing interaction between 
precipitation and landscape aspects. There are many factors 
which affect runoff level such as storm characteristics, 
intensity of rainfall, duration of rainfall, geomorphology and 
climatic elements [2]. 
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Moreover, mitigating water related problem requires high 

level of accuracy [3]. Therefore, rainfall-runoff systems are  
strenuous to model [4]–[7]. Following this matter, researchers 
have opted for machine learning (ML) in an attempt to solve 
the problem. ML have been making a breakthrough for flood 
forecasting, providing vigorous and competent models that can 
efficaciously learn convoluted flood systems in an adaptive or 
flexible manner [8]. Amongst ML methods, support vector 
machine (SVM) is hugely popular, with auspicious results and 
exceptional generalization capability [8]. This is due to its 
suitability for linear and non-linear classification [9], enabling 
it to identify global optimum solution in flood models [10]. As 
promising as it was, SVM do possess some drawbacks. SVM 
require high computational cost and may provide unrealistic 
outputs  
[11]. There is also a flaw in the implementation of SVM in 
the case of seasonal flow prediction employing least-square 
support vector machine (LS-SVM) [11]. Another 
implementation of ML in flood forecasting which is steadily 
progressing is the decision tree method (DT). Classified as a 
fast algorithm [12], it has been tested to model flood 
modelling. Nevertheless, it still has some limitations. There 
are claims that its fitness to flood prediction is still yet to be 
seen and fully scrutinized [8].  

Another convenient option to model rainfall-runoff is by 
using artificial neural network (ANN). In recent years, ANN 
has been tested in diversified forecast models for both 
hydrological system and non-hydrological system. Inspired 
by the biological neural network, it has provided solutions 
for tasks in various fields such as biology [13], machine 
vision [14]–[16], water flow estimation [17], ozone level 
prediction[18] and speech recognition [19]. Furthermore, 
ANN also plays an important part in nowcasting field of 
research; which is the ability to predict the evolution of 
geophysical field based from images of remote sensors in 
short-term scale [21]. Some even considered ANN to be the 
most suitable modelling technique, with generalization 
ability being its strength [20]. With faster speed compared to 
most conventional models, it offers an alternative to SVM 
which requires a higher computational cost. As it is 
independent, ANN does not place a relationship between 
dependent and independent variable. Amongst numerous 
ML techniques, ANN is deemed to be most suitable to 
represent modelling system for rainfall- runoff [8].  

Nonetheless, the ANN model still leaves a wide range of 
possibilities as there are numerous learning algorithms 
which can be used to optimize ANN. Although hugely 
popular in flood forecasting, there is no clear-cut conclusion 
proclaimed with regards to which model functions better in 
a specific application [8].  
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The capacity of each learning algorithm may differ across 

distinctive types of task. Difference of model input might be 
in terms of period of prediction (daily or monthly) or 
amount of available data (scarce or plentiful). Therefore, 
there is a vital need to have a custom-tailored prediction 
model with a specific range of data, type of parameter and 
hour of prediction according to model’s objective and data 
availability. In this research, we define the prediction model 
to be short-term (12 hours); specifically, to distinguish 
possibilities of flash-flood. There is a huge amount of 
available data for training purposes (5 rainfall stations with 
1-hour interval recorded data from 2012 to 2014). Once 
prediction model criteria have been set up to cater to the 
specific needs in Sungai Pahang, it is imminent to determine 
the best learning method to train the ANN for the rainfall-
runoff model.  

Three distinctive, highly effective learning algorithms are 
proposed to train ANN which is the Levenberg Marquardt 
(LM), Bayesian Regularization (BR) and Particle Swarm 
Optimization (PSO) algorithms. LM algorithm, which was 
initially introduced by Kenneth Levenberg and Donald 
Marquardt [22] offers a fast and stable convergence model  
[23]. It is claimed to be more robust than most learning 
algorithm, due to its ability to find the solution even if it starts 
very far off the final minimum [23]. With the advantages and 
qualities mentioned, ANN trained by LM is considered to be 
very efficient for rainfall-runoff model [24]. The second 
learning algorithm to be implied for ANN training is the BR. 
Bayesian methods are widely used in astronomy, cosmology, 
and are gaining recognition in other fields [25]. It is a 
competent learning algorithm for large or deep feed-forward 
neural network [25]. Furthermore, the BR method offers a 
supervised learning approach as well as a statistical technique 
for classification [26]. It has shown promising results in rainfall 
predictions and other weather forecasting related field [25]–
[27], therefore cementing its selection as the training algorithm 
for our rainfall-runoff prediction in Pekan, Pahang. The third 
learning algorithm to be evaluated is PSO. Initially developed 
for modelling social behaviour [28], PSO was fast recognized 
as an evolutionary technique in computational intelligence [29]. 
Its development has benefited a broad scope of complicated 
engineering and science optimization problems [30]. Due to its 
potential, PSO has been engaged in working out classification 
problems in many health domains, specifically in heart diseases 
and 

 
breast cancer [31], just to name a few. Additionally, the 
ANN trained by PSO has been applied in classifying Iris, 
Cancer, Diabetes, Hepatitis, Henan, and Cubic datasets [31]. 
Satisfactory results have also been achieved in the 
hydrological related problem such as river stage forecasting  
[32]. Hence, PSO is deemed suitable to be implied as the 
learning algorithm for ANN model of our system.  

This study attempts to improve hydrological forecasting by 
acquiring data assimilation and accommodate the parameter of 
the neural network with a varying learning algorithm to 
determine which models’ best suit flood-prone Pahang river in 
Pekan. The paper has been organized in the following manner. 
Sections 1 explains the introduction of the research, whereas 
Section 2 describes the Pahang river basin and details of the 
model and data sources. Section 3 introduces the methodology 
of the study. In Section 4 results of the neural network training 
is explained and further discussions are put forth in section5. 
Finally, the summary of the result and conclusions are 
discussed in Section 6. 
 

II. STUDY REGION 
 
Sungai Pahang in Pekan, is a flood-prone area with heavy 
rainfall usually occurs during October until the middle of 
February. From the year of 2012 until 2014, flood incidents 
have been recorded in January and December 2012 [33][34], 
December 2013 [35], and December 2014 [36], with the 
latest being one of the worst floods in the recent decade 
within Malaysia. As the relation between rainfall and runoff 
are too much subjective, it is crucial to have a predictive 
model of rainfall-runoff to anticipate and mitigate flood 
occurrence. The Pahang River, which is 459km in length is 
the longest river in Peninsula Malaysia. It starts at the 
confluence of Jelai and Tembeling rivers on the Titiwangsa 
Mountains, flows through Jerantut, Kerdau, Chenor, Lubuk 
Paku, Pekan and Kuala Pahang before finally channels into 
the South China Sea. The river crosses almost every district 
in the state of Pahang.  

In Fig. 1, rainfall stations in Pekan district is shown with 
Sungai Pahang flowing towards the South China Sea. There are 
two monsoons (the northeast and southwest monsoons) and two 
inter-monsoon seasons occurring in Peninsular Malaysia. High 
total rainfall is recorded in Pahang Basin during the northeast 
monsoon period, amounting to almost 40% of Pahang’s 
accumulated annual rainfall [37].  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 1. Rainfall stations in Pekan, Pahang 
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Rainfall stations in Pekan which are involved in the 

study are shown in Fig. 1. For ease of operation, we 
numbered the rainfall station as Station 1 to 5 accordingly. 
The rainfall stations in which data were taken are situated in 
Paya Membang (Station 1), Kg. Serambi (Station 2), Kg. 
Temai Hilir (Station 3), Rumah Pam Pahang Tua (Station 4) 
and Kastam Kuala Pahang (Station 5). Our case study takes 
the data of rainfall runoff from the year 2012 to 2014. 
Rainfall data are obtained from the Department of Irrigation 
and Drainage (DID) Malaysia with a time interval of 1 hour 
between each reading. 
 
III. MODEL STRUCTURE AND PARAMETER OPTIMIZATION 

TECHNIQUE 
 

This section explains the procedure of the experiment 
as well as the parameters involved in constructing the 
rainfall-runoff model. The model structure is represented in 
a nonlinear autoregressive model with exogenous input 
(NARX). Then, multi-layered perceptron neural network 
(MLPNN) are employed with activation functions of 
sigmoid and linear functions for hidden and output layers 
respectively. The ANN is then trained with three different 
types of learning algorithms which is LM, BR and PSO. The 
parameter of the training algorithms in the simulation is 
discussed. Finally the results obtained are evaluated and 
compared by measuring the mean square error (MSE) and 
regression (R) value.  

The basic relationship between input and output of a 
nonlinear system can be represented in a nonlinear 
autoregressive model with exogenous inputs (NARX) form, 
given by 

 
 
 

Where , in which are weights and are input values. 
Further explanation of ANN implementation will be 
discussed as we introduce the learning algorithms in the 
following section. 
 
Levenberg Marquardt Algorithm 
 
The first learning algorithm to be implemented is Levenberg 
Marquardt (LM). LM is claimed to be a fast converging 
training algorithm [42] with vast usage in neural network 
fields. It is a modification of the classic Newton algorithm to 
find the best solution for minimization problem [43].  
 
 
 
 
 
 
 
 
 
 

 
Fig. 2. Neural network with two-layered hidden 

neuron 
 

Fig. 2  shows two-layered neural networks  with certain  
variables and parameter. denotes input, represents  
connecting weight of the first layer, as the connecting  
weight of the second layer and as output. The net input to 
unit i of the first layer is 

 
    (1)

Where denotes  the  predicted  output and ,  is the
vector-valued  nonlinear  function  of and .  Input

represents the height of collected rainfall, output  
indicates the  actual  runoff  level  and indicates the 
predicted runoff level. The signal vectors applied to the 
input layer of the model are as follows 
 

 Present and past value of the rainfall, for instance, 
, ,…, , which represents the model order of 

the system 
 Delayed values of the runoff level, such as

, ,…, 

 
(3) 

 
The net output of unit i for the second layer 
 

(4) 
 

The objective of ANN is to determine the relationship 
between input and output pairs. h is the hidden unit and f( ) 
acts as the activation function. The chosen activation 
function is Sigmoid function  

(5)  
 
For update given by the Gauss-Newton method, 

 
Next, we will see the configuration of ANN with the 
learning algorithms to model the rainfall-runoff system. 

 
A. Artificial Neural Network (MLP-NN) 

 
(6) 

 
Whereas, the adjustment to the Gauss-Newton method 
by Levenberg-Marquardt is such 

 
ANN is suitable for rainfall-runoff prediction [38], [39] as 

it offers relatively swift and flexible means of modelling 
[40]. Multilayer perceptron MLP is a form of ANN. It 
includes input variables, hidden layers and output layer 
consisting of output variable [41]. There are connection 
weights which act as the interconnecting link between the 
neuron layers. The weight which directly applied to one 
neuron without being connected with the previous neuron is 
applicable in certain circumstance which is known as bias. 
The activation function chosen is the sigmoid function 

 
(2)  

 
(7) 

 
In circumstances of scalar is zero, Eq. (6) is just the 

newton’s method, when is Large, Eq. (6) becomes gradient 
descent with small step size. The original description of 
Levenberg-Marquardt is given in [44].  
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Bayesian Regularization 
 

The second learning algorithm to train ANN is 
Bayesian Regularization (BR). The regularization term 
favors small values for network weights and biases, and 
decrease tendency of a model to overfit noise in the training 
data [45]. The objective function for BR is shown below, 
 

(8) 
 
where is the sum of squared error, and is the sum of  
square weight. Alpha and beta are Bayesian  
hyperparameters, variables which guide the optimization 
(minimal error or minimal weights) that the learning process 
must seek. The aim is to achieve a minimal error of cost 
functions using minimal weights. After the data is acquired, 
the post-distribution of weight can be revised through the 
Bayes’ rule  
 

(9) 
 

represents posterior probability.  
denotes the probability of data occurring given  

the weights w. is the weight estimation before  
data attained. is known as the normalization  
factor. A thorough study on BR can be seen here 

[46]. Particle Swarm Optimization 
 

The foundation of Particle Swarm Optimization (PSO) 
can be represented as a bunch of random particles 
(solutions) which have their own random position and 
velocities. With the particles flowing over the hyperspace 
searching for possible solutions, a search for optima over a 
series of iteration was completed [47]. The particles learning 
process is based on its own experience and other particle’s 
prior experience. In the hyperspace, each individual particle 
has its own best fitness position noted by the term personal 
best. Each particle maneuvers in accordance with a personal 
best and global best with a new velocity term for each 
particle throughout each iteration. The personal best and 
global best velocities are randomly weighted to yield new 
velocity rate for the particle. 
 
    (10)

 The training algorithm using PSO is shown in equation
(9). is the velocity of the particle, is the position of
the particle, andare the cognitive coefficient and social
coefficient respectively, and are   the   cognitive 
components and social component, w is the inertial 
component, p(t) is the personal best and g(t) is the global 
best candidate. 
 

(11) 
 

The basis function formulation is shown above in equation  
(11). is the position of the particle, while 
represents the updated position of the particle and 
shows the particle’s new updated velocity. 
 

B. Rainfall-Runoff Modelling Technique 

 
 

 
 

Learning Algorithm LM BR PSO 

Parameter    
    

Maximum number of epoch 1000 1000 1000 
    

Minimum performance 1e-7 1e-7 - 
gradient    
Initial Marquardt parameter 0.001 0.001 - 

    

Decrease factor of 0.1 0.1 - 
Marquardt parameter    
Increase factor of 10 10 - 
Marquardt parameter    
Maximum value of 1e10 1e10 - 
Marquardt parameter    
PSO acceleration Constant - - 1.5 
(     

 
Table I. Learning algorithm and its parameter 

 
If the simulation stopped because the maximum Marquardt 

parameter has been reached, it is a satisfactory indicator that 
the algorithm has converged. Further training after 
Marquardt parameter reached will degrade network learning. 
BR updates weight and bias value according to LM 
optimization. When training ANN with BR algorithm, it is 
crucial to let the simulation trained until the parameters have 
converged. For PSO, the minimum performance gradient 
was abandoned as PSO uses position and velocity update as 
performance function to determine its weights and biases.  
The acceleration constant and are tantamount to Marquardt 
parameter in LM and BR; it represents particle’s movement 
towards personal best and global best position. The 
objective function is determined by MSE, with regression 
value R, at the end of the simulation. 
 

C. Evaluation  
Results evaluations were indicated by measuring the 

mean square error (MSE) and regression (R) value. Mean 
square error is the average squared difference between 
targets and outputs. Lower values are better. Zero means no 
error. The objective function is as follow 

 
  (12)  

indicate vector of  output, and   is the vector of 
observed values corresponding to the inputs to the function 
which produce the predictions. Regression value measures 
the correlation between outputs and targets. value of 4 
means a close relationship, 0 value dictates a random 
relationship   

    (13)        

    

         

denotes input rainfall, output runoff  
level, input rainfall mean, and output runoff level mean, 
respectively. As the method of ANN evaluation is clearly 
discussed, next we look into the way of how the simulation 
is being set up. 
 

D. Simulation Setup  
The training algorithm parameter setting is shown in this 
section with a different setting for LM, BR and PSO. 
Selected parameters set for ANN are shown in Table I. 

 
The ANN is trained with 

observed runoff level per hour 
obtained from the year 2012 
until the end of 2014. Mean  
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areal hourly rainfall data of the 5 stations are calculated to 
represent the precipitation of the area. The data is usually 
divided into two classes; 70% for training and 30% for 
testing as shown in [48]. The testing part is further broken 
down into two, which is the testing and validation phase. In 
numbers, the 18377 data sets for training phase makes up a 
percentage of 70% of the whole data, 3938 data sets for 
validation phase with 15% and the rest of 3938 data sets for 
testing phase with the remaining 15%. 
 
Pre-Test Simulation 
 
In order to obtain the best configuration of each distinctive 
learning algorithm, we conducted a pre-test before the 
simulation of rainfall-runoff forecast model. In the pre-test, 
there are two manipulating variables to be evaluated. These 
variables are 
 

 Number of Neuron in Hidden Layer
 

Various input combinations are used in order to determine 
the best model to estimate runoff in using ANN. The number of 
hidden neurons of 3 and 10 are chosen for the varying 
variables. Based on the MSE and correlation value the best 
numbers of neurons in the hidden layer are obtained. 

 
 Type of model

 
Model I :  
Model II :  
Model III : 
 
 

Three models were developed to examine the effect of 
adding delays to neural network configuration. Each model 
represents number of delays to 1, 2 and 3 number of delays 
respectively. The input data of the model consist of  
antecedent rainfall, and antecedent
runoff level data, . The sign denotes
time, where denotes input rainfall andis the sign for
runoff level.     
 
Rainfall-runoff forecast 
 

After best configurations of PSO, LM and BR are 
obtained, we finally proceed with the comparison of 
rainfall-runoff forecast model. The comparison is done 
separately on each rain station data. To simulate runoff 
forecast 12 hours in advance, the input data of runoff level 
used for ANN is the data of 12 hours ahead of the forecast 
time. The best learning algorithm which produces optimum  
rainfall-runoff forecast is determine. 

 
IV. RESULTS 

 
E. Pre-Test Data Tabulation 

 
Table II. MSE, R (correlation) and best configuration of ANN model trained by LM, BR and PSO. 10n/3

rd
 

implies 10 number of neurons in hidden layer with 3
rd

 model order.  
Rainfall  MSE   R(Correlation)  Best Configuration 
stations LM BR PSO LM  BR  PSO LM BR PSO 

            

Station1 1.2282 1.0661 4.9081 3.66913  3.6704  3.65481 10n/3
rd 

10n/3
rd 

10n/1
st 

Station2 1.2577 1.2416 4.6445 3.66846  3.66941  3.65231 3n/3
rd 

3n/ 3
rd 

10n/1
st 

Station3 1.2577 1.206 4.731 3.66846  3.66914  3.65841 3n/ 3
rd 

10n/3
rd 

10n/1
st 

Station4 1.2328 1.0661 5.2627 3.6691  3.6704  3.65275 10n/3
rd 

10n/3
rd 

10n/1
st 

Station5 1.2391 1.1322 4.8728 3.66901  3.66966  3.65503 10n/3
rd 

10n/3
rd 

10n/1
st 

            

 
Table III. R and MSE of rainfall-runoff forecast with bolded values imply best result 

   MSE  R correlation Best 
Rain        training 

LM BR  PSO LM BR PSO Station  algorithm        
         

Station 1 1.3031 1.6866  2.4436 3.66687 3.66377 3.65481 LM 
         

Station 2 1.5346 1.3317  2.3124 3.66474 3.66698 3.65440 BR 
         

Station 3 1.2928 1.0033  2.3554 3.66742 3.66962 3.65841 BR 
         

Station 4 1.4694 2.0731  2.620 3.66494 3.66008 3.65481 LM 
         

Station 5 1.4716 1.8052  2.4260 3.66585 3.66336 3.65503 LM 
          

Table II shows the result of each rainfall station for 
ANN trained by LM, BR and PSO. The best network 
architecture in terms of the R(correlation) value and MSE 
(mean square error) is presented. The best configuration 
column presents the best number of neurons in the hidden 
layer and optimum type of model for each individual 
learning algorithm on every rainfall station. The 
configuration obtained here will be used as a reference for 
the rainfall-runoff forecast model. 
 

B. Rainfall-Runoff Forecast Model Performance 
 

As the best configuration of neural network models of 
LM, BR and PSO have been acquired, next a 12-hour 

 
forecast of the rainfall-runoff model is simulated. To 
model rainfall-runoff forecast, the rainfall input data are 
kept unchanged, whereas the runoff level input data are 
observed as 12 hours lead of the current time. Regression 
plot and MSE performance graph are shown and discussed 
in the following part. The best learning model to train the 
neural network for each rainfall station can be deduced 
from the result.  

Table III shows the result of the rainfall-runoff 
forecast. From the table, MSE performance graphs are 
constructed and test data results are  
compared. The network 
trained by LM algorithm 
shows the best results for 
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rainfall Station 1, 4 and 5. Meanwhile, neural network 
trained by BR showed the best result for rainfall Station 2 
and 3.  

Exceptional accuracy of correlation coefficient was 
attained as the result of two important factors. The first is due 
to abundance of input data available. Large training data helps 
in achieving highly accurate deep learning process as shown in 
[49], [50]. The second factor is the positive effect of filtering 
out missing data in the rainfall and runoff level input. In some 
part in particular, the missing gaps within either rainfall or 
runoff data received from DID Malaysia are consecutive. This 
may occur due to many factors such as equipment dysfunction, 
errors in measurements or faults in data acquisition. There are 
several conventional methods to overcome this situation. 
Ignoring, deleting and interpolating missing data are the 
options when encountering such circumstances. In this 
research, we have opted for deletion of incomplete or missing 
data which in return produce high 

 
accuracy model. Moreover, ignoring missing value may 
disrupt the result of the analysis if its percentage is large, 
whereas interpolating may produce bias reading [51]. 
 

V. DISCUSSIONS 
 

In this section, we will make a comparative evaluation 
of the learning algorithms of LM, BR and PSO based on the 
MSE graph comparison, time of training iteration and 
stability analysis. 
 
F. Comparative Assessment  

From Table 3 previously shown, MSE final results are 
observed but the error values during each iteration are 
unapparent. To make a specific analysis on the simulation, 
MSE performance plot of each rainfall stations are 
presented. From here we can infer the learning algorithms’ 
performance in terms of error and number of iterations.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2. MSE performance of the rainfall-runoff model for 5 rainfall stations. Line/training  

algorithm: Black-LM; red-BR, blue-PSO  
The performance of ANN trained by LM, BR and PSO are MSE   graphs   are   to   be 
placed on the same axis in Fig 3. First the physical of the observed. For rainfall Station 
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1, 2 and 3, ANN trained by BR reached the lowest error when 
compared to other learning algorithms. The lowest error 
achieved is , and 
respectively. While for rainfall Station 4 and 5 ANN trained  

by  LM  acquired  the  lowest  error  of                 and each.   
ANN   trained   by   PSO   algorithm accomplished  the  

highest  error  value  in  general  for  all  
stations, when compared to LM and BR algorithm.  

As ANN trained by LM and BR showed better 
accuracy, comparisons are made between the two. An 
important factor to bear in mind is that the lowest error 
attained in Fig 3 does not represent lowest MSE value. For 
instance, in Station 1 ANN trained by BR achieved lowest 
error but throughout the training LM attained least MSE 
value. Thought it seems ANN trained by BR achieved lower 
minimum error, it reaches the value in the later stage of the 
simulation with best error value recorded at epoch number 
209, 305 and 438. However for ANN trained by LM, the 
best error value gained during earlier iteration recorded at 
epoch number 59 and 194 respectively. From here, we can 
draw the inference that ANN trained by LM converge faster 
than BR with least number of MSE. Further discussions on 
the rate of convergence and number of iterations will be 
discussed in the following section. 
 

B.  Numbers of training iteration  

 
For network trained by PSO, the best MSE values are 

obtained at the early stage of training with recorded epoch 
number of 118, 17, 20, 52 and 10. However, the iteration 
prolonged even after the best error was attained. Thus we 
can say that PSO earned lowest error at least number of 
iteration, but terminate training later than LM. From here, 
we can conclude that LM terminate training fastest after 
acquiring best MSE value, followed by PSO and BR. 
 

C. Stability  
Another crucial aspect to be observed upon the ANN 

model is stability. In this area, training neural network by 
LM and PSO are adequate as the error recorded decreases 
over time. Meanwhile, for BR, MSE graph plot recorded 
several troughs along the simulation. This is noticeable for 
simulation of rainfall Station 1 and scarcely seen for Station  
4. For precise analysis, we present the MSE graph of Station  
1 and Station 4 for ANN trained by BR showing training and 
testing data plot. During the training phase, the MSE shows 
steady decrement over time as the parameters, weights and 
biases are being predetermined. As it comes towards the testing 
phase, the algorithms declined in performance. The MSE 
during training and testing is 2.43427e-3 and  
3. 38755e-3 for rainfall Station 1 respectively. Meanwhile, 
MSE during training and testing is 2.56150e-3 and  
4. 16389e-3 for rainfall Station 4.  
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Fig. 3. Bar chart showing the number of iterations of 

each training 
 

Fig. 4 shows the amount of iteration before and after 
best MSE value is achieved. From the bar chart, it can be 
said that neural network train by BR continues redundantly. 
Simulation for all 5 rainfall stations surpasses the 900 
iterations benchmark and 2 of the simulation terminate as it 
completed the allowable maximum number of iterations.  

For network trained by LM and PSO, early stopping 
through validation check was implied. This is done to 
prevent overtraining and overfitting of the model. LM is a 
fast convergence method [23], [42] as further supported by 
the analysis of the result. The bar chart in Figure 6 implies 
that the network training through LM algorithm acquires 
minimum error value at a faster rate than BR, but in a letter 
stage to PSO. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. MSE plot graph for ANN trained by BR 
for Station 1 and Station 4 

 
Fig 5 shows smooth decrement of MSE during the 

training phase, while a few peaks and troughs can be seen 
for the testing part of the simulation for both rainfall Station 
1 and Station 4. For rainfall Station 4, it is demonstrated that 
the testing error plot is closely following the trend set by the 
training error. Thus, even though the test data set shows 
more than one peaks and troughs, it is still generally 
accepted as it is superseding training data. In contradictory, 
the test set graph plot for rainfall Station 1 fluctuates until it 
reaches approximately just before the 700

th
 epoch 

benchmark. As the training set error is decreasing,  
the test set error rises. This 
may well be the case of 
overfitting. 
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Overfitting is a circumstance where the neural network 

performs adequately on training data but deficient on 
generalization [52]. In other words, the network tends to 
learn the noise and irrelevant properties of training data 
which results in lower performance when tested with unseen 
data [53]. Cross-validation, early stopping and regularization 
are amongst the methods used in preventing overfitting [54]. 
BR usually consumes more time to converge, as illustrated 
in Figure 3 where training for Station 1, 2 and 4 achieve 
convergence after the 800

th
 iteration benchmark. From here 

we deduced that training ANN with BR has a tendency of 
overfitting. 
 

VI. CONCLUSION 
 

With natural disaster and catastrophe involving flooding 
inflicts damage and loss of resources every year, the design of 
efficient flooding defense system is inevitable. This requires 
extensive data collection and complicated hydrological 
calculations. Therefore, the rainfall-runoff model provides a 
good solution to provide runoff and river flow forecast. The 
study presented a neural network model with varying learning 
algorithms. Distinctive neural network parameters such as the 
number of neurons in the hidden layer and the number of 
delays is investigated to acquire best-fit configurations for our 
case study in Pahang river.  

The study shows the comparison of ANN models trained 
with LM, BR and PSO. Performance of the best model for all 
learning algorithm is then identified. Based on the research, we 
can deduce that ANN trained by LM achieved lowest MSE 
value with least number of iterations. Meanwhile, ANN trained 
by BR attained low MSE value but require highest number of 
iteration and has a tendency of overfitting. Whereas ANN 
trained by PSO acquire highest number of MSE value, with 
low number of iterations.  

In conclusion, ANN model trained by LM shows the 
best evaluation for 12-hour forecast when compared to BR 
and PSO. Encouraging results were achieved to estimate 
runoff level in the flood-prone area by using ANN model. 
The rainfall-runoff models developed can be utilized to 
efficiently formulate hydrological studies or flood defense 
system in this particular area. 
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