359 research outputs found

    Nature-inspired optimization algorithms: challenges and open problems

    Get PDF
    Many problems in science and engineering can be formulated as optimization problems, subject to complex nonlinear constraints. The solutions of highly nonlinear problems usually require sophisticated optimization algorithms, and traditional algorithms may struggle to deal with such problems. A current trend is to use nature-inspired algorithms due to their flexibility and effectiveness. However, there are some key issues concerning nature-inspired computation and swarm intelligence. This paper provides an in-depth review of some recent nature-inspired algorithms with the emphasis on their search mechanisms and mathematical foundations. Some challenging issues are identified and five open problems are highlighted, concerning the analysis of algorithmic convergence and stability, parameter tuning, mathematical framework, role of benchmarking and scalability. These problems are discussed with the directions for future research

    Efficiency Analysis of Swarm Intelligence and Randomization Techniques

    Full text link
    Swarm intelligence has becoming a powerful technique in solving design and scheduling tasks. Metaheuristic algorithms are an integrated part of this paradigm, and particle swarm optimization is often viewed as an important landmark. The outstanding performance and efficiency of swarm-based algorithms inspired many new developments, though mathematical understanding of metaheuristics remains partly a mystery. In contrast to the classic deterministic algorithms, metaheuristics such as PSO always use some form of randomness, and such randomization now employs various techniques. This paper intends to review and analyze some of the convergence and efficiency associated with metaheuristics such as firefly algorithm, random walks, and L\'evy flights. We will discuss how these techniques are used and their implications for further research.Comment: 10 pages. arXiv admin note: substantial text overlap with arXiv:1212.0220, arXiv:1208.0527, arXiv:1003.146

    Fuzzy logic controller parameter optimization using metaheuristic Cuckoo search algorithm for a magnetic levitation system

    Get PDF
    The main benefits of fuzzy logic control (FLC) allow a qualitative knowledge of the desired system’s behavior to be included as IF-THEN linguistic rules for the control of dynamical systems where either an analytic model is not available or is too complex due, for instance, to the presence of nonlinear terms. The computational structure requires the definition of the FLC parameters namely, membership functions (MF) and a rule base (RB) defining the desired control policy. However, the optimization of the FLC parameters is generally carried out by means of a trial and error procedure or, more recently by using metaheuristic nature-inspired algorithms, for instance, particle swarm optimization, genetic algorithms, ant colony optimization, cuckoo search, etc. In this regard, the cuckoo search (CS) algorithm as one of the most promising and relatively recent developed nature-inspired algorithms, has been used to optimize FLC parameters in a limited variety of applications to determine the optimum FLC parameters of only the MF but not to the RB, as an extensive search in the literature has shown. In this paper, an optimization procedure based on the CS algorithm is presented to optimize all the parameters of the FLC, including the RB, and it is applied to a nonlinear magnetic levitation system. Comparative simulation results are provided to validate the features improvement of such an approach which can be extended to other FLC based control systems.Peer ReviewedPostprint (published version

    THE BEES’ ALGORITHM FOR DESIGN OPTIMIZATION OF A GRIPPER MECHANISM

    Get PDF
    In this paper, a gripper mechanism is optimized by using bees’ algorithm (BA) to compare with Non-dominated Sorting Genetic Algorithm version II (NSGA-II). The procedure of BA is proposed. The superiority of BA is illustrated by using results in figures and tables. A sensitivity analysis using correlation test is executed. The effectiveness coefficients of design variable for the objectives are provided. Consequently, the effectual design variables and the genuine searching method of BA are clearly evaluated and discussed. The BA provides dispersed and the least crowded Pareto Front population for solution in the shortest duration. Therefore, the best solutions are selected based on curve fitting. The closest solutions to the fitted curve are selected as the best in the region

    Swarm-Based Metaheuristic Algorithms and No-Free-Lunch Theorems

    Get PDF

    A novel hybrid firefly algorithm for global optimization

    Get PDF
    Global optimization is challenging to solve due to its nonlinearity and multimodality. Traditional algorithms such as the gradient-based methods often struggle to deal with such problems and one of the current trends is to use metaheuristic algorithms. In this paper, a novel hybrid population-based global optimization algorithm, called hybrid firefly algorithm (HFA), is proposed by combining the advantages of both the firefly algorithm (FA) and differential evolution (DE). FA and DE are executed in parallel to promote information sharing among the population and thus enhance searching efficiency. In order to evaluate the performance and efficiency of the proposed algorithm, a diverse set of selected benchmark functions are employed and these functions fall into two groups: unimodal and multimodal. The experimental results show better performance of the proposed algorithm compared to the original version of the firefly algorithm (FA), differential evolution (DE) and particle swarm optimization (PSO) in the sense of avoiding local minima and increasing the convergence rate

    A novel hybrid firefly algorithm for global optimization

    Get PDF
    Global optimization is challenging to solve due to its nonlinearity and multimodality. Traditional algorithms such as the gradient-based methods often struggle to deal with such problems and one of the current trends is to use metaheuristic algorithms. In this paper, a novel hybrid population-based global optimization algorithm, called hybrid firefly algorithm (HFA), is proposed by combining the advantages of both the firefly algorithm (FA) and differential evolution (DE). FA and DE are executed in parallel to promote information sharing among the population and thus enhance searching efficiency. In order to evaluate the performance and efficiency of the proposed algorithm, a diverse set of selected benchmark functions are employed and these functions fall into two groups: unimodal and multimodal. The experimental results show better performance of the proposed algorithm compared to the original version of the firefly algorithm (FA), differential evolution (DE) and particle swarm optimization (PSO) in the sense of avoiding local minima and increasing the convergence rate

    Swarm Intelligence

    Get PDF
    Swarm Intelligence has emerged as one of the most studied artificial intelligence branches during the last decade, constituting the fastest growing stream in the bio-inspired computation community. A clear trend can be deduced analyzing some of the most renowned scientific databases available, showing that the interest aroused by this branch has increased at a notable pace in the last years. This book describes the prominent theories and recent developments of Swarm Intelligence methods, and their application in all fields covered by engineering. This book unleashes a great opportunity for researchers, lecturers, and practitioners interested in Swarm Intelligence, optimization problems, and artificial intelligence
    • …
    corecore