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Abstract
Global optimization is challenging to solve due to its nonlinearity and multimodality. Tradi-

tional algorithms such as the gradient-based methods often struggle to deal with such prob-

lems and one of the current trends is to use metaheuristic algorithms. In this paper, a novel

hybrid population-based global optimization algorithm, called hybrid firefly algorithm (HFA),

is proposed by combining the advantages of both the firefly algorithm (FA) and differential

evolution (DE). FA and DE are executed in parallel to promote information sharing among

the population and thus enhance searching efficiency. In order to evaluate the performance

and efficiency of the proposed algorithm, a diverse set of selected benchmark functions are

employed and these functions fall into two groups: unimodal and multimodal. The experi-

mental results show better performance of the proposed algorithm compared to the original

version of the firefly algorithm (FA), differential evolution (DE) and particle swarm optimiza-

tion (PSO) in the sense of avoiding local minima and increasing the convergence rate.

Introduction

Global optimization is crucially important in many applications, such as image processing [1],
antenna design [2], chemistry [3], wireless sensor network [4], and so on. However, such global
optimization problems are challenging to solve because these problems are often highly nonlin-
ear with multiple local optima. Thus, traditional methods such as the gradient-basedmethods
usually struggle to deal with such problems. Thus, for decades, researchers have attempted
many different ways to try to solve such challenging problems with different degrees of success.
In recent years, many researchers have proposed some new optimization algorithms [5–7].

Technically speaking, optimization methods can be divided into two main parts: determin-
istic algorithms and stochastic algorithms [8]. Deterministic algorithms such as the Hill-
Climbing [9], Newton-Raphson [10] and Simplex Method [11] can get the same final results if
the same set of initial values are used at the beginning.The advantages of such deterministic
algorithms are that they usually have good efficiency for certain problems and require only a
small number of iterations. However, one of their main disadvantages is the high probability of
being trapped in local optima because they are local search algorithms. On the other hand, sto-
chastic algorithms often use some randomness in their strategies which can enable the
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algorithm to escape from the local optima to search more regions on a global scale. This kind
of strategy always produce unrepeatable routes of each individual run even starting with the
same initial points. Thoughmay be slightly different, the final results of these algorithms can
often converge to the same optimal results within a given criterion if the algorithm is allowed
to run long enough [8].

Nowadays, most stochastic algorithms can be calledmeta-heuristic algorithms [12]. Most of
them have been developed, based on the biological processes in nature and these algorithms
start to show their power and efficiency. Genetic Algorithm (GA) [13], Ant Colony Optimiza-
tion (ACO) [14], Particle Swarm Optimization (PSO) [15–18], Artificial Bee Colony (ABC)
[19], Cuckoo Search (CS) [20] and Firefly Algorithm (FA) [21–24] are some of the most popu-
lar algorithms in this class of stochastic algorithms. The disadvantages of these algorithms are
the need for proper setting the algorithm-dependent parameters and a large number of itera-
tions. However, these meta-heuristic algorithms have two main advantages. One is the good
information-sharingmechanism which can promote the algorithm to converge faster under
certain conditions and the other is the lower probability of entrapment into local modes.

The paper is organized as follows: the main idea of the standard firefly algorithm and stan-
dard differential evolution are illustrated in Section 2, and then the details of our proposed
hybrid firefly algorithm are described in Section 3. In Section 4, we will demonstrate and carry
out the analysis of the experimental results. Finally, Section 5 concludes the work.

Firefly Algorithm and Differential Evolution

Firefly algorithm (FA) [25] is a new biologically inspired meta-heuristic optimization algo-
rithm, which was proposed by Xin-She Yang in 2008. This algorithm is inspired by the flashing
behaviour of tropical fireflies. Differential evolution (DE) [26] developed by Storn and Price in
1997 is also a meta-heuristic algorithm. DE with a potential parallel structure is a non-gradi-
ent-based, evolutionary computation algorithm. It has been proven that both algorithms can
get a better optimal results than those achieved by the existingmethods.

Standard Firefly Algorithm

The Firefly Algorithm (FA) is based on the communication behaviour of tropical fireflies and
the idealized behaviour of the flashing patterns. FA uses the following three idealized rules
[27–30] to build the mathematical model of the algorithm:

• All fireflies are unisex so that one firefly will be attracted to other fireflies regardless of their
sex;

• Attractiveness is proportional to their brightness. Thus for any two flashing fireflies, the less
bright one will move towards the brighter one. The attractiveness is proportional to the
brightness and they both decrease as their distance increases;

• The brightness of a firefly is affected or determined by the landscape of the objective func-
tion. (Thus, for a maximization problem, the brightness can simply be proportional to the
value of the objective function.)

In the standard firefly algorithm, there are two important points. One is the formulation of
the light intensity and another is the change of the attractiveness. Firstly, we can always assume
that the brightness of the firefly can be determined by the encoded objective function land-
scape. Secondly, we should define the variation of light intensity and formulate the change of
the attractiveness. As we know that in nature the light intensity decreases with the distance
from its source and the media will absorb the light, so in our simulation we suppose the light
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intensity I varies with the distance r and light absorption parameter γ exponentially and mono-
tonically [31]. That is

I ¼ I0e� gr2

ð1Þ

where I0 is the original light intensity at the source (i.e., at the distance r = 0) and γ is the light
absorption coefficient. From the idealized rules we known that in our simulation we suppose
the attractiveness of firefly is proportional to the light intensity I. So we can define the firefly’s
light attractive coefficient β in the similar way as the light intensity coefficient I. That is

b ¼ b0e
� gr2 ð2Þ

where β0 is the original light attractiveness at r = 0.
The Cartesian distance is used to calculate the distance between any two fireflies i and j at xi

and xj

rij ¼ kxi � xjk2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pd

k¼1
ðxi;k � xj;kÞ

2

q

ð3Þ

where d is the number of dimensions. The amount of movement of firefly i to another more
attractive (brighter) firefly j is determined by

xi ¼ xi þ b0e� gr2

ðxj � xiÞ þ aεi ð4Þ

where the first term is the current location of firefly i, the second term is due to the attraction,
while the third term is randomization with the vector of random variables εi being drawn from
different distributions such as the Uniform distribution, Gaussian distribution and Lévy flight.
In the third term, α is a scaling parameter that controls the step size and it should be linked
with the interests of the problems.

According to above idealization and approximations rules, the pseudo-codeof standard
firefly algorithm can be summarized in Algorithm 1.
Algorithm1 Pseudo-codefor the standardFA algorithm
Objectivefunctionf(x), x = (x1,� � �,xD)

T

Initializea populationof firefliesxi (i = 1,2,� � �n)
Calculatethe light intensityIi at xi by f(xi)
Definelight absorptioncoefficientγ
While (t < MaxGeneration)

for i = 1:n all n fireflies
for j = 1:n all n fireflies
Calculatethe distancer betweenxi and xj using Cartesiandistance

equation
if (Ij > Ii)
Attractivenessvarieswith distancer via b0e� gr2

Move fireflyi towardsj in all d dimensions
end if
Evaluatenew solutionsand updatelight intensity

end for j
end for i
Rank the firefliesand find the currentbest

end while
Post-processresultsand visualization

Standard Differential Evolution

Differential evolution (DE) was proposed by Storn and Price in 1996, which uses a vectorized
mutation operator and two forms of crossover (either exponential or binomial) to evolve from
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the randomly generated, initial starting points to the potentially optimal solution. There are
many DE variants. In this paper, we use the so-calledDE/rand/1/bin scheme/variant. This vari-
ant is probably the most widely used in practice, which can be briefly described as follows [32].

For a given D-dimensional minimization problem, a population consists of n individual
solution vectors. The mutant vector vi can be defined as follows:

vi;gþ1 ¼ xr1;g
þ Fðxr2 ;g

� xr3 ;g
Þ; r1 6¼ r2 6¼ r3 6¼ i ð5Þ

where the indexes r1,r2, r3 2 [1, n] correspond to three solutions randomly chosen from the
whole population and g is the iteration/generation index. The indices have to be different from
each other. In addition, F (F 2 [0,2]) is a perturbation parameter that controls the amplification
of the difference vector xr2 ;g

� xr3 ;g
, though in most cases 0< F< 1 is used in practice.

The binomial crossover operation tries to produce a new trial vector from the perturbedor
mutated vector vi,g+1 = [vi1,g+1,vi2,g+1,� � �,viD,g+1] and the target vector xi,g = [xi1,g,xi2,g,� � �,xiD,g]

ui;gþ1 ¼
vij;gþ1;

xij;g;

if rðjÞ � Cr or j ¼ randomðiÞ

if rðjÞ > Cr or j 6¼ randomðiÞ
ð6Þ

(

where j 2 [1,2,� � �D], r(j) is the jth realization of a uniform random generator number. In addi-
tion, Cr 2 [0,1] is the so-called crossover constant. Here, random 2 [1,2,� � �,D] is a random per-
mutation index vector, which can usually ensure that the trial vector ui,g+1 gets at least one
character from the mutated vector vi,g+1.

The selectionmechanism is similar to those of other algorithms where a greedy acceptance
is performed:

xi;gþ1 ¼
ui;gþ1;

xi;g ;

if f ðui;gþ1Þ � f ðxi;gÞ

otherwise:
ð7Þ

(

This means that the update is accepted only if a better objective is achieved.
Algorithm 2 summarizes the basic steps of the standard differential evolution algorithm.

Algorithm2 Pseudocode for the standardDE algorithm
Initializethe populationxi (i = 1,2,� � �n) from the randomlyinitialstarting
points
Set the perturbationparameterF and crossoverprobabilityparameterCr
While (t < MaxGeneration)

for i = 1:n in all individuals
For each xi, randomlychoose3 differentvectors xr1

, xr2
and xr3

from the
whole population

Use mutationto generatea new vectorvi
Generatea randomindex random(i)
Generatea randomlydistributednumberr(j) � [0,1]

for j = 1:D
Crossoveroperation,for each parametervij, update

ui;gþ1 ¼
vij;gþ1;

xij;g;

if rðjÞ � Cr or j ¼ randomðiÞ

if rðjÞ > Cr or j 6¼ randomðiÞ

8
<

:

end for j
Selectoperation,selectand updatethe solutionxi

end for i
end while
Post-processresultsand visualization
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The HFA Algorithm

Both the firefly algorithm and differential evolution have their own advantages and they both
work well for a wide range of optimization problems. In this paper, we propose a new hybrid
algorithm based on FA and DE by combining some of the advantages of both algorithms.We
call the proposed approach the hybrid firefly algorithm (HFA) that combines the attraction
mechanism of FA with the mixing ability of DE so as to increase the speed of convergence and
the diversity of the population. The major difference between firefly algorithm and differential
evolution is how new individuals are generated and then used at each iteration.

Among the many components of algorithms, intensification and diversification (also called
exploitation and exploration) are the two major components of any meta-heuristic algorithm
[33]. In order to explore the search space on a global scale, meta-heuristic algorithms need to
generate a diverse range of solutions using diversification or exploration strategy. Intensifica-
tion or exploitation strategy can guide the individual to search in a local region, based on the
prior knowledge or the new information found during the search process that a current good
solution is found in this region. An algorithm’s solution accuracy and convergence rate can be
enhanced by balancing intensification and diversification properly.

Firstly, the earlier observations and studies in the literature indicated that the firefly algo-
rithm can subdivide the whole population into subgroups automatically in terms of the attrac-
tion mechanism via the variation of light intensity and one of the FA variants can escape from
the local minima owing to long-distance mobility by Lévy flight [34]. Such advantages mean
that FA is good at exploration as well as diversification. Furthermore, technically speaking, due
to the efficiencyof mutation operator and crossover operator, differential evolution can pro-
vide a goodmixing ability among the population and thus provide a better diversity in the pop-
ulation. At the same time, DE can also carry out local search during the process, especially
when approaching to the local optimal solutions, and thus we can use this advantage to
improve both the exploitation and exploration ability of our proposed algorithm. In addition,
updating the current global best in the whole population ensures that solutions can converge to
the optimum, while diversification via mixing and regrouping the whole population allows the
search algorithm to escape from local optima and may simultaneously increase the diversity of
solutions. It is worth pointing out that we only mix and regroup the individual location infor-
mation obtained after the main iteration of parallel FA and DE processes, rather than generat-
ing the new positions from random walks or other operators. The main superiority of such
mixing and regrouping mechanism is to guarantee the search focusing on the current locations
in the promising areas obtained in the earlier phase instead of having to search or re-search
less promising regions of the search space.

Based on above descriptions, the fundamental steps of the HFA can be summarized as the
pseudo-code shown in Algorithm 3 where we can see that the parallel use of FA and DE can
strike a good balance between exploration and exploitation during the whole iteration process.
Algorithm3 Pseudo-codefor the HFA algorithm
Begin

Dividethe whole group into two groups:G1 and G2
Initializethe populationsG1 and G2
Evaluatethe fitnessvalue of each particle
Repeat

Do in parallel
PerformFA operationon G1
PerformDE operationon G2

End Do in parallel
Updatethe globalbest in the whole population
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Mix the two groupsand regroupthem randomlyinto new groups:G1 and
G2

Evaluatethe fitnessvalue of each particle
Until a terminate-conditionis met

End
Post-processresultsand visualization

Though the detailed computational complexity may depend on the structure of the imple-
mentation, however, for three meta-heuristic algorithms used in this paper, their complexities
can be easily estimated. For FA, the time complexity is O(n2t) where n is the population size
and t is the number of iterations because there are two loops for going through the population.
For DE, its complexity is O(nt). Therefore, in this case, for our proposed hybrid approach
(HFA), the time complexity is O(n2t/4 + nt/2) because each component (either FA or DE)
only uses half of the population. As n is small (in this case, n = 20 or 40), and t is large (in this
case, t = 2000), the computation cost is relatively inexpensive because the algorithm complexity
is linear in terms of t. The main computational cost will be in the evaluations of objective
functions.

Benchmarks and Parameter Settings

Benchmark Functions

Benchmark functions are useful to evaluate new algorithms and their features such as the preci-
sion, the rate of convergence, the robustness and the general performance. To evaluate the per-
formance of our proposed algorithm and other existing algorithms, a set of 13 standard
benchmark functions is used and such benchmarks have been chosen with a diverse range of
properties. Theoretically speaking, if a small number of the benchmark functions are used, the
experimental results may be potential biased due to the limited diversity of the problem objec-
tive landscape and in this case it would be very difficult to draw any convincing conclusions.
Therefore, we have chosen test functions based on the characteristics,modality and other prop-
erties so as to provide a fairly rich set of functions with varied difficulties. In essence, we used
the same test functions as those used in [35, 36]. All of the benchmark functions are summa-
rized in Tables 1 and 2 where D denotes the dimension of the benchmark function, S denotes
the scales of the variables, and Fmin is the global optimum value in the variable scales.

Table 1. Unimodal Benchmark Functions.

Function Name Function D S Fmin

Sphere
f1ðxÞ ¼

XD

i¼1

x2
i

30 [−100,100]D 0

Schwefel’s 2.22
f2ðxÞ ¼

XD

i¼1

jxij þ
YD

i¼1

jxij
30 [−10,10]D 0

Schwefel’s 1.20

f3ðxÞ ¼
XD

i¼1

 
XD

j¼1

xj

!2 30 [−100,100]D 0

Schwefel’s 2.21 f4(x) = maxi{|xi|,1� i� D} 30 [−100,100]D 0

Rosenbrock
f5ðxÞ ¼

XD� 1

i¼1

h
100ðxiþ1 � x

2
i Þ

2
þ ðxi � 1Þ

2
i 30 [−30,30]D 0

Step
f6ðxÞ ¼

XD

i¼1

ðxi þ 0:5Þ
2

30 [−100,100]D 0

Quartic Noise
f7ðxÞ ¼

Xn

i¼1

ix4
i þ random½0;1Þ

30 [−1.28,1.28]D 0

doi:10.1371/journal.pone.0163230.t001
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The test benchmark functions can be divided into two groups in terms of the number of
local minima: unimodal functions and multimodal functions. The unimodal test functions
have one global optimum, so they are suitable for benchmarking the local exploitation ability
of algorithms. This kind of functions will allow to focusmore on the convergence rates of the
tested algorithms other than the final results. Multimodal test functions have many local min-
ima, and the number of local optima usually increases exponentially with the problem dimen-
sion, so they are suitable for benchmarking the global exploration ability of algorithms. This
kind of multimodal functions can test the exploration ability which can make the algorithm
escape from local optima. In some applications, to find a good optimal or suboptimal solution
is more important, while other applications may place the emphasis on the accuracy of the
solutions. So the quality of final results is more of concern in such applications.

From Table 1, we know that functions f1-f7 are unimodal, high-dimensional problems.
Function f5, also namely the ‘banana function’, has a global optimum inside a long but flat, nar-
row, parabola-shaped valley. To find the location of the valley is non-trivial, though not too dif-
ficult. However, to converge to the globalminimumwith a high accuracy is more difficult,
especially for gradient-based algorithms. Function f6 is the step function, characterized by pla-
teaus and discontinuities. In addition, function f7 is a noisy quadratic function.

Table 2. Multimodal Benchmark Functions.

Function Name Function D S Fmin

Schwefel’s 2.26
f8ðxÞ ¼

XD

i¼1

� xisinð
ffiffiffiffiffiffi
jxij

p
Þ

30 [−500,500]D -12569.5

Rastrigin
f9ðxÞ ¼

XD

i¼1

½x2
i � 10cosð2pxi þ 10Þ�

30 [−5.12,5.12]D 0

Ackley
f10ðXÞ ¼ � 20exp � 0:2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1

x2

i

s !

� exp
1

n

Xn

i¼1

cosð2pxiÞ

 !

þ 20þ e

30 [−32,32]D 0

Griewank
f11ðXÞ ¼

1
4000

Xn

i¼1

x2
i �

Yn

i¼1

cos xiffi
i
p

� �
þ 1

30 [−600,600]D 0

Pendlized
f12ðxÞ ¼

XD

i¼1

uðxi; 10; 100; 4Þ

þ
p

D

(

10sin2ð3pyiÞ þ
XD� 1

i¼1

ðyi � 1Þ
2
½1þ sin2ð3pyiþ1Þ� þ ðyD � 1Þ

2

)

yi ¼ 1þ 1

4
ðxi þ 1Þ

uðxi; a; k;mÞ ¼

kðxi � 1Þ
m
;

0;

kð� xi � 1Þ
m
;

xi > a;

� a � xi � a;

xi < � a;

8
>>>><

>>>>:

30 [−50,50]D 0

Generalized

Pendlized f13ðxÞ ¼
XD

i¼1

uðxi; 5; 10; 4Þ

þ
1

10

(

sin2ð3px1Þ þ
XD� 1

i¼1

ðxi � 1Þ
2
½1þ sin2ð3pxiþ1Þ� þ ðxD � 1Þ

2
½1þ sin2ð2pxDÞ�

)

uðxi; a; k;mÞ ¼

kðxi � 1Þ
m
;

0;

kð� xi � 1Þ
m
;

xi > a;

� a � xi � a;

xi < � a;

8
>>>><

>>>>:

30 [−50,50]D 0

doi:10.1371/journal.pone.0163230.t002
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Functions f8–f13 in Table 2 are multimodal, high-dimensional problems and more details
are summarized in Table 2. For example, f8 is a non-convex, multimodal and additively separa-
ble function. This seemingly simple function can be deceptive because the globalminimum at
(420.9687,� � �,420.9687) is geometrically distant from the next best local minima in the domain
[−500,500]D where D is the number of dimensions. Therefore, many algorithms including
some of metaheuristic algorithms may find it quite challenging to solve. In addition, f9 is also
challenging as it is one of the most difficult benchmarks commonly used in the literature
because it has multiple, steep wells with multiple local minima. Another widely usedmulti-
modal benchmark function is f10, namely the Ackley function, which can be characterized by a
deep valley at the centre and an almost flat outer zone. Consequently, it is quite challenging to
solve because it is easy for most optimization algorithms to get trapped in one of its many local
minima due to the multimodality.

Parameter Settings

For the verification purpose of the algorithms and the analysis of the experimental results, our
proposed hybrid firefly algorithm is compared to the standard FA and DE as well as PSO to
benchmark the performance and to see if there is any improvement.

In all cases, the population size is set to 40, and the dimension of the benchmark functions
is equal to 30. We also set the maximum number of iterations, as the stopping criteria, equal to
2000. The initial population is generated using uniformly distributed random initialization
within the ranges or limits of the design variables. In addition, 30 independent runs have also
been carried out for each function and each algorithmwith completely different initial settings.
The results from the algorithms are accompanied according to four standard statistical mea-
sures: the Minimum, the Maximum, the Mean, and the Standard Deviation (Std) of the fitness
values calculated over 30 independent runs.

For the firefly algorithm, we set the initial attractiveness β0 = 2 � rand, the light absorption
coefficient γ = 1/S2 where S donates the average range of the variables, the random parameter α
(α = 0.2 � 0.95iter where 0.2 is the initial randomness factor and iter is the index of the iteration)
reduces monotonically and gradually. Finally, we use the Lévy distribution to draw the random
numbers because it can produce occasionally some long leaps [37]. The values of the differential
evolution algorithm-dependent parameters are F = 0.5 as the scaling factor and Cr = 0.9 as the
crossover constant [38]. Additionally, for particle swarm optimization, the learning factors c1 and
c2 are both set as 2, the inertia weight ω decreases linearly from ωmax = 0.9 to ωmin = 0.4 [39].

It is worth pointing out that in our proposedHFA, the parameters, β0, γ, α, εi, F and CR, are
all the same as those defined in the standard FA and DE. Specially, in our implementations, we
have divided the whole population into two subgroups (subpopulations), which means that the
population size in FA and DE each is equal to 20. And at the same time we have also divided
the total 2000 iterations into 10 sub-iteration groups (or subgroups or substages). For each
sub-iteration group, FA and DE, respectively, the number of sub-iterations is set to 200 times
in parallel, and thus the total of 2000 iterations is realized in 10 subgroups and each with a
number of 200 iterations.

All of the algorithm-dependent parameters are summarised in Table 3.

Table 3. Algorithm-dependent parameters of the comparison algorithms.

Algorithm Control parameters

FA β0 = 2 * rand γ = 1/S2 α = 0.2 * 0.95iter εi = Lévy flight

DE F = 0.5 Cr = 0.9

PSO ωmax = 0.9 ωmin = 0.4 c1 = 2 c2 = 2

doi:10.1371/journal.pone.0163230.t003
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Experimental Results and Analysis

Unimodal Function ExperimentalResults. In the first series of experiments, the aim is to
compare the exploitation ability and convergence rate of the mentioned algorithms for func-
tions f1-f7. The statistic results of 30 independent runs are given in Table 4. The best mean
results of the algorithms are written in bold.

As can be seen from Table 4, HFA performs significantly better than FA, DE and PSO con-
sistently for all unimodal test functions except for f4. For f4, our proposed HFA cannot tune
itself successfully, whereas FA solves this function quite accurately. In essence, this case is con-
sistent with the so-called no-free-lunch (NFL) theorems. This means that there is no univer-
sally superior algorithm for all types of problems [40, 41]. However, as we are not intending to
solve all types of problems, therefore, ranking algorithms is always possible for any given set of
problems.

In the rest of this section, we use Freidman tests to test which of the mentioned algorithms
are statistically better in the solution of benchmark functions [42]. A null hypothesis indicates
that two algorithms are equivalent and, therefore, they can get the equal ranks. If the perfor-
mance of the algorithms is statistically different, the null hypothesis will be rejected.We use a
significance level 0.95 (or α = 0.05) for the Friedman tests. Table 5 summarises the mean values

Table 4. Results of unimodal benchmark functions.

# Fnc Statistics HFA FA DE PSO

f1 Min 1.07E-193 1.02E-87 1.3949e-09 6.33E-13

Max 7.84E-170 1.95E-87 6.1265e-08 6.86E-10

Mean 2.64E-171 1.57E-87 1.4155e-08 9.43E-11

Std 0 1.89E-88 1.2949e-08 1.48E-10

f2 Min 1.40E-117 1.56E-44 1.7950e-04 3.21E-09

Max 7.39E-102 1.95E-44 0.0013 2.48E-07

Mean 2.46E-103 1.73E-44 6.0678e-04 3.66E-08

Std 1.35E-102 8.52E-46 2.8188e-04 4.69E-08

f3 Min 1.97E-66 2.3801 0.0454 127.3

Max 1.30E-55 97.594 1.2297 1237.8

Mean 5.30E-57 25.714 0.2789 459.69

Std 2.42E-56 24.013 0.2844 241.9

f4 Min 2.05E-05 1.37E-44 0.3745 2.787

Max 2.5528 1.86E-44 2.3055 12.205

Mean 0.7115 1.68E-44 0.8832 6.5934

Std 0.76784 1.30E-45 0.3877 2.2382

f5 Min 2.47E-29 26.346 14.9121 1.8755

Max 0.53092 89.131 25.2670 114.49

Mean 0.077152 29.053 21.9994 49.686

Std 0.16183 11.348 2.1032 34.029

f6 Min 0 0 0 0

Max 0 0 0 0

Mean 0 0 0 0

Std 0 0 0 0

f7 Min 7.15E-05 0.000518 0.0029 0.013704

Max 0.000296 0.003894 0.0239 0.04622

Mean 0.000183 0.001582 0.0113 0.031475

Std 5.07E-05 0.000797 0.0045 0.008425

doi:10.1371/journal.pone.0163230.t004
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of all the relevant unimodal benchmark functions. The results of the Friedman non-parametric
test are illustrated in Table 6. According to the p-values in Table 6, we can conclude that HFA
has a significant difference from FA and PSO. However, the result become insignificant when
compared with DE.

Figs 1–3 are the convergence curves observedby the 4 mentioned algorithms for f1, f3 and f5.
In these figures, the horizontal axis is the number of iterations and the vertical axis is the fitness
value of the benchmark function. It is can be seen that HFA performs significantly better than
FA, DE, and PSO. For example, f1, namely the simple sphere function, is a famous benchmark
function.During the whole generations, HFA displays a faster convergence rate than those of
FA, DE, and PSO due to its better exploitation search ability. It is clear that HFA quickly
reaches the neighborhoodof the global optimum and gets approximately 10−16 with only 200
iterations, while DE and PSO can only reach approximately 10−12 and 10−8, respectively after
the final 2000 iterations. In fact, HFA has a nearly constant convergence rate throughout the
whole iteration for most of the unimodal benchmark functions. And the experiment results of
HFA after 200 iterations (which means only one iterative repetition time) are better than the
final results of DE and PSO after 2000 iterations. Hence from Figs 1–3, we can say that our pro-
posedHFA has a quicker convergence rate and is able to improve its results steadily for a long
time. On the other hand, FA also maintains a fast convergence rate at the beginning, however,
it can get stuck into the local optimum very soon especially for Figs 2 and 3. Hence, we can
know that FA cannot prevent premature convergence due to the poor exploration ability, espe-
cially as the iterations proceed. From the observed convergence curves, it is clear that DE and
PSO have a very low convergence rate during the whole process compared with HFA and FA.

Multimodal Functions. For the second series of experiments, we use multimodal func-
tions to compare the exploration ability of the compared algorithms. The statistical results of
comparing the mentioned algorithms with 30 independent runs are presented in Table 7. The
best mean results of the mentioned algorithms are written in bold.

From the statistic results in Table 7 we can know that the HFA outperformed other com-
pared algorithms when solving the functions f8 and f9. The FA is the best for solving the func-
tions f10 and f11. In addition, HFA and FA have almost equal optimization abilities for solving
the functions f12 and f13. Both can obtain the accurate results of these functions.

Similar to what we have done for the unimodal test functions, the Friedman tests using the
significance level of 0.95 (or α = 0.05) are also conducted for all the multimodal benchmark
functions. Table 8 summarizes the mean values of the final results over 30 independent runs.

Table 6. P-values at α = 0.05 by Friedman test.

T-test HFA -FA HFA -DE HFA-PSO

P 0.0143 0.1025 0.0143

doi:10.1371/journal.pone.0163230.t006

Table 5. The mean value of unimodal benchmark functions for HFA, FA, DE and PSO over 30 runs.

# Fnc HFA FA DE PSO

f1 2.64E-171 1.57E-87 1.4155e-08 9.43E-11

f2 2.46E-103 1.73E-44 6.0678e-04 3.66E-08

f3 0.7115 25.714 0.2789 459.69

f4 5.30E-57 1.68E-44 0.8832 6.5934

f5 0.077152 29.053 21.9994 49.686

f6 0 0 0 0

f7 0.000183 0.001582 0.0113 0.031475

doi:10.1371/journal.pone.0163230.t005

Hybrid Firefly Algorithm and Differential Evolution

PLOS ONE | DOI:10.1371/journal.pone.0163230 September 29, 2016 10 / 17



Fig 1. Comparison between PSO, DE, FA and HFA for the Sphere function.

doi:10.1371/journal.pone.0163230.g001

Fig 2. Comparison between PSO, DE, FA and HFA for Schwefel’s 1.20 function.

doi:10.1371/journal.pone.0163230.g002
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The results of these tests are summarized in Table 9. The P-value in Table 9 shows that HFA
has a significant difference from DE, while the results become insignificant when compared
with FA and PSO.

At the same time, the convergence curves of different algorithms for f9 and f10 have been
shown in Figs 4 and 5 where the horizontal axis is the number of iterations and the vertical axis is
the fitness value of the benchmark function.According to Fig 4, DE and PSO perform poorly
during the whole iterative process. FA maintains a higher convergence rate, but unfortunately it
appears to become plunged into local optima after about 200 iterations. HFA can escape from
the local optima automatically and find the final global best. As can be seen in Fig 5, it is obvious
that FA and HFA perform significantly better than DE and PSO. In the beginning, FA displays a
faster convergence rate than HFA, while HFA overtakes FA finally. Thus we can say that for the
Ackley function bothHFA and FA can maintain a strong exploration ability and robustness.

Conclusions

In this paper, we have proposed a novel hybrid firefly algorithm (HFA) by combining some of
the advantages of both firefly algorithm and differential evolution. Based on the theoretical
analysis and the problem solving ability of metaheuristic algorithms, we can summarize that
HFA has three advantages or improvements: the first strategy is equipped with a better balance
between exploration and exploitation due to the parallel use of FA and DE and the population
information-sharing. The experimental results illustrated that FA can provide an excellent con-
vergence rate and a strong exploration ability, whereas DE is good at exploitation by using
mutation and crossover operators. Ideally, an algorithm should explore the search space as
extensively as possible to find all the promising regions and simultaneously it should conduct a
more refined search in the promising areas so as to improve the precision of the solutions.

Fig 3. Comparison between PSO, DE, FA and HFA for Rosenbrock’s function.

doi:10.1371/journal.pone.0163230.g003
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The second improvement is that the selectionmechanism used in the proposed approach
can enable the solution to converge to the optimum in a better way. This is achieved by first
mixing the two subpopulations that are independently evolved using either FA or DE, and then
selecting the best solutions among both subpopuations. Thus, it is more likely to find the global
optimum than each individual algorithm involved in the hybrid. The third strategy improve-
ment is that the hybrid can increase the diversity of solutions efficiently and can also help the

Table 7. Results of multimodal benchmark functions.

# Fnc Statistics HFA FA DE PSO

f8 Min -12569 -10596 -5627.9 -10001

Max -12214 -8424.1 -4515.8 -7093.8

Mean -12439 -9469.5 -5016.3 -9020.8

Std 133.24 515.47 260.0659 515.74

f9 Min 1.08E-08 3.9798 143.8889 17.909

Max 4.36E-08 15.919 196.3629 44.773

Mean 3.39E-08 9.3858 175.9112 30.15

Std 7.29E-09 3.0436 12.24334 7.1079

f10 Min 4.44E-15 7.99E-15 4.3632e-05 4.75E-07

Max 6.13E-05 1.51E-14 0.0031 6.15E-05

Mean 1.31E-05 1.25E-14 3.1272e-04 7.10E-06

Std 2.33E-05 3.36E-15 5.4874e-04 1.47E-05

f11 Min 0 0 1.8299e-07 3.74E-12

Max 5.64E-08 0 0.1005 0.046483

Mean 5.86E-09 0 0.0132 0.013444

Std 1.19E-08 0 0.0220 0.012311

f12 Min 1.57E-32 1.57E-32 1.8989e-09 2.34E-12

Max 1.57E-32 1.57E-32 0.0036 0.31096

Mean 1.57E-32 1.57E-32 2.2768e-04 0.024188

Std 5.57E-48 5.57E-48 6.8779e-04 0.064897

f13 Min 1.35E-32 1.35E-32 6.6202e-08 2.42E-11

Max 1.35E-32 1.35E-32 7.1684e-05 0.010987

Mean 1.35E-32 1.35E-32 1.1956e-05 0.0032963

Std 5.57E-48 5.57E-48 1.7650e-05 0.0051211

doi:10.1371/journal.pone.0163230.t007

Table 8. The mean value of multimodal benchmark functions for HFA, FA, DE and PSO over 30 runs.

# Fnc HFA FA DE PSO

f8 -12439 -9469.5 -5016.3 -9020.8

f9 3.39E-08 9.3858 175.9112 30.15

f10 1.31E-05 1.25E-14 3.1272e-04 7.10E-06

f11 5.86E-09 0 0.0132 0.013444

f12 1.57E-32 1.57E-32 2.2768e-04 0.024188

f13 1.35E-32 1.35E-32 1.1956e-05 0.0032963

doi:10.1371/journal.pone.0163230.t008

Table 9. P-values at α = 0.05 by Friedman test.

T-test HFA -FA HFA -DE HFA-PSO

P 1.0000 0.0143 0.1025

doi:10.1371/journal.pone.0163230.t009
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Fig 4. Comparison between PSO, DE, FA and HFA for Rastrigin’s function.

doi:10.1371/journal.pone.0163230.g004

Fig 5. Comparison between PSO, DE, FA and HFA for Ackley’s function.

doi:10.1371/journal.pone.0163230.g005
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algorithm avoid the stagnation problem by using a mixing and regrouping mechanism. It can
be observed that the attraction operator in FA is a double-edged sword. To some extent, it can
accelerate the convergence speed, but may also mislead the algorithm to get stuck into some
local optima if the diversity of the population becomes low. Technically speaking, this hybrid
mechanism can liberate the population from sub-optimal solutions and enable a continued
progress toward the true global optima as have been observed in the simulations.

The statistical analyses have also confirmed the theoretical insight in this paper that the
three enhancements in the combined approach can explore and exploit the search space more
efficiently. It has been seen from the above results that the proposedHFA can indeedwork well
compared to FA, DE and PSO, which has been further confirmed by the results obtained from
the Friedman tests.

Future work will explore different ways of mixing and regrouping the population so as to
enhance the performance even further. In addition, it will be useful to carry out a more detailed
parametric study to see how different sub-stages of iterations can be used to maximize the par-
allelism and also to reduce the overall number of iterations. Furthermore, it will also be useful
to automatically tune these parameters depending on the modality of the problem and thus
can solve problems more effectively in real-world applications.
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