14 research outputs found

    Investigation of robust gait recognition for different appearances and camera view angles

    Get PDF
    A gait recognition framework is proposed to tackle the challenge of unknown camera view angles as well as appearance changes in gait recognition. In the framework, camera view angles are firstly identified before gait recognition. Two compact images, gait energy image (GEI) and gait modified Gaussian image (GMGI), are used as the base gait feature images. Histogram of oriented gradients (HOG) is applied to the base gait feature images to generate feature descriptors, and then a final feature map after principal component analysis (PCA) operations on the descriptors are used to train support vector machine (SVM) models for individuals. A set of experiments are conducted on CASIA gait database B to investigate how appearance changes and unknown view angles affect the gait recognition accuracy under the proposed framework. The experimental results have shown that the framework is robust in dealing with unknown camera view angles, as well as appearance changes in gait recognition. In the unknown view angle testing, the recognition accuracy matches that of identical view angle testing in gait recognition. The proposed framework is specifically applicable in personal identification by gait in a small company/organization, where unintrusive personal identification is needed

    Performance analysis of multimodal biometric fusion

    Get PDF
    Biometrics is constantly evolving technology which has been widely used in many official and commercial identification applications. In fact in recent years biometric-based authentication techniques received more attention due to increased concerns in security. Most biometric systems that are currently in use typically employ a single biometric trait. Such systems are called unibiometric systems. Despite considerable advances in recent years, there are still challenges in authentication based on a single biometric trait, such as noisy data, restricted degree of freedom, intra-class variability, non-universality, spoof attack and unacceptable error rates. Some of the challenges can be handled by designing a multimodal biometric system. Multimodal biometric systems are those which utilize or are capable of utilizing, more than one physiological or behavioural characteristic for enrolment, verification, or identification. In this thesis, we propose a novel fusion approach at a hybrid level between iris and online signature traits. Online signature and iris authentication techniques have been employed in a range of biometric applications. Besides improving the accuracy, the fusion of both of the biometrics has several advantages such as increasing population coverage, deterring spoofing activities and reducing enrolment failure. In this doctoral dissertation, we make a first attempt to combine online signature and iris biometrics. We principally explore the fusion of iris and online signature biometrics and their potential application as biometric identifiers. To address this issue, investigations is carried out into the relative performance of several statistical data fusion techniques for integrating the information in both unimodal and multimodal biometrics. We compare the results of the multimodal approach with the results of the individual online signature and iris authentication approaches. This dissertation describes research into the feature and decision fusion levels in multimodal biometrics.State of Kuwait – The Public Authority of Applied Education and Trainin

    Discovering user mobility and activity in smart lighting environments

    Full text link
    "Smart lighting" environments seek to improve energy efficiency, human productivity and health by combining sensors, controls, and Internet-enabled lights with emerging “Internet-of-Things” technology. Interesting and potentially impactful applications involve adaptive lighting that responds to individual occupants' location, mobility and activity. In this dissertation, we focus on the recognition of user mobility and activity using sensing modalities and analytical techniques. This dissertation encompasses prior work using body-worn inertial sensors in one study, followed by smart-lighting inspired infrastructure sensors deployed with lights. The first approach employs wearable inertial sensors and body area networks that monitor human activities with a user's smart devices. Real-time algorithms are developed to (1) estimate angles of excess forward lean to prevent risk of falls, (2) identify functional activities, including postures, locomotion, and transitions, and (3) capture gait parameters. Two human activity datasets are collected from 10 healthy young adults and 297 elder subjects, respectively, for laboratory validation and real-world evaluation. Results show that these algorithms can identify all functional activities accurately with a sensitivity of 98.96% on the 10-subject dataset, and can detect walking activities and gait parameters consistently with high test-retest reliability (p-value < 0.001) on the 297-subject dataset. The second approach leverages pervasive "smart lighting" infrastructure to track human location and predict activities. A use case oriented design methodology is considered to guide the design of sensor operation parameters for localization performance metrics from a system perspective. Integrating a network of low-resolution time-of-flight sensors in ceiling fixtures, a recursive 3D location estimation formulation is established that links a physical indoor space to an analytical simulation framework. Based on indoor location information, a label-free clustering-based method is developed to learn user behaviors and activity patterns. Location datasets are collected when users are performing unconstrained and uninstructed activities in the smart lighting testbed under different layout configurations. Results show that the activity recognition performance measured in terms of CCR ranges from approximately 90% to 100% throughout a wide range of spatio-temporal resolutions on these location datasets, insensitive to the reconfiguration of environment layout and the presence of multiple users.2017-02-17T00:00:00

    Computational Approaches for Remote Monitoring of Symptoms and Activities

    Get PDF
    We now have a unique phenomenon where significant computational power, storage, connectivity, and built-in sensors are carried by many people willingly as part of their life style; two billion people now use smart phones. Unique and innovative solutions using smart phones are motivated by rising health care cost in both the developed and developing worlds. In this work, development of a methodology for building a remote symptom monitoring system for rural people in developing countries has been explored. Design, development, deployment, and evaluation of e-ESAS is described. The system’s performance was studied by analyzing feedback from users. A smart phone based prototype activity detection system that can detect basic human activities for monitoring by remote observers was developed and explored in this study. The majority voting fusion technique, along with decision tree learners were used to classify eight activities in a multi-sensor framework. This multimodal approach was examined in details and evaluated for both single and multi-subject cases. Time-delay embedding with expectation-maximization for Gaussian Mixture Model was explored as a way of developing activity detection system using reduced number of sensors, leading to a lower computational cost algorithm. The systems and algorithms developed in this work focus on means for remote monitoring using smart phones. The smart phone based remote symptom monitoring system called e-ESAS serves as a working tool to monitor essential symptoms of patients with breast cancer by doctors. The activity detection system allows a remote observer to monitor basic human activities. For the activity detection system, the majority voting fusion technique in multi-sensor architecture is evaluated for eight activities in both single and multiple subjects cases. Time-delay embedding with expectation-maximization algorithm for Gaussian Mixture Model was studied using data from multiple single sensor cases

    Computational Approaches for Remote Monitoring of Symptoms and Activities

    Get PDF
    We now have a unique phenomenon where significant computational power, storage, connectivity, and built-in sensors are carried by many people willingly as part of their life style; two billion people now use smart phones. Unique and innovative solutions using smart phones are motivated by rising health care cost in both the developed and developing worlds. In this work, development of a methodology for building a remote symptom monitoring system for rural people in developing countries has been explored. Design, development, deployment, and evaluation of e-ESAS is described. The system’s performance was studied by analyzing feedback from users. A smart phone based prototype activity detection system that can detect basic human activities for monitoring by remote observers was developed and explored in this study. The majority voting fusion technique, along with decision tree learners were used to classify eight activities in a multi-sensor framework. This multimodal approach was examined in details and evaluated for both single and multi-subject cases. Time-delay embedding with expectation-maximization for Gaussian Mixture Model was explored as a way of developing activity detection system using reduced number of sensors, leading to a lower computational cost algorithm. The systems and algorithms developed in this work focus on means for remote monitoring using smart phones. The smart phone based remote symptom monitoring system called e-ESAS serves as a working tool to monitor essential symptoms of patients with breast cancer by doctors. The activity detection system allows a remote observer to monitor basic human activities. For the activity detection system, the majority voting fusion technique in multi-sensor architecture is evaluated for eight activities in both single and multiple subjects cases. Time-delay embedding with expectation-maximization algorithm for Gaussian Mixture Model was studied using data from multiple single sensor cases

    Development of a Self-Learning Approach Applied to Pattern Recognition and Fuzzy Control

    Get PDF
    Systeme auf Basis von Fuzzy-Regeln sind in der Entwicklung der Mustererkennung und Steuersystemen weit verbreitet verwendet. Die meisten aktuellen Methoden des Designs der Fuzzy-Regel-basierte Systeme leiden unter folgenden Problemen 1. Das Verfahren der Fuzzifizierung berücksichtigt weder die statistischen Eigenschaften noch reale Verteilung der betrachteten Daten / Signale nicht. Daher sind die generierten Fuzzy- Zugehörigkeitsfunktionen nicht wirklich in der Lage, diese Daten zu äußern. Darüber hinaus wird der Prozess der Fuzzifizierung manuell definiert. 2. Die ursprüngliche Größe der Regelbasis ist pauschal bestimmt. Diese Feststellung bedeutet, dass dieses Verfahren eine Redundanz in den verwendeten Regeln produzieren kann. Somit wird diese Redundanz zum Auftreten der Probleme von Komplexität und Dimensionalität führen. Der Prozess der Vermeidung dieser Probleme durch das Auswahlverfahren der einschlägigen Regeln kann zum Rechenaufwandsproblem führen. 3. Die Form der Fuzzy-Regel leidet unter dem Problem des Verlusts von Informationen, was wiederum zur Zuschreibung diesen betrachteten Variablen anderen unrealen Bereich führen kann. 4. Ferner wird die Anpassung der Fuzzy- Zugehörigkeitsfunktionen mit den Problemen von Komplexität und Rechenaufwand, wegen der damit verbundenen Iteration und mehrerer Parameter, zugeordnet. Auch wird diese Anpassung im Bereich jeder einzelner Regel realisiert; das heißt, der Anpassungsprozess im Bereich der gesamten Fuzzy-Regelbasis wird nicht durchgeführt

    Pattern Recognition

    Get PDF
    Pattern recognition is a very wide research field. It involves factors as diverse as sensors, feature extraction, pattern classification, decision fusion, applications and others. The signals processed are commonly one, two or three dimensional, the processing is done in real- time or takes hours and days, some systems look for one narrow object class, others search huge databases for entries with at least a small amount of similarity. No single person can claim expertise across the whole field, which develops rapidly, updates its paradigms and comprehends several philosophical approaches. This book reflects this diversity by presenting a selection of recent developments within the area of pattern recognition and related fields. It covers theoretical advances in classification and feature extraction as well as application-oriented works. Authors of these 25 works present and advocate recent achievements of their research related to the field of pattern recognition

    Deep learning-based automatic analysis of social interactions from wearable data for healthcare applications

    Get PDF
    PhD ThesisSocial interactions of people with Late Life Depression (LLD) could be an objective measure of social functioning due to the association between LLD and poor social functioning. The utilisation of wearable computing technologies is a relatively new approach within healthcare and well-being application sectors. Recently, the design and development of wearable technologies and systems for health and well-being monitoring have attracted attention both of the clinical and scientific communities. Mainly because the current clinical practice of – typically rather sporadic – clinical behaviour assessments are often administered in artificial settings. As a result, it does not provide a realistic impression of a patient’s condition and thus does not lead to sufficient diagnosis and care. However, wearable behaviour monitors have the potential for continuous, objective assessment of behaviour and wider social interactions and thereby allowing for capturing naturalistic data without any constraints on the place of recording or any typical limitations of the lab-setting research. Such data from naturalistic ambient environments would facilitate automated transmission and analysis by having no constraints on the recordings, allowing for a more timely and accurate assessment of depressive symptoms. In response to this artificial setting issue, this thesis focuses on the analysis and assessment of the different aspects of social interactions in naturalistic environments using deep learning algorithms. That could lead to improvements in both diagnosis and treatment. The advantages of using deep learning are that there is no need for hand-crafted features engineering and this leads to using the raw data with minimal pre-processing compared to classical machine learning approaches and also its scalability and ability to generalise. The main dataset used in this thesis is recorded by a wrist worn device designed at Newcastle University. This device has multiple sensors including microphone, tri-axial accelerometer, light sensor and proximity sensor. In this thesis, only microphone and tri-axial accelerometer are used for the social interaction analysis. The other sensors are not used since they need more calibration from the user which in this will be the elderly people with depression. Hence, it was not feasible in this scenario. Novel deep learning models are proposed to automatically analyse two aspects of social interactions (the verbal interactions/acoustic communications and physical activities/movement patterns). Verbal Interactions include the total quantity of speech, who is talking to whom and when and how much engagement the wearer contributed in the conversations. The physical activity analysis includes activity recognition and the quantity of each activity and sleep patterns. This thesis is composed of three main stages, two of them discuss the acoustic analysis and the third stage describes the movement pattern analysis. The acoustic analysis starts with speech detection in which each segment of the recording is categorised as speech or non-speech. This segment classification is achieved by a novel deep learning model that leverages bi-directional Long Short-Term Memory with gated activation units combined with Maxout Networks as well as a combination of two optimisers. After detecting speech segments from audio data, the next stage is detecting how much engagement the wearer has in any conversation throughout these speech events based on detecting the wearer of the device using a variant model of the previous one that combines the convolutional autoencoder with bi-directional Long Short-Term Memory. Following this, the system then detects the spoken parts of the main speaker/wearer and therefore detects the conversational turn-taking but only includes the turn taking between the wearer and other speakers and not every speaker in the conversation. This stage did not take into account the semantics of the speakers due to the ethical constraints of the main dataset (Depression dataset) and therefore it was not possible to listen to the data by any means or even have any information about the contents. So, it is a good idea to be considered for future work. Stage 3 involves the physical activity analysis that is inferring the elementary physical activities and movement patterns. These elementary patterns include sedentary actions, walking, mixed activities, cycling, using vehicles as well as the sleep patterns. The predictive model used is based on Random Forests and Hidden Markov Models. In all stages the methods presented in this thesis have been compared to the state-of-the-art in processing audio, accelerometer data, respectively, to thoroughly assess their contribution. Following these stages is a thorough analysis of the interplay between acoustic interaction and physical movement patterns and the depression key clinical variables resulting to the outcomes of the previous stages. The main reason for not using deep learning in this stage unlike the previous stages is that the main dataset (Depression dataset) did not have any annotations for the speech or even the activity due to the ethical constraints as mentioned. Furthermore, the training dataset (Discussion dataset) did not have any annotations for the accelerometer data where the data is recorded freely and there is no camera attached to device to make it possible to be annotated afterwards.Newton-Mosharafa Fund and the mission sector and cultural affairs, ministry of Higher Education in Egypt

    Machine Learning

    Get PDF
    Machine Learning can be defined in various ways related to a scientific domain concerned with the design and development of theoretical and implementation tools that allow building systems with some Human Like intelligent behavior. Machine learning addresses more specifically the ability to improve automatically through experience

    DYNAMIC SELF-ORGANISED NEURAL NETWORK INSPIRED BY THE IMMUNE ALGORITHM FOR FINANCIAL TIME SERIES PREDICTION AND MEDICAL DATA CLASSIFICATION

    Get PDF
    Artificial neural networks have been proposed as useful tools in time series analysis in a variety of applications. They are capable of providing good solutions for a variety of problems, including classification and prediction. However, for time series analysis, it must be taken into account that the variables of data are related to the time dimension and are highly correlated. The main aim of this research work is to investigate and develop efficient dynamic neural networks in order to deal with data analysis issues. This research work proposes a novel dynamic self-organised multilayer neural network based on the immune algorithm for financial time series prediction and biomedical signal classification, combining the properties of both recurrent and self-organised neural networks. The first case study that has been addressed in this thesis is prediction of financial time series. The financial time series signal is in the form of historical prices of different companies. The future prediction of price in financial time series enables businesses to make profits by predicting or simply guessing these prices based on some historical data. However, the financial time series signal exhibits a highly random behaviour, which is non-stationary and nonlinear in nature. Therefore, the prediction of this type of time series is very challenging. In this thesis, a number of experiments have been simulated to evaluate the ability of the designed recurrent neural network to forecast the future value of financial time series. The resulting forecast made by the proposed network shows substantial profits on financial historical signals when compared to the self-organised hidden layer inspired by immune algorithm and multilayer perceptron neural networks. These results suggest that the proposed dynamic neural networks has a better ability to capture the chaotic movement in financial signals. The second case that has been addressed in this thesis is for predicting preterm birth and diagnosing preterm labour. One of the most challenging tasks currently facing the healthcare community is the identification of preterm labour, which has important significances for both healthcare and the economy. Premature birth occurs when the baby is born before completion of the 37-week gestation period. Incomplete understanding of the physiology of the uterus and parturition means that premature labour prediction is a difficult task. The early prediction of preterm births could help to improve prevention, through appropriate medical and lifestyle interventions. One promising method is the use of Electrohysterography. This method records the uterine electrical activity during pregnancy. In this thesis, the proposed dynamic neural network has been used for classifying between term and preterm labour using uterine signals. The results indicated that the proposed network generated improved classification accuracy in comparison to the benchmarked neural network architectures
    corecore