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Abstract 
 

 
iometrics is constantly evolving technology which has been 

widely used in many official and commercial identification applications. 

The increased concerns in security during recent years have essentially 

resulted in more attention being given to biometric-based authentication techniques. A 

biometric-based authentication is basically a pattern recognition problem which makes a 

personal identification decision in order to determine the authority based on specific 

physiological or behavioural features. Most biometric systems that are currently in use 

typically employ a single biometric trait. Such systems are called unibiometric systems. 

Despite considerable advances in recent years, there are still challenges in authentication 

based on a single biometric trait, such as noisy data, restricted degree of freedom, intra-

class variability, non-universality, spoof attack and unacceptable error rates [15,80]. 

Some of the challenges can be handled by designing a multimodal biometric 

system. Multimodal biometric systems are those which utilise or are capable of utilising, 

more than one physiological or behavioural characteristic for enrolment, verification, or 

identification. A variety of multimodal biometrics strategies have been proposed and 

analysed in literature. In these works, the integration of various biometric features is 

suggested for achieving more accurate authentication rate. So far, most published work 

on multimodal biometric fusion techniques has dealt primarily with the fusion at the 

score matching level. 

Here, we suggest a novel fusion approach of iris and online signature traits. 

Online signature and iris authentication techniques have been employed in a range of 

B 
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biometric applications. Besides improving the accuracy, the fusion of biometrics has 

several advantages such as increasing population coverage, deterring spoofing activities 

and reducing enrolment failure. In this doctoral thesis, we make a first attempt to 

combine online signature and iris biometrics. We principally explore the fusion of iris 

and online signature biometrics and their potential application as biometric identifiers. 

To address this issue, investigations is carried out into the relative performance of 

several statistical data fusion techniques for integrating the information in both 

unimodal and multimodal biometrics. We compare the results of the multimodal 

approach with the results of the individual online signature and iris authentication 

approaches. This thesis describes research into the feature and decision fusion levels in 

multimodal biometrics. 

This research is novel in the following five ways. First, the performance of the iris 

recognition is improved due to using dual-tree complex wavelet transform features and 

support vector machine. Second, the accuracy of the online signature recognition is 

greatly increased with less number of features by combining global features with Rough 

set. Third, a decision-level fusion scheme between iris and online signature is introduced 

using binary particle swarm optimization; its performance is better than the conventional 

feature-level scheme. Fourth, this research deploy the particle swarm optimization 

scheme as a feature selection technique to enhance the performance of online signature 

and iris accuracy rates by eliminating redundant and irrelevant information. Fifth, a 

hybrid-level fusion technique combined by using ensemble of classifiers and the AND 

rule offers significant improvements to the accuracy of the suggested multimodal 

biometrics system. 
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Chapter 1  
 
 
Introduction 

 

 

iometrics is constantly evolving technology which has been widely 

used in many official and commercial identification applications. A 

biometric-based authentication is basically a pattern recognition 

problem which makes a personal identification decision in order to 

determine the authority based on specific physiological or behavioural 

traits. Most biometric systems that are currently in operation typically 

utilise a single biometric trait. Such systems are called unibiometric 

systems. Regardless of the significant advances in biometrics over the last 

few years, there are still major challenges in obtaining consistent 

authentication decision through unimodal-biometric based authentication 

approaches. 

B 
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1.1 Thesis Motivation 

There are numerous reasons that motivate our interest in enhancing the 

performance of unimodal authentication approaches. First of all, 

biometric features are not exactly the same every time they are gathered. 

For instance, your voice is subject to change within the same day due to 

your emotional mode or health state. Moreover, no two fingerprint are 

ever exactly the same. The quality of fingerprint images maybe degraded 

as a result of physical problems such as dry, oily, dirty finger, dirty 

sensor surface, scars and other factors or simply because the user has 

positioned his/her finger on the fingerprint sensor in a different position. 

 

Several limitations of unimodal biometric systems can be overcome by 

integrating multiple biometric traits, such as collecting voice and face or 

multiple fingers of the same person. Such systems, known as multimodal 

(or multibiomteric) recognition systems, are expected to be more reliable 

due to the existence of multiple and independent pieces of confirmation. 

 

Multimodal approach relies mainly on fusing separate information from 

different modalities to provide complementary information to achieve 

more reliable recognition of individuals. For example, a common 

approach is to combine face and speech modalities to achieve a more 

trustworthy recognition decision. Four levels of fusion are possible when 

integrating data from two or more biometric sources. These levels are 

sensor, feature, matching score and decision levels. 

 

Nevertheless, multibiometric systems have drawbacks when compared 

to unimodal biometric based systems. They are more expensive as they 

should require more computational and storage resources. In addition, 

they also require a large number of test samples and additional time for 

user enrolment which usually cause inconvenience to the user. 

Furthermore, the precision of any multibiometric system can be 

worsened if the integrating of various biometrics was not followed by a 

proper classification technique. 

 

In our research, we principally limit ourselves to two modalities, 

namely, iris and online signature. To the best of our knowledge, there is 

no reported research work that combined iris and online signature. The 

main motive behind the selection of iris and online signature as the 

biometric features for building a multimodal biometric system is that 

signature is being used for person authentication in most of the daily 



3 

 

applications since a long time and iris offers an excellent recognition 

performance when used as a biometric. 

 

1.2 Thesis Scope and Research Questions 

As the core of our work throughout this thesis revolves around 

examining whether the performance of a biometric-based authentication 

system can be improved through integrating complementary biometric 

features which comes primarily from two different and independent 

modalities. Therefore, the main aim of the research will be to investigate 

the effectiveness of the suggested fusion techniques for multimodal 

biometrics, with the following specific objectives: 

 

 Explore existing multimodal approaches. 

 Develop and evaluate online signature-based authentication 

approach. 

 Develop and evaluate iris-based authentication approach. 

 Develop multimodal authentication system based on the selected 

biometrics. This involves: 

▫ Study the effectiveness of fusion of online signature and iris 

biometrics into the various fusion approaches in both 

unimodal and multimodal biometrics thorough 

experimental investigation. 

▫ Compare between the effect of applying feature-level and 

decision-level fusion approaches. 

▫ Enhance the performance of the proposed multimodal 

system. 

 

All in all, the purpose of this work is to investigate whether the 

performance of a biometric system can be improved by integrating 

complementary information which comes primarily from the selected 

modalities. 

 

This research poses a fundamental question: which fusion scheme can 

achieve the best performance and how much improvement can be gained 

from the applying the suggested fusion schemes? 

 

Toward this objective, our intention is to design and develop several 

fusion schemes at different fusion levels. Additionally, we will also 

tackle the complexity problem, in the sense that we will also raise the 

question whether it could be possible to reduce the dimension of the 
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fusion feature space, through an appropriate selection procedure, while 

keeping the same level of performance. 

 

 

1.3 Thesis Contributions 

This thesis makes the following main original contributions. 

 

A Novel Online Signature Authentication Approach 

 

A novel online signature identification scheme based on global features 

and Rough set is proposed. The information is extracted as time 

functions of various dynamic properties of the signatures. A database of 

2160 signatures from 108 subjects was built. Thirty-one features were 

identified and extracted from each signature. Different feature reduction 

approaches and classifiers were used to assess their suitability for this 

application. Rough set approach has resulted in a reduced set of nine 

features that were found to capture the essential characteristics required 

for signature identification. The reported results from several 

experiments demonstrate the suitability and effectiveness of the Rough 

set approach in the application of online signature identification. This 

research approach and results appears in our publications [5,7,135]. 

 

 

Iris Features Extraction using Dual-Tree Complex Wavelet 

Transform 

 

Iris offers an excellent recognition performance when used as a 

biometric. Iris patterns are believed to be unique due to the complexity 

of the underlying the environmental and genetic processes that influence 

the generation of iris pattern. Segmenting iris area is a challenging task 

since the iris images can be occluded by eyelids or eyelashes. This will 

cause a significant difference between the intra- and inter-class 

comparisons. In this thesis we suggest a new iris segmentation technique 

based on minimizing the effect of the eyelids and eyelashes. The iris 

texture information was represented by applying the dual-tree complex 

wavelet transform to build the feature vector. The proposed innovative 

technique proofed to be computationally effective as well as feasible in 

term of recognition rates compared with other techniques. The 

combination between dual-tree complex wavelet transform and SVM 
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classifier is promising. This research approach and results appears in our 

publication [4]. 

 

 

Hybrid Fusion: Combining Feature and Decision-Levels 

 

The objective of this work is to investigate the integration of online 

signature and iris features towards achieving a better performance that 

may not be achievable with single biometric. The experimental 

investigations have been concerned with the fusion of online signature 

and iris biometrics in the decision and hybrid fusion modes. The basic 

idea was to fuse and evaluate the decisions with the following set of 

well-known state-of-the-art-algorithms: SVM, Naïve Bayes and k-NN 

using fixed rules: Maximum, Sum, Majority and Minimum rules. The 

individual decisions from the two modalities were further combined with 

straightforward the AND logic rule to obtain the final decision. The 

AND logic was applied to ensure a satisfactory level of security, since a 

positive authentication is only accomplished in case if only all the fusion 

levels approaches produce positive authentication [80]. 

 

Taking advantage of both feature-level and decision-level fusions and in 

an attempt to improve the final authentication performance, we further 

proposed and developed a hybrid fusion technique. Based on the 

experimental results, it has been shown that the hybrid approach offers a 

considerable contribution to the accuracy of the suggested multimodal 

biometrics. This research approach and results appears in our 

publications [5,6]. 

 

 

1.4 Success Criteria 

The success criteria of our research in this thesis are as follows: 

 The research questions set at the beginning of this research have 

to be met, 

 A study showing how the proposed architecture is improved upon 

existing tackled approaches, 

 A study that shows the advantages of integrating online signature 

and iris features at a different fusion levels. 

 

These criteria will be revisited in the conclusion chapter to argue that 

such solutions exist and met in our research. 
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1.5 Thesis Outline 

The thesis is organised into seven chapters including this chapter. The 

chapter‘s‎organisation‎ is‎ illustrated‎ in‎Figure‎1.1.‎ The content of each 

chapters are summarised as follows. 

 
Chapter 2 

 

We initially introduce the discipline of biometrics and its evolution 

towards multimodal biometrics. It investigates the key issues in 

multimodal biometric systems along with the different architectures for 

information integration, and a review of previous investigations in the 

literature related to multimodal biometrics. 

 
Chapter 3 

 

Present the results of authenticating online signature using global 

features. We describe our work on building an online signature database 

and performing statistical analysis of online signature signals. An online 

signature authentication algorithm based on comparing the performance 

of three feature selection algorithms was constructed for the selected 

feature set. 

 
Chapter 4 

 

Propose and develop a new segmentation approach for iris 

authentication based on minimizing the effect of the eyelids and 

eyelashes by trimming the iris area above the upper and the area below 

the lower boundaries of the pupil. The 2D dual-tree complex wavelet 

transform is extracted from the iris images and used to improve the 

recognition accuracy. The comparison of proposed features will be 

evaluated on a diverse classification schemes namely; Naïve Bayes, k-

NN and SVM. The approach was evaluated on a benchmark iris dataset. 

 
Chapter 5 

 

This chapter investigate the possibility of fusing the information of iris 

image and online signature signals for the purpose of personal 

identification at the feature level. This chapter propose and investigate 

the usefulness of Binary Particle Swarm Optimization with a number of 

multimodal biometric scenarios. 
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Chapter 6 

 

In this chapter an experimental investigation is conducted on the fusion 

of online signature and iris biometrics at the decision fusion mode. The 

basic idea was to fuse and evaluate the decisions of the SVM, Naïve 

Bayes and k-NN classifiers using fixed rules: Maximum, Sum, Majority 

and Minimum rules. The individual decisions from the two modalities 

were further combined with straightforward AND logic rule to obtain 

the final decision. Afterwards, taking advantage of both feature-level 

and decision-level fusions and in an attempt to improve the final 

authentication performance, we further proposed and developed a hybrid 

fusion technique. 

 

Finally, Chapter 7 contains the summary of our work and contributions 

made in this thesis and discuss directions for future work. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure ‎1.1 Outline of the thesis 
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Chapter 2  
 
 
Multimodal Biometrics: An 
Overview 

 

 

erived from the ancient Greek words, “Bios” meaning life and 

“metron” meaning measures [93], biometric is defined as the 

statistical measurement and analysis of individual’s physiological 

and/or behavioural distinctive features [80]. Biometrics has manifested 

itself as an efficient identity management system. Using parts of the 

human body as a mean to identity authentication goes back to ancient 

times. It is reported two thousand years ago that in ancient Babylon, 

merchants sealed deals with fingerprints on clay tablets to record their 

trading transactions [15]. The Chinese in the 3rd century B.C. used 

thumbprints and fingerprints on clay tablets as signatures to seal the 

official documents. While in the 14th century A.D., various official 

document papers dated in Persia bore fingerprint impressions [64,121]. 

D 
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A systematic and scientific basis for human identification started in the 19th century 

when a French police officer, Alphonse Bertillon [152] invented a number of 

anthropomorphic measurements, called Bertillonage, for identifying criminals. His 

system was built on the assumption that the body of people do not change in basic 

characteristics.‎Bertillon‘s‎system‎involved‎measuring‎five‎primary‎measurements‎of 

body parts such as head length; head breadth; length of the middle finger and the 

length from elbow to end of middle finger (see Figure 2.1). Afterward, every major 

heading was additionally classified into three categories of: small, medium and 

large. The length of the little finger and the eye colour were also recorded. 

 

 
 

Figure ‎2.1 A chart from Bertillon's Identification anthropométrique (1893) 

demonstrating how to take measurements for his identification system, adapted from 

[152] 
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Biometrics-based personal authentication systems have recently gained intensive 

research interest due to the unreliability and inconvenience of traditional 

authentication systems. Biometrics recently became a vital component of any 

effective person identification solutions as biometric traits cannot be forged, shared, 

lost, duplicated, stolen or even forgotten [72,80,154]. 

 

Biometrics‎authenticates‎a‎user‎ identity‎by‎ the‎means‎of‎measuring‎an‎ individual‘s‎

unique physical or behavioural features. According to Maltoni et al. [116] these 

features can be classified into four categories static or dynamic and physical or 

knowledge-based biometrics as illustrated in Figure 2.2. Techniques that utilise the 

characteristic of fingerprints, palmprints or faces are considered static physical 

biometrics. Physical biometrics are related to the inherited physiological 

characteristics of the human body. Alternatively, behavioural biometric arise from 

activities carried out by that user either spontaneously or specifically learned. 

Dynamic or behavioural biometric techniques include, and not limited to 

handwritten signature, keystroke dynamics, gait patterns and lip movement. 

Techniques that use passwords or PINs (Personal Identification Number) are 

dynamic knowledge-based biometrics, whereas techniques that utilise magnetic 

cards and smart cards are considered static and physical-based biometrics. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure ‎2.2 Authentication Techniques, adapted from [124] 
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Biometrics is a constantly growing technology which has been widely used in many 

successful official and commercial applications [72]. A biometric system is 

essentially a pattern recognition system which makes a personal identification 

decision by determining the authority of specific physiological or behavioural 

characteristics [80]. These are usually presented by the user when comparing 

biometric features with the stored feature of the claimed user.  

 

2.1 Biometric Systems 

 

Generally, any typical authentication biometric system comprises of the following 

units [72,80,116]: 

 

 Data acquisition unit: consist of acquiring the biometric signal with a special 

sensor and converting it to a digital form. 

 Feature extraction unit: extracts key information from the digital 

representation of the biometric cue. 

 Matching unit: matches extracted features with templates stored in a database 

and output a similarity measure. 

 Decision making unit: this final step issues a binary decision whether to 

accept or reject the claimed identity. 

 

2.1.1 Biometric Recognition System Modes 

Depending on the purpose behind its usage, biometrics can be used for identification 

or for verification. In verification mode, a user claims an identity and the system 

confirms his/her identity by comparing the biometric information submitted by the 

user with a reference for the claimed identity stored in the database. This is done by 

conducting a one-to-one comparison process. 

 

The verification problem is in fact a two-category classification problem in the 

following manner [127]: 

Given a feature vector XQ and a claimed identity I, we need to determine if (I,XQ) 

belongs‎to‎―legitimate‖‎class‎denoted‎as‎ω1 or‎―impostor‖‎class‎denoted‎as‎ω2 . Let XI 

be the stored template corresponding to identity I. In this case, XQ is matched against 

XI and a function that measures the similarity S and a pre-defined threshold  . Thus, 

the decision rule is given by 

 







 



otherwise

XXSif

XI

IQ

Q

2

1 ),(

),(





     ‎2.1 

 

Whereas in identification mode, the system compares the biometric information with 

all the templates stored in the database, in other words it is considered to be a one-to-

many comparison. Given a feature vector XQ and we need to determine the identity 
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of Ik,  Nk ,...,2,1 , where I1, I2,... IN, are the classes enrolled in the system 

database. We need to determine if (I,XQ)‎belongs‎to‎―legitimate‖‎class‎or reject the 

sample if no correct class can be settled on. Thus, 

 









 



otherwiseject

XXSifI

X
kIQ

k
k

Q

Re

),(max 

     ‎2.2 

 

Figure 2.3 illustrates the enrolment, identification and verification modules of a 

typical biometric system. 

 
 

 

 

 

 

(a) 

 

 

 

 

 

 

 

 

(b) 

 

 

 

 

 

 

 

(c) 

 

Figure ‎2.3 Diagram of the two modes of operation of a typical authentication system, 

(a) enrolment, (b) identification and (c) verification 
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2.1.2 Performance of a Biometric System 

Unfortunately, biometric features are not exactly identical every time they are 

acquired. For example, your voice is subject to change within the same day due to 

your emotional mode or health state. Moreover, no two fingerprint are ever exactly 

the same. The quality of fingerprint images maybe degraded as a result of physical 

problems such as dry, oily, dirty finger, dirty sensor surface, scars and other factors 

or simply because the user has positioned his/her finger on the sensor in a slightly 

different position. 

 

In evaluating the performance for any biometric based recognition system, there are 

mainly two types of factors: False Acceptance Rate (FAR) or type II and False 

Rejection Rate (FRR) also known as type I [72,154]. FAR is the probability that the 

system wrongly accept forged sample, while the FRR is the likelihood that a genuine 

access attempt will be unsuccessful. As these two factors are inversely related, 

lowering‎ one‎ of‎ them‎ often‎ results‎ in‎ increasing‎ the‎ other,‎ so‎ it‘s‎ common‎ to‎

describe the performance by another factor, the Equal Error Rate (ERR) where FAR 

equals FRR (Figure 2.4). 

 

Another commonly used factor is Genuine Accept Rate (GAR) which is the 

probability that an authentic access will be accepted. Hence GAR = 1 – FRR, all 

these factors are dependent on the decision threshold T, and by varying decision 

threshold we can obtain multiple operating points of the system. The resulting plot of 

GAR against FAR is called the Receiver Operating Characteristics (ROC) curve, 

which is commonly used to evaluate the performance of biometric system. 

 

 

 
Figure ‎2.4 Typical FAR and FRR ROC curve 

 

 

Other errors that may arise in a biometric system are Failure To Capture (FTC) and 

Failure To Enrol (FTE). These two errors are crucial for large-scale live applications. 

For instance, consider a scenario where passengers are authenticated using their 

fingerprint in an airport, in such a situation failure to capture the fingerprint data is 

problematic. The FTC error takes place when the data acquisition unit is not capable 

to capture a satisfactory quality of the biometric trait. As,‎ if‎ someone‘s‎ voice‎ is‎
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altered by cold he cannot be enrolled in a voiceprint recognition system. Whilst, the 

error of FTE usually occurs when the user tries to enrol in the recognition system are 

unsuccessful. Such as when the system rejects a fingerprint sample with poor image 

quality during enrolment as it do not match with the good quality templates stored in 

the database. 

 

 

2.2 Multimodal Biometrics 

Multimodal biometric systems are those which utilise, or are capable of utilising, 

more than one physiological or behavioural characteristic for enrolment either in 

verification or identification mode. It is generally believed that by integrating 

various biometric traits into one single unit, the limitations of unibiometric systems 

can be alleviated, given that several biometric sources usually compensate for the 

weaknesses of single biometric [68]. 

2.2.1 Limitations of unimodal biometric systems 

 

In the last three decades, biometric based authentication systems such as fingerprint, 

palmprint, facial geometry, hand geometry, retinal and iris scans, signature 

recognition and voice recognition have being implemented in various applications 

including government IDs, computer and cellular phone logins, PDA, ATM, medical 

records management, border control, banking, e-commerce transactions and any 

place where identity management is critical [72, 80, 93,154,170,175]. Although, the 

successful implementation of biometric systems in these applications will still be 

constrained by the upper bound performance of the chosen biometric trait. 

Nevertheless, there is clearly a significant opportunity for improvement as suggested 

by the error rates shown in Table 2.1 which presents the state-of-the-art FRR and 

FAR of four popular biometrics. Clearly the accuracy rates rely on a number of test 

conditions such as the acquisition protocol, total number of subjects, number of 

biometric samples per subject, time lapse between data acquisition sessions, etc. 

 

 

When looking for the potential biometric to be used in a specific identity 

authentication application, generally the following three criteria must be met 

[72,80,154] 

Circumvent 

 Acceptability, indicates people acceptance to use the biometric system. 

 Circumvention, means how possible it is to fraud the authentication system. 

 Performance, specifies the achievable identification (verification) accuracy and 

resources needed to achieve an acceptable accuracy. 

 

Other factors may be less significant, such as 
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 Universality, means nearly all involved subjects should have or can produce the 

biometric. 

 Uniqueness, means the difference between any two persons, should be 

sufficiently distinguishable. 

 Permanence, which means the selected biometric should not change drastically 

under environment nor allow alteration. 

 

In most cases, any physiological or behavioural characteristic that possess these 

properties can be used for personal identification. However, for the purpose of 

automatic personal identification, the biometric feature should have one additional 

property. 

 

 Collectability, which means that the biometric should be quantitatively 

measurable. 

 

Table ‎2.1 State-of-the-art false reject and false accept rates associated with 

fingerprint, face, voice, and iris verification systems, adapted from [154] 

 

Biometric 

trait 

Test Test conditions FRR FAR 

 

Fingerprint FVC 2006 Heterogeneous 

population including 

manual workers and 

elderly people 

2.2% 2.2% 

FpVTE 2003 US government 

operational data 

0.1% 1% 

Face FRVT 2002 Controlled 

illumination, high 

resolution 

0.8%–1.6% 0.1% 

Voice NIST 2004 Text independent, 

multi-lingual 

5–10% 2–5% 

Iris ICE 2006 Controlled 

illumination, broad-

quality range 

1.1%–1.4% 0.1% 

 

 

A brief comparison based on the above listed factors is provided in Table 2.2 based 

on the perception of the authors of [80]. Biometrics is considered to be a secure and 

convenient authentication means. Whereas some biometrics has gained more 

acceptance then others in range of applications, it is beyond doubt that utilising 

biometrics has gained a measure of acceptance. Nevertheless, each biometric 

modality has its strengths and limitations, and no single biometric modality is likely 

to meet all the desired performance of every authentication applications. 
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Table ‎2.2 Comparison of various biometric technologies based on the perception of 

the authors of [80]. 

Codes in the table H = high, M = medium, L = low 
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DNA H H H L H L L 

Ear M M H M M H M 

Face H L M H L H H 

Facial thermogram H H L H M H L 

Fingerprint M H H M H M M 

Gait M L L H L H M 

Hand geometry M M M H M M M 

Hand vain M M M M M M L 

Voice M L L M L H H 

Keystroke L L L M L M M 

Odor H H H L L M L 

Palmprint M H H M H M M 

Retina H H M L H L L 

Signature L L L H L H H 

Iris H H H M H L L 

 

 

 

2.2.2 Motivation behind multimodal biometrics 

The majority of currently in use biometric systems usually utilise a single biometric 

trait such systems are called unibiometric systems. Regardless of significant 

advances in the latest years, there are still several limitations derived from utilising 

one biometric trait. Such limitations should be considered before any real-time large-

scale deployment projects. Some of the limitations are listed below [72, 80]. 

 

 Noisy data acquired by sensor 

 

This as a result of imperfect conditions or significant variation in the 

biometric itself during the biometric acquisition (see Figure 2.5). For 

example, a poorly illuminated face image may cause to incorrectly reject the 

subject‘s‎face‎sample.‎In‎fact,‎the‎recognition‎rate‎of‎any‎biometric‎system‎is‎

very sensitive to biometric sample quality and noisy data can seriously 

reduce the overall accuracy of the system [25]. 
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Figure ‎2.5 The negative effect of noisy images on fingerprint recognition. 

 

The impression on the left is obtained from a subject during enrolment phase. 

The impression on the right is obtained from the same subject during 

verification phase after three months. Obviously, the development of scars or 

cuts can result in erroneous fingerprint matching results, adapted from [80] 

 

 

 Lack of universality 

 

A biometric modality is called universal as long as every subject of a target 

population is capable of presenting a valid biometric sample for 

authentication. This principle of universality is an essential condition in any 

efficient biometric recognition implementation. However, all biometric 

modalities are not really universal. The National Institute of Standards and 

Technology (NIST) has reported that it was not possible to acquire a good 

quality fingerprint from about 2% of the population (for instance, people with 

disabilities related to the hand, people with oily or dry fingertips, etc.) [132]. 

Consequently, such people cannot be signup in a fingerprint verification 

system. Therefore, errors occur during enrolment such as FTE and/or FTC is 

mostly related to using a single biometric feature. 

 

 

 Lack of individuality or distinctiveness 

 

The biometric characteristics extracted from different persons may be quite 

similar. For instance, face recognition systems that depend on facial 

appearance fails in identifying identical twins. This short of distinctiveness 

usually increases the FAR of a biometric system. 

 

 

 Intra-class variations 

 

The biometric sample obtained from a user throughout the identification or 

verification phase is not identical to the sample which was collected to 

generate the reference database from the same user during the enrolment 

phase. This is known as the "intra-class" variations. 

These variations may be to inappropriate interaction of the user with the 

sensor, as in the case when a user changes it pose or facial expression in front 

of a camera. This can happen when using different sensors at enrolment and 
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verification or due to alterations in the biometric modality, such as the case 

of developing new wrinkles in face or the presence of new scars in a 

fingerprint. Intra-class variations are more relevant in behavioural biometrics 

traits such as voice and signature (see Figure 2.6). Hence, individuals with 

large intra-class variability will regularly be falsely rejected as the acquired 

biometric trait they present does not match with any of the biometric 

template that they had enrolled with. 

 

 

 
  (a)      (b) 

 

 

 
(c) 

 

 

Figure ‎2.6 Signature intra-class variability. 

 

(a), (b), and (c) are three signatures from a single user during one session 

 

 

 Sensitivity to attacks 

 

Many studies [3,82] demonstrated that it is possible to spoof a number of 

fingerprint authentication systems using simple techniques with molds made 

from range of materials such as plastic, clay, silicon or gelatine. Actually, 

behavioural biometric modalities are more susceptible to this kind of attack 

than physiological biometric modalities. Figure 2.7 shows some examples of 

real and faked fingerprints developed and tested in a recent research [52]. 
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Figure ‎2.7 Typical examples of real and fake fingerprint images that can be 

found in the public database used in the experiments in [52] 

 

 

Therefore, because of all these practical difficulties, the error rate associated with 

unimodal systems is relatively high. This makes unimodal-based authentication 

techniques improper for deployment in safety-critical or real-time applications. 

Some of aforementioned drawbacks can be overcome by considering a multimodal 
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biometric approach. Multibiometric systems offer the following advantages over 

unibiometric systems: 

 

1. Using an efficient fusion method to combine evidences from different 

sources can considerably improve the overall accuracy of the authentication 

system. Even though, the combination of several sources will enlarge the 

dimension size of the feature vector, it can decrease the overlap among the 

feature spaces of different classes [127]. 

 

2. Multibiometric systems are capable of addressing the problems related to 

unimodal biometrics such as non-universality. Thus, it can help in reducing 

the FRR and FAE and eventually improve the overall performance. For 

instance,‎ if‎ someone‘s‎ voice‎ is‎ altered‎ by‎ cold‎ he‎ cannot‎ be‎ enrolled‎ in‎ a‎

voiceprint recognition system, he can still be identified using other biometric 

traits like fingerprint or palmprint. 

 

3. Multibiometric systems can add more flexibility to the enrolment 

procedure during user authentication. Lets us suppose a hypothetical access 

control application built using the modalities of face, voice and fingerprint. 

Later on, at the time of authentication, the user has the flexibility to choose 

all or a subset of available biometrics based on the nature of the application 

being considered and the convenience of the user. This is convenient for 

users with special needs, users with hand-related disabilities, for example, 

can enrol to the same system with their voice sample. 

 

4. The noisy data, which usually have a considerable effect on the 

performance of the authentication process, can be considerably reduced with 

the availability of multiple sources of information. In such case, if the user 

failed to enrol using one of the sources due to acquisition conditions, he can 

try another biometric source. 

 

5. Multibiometric systems have the capability to search a large scale template 

database in a computationally feasible way. This can be accomplished 

through using first the least accurate modality in pruning the database size 

down to a reasonable size before using the more accurate modality on the 

remaining database partitions. 

 

6. Multimodal systems are more resistant to fraudulent techniques since it is 

not easy for an imposer to forge several biometric traits at the same time. By 

asking the subject to present the biometric traits in randomly order, the 

system can detect that the user is present at the acquisition point. To protect 

against spoofing and to ensure that only live traits are captured for enrolment 

or authentication, several‎ studies‎ suggested‎ using‎ ―liveness‎ detection‖‎

mechanism to measure the biometric trait physiological signs of life [52,82]. 

Liveness detection is an antispoofing technique ensures that only the 

biometric from a live subject is submitted for the purpose of authentication. 

 

Nevertheless, multibiometric-based systems have drawbacks when compared to 

unibiometric-based systems. Unfortunately, they are more expensive as they should 

require more computational and storage resources. In addition, they also require a 
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large number of test samples and additional time for user enrolment which usually 

cause inconvenience to the user. Furthermore, the precision of any multibiometric 

system can be worsened if the combining of the evidences was not followed by a 

proper classification technique. 

 

2.3 Multimodal Biometric Fusion scenarios 

A multibiometric system can be based on one or a combination of the biometric data 

obtainable from multiple sources. Any multibiometric system can be based on one or 

a combination of the following fusion scenarios [41,154] 

 

 

 Multiple modalities 

The biometric traits are extracted from two or multiple biometric modalities using 

single or multiple sensors. This is also known as multimodal biometrics. For 

example, a biometric recognition system based on combining face and ear attributes 

would be considered a multimodal system regardless of whether both images were 

captured by a different or the same imaging device. 

 

 

 Multiple sensors 

The same instance of biometric trait is obtained by different sensors. Such as in the 

case of verifying subject‘s‎ face based on an image captured via two sources static 

digital image and video frame. 

 

 

 Multiple algorithms 

A single sample captured by a single sensor is processed by two or more different 

algorithms. For instance processing face recognition verification according to 

geometric (feature-based) or photometric (view-based) approaches is an example of 

processing multimodal biometrics using multiple algorithms. 

 

 

 Multiple instances 

A number of biometric samples from different instances of the same biometric trait 

is used in building such a system. An example of multiple instances is using left and 

right iris images for identity authentication. However, systems based on capturing 

sequential frames of face or ear images are considered to be multi-presentation rather 

than multi-instance. 

 

 

 Repeated instances 

The same biometric modality instance is acquired with the same sensor several 

times. As in capturing a sequential frame of facial images to construct a 3D facial 

image. This case is sometimes is not considered a multibiometric scenario. 
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Figure ‎2.8 Sources of multiple biometrics, adapted from [154] 

 

 

To understand the distinction among the biometric fusion scenarios, table illustrates 

the basic distinctions among categories of multibiomteric implantation. The key 

aspect of the category that makes it "multi" is shown in boldface. 

 

Table ‎2.3 Multibiomtrics category illustrated by the simplest case of using 2 of 

something, adapted from [174] 

 

Category Modality Algorithm Biometric 

characteristic 

Sensor 

Multimodal 2 (always) 2 (always) 2 (always) 2 (usually)
a
 

Multi-

algorithmic 

1 (always) 2 (always) 1 (always) 1 (always) 

Multi-

instance 

1 (always) 1 (always) 2 instance of 1 

characteristic  

(always) 

1 (usually)
b
 

Multi-

sensorial 

1 (always) 1 (usually)
c
 1 (always and 

same instance) 
2 (always) 

Multi-

presentation 

1 1 1 1 
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a - A multimodal system with a single sensor used to capture two different 

modalities (e.g. high resolution image used to extract face and iris or face and skin 

texture). 

 

b - Exception may be the use of two individual sensors each capturing one instance 

(e.g. possibility a two fingerprint sensor). 

 

c - It is possible that two samples from separate sensors could be processed by 

separate "feature extraction" algorithm, and then through a common comparison 

algorithm, making this "1.5 algorithms" or two completely different algorithms. 

 

 

2.4 Multimodal Biometric Architecture 

The next step after determining which biometric sources are to be integrated is to 

build the system architecture. Any multimodal system can operate in one of three 

different operational modes: serial, parallel or hierarchical mode [41,44]. 

 

 Serial mode 

In this mode, sometimes called cascade mode, each modality is examined before the 

next modality is investigated. Therefore, multiple biometric traits do not have to be 

captured at the same time. Furthermore, a decision could be obtained before 

acquiring the rest of traits. As a result, the overall recognition duration can be 

decreased. For example in authentication system based on voice, fingerprint and iris 

traits. Initially the user uses the voice validation unit, and if this fails fingerprint 

validation is applied. If the last validation is failed the iris unit is required. The 

reward of such systems is that many users will enrol to the system using single trait. 

 

 Parallel mode 

In this mode of operation, the information from multiple modalities is processed 

concurrently, independently and all at once. Then the results are combined to make 

the final classification decision. Such as an authentication system based on 

voiceprint and face recognition. So, if it would be operated in a parallel mode, the 

user had to present the two traits in the same time for validation. 

 

 Hierarchical mode 

In this operational mode individual classifiers are combined in a treelike structure. 

This mode is preferred when a large number of classifiers are expected. 

 

Most of the current multimodal biometric systems operate either in the serial mode 

or in the parallel mode. The serial mode is computationally efficient, whereas the 

parallel mode is more accurate [44]. 
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Figure ‎2.9 Architecture for several classifier combinations, adapted from [44], 

(a) parallel, (b) serial, (c) hierarchical 

 

 

2.5 Multimodal Biometric Fusion levels 

Most biometric-based authentication systems can be divided into four units: the 

sensor acquires the biometric data, the feature extraction unit process the biometric 

data in order to extract a discriminative representation of the acquired data. The 

matching unit, compares input features to stored templates, the decision unit issues 

either‎an‎―accept‖‎or‎a‎―decline‖‎decision‎based‎on‎the‎matching‎score. 
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Therefore, the fusion in multimodal systems can be performed at four potential 

levels: sensor, feature, matching and decision. The sensor and the feature levels are 

referred to as a pre-mapping fusion while the matching score and the decision levels 

are referred to as a post-mapping fusion [161]. Fusion levels are illustrated in Figure 

2.10. In pre-mapping fusion, the biometric data are combined before classification. 

While in post-mapping fusion; each biometric data are modelled separately then all 

the biometric traits are combined after mapping into matching score/decision space. 

Pre-mapping schemes include fusion at the sensor and the feature levels. Whereas 

post-mapping schemes include fusion at the match score, rank and decision levels. 

The later approach has attracted a lot of attention although the amount of 

information available for fusion declined progressively after each layer of processing 

in a biometric system [41]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure ‎2.10 Fusion levels in multimodal biometric fusion, adapted from [128] 

 

 

A. Pre-mapping fusion - Sensor level fusion 

In this early stage of fusion, the raw data, derived from the same biometric 

characteristic with two or more sensors, is combined. Fusion at sensor level is 

closely associated with specific sensor types and a corresponding signal or image 

processing techniques. An example of the fusion at the sensor level is capturing a 

fingerprint image of each subject with two different sensors. Even though, fusion at 

primitive stages is expected to improve the recognition accuracy, it is not applicable 

with incompatible data gathered from different modalities. 
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Mosaicking has been investigated in face recognition methodologies. One approach 

proposed to model a statistical face model by constructing a mosaic from a video 

sequence of the face at various poses [112]. Another research [187] proposed an 

algorithm to construct a panoramic face using snapshots of five standard cameras 

that‎simultaneously‎acquire‎multiple‎views‎of‎a‎subject‘s‎face. 

The fusion at the sensor level was a matter of research interests in fingerprint and 

face recognition. Constructing a composite fingerprint or face template using 

multiple impressions or 2D snapshots with the same sensor or camera, which is 

called Image mosaicking (or mosaicing), is a good example of sensor level fusion. 

Image mosaicking involves transforming and stitching of multiple images into a new 

collective image without any visible distortion in the overlapping areas [150]. 

Results indicated that mosaicking the fingerprint impressions first and then 

extracting the fingerprint minutiae templates, obtained a better matching 

performance [71,155,156]. A simple combination technique is applied in [22], where 

the normalized, masked ear and face images are concatenated to form a combined 

face ear image at the sensor level. The results show that fusion of more than one 

modality could lead to better results compared to the use of only one modality. 

The resulting information from this initial level would potentially represent the 

richest source of information, whilst the other levels contain a smaller amount of 

information. Unfortunately, raw data may be corrupted by noise and may emphasize 

the intra-class variations. 

 

 

B. Pre-mapping fusion - Feature level fusion 

At this level, fusion can be applied to the extraction of different features from the 

same modality or different multimodalities to construct a joint feature vector, which 

then is utilised in matching and score modules. Merging extracted features into one 

single feature vector usually involves applying appropriate feature normalization, 

selection and reduction techniques [154]. Concatenating the feature vectors extracted 

from fingerprints and palmprint modalities are an example of a feature-level based 

system. 

Since the feature level is certainly much richer and exploits more useful information 

about the raw biometric data, fusion at feature level is expected to perform better in 

contrast with fusion at score and decision levels [41]. Fusion at feature level may be 

helpful for closely-related modalities or for integrating features of the same modality 

with multiple sensors. However, such fusion type is not always feasible [154]. For 

example, in many approaches the given features might not be compatible due to 

differences in the nature of modalities. Moreover, the relationship between the 

feature spaces of the joint biometrics may not be known exactly. In addition, 

concatenating two feature sets or‎more‎may‎ leads‎ to‎ the‎ ‗curse‎ of‎ dimensionality‘‎

problem. Furthermore, the majority of the practical commercial biometric systems 

do not provide access to the feature sets such as the raw fingerprint impressions of a 

fingerprint based commercial-of-the-self authentication systems. 
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C. Post-mapping fusion - Decision level fusion 

In this approach, also denoted as abstract level, separate decisions taken from each 

biometric trait are combined at a very late stage. This seriously limits any efforts in 

enhancing the accuracy of the system through the fusion process. Thus, fusion at 

such a level is the least powerful [157]. Examples of combination techniques include 

AND rule, OR rule, majority voting, weighted voting based on Dempster-Shafer 

theory, etc. 

 

 

 

D. Post-mapping fusion - Rank level fusion 

This approach is possible only in identification systems where each classifier outputs 

a list of possible classes with rankings for each subject. The ranks of individual 

matchers are combined using techniques such as: the highest rank, Borda count and 

logistic regression approaches [103]. 

 

 

 

E. Post-mapping fusion - Matching score level fusion 

At this level - also referred as decision, confidence, expert or opinion level- it is 

possible to combine scores obtained from the same biometric trait or different ones 

using one or more classifiers [158]. This fusion level can be divided into two 

categories: combination and classification. In the former approach, the separate 

matching scores are gathered to produce one score, which is used to make the final 

decision. In the latter approach, the input matching scores are considered as input 

features for a two-class pattern recognition problem, where the subject is classified 

as legitimate or not. The classifier presents a distance measure or a similarity 

measure between the input feature vector and the templates previously stored in the 

database. Before matching score fusion take place, normalization must be carried 

out. 

 

There has been a proliferation of experimental studies trying to investigate the fusion 

of a range of biometric sources and examining different fusion techniques. The 

following table points to some of the representative work in the multibiometrics 

literature. 
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Table ‎2.4 Examples of multimodal systems 

 

Modalities Fused References Level of Fusion 

Face and voice [90] Match score 

Face, voice and lip movement [51] Match score; 

Decision 

Face, fingerprint and hand geometry [158] Match score 

Face and iris [127] Feature 

Face and gait [81] Match score 

Face and ear [24] Sensor 

Face and palmprint [43] Feature 

Fingerprint, hand geometry and voice [180] Match score 

Fingerprint and signature [48] Match score 

Palmprint and hand geometry [97] Feature , Match 

score 

 

 

 

2.6 Challenges related to Multimodal Biometric 
Systems Design 

 

 

Multibiometric system design is certainly a challenging task since it is very difficult 

to choose the best possible sources of biometric information and fusion strategy for a 

particular application. This difficulty is related to many issues such as. 

 

 

1. Benchmark multimodal datasets 

The development of unimodal biometric databases of single-mode biometric traits 

has enabled the growth of unimodal biometric systems [184]. Yet, the development 

of multimodal systems is still limited because of the lack of consistent multi-

biometric databases. 

 

The number of the publicly accessible multimodal databases is quite limited. The 

main reason behind the creation of multimodal databases contents is that implies a 

certain degree of difficulty and challenges in the data acquisition phase. 

Furthermore, several controversial concerns are related to the legal and privacy of 

the data protection issue [184]. Moreover, most of the publicly available multimodal 

databases comprised of matching scores obtained by a number of biometric 

approaches operating on particular modalities [145, 45]. Consequently, this does not 

allow additional research to be held on other types of fusion levels other than the 

matching scores level. There are currently a few multimodal person authentication 

databases that are reported in the literature, some examples are listed in Table 2.5. 
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Table ‎2.5 List of available multimodal biometric databases, adapted from [37] 

 

Database Modalities 

BANCA Face and speech 

XM2VTS Face and speech 

VidTIMIT Face and speech 

BIOMET  Biometric Score Set of: face, speech, fingerprint, hand and 

signature 

NIST Face and fingerprint 

MYCT Fingerprint and signature 

UND Face, ear profile and hand 

FRGC Face modality captured using camera at different angles and 

range sensors in different controlled or uncontrolled settings 

IDIAP Score of XM2VTS database  

MyIDea Face, speech, fingerprints, signature, handwriting, palmprint 

and hand Geometry 

BioSec Fingerprint, face, iris and voice 

 

 

Due to the difficulties in constructing multimodal databases, some researchers have 

assumed that different biometric traits of the same person are statistically 

independent [158] in order to simplify the fusion algorithm design. Experiments in 

multimodal biometrics have been conducted on combining biometric trait of a user 

from a database with different biometric trait of another user from another different 

database to generate virtual or so-called chimeric databases [145]. 

 

2. Incompatibility of the information resources 

As stated earlier, the integration of biometric information in early stages is thought 

to be more valuable since the amount of information available to the fusion module 

decreases as we move from one level of fusion to the next [72,116,127,154]. 

Nevertheless, fusion at early stages such as sensor and feature levels is not always 

possible due to the incompatibility of the gathered information. For example, in a 

multimodal biometric system based on fusing fingerprint and voiceprint, it is not 

possible to fuse the raw images of fingerprint with the voice signal. 

 

3. Social acceptance and privacy issues 

There is a number of serious privacy concerns raised concerning the implementation 

of biometrics, due to the fact that biometric technologies have the potential to 

provide governments and organizations with increased power over individuals. 

Privacy concerns are related to data collection, unauthorized use of recorded 

information and improper access to biometric records. As such, a trade-off between 

security concerns and privacy issues may be necessary by enforcing data protection 

laws and standards through common legislation [28]. Nevertheless, Biometrics from 

the positive point of view provides valuable tools to implement liable logs of system 

transactions. 
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4. Optimum design issues 

The improvements in a multimodal biometric-based approach address key design 

questions [170]. The main question is about which modalities to integrate. This 

strongly depends upon the application and the required level of security concerns. 

This will also decides the complexity in designing the authentication system. Other 

design questions ought to be asked such as, What are the best combinations of 

modalities? How do we choose a best set of samples for a particular biometric? What 

is the smallest size sample set? Which level fusion is appropriate? Which is the best 

fusion scenario and processing architecture? What is expected performance? What is 

the cost involved in developing and deploying a real-time system? 

 

Apart from the above mentioned factors there are still open questions to be 

addressed before deploying multimodal biometric system in a real time environment. 

 

 

 

2.7 Summary 

As the core of our work throughout this thesis revolves around fusing biometrics to 

improve the automatic authentication solution, we presented in this chapter a 

background about biometric and multimodal biometric. Biometrics recently became 

a significant part of any efficient person authentication solution as biometric traits 

cannot be stolen, shared or even forgotten. The majority of currently in use biometric 

systems usually utilise a single biometric feature, such systems are called 

unibiometric systems. Regardless of the significant advances in the field of 

biometric, there are still several limitations derived from utilising a single biometric 

trait. 

 

Multimodal biometric systems are those which utilise, or are capable of utilising, 

more than one physiological or behavioural characteristic for enrolment either in the 

verification or identification mode. It is generally believed that by integrating 

various biometrics into one unit, the limitations of unibiometric systems can be 

alleviated, given that the several biometric sources usually compensate for the 

weaknesses of a single biometric. Four possible levels of fusion are used for 

integrating data from two or more biometric systems or sources. These levels are: 

sensor, feature, matching score and decision levels. Fusion at the feature level is an 

understudied problem. 

 

In this thesis, we limit ourselves to iris and online signature modalities. To the best 

of our knowledge, there is no reported research work that combined iris and online 

signature. The main motive behind the selection of iris and online signature as 

biometric features for building a multimodal biometric system stems from their 

potential involvement in real-time large-scale biometrics applications. 

 

The next two chapters discuss building online signature and iris unimodels in more 

details. 
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Chapter 3  
 
 
Online Signature 
Identification 

 

 

iometrics-based authentication systems attracted a lot of attention 

as it is a promising alternative to password-based security 

systems. Handwritten signature as a distinctive personal biometric 

mark is considered among the more reliable biometrics. An essential 

advantage of the signature trait compared to other biometric 

characteristics is its longstanding traditional use as a method for identity 

verification. Compared to physical biometrics such as face, fingerprint and 

iris behavioural biometrics such as signature, voice and keystroke pattern 

change over time and thus have low intra-class variation. But usually 

physical biometrics requires special and quite expensive hardware to 

capture the biometric sample. While handwritten signature tend to vary 

slightly each time they are written and it is not quite as distinctive or 

hard to forge as finger or palm prints, the public’s wide acceptance, 

nevertheless, makes it more suitable to be integrated into existing low-

cost security authentication systems. 

B 
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This chapter starts with introducing the problem of signature identification. Section 2 

presents the literature review. The proposed system is presented and explained in 

Section 3 while the experimental results and analysis of results are described in 

Section 4. Finally, the overall summary will be given in the last section. 

 

 

3.1 Signature as a Biometric 

 
Handwritten signature authentication is the process of verifying the identity of a 

person based on his/her handwritten signature sample. Recognizing people by their 

handwritten signature has been an intense research area [45, 103,143] this is mainly 

due to the following factors [42]. 

 

 

 Signature is resistant to fraudulent access attempts. Even though, 

hypothetically, no person write his/her signature exactly the same each time, 

in practice, it is very difficult to forge the dynamic data (such as speed, pen-

up movement, pressure, etc.) for every digitized signature point. 

 

 Signature has been widely accepted as a means of legal and commercial 

transactions identity authentication. Signatures have played a historical role 

in authenticating documents. Being part of everyday life, signature based 

authentication is remarked as a consistent non-invasive authentication 

procedure by the majority of the users, therefore, it can help in overcoming 

some of the privacy difficulties [104,107]. 

 

 The user can be asked, if necessary, to change his/her signature. The main 

drawback of biometrics when compared with conventional methods is that 

many biometrics can be copied or forged [72,116,154]. Whereas it is always 

possible to obtain a new key or another password, it is not possible to replace 

any biometric data [73]. Nevertheless, signature is considered an exception 

where users can be asked to change their signature if needed. 

 

 

Nevertheless, signature authentication is still a challenging issue for a number of 

reasons. 

 

 Essentially, a signature reflects people's writing habits. Even though, some 

people may experience a lot of inconsistency between their signatures, 

mostly as a result of lack of signing habit. One possible solution to cope with 

this limitation is to acquire multiple signature instances during enrolment and 

not relying on a single instance. In addition, authentication should be 

conducted under similar conditions to those practiced during enrolment. 

 

 While each ordinary literate human being has its unique style of writing his 

signature, yet signatures tend to evolve with time and the process of signing 

is influenced by physical and emotional state of the signatories. 
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3.1.1 Online signature recognition system 

 

Signature identification and verification tasks fall into broad categories as either 

offline or online. In offline (static) systems, a signature is digitized with a scanner 

and only a static image record of the signature is stored. Thus, offline systems are of 

interest in situations where only hard copies of signatures are available. Whereas, 

online (dynamic) signature identification tracks down trajectory and other time-

sequence variables such like velocity, pressure, etc. using specially designed tablets 

or other devices as the signature is being written. Given that online signatures also 

contain dynamic information, they are difficult to forge; it is appropriate for use in 

real-time applications, such as financial transactions, document authenticity and 

office automation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure ‎3.1 An architecture for an online signature identification system 

 

 

The major modules of a typical online signature identification system involve. 

 

 Data acquisition  - recording the signatures trajectory and dynamics in 

addition to converting them to a digital form. 

 Signature preprocessing - preprocess includes the acquired raw data either by 

translation, rotation or scaling if required and transforming the data into a 

standard format. 

 Feature extraction and building reference set - extracting key information 

from the digital representation of the signature and create a signature 

reference set. 

 Classification - matching extracted features with the reference templates 

stored in a database and output a fit ratio. 
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3.1.2 Online signature authentication techniques 

There are two broad research methodologies for online signature-based biometric: 

function and parametric [37,103,143,144]. In the first methodology, the complete 

signals are considered as functions of time whose value directly constitutes the 

feature vector, such as position, pressure, acceleration, and velocity. While the 

parametric paradigm extracts local, global parameters or both from the entire 

signature trajectories and use it as statistical features or parameters, such as total 

signing time and number of zero crossing. In literature, several hundred parameters 

have been proposed for signature authentication. Overall, it has been established that 

functional methodology achieved better performance than parametric but they 

usually require more computational time [46,88,106,142]. 

 

Throughout the literature, different approaches and techniques have been developed 

for validating dynamic signature such as: feature values comparison, point to point 

comparison, Neural Network training techniques, Wavelets, Fourier Transform, 

Dynamic Time Warping (DTM), Hidden Markov Models (HMM), Vector 

Quantization, power spectral and shape comparison, etc. 

 

The most widely studied online signature authentication technique is elastic 

matching using DTW. The purpose of DTW in signature authentication problems is 

to highlight interclass variability while suppressing intra-class variations. For online 

signature verification, DTW is a widely used technique to compare the similarity 

between online signature signals under test against templates disregarding the 

differences in time and speed. The winners of the 2004 first international Signature 

Verification Competition (SVC2004) [190] have used DTW to align signatures 

based‎on‎(Δx‎and‎Δy) local features [86]. Three reference sets were then calculated 

with based on the user‘s‎ training‎ set.‎ Next,‎ Principal‎ Component‎ Analysis‎ (PCA)‎

was performed to decorrelate the three distances and classify on this last measure. 

The algorithm was tested on the SVC2004 database, which consist of 20 authentic 

and 20 forged signatures gathered out of 40 persons. They achieved 1.65% FRR and 

1.28% FAR with a database comprised of 94-users with a total of 182 authentic 

signatures and 313 skilled forgeries. 

Nevertheless, there are still two main drawbacks of using DTW. It is 

computationally expensive and the resampling process usually results in losing 

important local details so that at the end forged signatures closely match genuine 

ones. 

 

Another technique was motivated with the successful application of HMMs to 

speech recognition and online character recognition. HMMs have currently become 

the best performing statistical classifier for on-line signature verification [37]. In 

HMMs the similarity distance measure is actually the log-likelihood ratio of the 

acquired signature and the reference set. 

Yang et al. [188] trained HMM to model the sequence of normalized angles along 

the trajectory of the signature. The model was tested on a database of 496 signatures 

gathered from 31 subjects. Their best result exhibited a FAR of 6.45% and a 

corresponding EER of 1.18%. Each signature was modelled by a single hiden-

Markov model with left-to-right skip topology with 6-states. Each individual 

contributed 16 signatures, 8 were used for training and the rest 8 kept for testing. 

The results are given for random forgeries. For the individual HMM the Baum-

http://en.wikipedia.org/wiki/Baum-Welch_algorithm
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Welch algorithm was used for estimating the parameters of the HMM during training 

and testing. Shafiei and Rabiee [165] proposed a system based upon segmenting 

each signature based on its perceptually important points and then compute for each 

segment a feature vector comprised of seven features that are scale and displacement 

invariant, four of it are dynamic and three are static. The resulted vectors are used for 

training an HMM to achieve signature verification. With a database that included 

622 genuine signatures and 1010 forgery signatures collected from a population of 

69 subjects, the proposed system has achieved a FAR of 4% and a FRR of 12%. 

 

Neural networks are known for their ability to solve complex functions by 

attempting to learn what the correct output should be from training data have been 

successfully applied in many pattern recognition problems, such as handwritten 

character recognition. Lee [105] has investigated the use of three neural network 

approaches for classifying signatures: Bayes Multilayer Perceptrons (BMP), Time 

Delay Neural Networks (TDNN), and Input Oriented Neural Networks (IONN). The 

input to the neural networks was a sequence of instantaneous absolute velocities 

extracted from the spatial coordinate. Consequently, the database used consists of 

1000 genuine signatures from only one subject and 450 skilled forgeries from 18 

trained forgers. The back propagation algorithm was used for network training. This 

experiment has shown that BMP provided the lowest misclassification error rate 

2.67% among the three types of networks. Excellent results utilising neural networks 

were reported in [108]. They applied wavelets and back-propagation neural network 

together for the on-line signature verification purpose. They have used five feature 

functions to comprise the feature vector: the pen pressure, x and y velocity, angle of 

pen movement, and then applied the Daubechies-6 wavelet transform with 16 

coefficients to compress the feature vector and using it at the end coefficients as 

input to a neural network. The system achieved a FRR of 0.0% and a FAR of less 

than 0.1% with a database of 922 genuine and forged signatures gathered from 41 

subjects. 

Zanuy [191] studied the performance of Vector Quantization, Nearest Neighbor, 

DTW, and HMM. A database of 330 users which includes 25 skilled forgeries 

performed by five different impostors has been used. Experimental results showed 

that the first proposed combination of VQ and DTW outperformed the other 

algorithms (DTW, HMM) and achieved a minimum detection cost function value 

equal to 1.37% for random forgeries and 5.42% for skilled forgeries. 

 

Nanni and Lumini [129] proposed an on-line signature verification system based on 

local information and on a one-class classifier: the Linear Programming Descriptor 

classifier (LPD). The information was extracted as time functions of various 

dynamic properties of the signatures, then the discrete 1-D wavelet transform (WT) 

was performed on these features. The Discrete Cosine Transform (DCT) was used to 

reduce the approximation coefficients vector obtained by WT to a feature vector of a 

given dimension. Results using all the 5000 signatures from the 100 subjects of the 

SUBCORPUS-100 MCYT Bimodal Biometric Database [134] yielded an EER of 3–

4% in the skilled forgeries and close to 1% in random forgeries. 

 

In a recent research paper Nanni, Maiorana, Lumini and Campisi [130] developed a 

matching approach based on the fusion of Dynamic Time Warping, Hidden Markov 

Model and Linear Programming Descriptor classifiers. Furthermore, a template 

protection scheme employing the BioHashing and the BioConvolving approaches is 
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discussed. The proposed system was tested with the same MCYT signature database 

and an EER of 3% was obtained when only five genuine signatures are acquired for 

each user during enrolment. 

 

3.2 The proposed system 

The proposed online signature approach consists of five main phases: Data 

acquisition, Pre-processing, Feature extraction and Feature reduction using Rough 

Set and Classification. Figure 3.2 depicts the overall framework of our proposed 

system. The process starts with acquiring the reference signature data with the help 

of a digitizing table to collect the dynamics of the signature. Then these signals are 

normalized to overcome the problem of different sizing in every signature. A feature 

vector is obtained to describe the global features of the signals. The Rough Set 

theory is applied to select the most significant features before classification. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure ‎3.2 The overall framework of the proposed system 
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3.2.1 Data Acquisition 

Online signatures can be captured using a variety of input devices such as digitizing 

tablets, specially designed pens, hand gloves [149] and tracking-camera. Overall, 

when one signs on a graphic tablet, two types of information are captured: the 

location coordinates and the timing information tagged to each pair of the x and y 

coordinates. 

 

The proposed system implemented here uses Topaz‘s‎ IdGem‎ 1x5 signature pad, 

which is a non-sensitive pressure tablet with a visual feedback and LCD screen that 

gives the signer a natural feeling of signing on an ordinary paper [177]. The IdGem 

has a 4.4 x 1.3 inch effective writing area and captures samples at the rate of 377 

points per second. The resolution is 410 true points per inch. The position values are 

translated into coordinates on the serial bus. The hardware interface is a Serial EIA 

Standard RS-232C port connected to a laptop computer running custom-written C++ 

driver software. Figure 3.3 illustrates the graphical user interface of the acquisition 

program. 
 

 

 

(a) 

 

(b) 

Figure ‎3.3 The GUI of the developed signature capturing program, 

 

(a) before (b) after signing 
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The values in the output stream produced by the digitiser are equidistant in time 

contain the following data: 

 

 x(t), the x-coordinate sampled at timestamp t; 

 y(t), the y-coordinate sampled at timestamp t. 

 

 

In this approach, we restrict ourselves to features common to all digitizing tablet. At 

each sample point, we obtain the signature data as 

 

S(t) = [x(t)], y(t), timestamp(t)]
T
, t =‎1,…,N‎, where N is total the number of samples 

of the signature trajectory along with the timestamp and number of pen-ups are all 

recorded. Example of a signature and the function-based representation from the 

gathered signature database is depicted in Figure 3.4. 

 

 
 

 

 

Figure ‎3.4 Example of a signature and the function-based representation from the 

gathered signature database 

 

 

The signature database was captured using the above mentioned signature pad with 

the volunteer being seated in a comfortable position with good lighting. The 

volunteers were orally asked to provide their signature sample in their own time. The 

signers generally provided ten samples in one sitting, with this operation being 

repeated on two or three separate occasions resulting in twenty genuine signatures 

from each volunteer. 

 

3.2.2 Preprocessing 

Unlike the offline signature systems, the online systems do not suffer from noise, as 

a result of the scanning hardware or paper background. Nevertheless, the captured 

online signature signals typically have different dynamic ranges. Therefore, we have 

adapted a simple approach to minimize this range with respect to the maximum and 

minimum values [106]. A number of studies have evaluated the performance of 

different normalization techniques [76,90,171]. In this Thesis, we use min-max 
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normalization approach which is expected to work well if the bounds of the 

distribution are known [44]. In this case, this technique shifts the minimum and 

maximum scores to a range between 0 and 1, respectively. Therefore, this 

normalization does not change the underlying distribution of the data except for a 

scaling factor. This is performed as shown in the following equations. 
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In the above equations, x and y are the initial profiles, min and max are the minimum 

and maximum values of x and y original profiles respectively, while 
'x  and 'y are 

the transformed profiles. 

 

 

3.2.3 Global Feature Extraction 

 

The discriminative power of the features in the reference set plays a major role in the 

entire identification process, as it is important to find features that are invariant with 

respect to slight changes in intra-class signatures, yet powerful enough to be used to 

discriminate‎ other‎ signature‘s‎ classes.‎ Large‎ number‎ of‎ features‎ has‎ been‎ reported‎

which can be broadly classified as local and global. Global features refer to the 

parameters extracted from a complete signature signal, such as average writing 

speed, total signing duration, number of pen-ups, number of strokes and standard 

deviation of the velocity and acceleration. Whereas, local features analyse signatures 

based on specific sampling points, such as the slope of the tangent at each point, 

velocity, the centre of mass and average speed within a stroke. Some approaches 

combine both global and local features to improve the overall accuracy [46,142]. An 

analysis of the feasibility and consistency of different features for signature 

verification is thoroughly investigated in [106]. 

 

Primarily, our interest is to find the most reliable and suitable set of dynamic 

features to be used in our approach, so we decided to consider global features for 

many reasons. Such features for one reason are simple to compute with a minimum 

preprocessing effort to be performed on raw data, and there is no need to maintain 

the original signatures once the features are extracted. In fact, using only small 

number of such features achieved approximately 89% accuracy [88]. 

 

 

Table 3.1 lists the 31 global features that we have used in this study. They represent 

a collection of some of the statistical features that have been widely used, studied, 

and reported in literature [46,96,106]. 
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Table ‎3.1 Implemented features 

Feature identifier Description 

1.  SNx Mean of all normalized coordinates in the X plane 

2.  SNy Mean of all normalized coordinates in the Y plane 

3.  Smax Number of times the pen was lifted over the entire 

signature. 

4.  Svx Mean of velocity over all coordinates in the X plane 

5.  Svy Mean of velocity over all coordinates in the Y plane 

6.  Sax Mean of acceleration over all coordinates in the X plane 

7.  Say Mean of acceleration over all coordinates in the Y plane 

8.  SR Rhythm or the speed of pen tracing out the 

signature[165] 

9.  RMSvx Root mean square of velocity in the X plane 

10.  RMSvy Root mean square of velocity in the Y plane 

11.  RMSax Root mean square of acceleration in the X plane 

12.  RMSay Root mean square of acceleration in the Y plane 

13.  MaxAx Maximum acceleration in the X plane 

14.  MaxAy Maximum acceleration in the Y plane 

15.  MaxVx Maximum velocity in the X plane 

16.  MaxVy Maximum velocity in the Y plane 

17.  R Correlation co-efficient 

18.  Zvx Sign changes within velocity in the X plane[106] 

19.  Zvy Sign changes within velocity in the Y plane[106] 

20.  Zax Sign changes within acceleration in the X plane[106] 

21.  Zay Sign changes within acceleration in the Y plane[106] 

22.  xAz Number of zeroes in acceleration in the X plane[106] 

23.  yAz Number of zeroes in acceleration in the Y plane[106] 

24.  Savxy Root mean square of (x,y) coordinates 
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25.  Npoints Number of x,y within signature 

26.  Sdvx Standard deviation of velocity in the X plane 

27.  Sdvy Standard deviation of velocity in the Y plane 

28.  Sdax Standard deviation of acceleration in the X plane 

29.  Sday Standard deviation of acceleration in the Y plane 

30.  Dx Sum of changes between each consecutive points within 

X-coordinate (signature path horizontal length: total 

displacement in the X plane) 

31.  Dy Sum of changes between each consecutive points within 

Y-coordinate (signature path vertical length: total 

displacement in the Y plane) 

 

 
The following is an explanation of some of the features used in this chapter 

 

Mean velocity in the X plane Svx = 
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Mean velocity in the Y plane Svy = 
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Mean acceleration in the X plane Sax= 
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Mean acceleration in the Y plane Say=  
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Mean Rhythm SR= 
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Root Mean Square of velocity in the X plane RMSvx =  
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Root Mean Square of acceleration in X plane RMSax = 
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Root Mean Square of acceleration in the Y plane RMSay = 
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Correlation co-efficient R=  
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Standard deviation of velocity in the X plane Sdvx = 
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Standard deviation of velocity in the Y plane Sdvy =   
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Standard deviation of acceleration in the X plane Sdax = 
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Standard deviation of acceleration in X plane Sday = 
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Sum of changes between each consecutive points within X-coordinate Dx = 
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Sum of changes between each consecutive points within Y-coordinate Dy =  
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3.2.4 Classification 

The problem of signature authentication is considered a two-class pattern recognition 

mission, where the signature sample is classified either genuine or not. 

Unfortunately signatures tend to vary slightly each time they are captured. In 
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addition, variations in acquired samples and template data make signature 

verification a challenging pattern recognition problem. 

 

To deal with the problem of online signature authentication, researchers have 

investigated a variety of techniques which include DTW [86], signal correlation 

[126], neural networks such as MLP [108], time-delay neural networks [20], HMM 

[37,188], Euclidean and other distance measure approaches[74]. Other classification 

paradigms such as k-nearest neighbor (k-NN) methods or support vector machine 

(SVM) are also investigated in [2] and [55] respectively. 

 

Throughout this thesis we considered a number of classification algorithms to 

evaluate the benefits of the integrated behavioural/psychosocial biometrics. These 

algorithms are quite popular and well known in pattern recognition literature. Yet, 

with few notable exceptions, their usefulness for biometric recognition is still to be 

evaluated. Among the wide diversity of classifiers, we selected the Naïve Bayes 

classifier and the k-NN algorithm for comparison as they are both distinguished, 

clear, and they both perform well in many classification problems. 

 

3.2.4.1 Naïve Bayes Classifier 

The Bayesian method is one of the most popular machine learning methods. 

Bayesian networks are now an increasingly powerful tool for reasoning under 

uncertainty, supported by a wide range of mature academic and commercial software 

tools. They are now being applied in many domains, including environmental and 

ecological modelling, bioinformatics, medical decision support, many types of 

engineering, robotics, military, financial and economic modelling, education, 

forensics, emergency response, surveillance, and so on [123]. 

A simple form of Bayes networks is Naïve Bayes classifier [50,107]. Naïve Bayes 

classifier also known for his inherent robustness to noise is characterized by the 

assumption that the feature attributes are independent of one another given the class 

and all the probability estimations from the training sample are accurate. The naïve 

Bayes have a history as a successful classifier in text classification [78,120]. 

 

Naïve Bayes classifiers classifier uses the Bayes theorem to predict the category for 

each unseen instance. Naïve Bayes classifiers operate on data sets where each 

example x consists of training samples made up from discrete-valued attributes (a
1
, 

a
2
 ,..., a

i
) and the target function f(x) can take on any value from a pre-defined finite 

possible classes set V=(v
1
, v

2
 ,..., v

j
).‎For‎example,‎let‎x‎be‎a‎description‎of‎the‎day‘s‎

weather conditions (e.g. sunny, windy or rainy), and let V be a set of activities (e.g. 

play golf, walk, stay at home). If the task is to predict the day‘s‎activity‎on‎the‎basis‎

of the weather condition, f(x) would be a mapping from x to V. Classifying test 

instances involves calculating the most probable target value vmax which is defined 

as 
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With the use of Bayes theorem, vmax can be rewritten as [123] 
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With assuming that features values are class-conditional independence, given the 

target class, the formula 3.21 can be rewritten as 
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Where V is the target output of the classifier and P(ai|vj) and P(vi) can be calculated 

based on their frequency in the training instances. Thus, Naïve Bayes assigns a 

probability to every possible value in the target range. The resulting distribution is 

then condensed into a single prediction. Further details on the Naive Bayes can be 

found in [122]. 

 

 

3.2.4.2 k-Nearest Neighbor (k-NN) Classifier 

 

The k Nearest Neighbors classifier (k-NN) is an instance-based learning algorithm 

which has been studied in pattern recognition, data analysis, and data mining 

problems for a long time [166]. The k-NN is a supervised machine learning 

algorithm which is used for classification based on the closest training samples in the 

feature space. For the purpose of identification the training objects are represented as 

vectors in a multidimensional feature space, each with a class label. In this method, 

an unknown object is assigned to the class that is most frequent among its k nearest 

neighbours. 

 

According to the algorithm, the value of k should be a positive integer between 1 and 

the total number of observations. If k = 1, then the algorithm assigns the objects to 

the class of its nearest neighbour. The k-NN algorithm is commonly based on 

measuring the distance test sample and the specified training samples using the 

Euclidean distance discriminant function [29]. The Euclidean distance metric has the 

following form 
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where, as defined earlier, T is the test signature and iX  and i  are, respectively, the 

i
th

 feature‘s‎ reference‎ mean and reference standard deviation. Other kinds of 

distance measures like the Manhattan distance could be used also. 
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In all the experiments throughout this thesis, we have used the Euclidean distance 

based k-NN classifier. The advantage of this classifier is its conceptual simplicity 

and the fact that it does not require any training. The basic idea of k-NN algorithm is 

presented in Figure 3.5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure ‎3.5 An illustration of k-NN technique. 

 

The unknown sample (the circle) could be classified either to the first class of 

squares or to the second class of triangles based on the value of k. If k = 3 it will be 

assigned to the triangle class as there are 2 triangles and only 1 square inside the 

inner circle. But if k = 5, then it will be assigned to the square class as there are 3 

squares and 2 triangles inside the outer circle. 

 

 

3.2.5 Feature Selection Techniques 

 

Feature selection, also known as variable selection, feature reduction, attribute 

selection or variable subset selection, is critical in designing a biometric based 

recognition system. Feature selection techniques help in recognizing and eliminating 

much of the irrelevant and redundant features. Consequently, it reduces the 

dimension of feature space, which is important for the success of online 

implementation in biometric recognition. Moreover, researchers have shown 

[3,101,102,124,148] that irrelevant and redundant training features can negatively 

effects the classifier performance. 

 

A number of feature selection algorithms can be applied to perform feature selection 

of biometrics features. In this chapter, we will study the effect of three feature 

selection techniques: Rough set, PCA and correlation-based feature selection on 

online signature identification. 

? 
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3.2.5.1 Rough Set Based Feature Reduction Technique 
 

Rough‎sets‎ theory‎was‎first‎introduced‎by‎the‎Polish‎computer‎scientist‎Zdzisław‎I.‎

Pawlak‎in‎the‎1980‘s‎as a new mathematical tool to handle uncertainty, imprecision 

and vagueness of decision system [139]. Since then, large number of researchers 

contributed to the further development of the field by extending and applying the 

theory. It is based on the concept of approximation spaces and models of the sets and 

concepts. Due to the fact that the rough set had shown ability to extract dependency 

rules directly from data itself and it do not require any preliminary or further 

information about data, this theory has been applied successfully in many domains. 

The two main applications of the classical Rough Sets theory are in feature reduction 

and classification. It was later applied within other areas such as unsupervised 

learning. 

 

First we will present here some preliminaries of rough set theory, which are relevant 

to this chapter. For details we refer the reader to [94,113,140]. 

 

 

1. Rough set theory preliminaries 
 

In rough sets theory, the data is described as a table, called a decision table or some 

references information system. Rows of a decision table correspond to objects 

(observations), and columns correspond to features (attributes). In an information 

system, every object of the universe is associated with a set of features to describe it. 

Objects characterized by the same information are indiscernible in consideration of 

the available information about them. Any set of indiscernible objects is called 

elementary sets (neighborhood). Any union of elementary sets is called a crisp 

(precise) set; and any other set is referred to as rough (imprecise, vague). 

 

The rough set approach is characterized by its lower and upper approximations to 

handle the inconsistent information. The lower approximation consists of all objects 

which surely belong to the subset of interest whereas the upper approximation 

contains all objects which possibly belong to the subset. The difference between the 

upper and the lower approximation constitutes the boundary region. 

 

Definition 1 (Information System, [94]) 

An information system can be represented as 

 

),,,( aa fVUS 
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Where U — a finite , nonempty, closed set of objects(observations, examples) called 

the universe;   — a nonempty, finite set of features (attributes); DC in 

which C is a finite set of condition features and D is a finite set of decision features; 

For each a is called the domain of a; af  — an information function 

aa VUf : . 
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Definition 2 (Indiscernibility Relation , [94]) 

Indiscernibility, which refers to the similarities among different objects, is a main 

concept in rough set theory. Every subset of features AB   induces indiscernibility 

relation 
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For every x   U, where there is an equivalence class Bx][ in the partition of U 

defined by BInd . The indiscernibility relation is an equivalence relation and it splits 

the objects into a family of equivalence classes, called elementary sets. 

 

Definition 3 (Lower and Upper Approximation, [94]) 

In the rough sets theory, the approximation of sets is introduced to deal with 

inconsistency. A rough set approximates traditional sets using a pair of sets named 

the lower and upper approximation of the set. Given a set AB  , the lower 

approximations of a set UY   are defined as 
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or the set of all elements of U  which can  be with certainty classified as elements of 

X. 

The upper approximation of X with respect to B is defined as 

 

}][|{  XxxXB B  ‎3.27 

or all objects whose equivalence classes have a nonempty intersection with X. In 

other word, it contains all objects which can possibly be classified as belonging to 

the set X. Figure 3.6 shows an example where the indiscernibility relation partitions 

the domain into grids, the semi oval shape is the set to be approximated, the dark 

grey area is the lower approximation and the light grey area is the upper 

approximation. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure ‎3.6 Representation of the set approximations 
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Definition 4 (Lower Approximation and Positive Region, [94]) 

The positive region )(DPOSC  is defined by 

 


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)(DPOSC  is the set of all objects in U that can be uniquely classified by elementary 

sets in the partition U/IndD by means of C [94]. 

 

 

Definition 5 (Upper Approximation and Negative Region, [94]) 

The negative region NEGC(D) is defined by 


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that is the set of all objects can be definitely ruled out as member of X. 

 

Definition 6 (Boundary Region, [74]) 

The distance between upper and lower approximations of a set X constitutes the 

boundary region that consists of equivalence classes having one or more elements in 

common with X. The boundary region it is defined by the following formula 
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A approximation of a rough set can be described using the accuracy of the 

approximation which is measured as the ratio of the lower and the upper 

approximations. 

 

XBXBXB /)( 
 ‎3.31 

where   denotes the cardinality of X . X is definable with respect to B if 

,1)( XB  otherwise X is rough with respect to B. 

 

 

2. Reduct and Core 
 

Definition 7 (Degree of Dependency, [94]) 

The degree of dependency between D and C can be defined as: 
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Definition 8  (Reduct) 

Given a classification task mapping a set of features C to a set of class labels D, a 

reduct set is defined with respect to the power set P(C) as the set CR  such that: 
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That is, the reduct set is the set of all possible reducts of the equivalence relation 

denoted by C and D.  

 

3. Significance of the Attribute 
 

Significance of features expresses the importance of the features by assigning a real 

number from the closed interval [0, 1] to it. 

 

Definition 9 (Significance, [94]). 

For any feature ,Ca we define its significance  with respect to D as follows: 
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A reducted feature set can be found by designing a heuristic attribute reduction 

algorithm through selecting the attributes with the maximum significance 

interactively based on the significance of a feature [110]. 

 

 

4. Decision Rules 
 

In the perspective of supervised machine learning, an important task is to discover 

the rules of classification from the instances provided in the decision tables. The 

decision rules capture hidden patterns and predict the class of unseen objects. Rules 

represent the extracted knowledge which can be used when classifying unseen 

objects and the dependencies in the dataset. Whenever the reduct is found, the task 

of creating specific rules for the value of the decision feature of the information 

system is practically completed. 

 

To convert a reduct into a rule, one only has to bind the condition feature values of 

the object class from which the reduct originated to the corresponding features of the 

reduct. Afterwards, to complete the rule, a decision part comprising the resulting part 

of the rule is added. Rules generated from a training set will be used to classify 

unseen objects. 

 

5. Rough Sets Data Analysis Techniques 
 

In this section, we discuss in detail the proposed rough set scheme to analyse online 

signatures which consists of two stages. These stages include data discretization and 

attribute reduction. 

 

Stage 1: Data discretization 
 

Data discretization , also referred to as discretization in machine learning, 

significantly improves the performance of data mining algorithm by 

converting the original continuous input space into finite set of intervals with 

least loss of information. It is a familiar data transformation procedure that 
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involves finding the discretization intervals or the cut-off points in the data 

sets which divide the data into intervals. After that, it maps the whole values 

lying within an interval to the same value. Data discretization concept will 

lead to reducing the size of the attributes value set. In this chapter we adopt 

the rough sets with boolean reasoning (RSBR) algorithm proposed by Zhong 

et al. [193] for the discretization of continuous-valued attributes. The main 

advantage of RSBR is that it combines discretization of real valued attributes 

and classification. 

 

 

Stage 2: Attribute reduction 
 

We apply a dynamic reduct technique to integrate a decision rule from 

decision table. The process of computing dynamic reduct can be seen as a 

combining normal reduct computation with re-sampling technique. Simply 

the idea consists of three steps. The first step is randomly sampling a family 

of subsystems from the universe. In the second step, computes the reduction 

of each sample. The final step is to keep the reduct that occur most frequently 

as it is the most stable one. 

 

 

 

3.2.5.2 Feature selection using PCA 
 

Principal component analysis (PCA), also known as Karhunen–Love transform, is 

one of the most widely used linear dimensionality reduction algorithm. PCA was 

introduced for the first time by Karl Pearson (1901). PCA is a linear transformation 

applied to a set of observations in order to obtain a new orthogonal coordinate 

system. This transformation is defined in such a way that the first axis lies along the 

direction of greatest variance in the data set, and each succeeding component in turn 

lies along the direction of the second greatest variance, and so on. These new axes 

are known as the principal components. 

 

PCA has been successfully used as an initial step in many pattern recognition 

applications by� first obtaining the principal components and then discarding the 

dimensions contributing the least to the variance of the data set. The formulation of 

standard linear PCA, mapping the original N-dimensional biometric feature space 

into an M-dimensional feature space where m < n, is as follows. Let us consider a set 

of N feature vectors Xn, n = 1, ... , N, PCA finds a linear transformation W
T
 mapping 

the original N−dimensional feature space into an M−dimensional feature space. 

Denoting by 
nxmRW   a matrix with orthonormal columns, the new feature vectors 

coordinates yk are defined by the following linear transformation: 
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3.2.5.3 Correlation-based Feature Selection 
 

In this paper, we applied the correlation-based objective selection (CFS) algorithm 

which has been shown [58] to be quite successful in feature evaluation and selection. 

The CFS algorithm evaluates the importance of feature sets on the basis of the 

following hypothesis: "A good feature subsets is one that contains features highly 

correlated with the classification, yet uncorrelated to each other" [59]. 

 

The following objective function, also known as‎ Pearson‘s‎ correlation‎ coefficient,‎

gives the merit of a feature subset consisting of k features [59] 
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where zir  is the is average feature value of all feature-classification correlations and 

ijr is average value of all feature-feature correlations. The CFS based feature 

selection algorithm uses rzc to search the feature subsets using the best first search 

[60]. 

 

The CFS algorithm starts the search with evaluating of all the individual features as a 

separate subset. The algorithm retains the feature subset with the highest objective 

function. Afterwards, the feature subset space can be enlarged by adding all possible 

combinations of new features to the resulting combinations. The search process 

returns to the next unexpended subset if the new added feature does not show any 

improvement in its accuracy. The search will be aborted if the addition of new 

features to the subset does not show significant improvement. 

 

 

3.3 Database and Experiments 

This section describes the experimental setup, including database and the assessment 

protocol that we have built in order to evaluate the proposed authentication schemes. 

 

3.3.1 Database 

 

The proposed method has been started by building our own database to form the 

nucleus of a local database. It contains 2160 signatures gathered from108 different 

volunteer subjects. Among those subjects, 60 are females and two are left-handed. 

Each subject was asked to contribute 20 signatures collected in two sessions that 

were held two to four weeks apart. Ten signatures were collected from each subject 

during each session. An example of signatures of some volunteers who contributed 

to build the signature database is given in Figure 3.6. There were no constraints on 
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how to sign, so the subjects signed in their most natural way; in an arbitrary 

orientation. Therefore, there was a significant intra-class deformation and variation 

among signatures that belong to the same subject. Figure 3.7 depicts corresponding x 

and y profiles of two signatures from the same subject captured during different 

sessions. 

 

  
 

  
 

  
 

  
 

 

 

Figure ‎3.7 Example of some signatures of volunteers who contributed to the 

signature database 
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Figure ‎3.8 Two sample signatures from the same volunteer and their corresponding 

(x,y) coordinate profiles from the collected database 

 

3.3.2 Experiments 

A number of experiments were conducted to evaluate the classifiers as well as the 

discriminative potential of the feature sets. For all of the experiments throughout the 

thesis we implemented 10-fold cross validation. 

 

 

 

 

K-fold Cross-Validation 
 

Cross-validation is a method designed for estimating the generalization error based 

on "resampling" [162]. Cross-validation technique allows using the whole data set 

for training and testing. In k-fold cross-validation procedure, the relevant dataset is 

partitioned randomly into approximately equal size k parts called folds and trained k 

times, each time leaving out one of the folds from training process, whilst using only 

the omitted fold to compute error criterion. Then the average error across all k trials 

is estimated as the mean error rate and defined as 
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where, ei is error rate of each k experiment. Figure 3.10 depicts the concept behind 

k-fold cross validation. 

k= 1 k=2 k=3 … k=K 

Train Train Validate  Train 

 

Figure ‎3.9 Data partitioning using k-fold cross-validation. 

 

The whole dataset is divided into K folds. One fold (k = 3, in this example) is set 

aside to validate the data of testing and the remaining K − 1 folds are used for 

training. The entire procedure is repeated for each of the K folds. 

 

 

 

A number of studies found that the value of 10 for k leads to adequate and accurate 

classification results [57]. Therefore, we have used k =10 folds for training and the 

remaining k-1 folds for testing in all the experiments conducted in this work. 

 

The first set of experiments was conducted using the entire database which contains 

2160 signatures. 

 

 Experiments 1 and 2: In these experiments, all 31 features shown in Table 

3.1 were used with the Naïve Bayes and k-NN classifiers. The correct classification 

rate achieved by the Naïve Bayes was 97.1%. Whereas, the k-NN classifier achieved 

98.33%. 

 Experiment 3: In this experiment, the rough set approach was used to find 

the minimal reduct set (Definitions 7 and 8) of features. This has resulted in the 

following 9 features: {1,2,3,4,5,8,10,11,30} from Table 3.1 which corresponds to the 

following set of features: {SNx, SNy, sMax, SVx, SVy, SR, RMSVy, RMSAx, Dx}. 

Using this features set with the Naïve Bayes classifier resulted in classification 

accuracy of 96.3%. Table 3.2 shows some statistics of the above minimal reduct set. 

 Experiment 4: In this experiment, the k-NN classifier was used with the 

Rough Set minimal reduct set comprised of nine features. The classification 

accuracy achieved was 95.41 %. 

 

 Experiments 5 and 6: In these experiments, the PCA was applied prior to 

classification to reduce the number of feature from 31 to 14. The classification 

accuracy achieved by the k-NN classifier was 90.83% and Naïve Bayes classifier 

achieved 88.19%. 
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Experiments 7 and 8: Applying the CFS algorithm has revealed 13 redundant and 

irrelevant features. This has resulted in the following 18 features: {SNx, SNy, St, 

SVy, SR, MaxxA, MaxyA, MaxyV, r, ZVx, ZVy, xAz, SAvxy, Npoints,Dx,Dy} 

from Table 3.1. The performance of 18 relevant online signature features, or feature 

subset, is also illustrated in Table 3.3. Using the 18 features set with the Naïve Bayes 

classifier resulted in classification accuracy of 98.01%. 

 

Table ‎3.2. Statistics of minimal reduct set 

Feature Mean Standard Deviation Correlation 

1 0.52 0.077 0.174 

2 0.512 0.086 0.117 

4 4.176 2.67 0.088 

5 -0.0004 00.000327 -0.224 

6 0.000297 -0.00035 -0.095 

9 0.719 0.386 -0.008 

11 0.011 0.004 0.181 

12 0.002 0.001 -0.087 

30 2520.437 1621.87 0.044 

 

 

Table 3.3 shows the summary of the results of the eight experiments carried above. It 

clearly demonstrates the suitability and superiority of using the proposed Rough Set 

approach for feature reduction in online signature identification. The Rough Set has 

achieved classification accuracy of 97.26% with 9 features only. 

 

 

Table ‎3.3 Summary of the entire database classification results 

Experiment Total 

number of 

signatures 

Number of 

Features 

Feature 

Reduction 

Classifier Accuracy 

rate % 

1 2160 31 - Naïve 

Bayes 

97.5 

2 2160 31 - k-NN 98.33 

3 2160 9 Rough set Naïve 

Bayes 

97.26 

4 2160 9 Rough set k-NN 95.41 

5 2160 15 PCA Naïve 

Bayes 

88.19 

6 2160 15 PCA k-NN 90.83 

7 2160 14 CFS Naïve 

Bayes 

98.01 

8 2160 14 CFS k-NN 98.14 

 

 

It can be observed from the Table 3.3 that the best performance for online signature 

recognition is achieved with k-NN classifier before applying any feature reduction 

technique. Overall, the performance of k-NN is better than naïve Bayes. The 

evaluation of 32 online signature features from the training set, using the Rough Set, 

PCA and CFS algorithms has revealed a number of redundant and irrelevant 
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features. The performance of PCA has been the worst and this may be due to the 

large number of features that make the repeated portioning of data difficult. The 

performance of CFS is better than the Rough Set. However, the performance of 

Rough Set is promising with considerably less number of features. 

 

As we mentioned earlier, the signatures were collected over 2 sessions, two to four 

weeks apart. In each session, 10 signatures were collected from each of the 108 

subjects. In the following 2 experiments we test each session separately. The next set 

of experiments is carried over the dataset gathered during the first enrolment session, 

which contains of 1080 signatures. 

 

 Experiments 9 and 10: in these experiments, all 31 features shown in Table 

3.4 were used with the Naïve Bayes and k-NN classifiers. The best classification rate 

achieved by the k-NN classifier was 98.51%, whereas the Naïve Bayes achieved 

96.75%. 

 

 Experiment 11: In this experiment, the Naïve Bayes classifier resulted in 

classification accuracy of 95.18% with the Rough Set minimal reduct set. 

 Experiment 12: In this experiment, the k-NN classifier was used with the 

Rough Set minimal reduct set comprised of nine features. The classification 

accuracy achieved was 95.83%. 

 Experiments 13 and 14: In these experiments, the PCA was applied to 

reduce the number of feature is from 31 to 14. The classification accuracy achieved 

by the k-NN classifier was 90.18% and Naïve Bayes classifier achieved 80.64%. 

 Experiments 15 and 16: In these experiments, the CFS was applied to 

reduce the number of feature is from 31 to 18. The classification accuracy achieved 

by the k-NN classifier was 98.05% and Naïve Bayes classifier achieved 96.48%. 

 

Table ‎3.4 Summary of first session dataset classification results 

Experiment Feature 

Reduction 

Number of 

Features 

Classifier Accuracy rate% 

9 - 31 Naïve Bayes 96.75 

10 - 31 k-NN 98.51 

11 Rough 9 Naïve Bayes 95.18 

12 Rough 9 k-NN 95.83 

13 PCA 15 Naïve Bayes 80.64 

14 PCA 15 k-NN 90.18 

15 CFS 14 Naïve Bayes 96.48 

16 CFS 14 k-NN 98.05 

 

 

The next set of experiments is carried over the dataset gathered during the second 

enrolment session. 



57 

 

 

 Experiments 17 and 18: In these experiments, all the 31 features shown in 

Table 3.1 were used with the Naïve Bayes and k-NN classifiers without applying any 

feature reduction technique. The correct classification rate achieved by the Naïve 

Bayes was 96.2%. Whereas, the k-NN classifier achieved 97.41%. 

 Experiment 19: In this experiment, the Naïve Bayes classifier resulted in 

classification accuracy of 95.92% with the minimal reduct set. 

 

 Experiment 20: In this experiment, the k-NN classifier was used with the 

minimal reduct set comprised of nine features. The classification accuracy achieved 

was 95%. 

 Experiments 21 and 22: In these experiments, the two classifiers were 

trained and tested with the PCA-based reducted feature set. The classification 

accuracy achieved by the k-NN classifier was 89.53% and Naïve Bayes classifier 

achieved 95%. 

 

 Experiments 23 and 24: In these experiments, the two classifiers were 

trained and tested with the CFS-based reducted feature set. The classification 

accuracy achieved by the k-NN classifier was 97.4% and Naïve Bayes classifier 

achieved 96.01%. 

 

 

Table ‎3.5 Summary of second session dataset classification results 

Experiment Feature 

Reduction 

Number of 

Features 

 Classifier Accuracy 

rate% 

17 - 31  Naïve Bayes 96.20 

18 - 31  k-NN 97.41 

19 Rough 9  Naïve Bayes 95.92 

20 Rough 9  k-NN 95.00 

21 PCA 15  Naïve Bayes 95.00 

22 PCA 15  k-NN 89.53 

23 CFS 14  Naïve Bayes 96.01 

24 CFS 14  k-NN 97.40 

 

 

Tables 3.4 and 3.5 summarize the experimental results for the online signature 

identification in the two acquisition sessions. It can be seen that the best performance 

for online signature recognition is achieved with k-NN classifier before applying any 

feature reduction technique. Overall, the performance of k-NN is better than Naïve 

Bayes. The reason behind this performance drop is that the Naïve Bayes classifier is 

negatively affected by redundant attributes as a result of its primary assumption that 

all the attributes are conditionally independent [78,120]. 
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The difference in results between the two signing sessions was expected. The 

subjects themselves were less enthusiastic in completing the second signing session 

when they were approached few weeks later. This has resulted in higher intra-

variations in the signatures than those of the first session. 

 

The purpose of the feature reduction is to identify the significant features and 

eliminate the irrelevant of dispensable features to the learning task. The benefits of 

feature reduction are twofold: firstly, it considerably decreased the computation 

time. Secondly, it increases the accuracy of the resulting classification. Rough sets 

have been employed here to remove redundant conditional attributes from discrete-

valued datasets, while retaining their information content. This approach has been 

applied to aid classification of online signatures, with very promising results. The 

analysis of experimental results in Tables 3.3-3.5 suggests that the Rough Set-based 

feature subset selection is capable of effectively selecting the relevant online 

signature features more than PCA and CFS techniques. 

 

 

3.4 Summary 

Handwritten signature authentication is the process of verifying the identity of a 

person based on his/her handwritten signature sample. A novel online signature 

identification scheme based on global features is proposed. The information is 

extracted as time functions of various dynamic properties of the signatures. A 

database of 2160 signatures from 108 subjects was built. Thirty-one features were 

identified and extracted from each signature. 

 

Different feature reduction approaches and classifiers were applied to assess their 

suitability for this application The results presented in this chapter have 

demonstrated the success of using the proposed Rough set approach in feature 

reduction of online signatures. This resulted in a minimal set of nine features. The 

reported results from several experiments demonstrate the suitability and 

effectiveness of the Rough set approach in the application of online signature 

identification. 
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Chapter 4  
Iris Features Extraction 
using Dual-Tree Complex 
Wavelet Transform 

 

 

iometrics-based personal authentication systems have recently 

gained intensive research interest due to the unreliability and 

inconvenience of traditional authentication systems. Biometrics 

recently became a vital element of any successful person identification 

solutions as biometric traits cannot be stolen, shared or even forgotten 

[80]. 

Among biometric technologies, iris-based authentication systems bear 

more advantages than other biometric technologies do. Iris offers an 

excellent recognition performance when used as a biometric. Iris patterns 

are believed to be unique due to the complexity of the underlying the 

environmental and genetic processes that influence the generation of iris 

pattern. These factors result in extraordinary textural patterns that are 

unique to each eye of an individual and even distinct between twins [32]. 

B 
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Iris is a delicate circular diaphragm lies between the cornea and the lens of the 

human eye. The human iris pattern varies between different individuals. The iris is 

considered to be one of the most stable biometric [80,72,154], as it is believed to not 

alter‎ significantly‎ during‎ a‎ person‘s‎ lifetime.‎ Iris‎ recognition‎ is‎ the‎ most‎ precise‎

personal identification biometric. 

Compared with other biometrics, such as fingerprints and face, iris-based 

authentication has a fairly short history of use. The idea of an automatic iris 

authentication procedure was conceptualized and patented by Flom and Safir in 1987 

[49]. Most of the common approaches reported in the literature are based on iris 

code and integral-differential operators suggested by Daugman [33,34,136]. 

 

The aim of this chapter is to explore the potential of deploying dual-tree complex 

wavelet transform and support vector machine in iris classification. The remainder of 

this chapter is organized as follows. The first three sections describe some relevant 

background and related work. Descriptions of the proposed technique for iris image 

preprocessing and feature extraction are given in Sections 4.4 and 4.5. Experimental 

results, comparisons with other methods, and discussions are reported in Section 4.6. 

Finally, Section 4.7 concludes the chapter. 

 

 

4.1 Iris Anatomy 

Iris‎ is‎ the‎―coloured ring of tissue around the pupil through which light...enters the 

interior‎ of‎ the‎ eye.‖‎ [136] The iris is located in front of the crystalline lens, and 

divides the anterior aqueous into the anterior and posterior chambers. The pigmented 

fibrovascular tissue known as stroma characterized the iris.‎The‎iris‘s role is to help 

in regulating the amount of light that enters the eye. The iris is made up of smooth 

muscle fibers known as sphincter and dilator, which adjust pupil size with the 

purpose of controlling the amount of light passing through the pupil. The sclera - 

often referred to as white or white of the eye- is the outer white coat of connective 

tissue and blood vessels surround the iris. It together with internal fluid pressure 

maintains the eye shape and cares for its delicate internal components [125]. The 

surface of the eye is covered by a curved band of strong, clear tissue called the 

cornea. It is the first and most powerful lens in the human eye's optical system. The 

cornea is transparent window of the eye through which light passes. The 

transparency of the cornea is due to the fact that, unlike most tissues in the body, it 

does not contain any blood vessels. However, the cornea receives its nourishment 

from the tears and aqueous humor in the chamber behind it. The anatomy of the eye 

is shown in Figure 4.1. 

 

Iris naturally has a rich, distinctive and complex pattern of crypts, furrows, arching, 

collarette and pigment spots [136]. Each human being iris has a distinctive texture 

which is believed to be determined randomly during the embryonic development of 

the eye [32]. They are also believed to be safely considered unique even between the 

left and right eye of the same person [31]. Although iris colour can change based on 

the levels of melanin concentration and distribution within the iris stroma, yet for 

most‎of‎a‎human‘s‎lifetime‎the‎appearance‎of‎the‎iris‎is‎relatively‎constant‎[141]. 
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Figure ‎4.1 Diagrammatic view of the anatomy of the eye, adapted from [125] 

 

 

 

4.2 Iris as a Biometric 

 

 

Iris recognition as a reliable method for identity authentication is playing an 

important role in many mission-critical applications such as access control and 

border checkpoints for several reasons [16]: 

 

 Iris is an internal organ of the eye, physically protected from external 

environment by the cornea. This makes it more consistent than fingerprints which 

are more susceptible to worn out due to age or manual labour. 

 

 As the iris starts to develop in the third month of gestation, the structures 

creating its pattern are mainly completed by the eighth month [141]. Then it does not 

vary throughout one's lifetime. Furthermore, the forming of iris depends on the 

initial environment of embryo. Therefore, the texture patterns of the iris don‘t‎

correlate with genetic determination. Consequently irises of genetically identical 

twins are extremely distinct. Actually, the left and the right irises of the same person 

are unique [9]. 
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 Iris-based technologies have demonstrated high levels of performance, as iris 

is stable [8]. Moreover, it is impossible to surgically modify the pigmentation and/or 

colour of the iris without unacceptable risk to damage the vision. 

 

 The physiological reaction of the iris to light sources provides one of the 

easiest liveness detection practices against spoofing attack. 

 

 Iris recognition efficacy is rarely hindered by glasses or contact lenses [10]. 

In addition, the non-contact acquisition procedure used in capturing iris images 

makes it more convenient than fingerprints which mostly use optical touch based 

sensors. 

 

 Among biometrics, iris has one of the smallest outlier populations, where few 

people cannot use or enrol using this technology [109]. 

 

Despite the aforementioned advantages of using iris recognition, the acquisition of 

satisfactory quality iris images for iris recognition is a critical yet challenging step 

[34]. It may act very poorly when deployed in the real-time applications, especially 

for recognition at a distance. Besides, the iris is usually located at the back of a 

curved and reflecting surface and typically covered by eyelashes and it is partially 

occluded by eyelids. 

 

 

4.3 Iris Recognition System 

Since the beginning of the iris recognition research, many different iris recognition 

systems have been developed [54, 98]. Perhaps the most successful and most well-

known iris recognition algorithm, on which the state-of-the-art systems are based, is 

the algorithms developed by Professor John Daugman. The main stages of any 

typical iris recognition system include iris preprocessing, feature extraction and 

classification. Figure 4.2 illustrates the key phases of an iris recognition system 

based on the approach of Daugman [147]. 

 

The initial stage involves iris localization, iris normalization and image 

enhancement. The first step consists in localizing the iris area between the inner 

(pupillary) and outer (limbic) boundaries, with prior assumption that each border is 

either circular or elliptical. This process also obliges detection and removing any 

specular reflection, eyelash or eyelids noise from the image prior to segmentation. 

So as to overcome the differences in the pupil size and in the acquired images and to 

ensure consistency between eye images, the original segmented iris region is usually 

mapped into a fixed length and dimensionless pseudo-polar coordinate system. This 

technique‎ is‎ referred‎ to‎ as‎ ―Daugman‘s‎ Rubber‎ Sheet‖‎ [32]. The next step is to 

extract distinctive features from the iris texture pattern, with the intention that 

comparisons between templates can be made. 
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Regarding feature extraction, the existing iris recognition algorithms can be 

classified into three major categories: phase-based image matching [34], zero-

crossing representation [16] and texture analysis based approaches [185]. On the 

final stage, a comparison between the captured iris and the stored templates is made 

using matching metric. The matching metric will yield a measure of resemblance to 

compare the stored iris template with the claimed iris 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure ‎4.2 Block diagram for an iris recognition system 

 

 

Quite a lot of researchers have contributed to the maturation of iris biometric 

technology, we will briefly review some of the key publications in this area. 

Daugman [32,34] applied Gabor wavelets filtering to encode the iris regions and 

extract the phase information of iris textures to create a 2048 bit (256 bytes) of iris 

template. The Hamming distance is used to compare the stored iris template with the 

claimed iris. Wildes et al. [185] represented another iris recognition system that 

decomposed the distinctive spatial characteristics of the iris into four levels 

Laplacian pyramid and used a normalized correlation for matching. Boles and 

Boashash [16] detected zero crossings of one-dimensional dyadic wavelet transform 

with various resolution levels over concentric circles on the iris. Both the position 

and magnitude information of zero-crossing representations were used to measure 

the similarity between the recognition and enrolment images. 
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Ma et al. [114] proposed an iris texture analysis method based on using multi-

channel Gabor filtering to capture both global and local details in the iris. Ma et al. 

considered the characteristics of the iris as a sort of transient signals and identified 

the local sharp variation points as iris features. Lim et al. [111] used 2D Haar 

wavelet transform to decompose the iris image into four levels and quantized the 

fourth-level high-frequency information to form an 87-bit code. The researchers 

improved the efficiency and accuracy of the proposed system by using a modified 

competitive learning neural network (LVQ). Sun and Tan [176] proposal is based on 

using ordinal measures for iris feature representation with the objective of 

characterizing qualitative relationships between iris regions rather than precise 

measurements of iris image structures. They demonstrated that ordinal measures are 

intrinsic features of iris patterns and largely invariant to illumination changes. 

 

 

4.3.1 Proposed Approach 

As stated before, segmentation plays a crucial role in the overall achievement of the 

iris recognition system. Figure 4.3 below show a block diagram for the suggested 

approach. 

 

 

 
 

Figure ‎4.3 Block diagram for the suggested iris recognition approach 

 

In the following sub-sections we will describe the proposed technique which starts 

with the detection of pupil and iris boundaries regions and isolating eyelids and 

eyelashes. Followed by extracting the features and conclude with classifying the 

processed iris pattern. 
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4.3.2 Iris Database 

 

All the experiments in this thesis were conducted on the Chinese Academy of 

Sciences—Institute of Automation (CASIA) eye image database version 1.0 [21]. 

The CASIA iris database includes 756 frontal ―non-ideal‖‎iris images that are taken 

from 108 volunteers with 7 images from each person. The eye images are mainly 

from persons of Asian descent. The eyes of the Asian decent are characterized by 

their heavily pigmented irises along with dark eyelashes. 

 

The database was collected over two sessions over a period of two months, where 

three samples were collected in the first session and the other four in the second 

session. The images were captured specially for iris recognition research using 

specialized digital optics. The iris images are greyscale bit-map with a resolution of 

320х280. Figure 4.4 below show a number of sample images from the CASIA iris 

database. 

 

     
 

     
 

     
 

Figure ‎4.4 Iris image samples from CASIA V1.0 database 
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4.3.3 Iris Preprocessing 

 

The primarily step in iris segmentation is to distinguish the iris texture from the input 

eye image. The first step in any iris recognition system is to localize the iris area 

between the inner (pupillary) and outer (limbic) boundaries, usually with prior 

assumption that each border either circular or elliptical. Researchers have proposed 

different algorithms for iris detection [19,31,33,34,185]. This process also obliges 

detection and removing any specular reflections of illumination, eyelash or eyelids 

occlusions from the image prior to segmentation. Segmentation plays an essential 

role in the overall success of any iris recognition process, as image parts that are 

incorrectly considered as iris pattern data will eventually lead to poor recognition 

rates. 

 

 

4.3.4 Iris and Pupil Localization 

The primary step in any iris recognition system is to localize the iris area between 

the inner and outer boundaries. Key steps involved involve [19] 

(i)   Pupil localization 

(ii)  Outer iris localization 

(iii) Eyelids detection 

(iv) Eyelashes detection. 

 

Well-known methods such as the Integro-differential, Hough transform and discrete 

circular active contour models have been successfully applied in iris recognition. In 

the following, these methods are briefly described. 

 

 

1. Daugman's Integro-differential Operator 

This is by far the most cited technique and most important work [117] in the iris 

recognition literature. The Daugman system is patented [33] and the rights are now 

licensed to Iridian Technologies. The author assumes both pupil and iris has circular 

boundaries and applies Gaussian filter for smoothing and integration operator along 

the iris circle. This method tries to find a circle in the eye image with maximum 

change in grey level difference with its neighbours. First, due to significant contrast 

between iris and pupil regions the pupil boundary is localized. Then, using same 

operator with difference radius and parameters the outer boundary is detected. The 

integro-differential operator equation for detecting the iris boundary by searching the 

parameter space is 
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where ),( yxI represents the original grayscale eye image. Parameters ),,(  yxr  

represents a circle of radius r and centre coordinates (xo,yo), respectively. The 
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symbol ∗ denotes convolution and )(rG is a radial smoothing Gaussian function 

with center r and standard deviation σ and defined as 
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The above algorithm is applied twice, to get the boundaries of iris first then the 

boundaries of pupil. 

 

 

2. Hough Transform 

The Hough transform is a standard computer vision algorithm concerned with the 

identification of positions of arbitrary shapes. The conventional Hough transform 

was concerned with the identification of straight lines in edge-enhanced images, but 

later the Hough transform has been modified to identify positions of circles, ellipses 

and arbitrary shapes [167]. The main advantage of the Hough transform technique is 

that it is robust with respect to gaps in the shape boundary. 

 

The circular Hough transform has been employed to determine the radius and centre 

coordinates of the pupil and iris regions by Wildes et al. [31], Kong and Zhang [95], 

Tisse et al. [179], and Ma et al. [115]. Wildes technique start with converting the 

image intensity information is into a binary edge map followed by use of a circular 

Hough transform [193] to localize iris boundaries. In a circular Hough transform, 

images are analysed to estimate the three parameters of (xo , yo, r) using following 

equations: 
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where (xi , yi) is an edge pixel and i is the index of the edge pixel 
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The limbus and pupil are both modelled as circles and the parametric function g is 

defined as 
222 )()(),,,,( ryyxxryxyxg oioiooii 
    ‎4.5 

 

The location (x0 , y0 , r) with the maximum value of H(xo , yo , r) is chosen as the 

parameter vector for the strongest circular boundary. Wilde‘s system models the 

eyelids as parabolic arcs. The upper and lower eyelids are detected by using a Hough 

transform based approach similar to that described above. The only difference is that 

it votes for parabolic arcs instead of circles. 
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3. Discrete Circular Active Contours 

Ritter proposed an active contours model to locate the pupil and iris boundaries 

within images [153]. First, the variance image was computed from the original 

image in order to improve accuracy. Afterward, an active contour model with a 

starting point in the centre of the pupil is initiated and moved within the iris image 

under the influence of using internal and external forces. The movement of the 

contour is based on the composition of the internal and external forces over the 

contour vertices. Along the active contour, the vertex moves from time t to time t +1 

according to 
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where vi represents the position of the vertex at a specific time t, Fi and Gi and 

represent the internal and external forces, respectively. The internal forces are 

calibrated so that the contour forms a globally expanding discrete circle. The 

external forces are usually found using the edge information [117]. 

 

 

4.3.5 Detecting pupil and iris boundaries 

Since pupil is the largest black area in the intensity image, its edges can be easily 

detected from the binarized image with using suitable threshold on the intensity 

image. With the assumption that the pupil and iris have circular shapes, Hough 

transformation can be used to detect edges and links edge forming iris areas 

especially if the shape of the object is known in advance. This involves first 

employing Canny edge detection technique to create an edge map. The Canny 

technique finds edges by looking for local maxima of the gradient of I. The gradient 

is calculated using the derivative of a Gaussian filter. This technique uses two 

thresholds, to detect strong and weak edges, and includes the weak edges in the 

output only if they are connected to strong edges. This technique is therefore less 

likely than the others to be fooled by noise, and more likely to detect true weak 

edges [118]. 

 

As suggested by Wildes et al. [185] Gradients were biased in the vertical direction 

for the outer sclera boundary. Whereas, the vertical and horizontal gradients were 

weighted equally for the inner pupil boundary. The reason behind using the vertical 

coefficients when performing a circular Hough transform for detecting the outer 

sclera boundary is that it should reduce the influence of the eyelids since eyelids are 

usually horizontally aligned. 

 

To increase the efficiency and accuracy of the circle detection process, the Hough 

transform was performed first for the sclera boundary, then for the pupil boundary 

within the iris region. Figure 4.5 contains some of the images of localized irises from 

the CASIA database. 
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Figure ‎4.5 Illustration the results of the proposed iris segmentation technique 

 

 

4.3.6 Isolating eyelids and eyelashes 

Processing iris images is a challenging task since the iris region can be occluded by 

eyelids or eyelashes. This will cause a significant difference between the intra- and 

inter-class comparisons. Conventional techniques for isolating eyelids and eyelashes 

have several drawbacks. Firstly, the process of detecting the eyelids and eyelashes is 

complex and computationally expensive. Secondly, conventional techniques demand 

extra memory requirements to store the generated noise mask for each iris template.  

 

Lastly, the classification accuracy is expected to be degraded as several tracks that 

existed nearby the eyelid or pupil regions are badly corrupted. Therefore, we decided 

to isolate the effect of the eyelids and eyelashes by using only the left and right parts 

of the iris area for the iris recognition. Most of the methods extract the complete iris 

image, but we plan to exclude these parts of the iris image for recognition. The 

process of detecting the eyelids and eyelashes is depicted in Figure 4.6 below. 
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Figure ‎4.6 Figure Examples of extracted iris area occluded by the eyelashes and/or 

upper and lower eyelids 

 

 

Eyelids were first detected by first fitting a line to the upper eyelid using the linear 

Hough transform. A second horizontal line is then drawn, which intersects with the 

first line at the iris edge that is closest to the pupil [117]. This process is illustrated in 

Figure 4.6 and is done for both the top and bottom eyelids. The second horizontal 

line allows highest isolation of eyelid regions. Canny edge detection is used to create 

an edge map, and only horizontal gradient information is taken. If the maximum in 

Hough space is lower than a set threshold, then no line is fitted, since this 

corresponds to non-occluding eyelids. Besides, the lines are constrained to lie 

outside the pupil region, and inside the iris region. 

 

The process is concluded by trimming the iris area above the upper boundary of the 

pupil and the area below the lower boundary of the pupil. Figure 4.7 illustrates the 

proposed technique. 

 

 

     

(a)           (b)                     (c) 

Figure ‎4.7 Example of localized iris where the upper and lower parts is occluded and 

the segmentation result, black regions denote detected eyelids and eyelashes regions. 

(a) original image, (b) and (c) localized iris region 

 

 

Afterward, we apply histogram equalization to enhance the contrast of segmented 

iris images [118]. Histogram equalization method is widely used in image 

processing, in order to enhance the images global contrast of images by adjusting 

image intensities. Through this adjustment, it reassigns the intensity value of the 

pixels based on the image histogram. This process assigns the intensity values of the 

input image such that the output image contains a uniform distribution of intensities.  
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Let j be the intensity value of a pixel in the original image. The new value k is given 

by: 





j

i

i

T

N
k

0          ‎4.7 

 

 

where Ni is the number of pixels with intensity value i and T is the total number of 

pixels that the image contains. Figure 4.8 shows the result of histogram equalization. 

 

 

        

           (a)      (b) 

Figure ‎4.8 Result of histogram equalization 

(a) localized iris region (b) localized iris image after histogram equalization 

 

 

Once the iris region is segmented, the next step is to eliminate the translation 

variance by moving the centroid of the image to the centre of the iris image. For that 

reason, the image is normalized so that it fits into a resolution of 156x100 pixels. 

Example of the result of this process is shown in Figure 4.7. 

 

 

4.4 Feature extraction 

The iris has fascinating texture information. Therefore, it is attractive to search 

representation methods which can capture the local crucial information in an iris. 

There have been many techniques suggested in the literature for extracting unique 

and invariant features from the iris image. These techniques can employ either 

texture- or appearance-based features. An in-depth comparison of these two 

approaches, as well as information on several other less-well-known approaches, can 

be found in [19]. 

 

 

Wavelet techniques are successfully applied to a wide range of problems in signal 

processing, classification, data compression and denoising. Researchers in the iris 

recognition field have used a range of wavelets to analyse the iris texture [160,176, 

178]. The wavelet transform is a very powerful tool for structural texture analysis 

[137]. It is a linear operation that decomposes a signal into components that appear 

at different scales. Such decomposition has been thoroughly studied in signal 

processing and computer vision. For a more comprehensive description, the reader is 

referred to [1,160]. 
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Wavelet transform is based on the convolution of the signal with a dilated filter. 

However, it is well known that the ordinary discrete wavelet transform is not shift-

invariant because of the decimation operation during the transform. Therefore, any 

minor shift in the input signal can cause very different output wavelet coefficients. 

Moreover, ordinary discrete wavelet transform (DWT) is not appropriate for the 

analysis of high-frequency signals with relatively narrow bandwidth. To overcome 

some of the shortcomings of the DWT, Kingsbury [87] introduced the dual-tree 

complex wavelet transform (DT-CWT). 

 

 

2D Dual-Tree Complex-Valued Wavelet for Iris Analysis 

DT-CWT has improved directionality and reduced shift sensitivity and it is 

approximately orientation invariant [163]. The DT-CWT consists of real parallel 

wavelet transforms pair where the wavelets of one branch are the Hilbert transforms 

of the wavelets in the other. In this case, the wavelets in the two trees of the DT-

CWT can be considered as the real and imaginary parts of complex coefficients. 

Accordingly, any input image can be decomposed into its 6 directional subbands. At 

each scale, the DT-CWT generates 6 directional subbands with complex coefficients, 

oriented at ±15°, ±45°, and ±75°. The real (Ri) and imaginary (Ci) parts of an 

impulse responses of the complex wavelets filters under 6 directional subbands are 

illustrated in Figure 4.9. 

 

 

 
 

Figure ‎4.9 Complex dual-tree 2D wavelets and corresponding labels, adapted from [163] 

 

The one-dimensional DT-CWT decomposes the input signal f(x) by expressing it in 

terms of a complex shifted and dilated mother wavelet ψ(x)‎with associated scaling 

function ф(x), is defined as, 
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where Z is the set of natural numbers, j and l refer to the index of scale and transition 

factor respectively, sj0,l is the scaling coefficient and cj,l is the complex wavelet 

coefficient with 
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superscripts r denote the real part and i the imaginary part. The set 

 , in the 1D DT-CWT forms a tight wavelet 

frame with a redundancy factor of two. 

 

The final transformed real and imaginary coefficients of the 1D DT-CWT are 

computed using separate filter banks on parallel working on the same data with 

filters h0 and h1 for the real part, and g0 and g1 for the imaginary part, as illustrated in 

Figure 4.10 [163]. 

 

 

 

 
 

 

Figure ‎4.10 One-dimensional DT-CWT filterbank implementation to obtain real 

parts: h0 and h1 and imaginary parts: g0 and g1 for 1D signal, adapted from [87] 
 

 

 

The two-dimensional DT-CWT decomposes a 2D image f(x,y) through a series of 

dilations and translations of a complex scaling function and six complex wavelet 

functions , oriented‎in‎angles‎of‎θ‎={±15°,±45°,±75°}, i.e., 

 

   ‎4.9 

 

Thus, the decomposition of f(x,y) by exploiting the DT-CWT gives with one 

complex-valued low-pass subband and six complex-valued high-pass subbands at 

each level of decomposition, where each high-pass subband at the angles of {15
o
, 

45
o
, 75

o
, 105

o
, 135

o
, 165

o
}. 

 

http://www.sciencedirect.com/science?_ob=MathURL&_method=retrieve&_udi=B6WCX-4YM7KBK-1&_mathId=mml71&_user=1964532&_cdi=6750&_pii=S1077314210000676&_rdoc=1&_ArticleListID=1377450072&_issn=10773142&_acct=C000055633&_version=1&_userid=1964532&md5=03fa5fc2288036f47cc08f07cccfeaef
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4.5 Classification Stage 

In the field of iris recognition researchers have used a variety of wavelets to evaluate 

the iris texture [19]. Some techniques used the output of the wavelet transform to 

create a binary feature vector, by quantizing each real value into binary form by 

converting the positive value into 1 and the negative value into 0. Though, others 

have considered using the real-value output in building the feature vector, in our 

approach we have chosen to obtain the real-value output of decomposition level and 

use it to feed the classifier model. 

 

Regarding the classification algorithm, the most important thing is its capacity to 

discriminate, based on the available information. SVM has been chosen since it 

proven advantageous in handling large scale classification tasks with good 

generalization performance. Additionally it has demonstrated superior results in 

various classification and pattern recognition problems [63]. Furthermore, for 

several pattern classification applications, SVM has already been proven to provide 

better generalization performance than conventional techniques especially when the 

number of training samples is small and the number of input variables is large. 

 

With this purpose in mind, we evaluated the SVM against two unsupervised 

classification algorithms: k-NN Naïve Bayes. In this section we will offer brief 

background knowledge on SVM. 

 

4.5.1 Overview of SVM 

SVM has been recently proposed as a popular tool for solving many classification 

tasks based on the statistical learning theory invented by Vapnik [181]. For this 

purpose we turn to SVM for validating our approach. SVM is the interest in this 

study for its good classification accuracy reported in many pattern recognition 

problems. To achieve better generalization performance of the SVM, original input 

space is mapped into a high-dimensional dot product space called the feature space, 

and in the feature space the optimal hyperplane is determined. The optimal 

hyperplane is found by exploiting the optimization theory, and respecting insights 

provided by the statistical learning theory. 

 

 

Linearly separable data 

 

Given training vectors xi, i=1, … , N of length n and a vector y defined as follows 
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The central idea of SVM is to define a separating hyperplane, so that the 

classification margin between the two classes is as large as possible, measured along 

a line perpendicular to the hyperplane.  

 

The SVM training paradigm finds the separating hyperplane which gives the 

maximum margin or distance between the parallel hyperplanes that are as far apart as 

possible while still separating the data. These hyperplanes should satisfy the 

following constraints. Since the wider margin can acquire the better generalization 

ability.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure ‎4.11 Linearly separable data 

▲:‎Class‎1,‎y=+1  ■:‎Class‎2,‎y=-1 

 

 

In Figure 4.11,‎two‎class‘s‎instances‎could‎be‎separated‎by‎bold‎solid‎line.‎The test 

sample (the circle) can be classified based on the hyperplane. In this figure, the 

hyperplane that is calculated from these training examples is given by the bold line, 

separated from the closest training vectors by the distance d. The classification of an 

unknown sample is done by determining which side of the hyperplane the new 

instance falls. In this example, the prediction for the unknown sample would be 

triangle. 

 

So we can define a canonical hyperplanes as follows (Vapnik, 1995): 
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In addition, all training samples xi satisfy: 

 

? 

Margin 
B 

A 
w.x+b=+1 

w.x+b=0 

w.x+b=-1 
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For linearly separable data, any hyperplane g(x)=0 can be written as 

0)(  bxwxg T

i         ‎4.13 

 

where w is an n-dimensional vector ,  is the offset of the hyperplane from the origin 

and x represents n-dimensional vector representing any point on the hyperpalne. The 

vector w and the scalar  determine the position of the separating hyperplane. The 

distance between each of the canonical hyperplanes and the separating hyperplane is 

w

1
. Now maximizing the separating margin is equivalent to maximizing the 

distance between hyper plane H1 and H2. Hence we can get the maximal width 

between them 
ww

w
xxm

2
).(   . Now we can formulate the learning problem 

of SVM to maximize the margin the task as follows 
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This enable us to use the Lagrange formalism to obtain the primal form of the 

objective function Lp , which is 
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where  0;,...,1: ii n  are the Lagrange multipliers.  

 
Solving the minimization problem is equivalent to finding the values w, b, and 

0i that minimize Lp. To do so, we initial differentiate Lp with respect to w and b. 

Then, by equating the derivates to zero we get 
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when differentiating with respect to b and w respectively. 

 
Taking these two equalities and substituting into Lp yields the dual form of the 

Lagrangian. We want to maximize 
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This optimization formulation is expressed using inner product of the training samples xi 

and the numbers of training samples n. 

 

 

Linearly non-separable data 
 

In the previous section the SVM theory was introduced as an optimization problem, 

under the assumption that the data are linearly separable. However, in many practical 

problems, data is subject to noise or outliers, so it is impossible to draw linear 

boundaries between classes. Hence, in order to extend the support vector theory to 

solve imperfect separation, positive slack variables is introduced 

 0;,...,1,: ii ni  into the original constraints [181] along with an additional penalty 

value C for the points that cross the boundaries to consider the misclassification 

errors. C is a regularization parameter used to decide a trade-off between the training 

error and the margin. If C is chosen too small, it may cause the problem of under-

fitting of the training data. If C is too large, the algorithm may increase the 

possibility of over-fitting. 
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The primal and dual forms of the Lagrangian are built as 
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subject to 
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Kernel-trick 
 

The initial optimal hyperplane algorithm proposed by Vapnik [181] was a linear 

classifier. Yet, Boser et.al [18] suggested a way to create nonlinear classifiers by 

applying the kernel trick to to extend the linear learning machine to handle nonlinear 

cases. Kernel function is essentially a weighted function designed for nonparametric 

function estimations. We aimed to maximize the margin of separation between 
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patterns to have a better classification result. The calculations can be simplified by 

converting the problem with Kuhn-Tucker conditions into equivalent Lagrange dual 

problem. 

 

With this mapping, the discriminant function is of the follow form 
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And the dual form of the Lagrangian becomes 
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Overall, any positive semi-definite functions  that‎ satisfy‎ Mercer‘s‎

condition can be kernel functions. The function  that returns a dot product 

of two mapped patterns is called a kernel function.  

 

Different kernels can be selected to construct the SVM. The most commonly used 

kernel functions are the polynomial, linear and Gaussian radial basis kernel function 

(RBF). 

 Linear kernel function: 
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 Gaussian RBF: 
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 Polynomial kernel function: 
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where  , r and d are kernel parameters. 

 

 

4.6 Recognition Results 

 

In this section, experiment is performed in order to evaluate the performance of the 

proposed scheme. 

Since the dual-tree complex wavelet has the properties of shift invariance and multi-

resolution representation, we perform the 2D dual-tree complex wavelet on the 

normalized images and combined the features at different resolution scales to form a 

feature vector to train and test the classifiers. In general, dual-tree complex wavelet 

contains both real and imaginary terms [87]. However, in our research, in order to 

reduce processing time and complex operations, the iris feature vector consists of 

only the real part from the highest level as shown in Equation 4.9. So as to alleviate 

the demand of large computational burden and high memory requirement of the 

dual-tree complex wavelet-based iris recognition and at the same time retain most of 
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its desired properties, the directional multi-scales decomposition of the normalized 

iris image are performed up to the 6
th

 level of decomposition as described in the 

below table. 

 

Table ‎4.1 The dimension of feature vector after applying various 2D DT-CWT 

decomposition levels 

 

 
decomposition level 

3
rd

 Level 4
th

 Level 5
th

 Level 6
th

 Level 

Dimension 1040 280 80 24 

 

 

The classification experiments involve two main steps. Firstly, the classifiers need to 

be trained with labelled samples in order to be able to perform verification. 

Secondly, the trained classifiers need to be tested with unlabelled samples to 

determine their classification accuracy using 10-fold cross-validation. The 

implementation is carried out via LIBSVM tool version 2.6, which is initially 

designed by Chang and Lin [23]. LIBSVM is an integrated software package for 

support vector classification, regression, and distribution estimation. It supports 

multiclass classification. The basic algorithm uses the sequential minimal 

optimization (SMO) for the multi-class SVM. 

 

 

4.6.1 Parameter Selection of SVM  

 

The effectiveness of SVM depends on kernel used, kernel parameters and a proper 

soft margin or penalty C value [69]. The selection of a kernel function is an 

important problem in applications although there is no theory to tell which kernel to 

use. Selection of the kernel, perhaps from among the presented kernels, is usually 

based on experience and knowledge about the classification problem at hand. 

 

Gaussian RBF kernels have been found to be the most powerful amongst the above 

mentioned kernels [38]. Moreover, the RBF requires less parameter to set than a 

polynomial kernel. However, convergence for RBF kernels takes longer than for the 

other kernels [133]. Overall, RBF and other kernel functions have similar overall 

performance. 

 

In developing techniques for efficient parameter selection, Hsu et al. have proposed 

a procedure to get acceptable yet reasonable results with LIBSVM [69]. To get 

appropriate generalization ability, we conduct a validation process to choose 

parameters. The procedure is as the following [69] 

 

1. Consider a grid space of (C, ) with log2 C{-10,-9, . , 4} and log2  {-

2,-1, . . . , 12}. 

2. For each hyper-parameter pair (C, ) in the search space, the validation 

performance is measured by conducting 5-fold cross validation on the 

training set. 
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3. Choose the optimal parameters pair (C, ) that leads to the highest cross-

validation accuracy. 

4. Use the best parameters to build the SVM model. 

 

The discriminating features are extracted from the transformed image using 2D DT-

CWT at different resolution scales and the extracted features are used to train the 

SVM. The kernels used in our experiments include the Gaussian RBF kernel, the 

Polynomial kernel and the Linear kernel. Table 4.2 and Figure 4.12 summarize the 

classification rates using three SVM kernel functions with different decomposition 

scales. 

 

Results indicate that the Gaussian RBF kernel function performed equally well or 

suppressed the performance of the other kernel functions in recognition rate where 

the best accuracy rate of classification was 92.86% at the third level of 

decomposition. 

 

 

Table ‎4.2 The recognition rates (%) of the proposed method by using different SVM 

kernels 

Kernel function 

 

Scale 

Level 3 Level 4 Level 5 Level 6 

Gaussian RBF 92.86 91.79 85.25 71.95 

Polynomial 92.46 91.66 84.78 71.29 

Linear 92.32 91.53 84.25 67.72 

 

 

 
 

Figure ‎4.12 Classification rate among SVM kernels vs. dimensionality with different 

number of decomposition levels 

 

 

The classification accuracy of the SVM is also compared with the k-NN algorithm 

and Naïve Bayes classifiers. The classification accuracies of SVM, k-NN and Naïve 

Bayes classifiers are shown in Figure 4.13 and Table 4.3. 
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Table ‎4.3 Iris recognition performance for 2DT-CWT with different number of 

decomposition levels 

 

Decomposition 
Level 

2DT-CWT 
Dimension 

Best SVM k-NN Naive Bayes  

3 1040 92.86 80.82 75.26 

4 280 91.79 78.96 77.11 

5 80 85.25 73.67 71.29 

6 24 71.95 55.95 56.74 

 

 

In all experiments, SVM outperformed the performance of the other classifiers in 

recognition rate when equal number of decomposition scales is used. The highest 

recognition rate we achieve is 92.86% at the third level of decomposition with a 

feature vector of 1040.The best classification rate achieved by the k-NN classifier 

was 82.82% at the third level of decomposition. Whereas the Naïve Bayes classifier 

achieved its best performance at the fourth level with an accuracy of 77.11%. 

 

 

 
 

Figure ‎4.13 Classification rate vs. dimensionality for 2DT-CWT with different 

number of decomposition levels 

 

 

The accomplished results indicate also that the SVM is more effective than other 

conventional classifiers even when the input dimension space is high. It is clear that 

the dual-tree complex wavelet features are very stable in iris recognition. The 

success of the dual-tree complex wavelet is due to its approximate shift invariant 

property and its good directional selectivity in 2D. 
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4.6.2 Comparison with Existing Methods 

 

In the experiments, we compared proposed technique with those proposed by Wildes 

[185],Narote and Narote [131] , Chen and Yuan [26] and Masek [117]. They were 

chosen due to the fact that they have reported results using the same iris database. 

 

Table 4.4 lists the classification rates of the other techniques against the proposed 

method. It is clear that proposed technique achieves good recognition rate. The 

results showed that the complex wavelet based representation is as discriminating as 

other techniques. With 1040 features, the recognition rate of 2D DT-CWT combined 

with the SVM is over 90%. 

 

 

Table ‎4.4 Comparison of Recognition Performance on CASIA 1.0 Iris Database 

Methodology Accuracy rate % 

Wildes [185] 86.49 

Masek [117] 83.97 

Chen and Yuan [26] 91.80 

Narote and Narote [131] 91.33 

Proposed 92.86 

 

 

4.7 Summary 

 

This chapter proposes new iris segmentation approach based on minimizing the 

effect of the eyelids and eyelashes by trimming the iris area above the upper and the 

area below the lower boundaries of the pupil. The 2D DT-CWT is extracted from the 

iris images and used to increase the recognition accuracy. 

 

The comparison of proposed features is evaluated on the diverse classification 

schemes; Naïve Bayes, k-NN and SVM. Our experimental results indicate that the 

SVM classifier indicates that its performance is generally the best of all the 

classifiers evaluated in this paper. Among the used SVM kernels, the Gaussian RBF 

kernel function is the best for iris recognition in our experiments. Experimental 

results also indicate that the performance of SVM as a classifier is far better than the 

performance of k-NN and Naïve Bayes classifiers. 

 

The proposed innovative technique is computationally effective as well as reliable in 

term of recognition rate of 92.867% compared with other techniques. The 

combination of dual-tree complex wavelet with SVM is promising. 
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Chapter 5  
Feature Fusion of  Online 
Signature and Iris 
Biometrics 

 

nimodal biometric systems that based on utilising a single 

biometric trait often face practical limitations that negatively 

influence their overall performance. This is expected to a variety 

of reasons such as noisy data, intra-class variability, low distinctiveness, 

non-universality and unacceptable error rates due to the nature of 

relevant biometric traits [80]. Multimodality, that is the integration of 

several biometric traits for accurate authentication, is often seen as a way 

to solve some of the aforementioned limitations [154]. The efforts in the 

area of biometric authentication have been directed toward the fusing the 

information obtained from a range of independent modalities. Multimodal 

approach relies on fusing separate information from different modalities 

to provide complementary information to achieve a more reliable 

recognition of individuals. For example, a common approach is to combine 

face and speech modalities to achieve a more trustworthy recognition 

decision [13,51,90,145,146]. 

U 
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As mentioned earlier in Chapter 2, fusion in multimodal systems can take place at 

four possible levels sensor, feature, matching and decision. The sensor and the 

feature levels are referred to as a pre-mapping fusion while the matching score and 

the decision levels are referred to as a post-mapping fusion [161]. In pre-mapping 

fusion, the data is integrated before any use of classifiers. While in post-mapping 

fusion; the data is integrated after mapping into matching score/decision space. The 

matching score-level fusion approach has attracted a lot of attention although that the 

amount of information available for fusion declined progressively after each layer of 

processing in a biometric system [41]. We have observed that, only limited work is 

reported on feature level fusion of multimodal biometric system [149,154]. 

 

In his Chapter we are going to suggest a number of fusion schemes at the feature 

level and we limit ourselves to two modalities, namely, iris and online signature. We 

expect that the accuracy of the combined biometrics is going to be better than 

unimodal systems based on iris [4] or handwriting signature [7] alone. 

 

Therefore, we aim to answer the following questions: which fusion strategy can 

bring the best results in terms of performance and how much improvement can we 

expect from a feature fusion scheme? Toward this objective, we will design several 

feature fusion schemes at different possible feature levels. Moreover, we will also 

address the complexity problem regarding feature space, in the sense that we will 

also raise the question whether it could be possible to reduce the dimension of the 

fusion feature space, through an appropriate selection procedure, while keeping the 

same level of performance. 

 

The rest of this chapter is organized in the following manner. Section 5.1 provides an 

overview of the current multimodal biometric research. Sections 5.2 and 5.3 describe 

the concept of feature fusion and the different architectures that we have designed 

for iris and online signature feature level fusion. Then, Section 5.4 reports the 

comparative results obtained using the different architectures and summarizes the 

main results of this chapter and finally offers concluding remarks. 

 

 

5.1 Multimodal Biometrics Authentication 

Several approaches have been proposed and developed for the multimodal biometric 

authentication system. Ben-Yacoub et al. [13] evaluated five binary classifiers on 

combinations of frontal face image and speech modalities (XM2VTS database). 

They found that SVM and bayesian classifier achieved almost the same 

performances‎and‎both‎outperformed‎Fisher‘s‎linear‎discriminent,‎C4.5‎decision‎tree‎

and MLP. The Linear Weighted classifier has outperformed the Linear SVM, but the 

SVM is demonstrated to have possessed an advantage in combining potentially any 

number of modalities at the same computational cost with very good fusion results. 

 

The use of hybrid biometric person authentication based on face and voice features 

has been explored in a study presented in [146]. Although a simple logical AND 

scheme is used for the purposes of fusion, the experimental results have confirmed 

that a multimodal approach is better than any single modality. 
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A commercial multimodal system called BioID based on the fusion the scores or 

decisions of face, voice and lip movement was proposed by Frischholz et al. [51]. 

Lip motion and face images were extracted from a video sequence and the voice 

from an audio signal. Four different score-level fusion methods and one decision-

level fusion method are empirically compared in that study. However, their 

algorithm is restricted to only the AND and OR rules. Accordingly to the security 

level, experiments conducted on 150 subjects demonstrated a decrease below 1% of 

the FAR. 

 

In 2003, Fierrez-Aguilar et al. developed a multimodal approach including a face 

verification system based on a global appearance representation scheme, a minutiae-

based fingerprint verification system and an online signature verification system 

based on HMM modeling of temporal functions. The scores are combined by means 

of SVM classifiers, from which user-independent and user-dependent strategies are 

applied at the score level [47]. Results indicated that appropriate selection of 

parameters for the learning-based approach has delivered better verification 

performance than the rule-based approach. The EERs of the unimodals of face, 

online signature, and fingerprint verification systems were 10%, 4% and 3%, 

respectively. Results showed that the Sum Rule reduced the EER to 0.5% and the 

RBF SVM fusion strategy reduced the EER to 0.3% and 0.05% respectively for the 

user-independent and user-dependent fusion strategies. 

 

Also, in that year, Kumar et al. [97] proposed a multimodal approach for palmprint 

and hand geometry images. Two schemes of fusion were applied, one at the feature 

level by concatenating the feature vectors, and the other at the matching score level 

by max rule. Only the fusion approach at the matching score level outperforms the 

unimodal systems. The multimodal approach obtained a FAR of 0% and a FRR of 

1.41%, while the best unimodal approach in this study, the palmprint-based 

verification system, obtained a FAR of 4.49% at an FRR of 2.04%. 

 

Ross and Jain, proposed a multimodal system combined the biometrics of face, 

fingerprint and hand geometry with three fusion techniques at the matching score 

level. They applied sum rule, decision trees, and linear discriminant function, after 

normalizing the scores [158]. The approach with the sum-rule fusion method 

outperforms the other fusion strategies, as well as the unimodal systems. At a FAR 

of 0.03%, the combination approach obtained a FRR of 1.78%. 

Wang et al. proposed a multimodal approach for a PCA-based face verification 

system and a key position local variation-based iris verification system, with fusion 

methods at the two matching scores using unweighted and weighted sum rules, 

Fisher discriminant analysis, and neural networks with radial basis function 

(RBFNN) to [182]. 

 

In 2004, Toh et al. [180] fingerprint, hand geometry and voice biometrics were 

integrated using weighted-sum-rule based match-score-level fusion. They addressed 

the multimodal decision fusion problem as a two-stage problem: learning and 

decision. They introduced a reduced multivariate polynomial model to overcome the 

tedious recursive learning problem in multimodal biometrics in order to achieve 

good decision accuracy. Four global and local learning and decision paradigms were 

suggested and explored to observe their decision capability. The four learning and 

decision paradigms were investigated, adopting the reduced polynomial model for 
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biometric decision fusion. Experiments showed that local learning alone can 

improve ERRs of about 50%. The have noticed that local decision can be improved 

once threshold settings are appropriately selected for each user. 

 

Ross and Govindarajan [159] proposed a multimodal biometric system utilising Face 

and hand geometry at feature level. Face was represented using PCA and LDA while 

32 distinct features of hand geometry is extracted and then concatenated to form a 

fused feature. After that, Sequential Feed Forward Selection (SFFS) was employed 

to select the most valuable features from the fused feature space. In 2005, Snelick et 

al. [171] investigated the performance of integrating three fingerprint recognition 

commercial systems and one face recognition commercial system multimodal 

biometric systems using a population of 1,000 individuals, at the score level. Seven 

score normalization techniques (min–max, z-score, tanh, adaptive, two quadrics, 

logistic, and quadric-line-quadric) and five fusion techniques on the normalized 

scores (simple sum, min score, max score, matcher weighting, and user weighting) 

were tested in this research. The EERs of the best unimodal fingerprint and the face 

recognition systems were 2.16% and 3.76%, respectively, while the max-score 

fusion approach using the quadric-linequadric technique over the normalized scores 

obtained an EER of 0.63%. Experiments conducted on a database of 100 users 

indicate that the application of min-max, z-score, and tanh normalization schemes 

followed by a simple sum of scores fusion method results in better recognition 

performance compared to other methods. 

 

In the same year, Jain et al. studied the performance of different normalization 

techniques and fusion rules in the context of a multimodal biometric system based 

on the face, fingerprint and hand-geometry traits of a user at the score level [41]. 

Fingerprint matching was done using the minutiae features and the output of the 

fingerprint matcher was transformed into a similarity score. Eigenface coefficients 

were used to represent features of the face image. The Euclidean distance between 

the eigenface coefficients of the template and that of the input image was used as the 

matching score. The hand-geometry images were represented by a 14-dimensional 

feature vector and the matching score was computed as the Euclidean distance 

between the input feature vector and the template feature vector. Seven score 

normalization techniques (simple distance-t-similarity transformation with no 

change in scale, min–max normalization, z-score normalization, median- 

normalization, double-sigmoid normalization, tanh normalization, and Parzen 

normalization) and three fusion techniques on the normalized scores (simple sum 

rule, max rule, and min rule) were evaluated in this research. All fusion approaches 

outperform the unimodal approaches except the median-normalization. For instance, 

the fingerprint approach obtained a GAR of 83.6% at a FAR of 0.1%, while the 

multimodal approach obtained a GAR of 98.6% at a FAR of 0.1% when the z-score 

normalization and the sum rule were applied. The researchers observed that the tanh 

and min–max normalization techniques outperformed other techniques at low FARs, 

while the z-score normalization performs slightly better than the other techniques at 

higher FARs. 

 

Xiuquin [186] proposes a multimodal biometric system using face and ear at feature 

level. Kernel discriminant analysis is employed as feature extraction method to 

obtain the features of face and ear independently and then concatenate the two 

feature vectors to form a single feature vector. Rattani et al. [151] proposed a 
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multimodal biometric system of iris and face in which Scale Invariant Feature 

Transform (SIFT) features of individual modalities are extracted and concatenated to 

form the fused feature space. 

 

From the previous review, we can conclude that several multimodal biometric 

systems with various methods and strategies have been proposed over the last few 

years to accomplish higher accuracy performance. In this context, we have also 

observed that, so far most of addressed techniques are based on the post-mapping 

fusion, that is, in decision and score matching levels of fusion. Only limited work is 

reported on feature level fusion of multimodal biometric system. 

 

We have noticed also that the majority of the work reported on feature level fusion is 

related to multimodal biometric system using face and palmprint. Feng et al. [43] 

proposed the feature level fusion of face and palmprint in which PCA and ICA are 

used for feature extraction. Yao et al. [189] have proposed a multimodal biometric 

system using face and palmprint at feature level. In their research, Gabor features of 

face and palmprints are obtained individually. Extracted Gabor features are then 

analysed using linear projection scheme such as PCA to obtain the dominant 

principal components of face and palmprint separately. Finally, feature level fusion 

is carried out by concatenating the dominant principal components of face and 

palmprint to form a fused feature space. Jing et al. [77] employed Gabor transform 

for feature extraction and then Gabor features are concatenated to form fused feature 

vector. Then, to reduce the dimensionality of fused feature vector, nonlinear 

transformation techniques such as Kernel Discriminant Common Vectors are 

employed. 

 

 

5.2 Feature Level Fusion 

Fusion at the feature level is relatively an understudied problem [154]. Fusion at this 

level can be applied to the extracted features from the same modality or several 

multimodalities. In this work, we limit ourselves to iris and online signature cues. To 

the best of our knowledge, there is no reported research work combined iris and 

online signature. 

 

 

5.2.1 Iris and Online Signature Fusion 

The main reason behind the selection of iris and online signature as biometric 

features for building a multimodal biometric system stems from their strength points. 

The complex texture of the iris is unique and valuable source of personal 

recognition. The performance of currently deployed iris-based recognition systems is 

promising and encourages further research in the direction of large-scale 

identification systems based on iris information. Moreover, each iris possesses 

unique characteristics, and similar to fingerprints, even the irises of the eyes of 

identical twins are different [32]. It is extremely difficult to surgically alter the 

texture of the iris. Even though, early iris-based recognition approaches required 
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significant user participation and were expensive, the current approaches have 

become more user-friendly and cost-effective [19]. 

 

For a long time, the way a person signs his or her name is known to be a 

distinguishing aspect of that individual. A handwritten signature is a behavioral 

biometric that change over a period of time and are influenced by physical and 

emotional conditions of the signatories. Signature has been widely accepted as a 

means of legal and commercial transactions identity authentication. Even though, 

hypothetically, no person write his/her signature exactly the same each time, in 

practice, it is very difficult to forge the dynamic information, such as speed, pen-up 

movement and pressure. 

 

The main drawback of biometrics when compared with conventional authentication 

techniques is that many biometrics can be copied or forged. Whereas it is always 

possible to obtain another key or a new password, it is not possible to replace any 

biometric data [73]. However, signature is an exception, as users can be asked to 

change their signature if needed. A brief comparison between iris and signature is 

provided in Table 5.1 based on the perception of the authors of [170]. 

 

 

Table ‎5.1 Comparison between iris and signature biometric characteristics [170], 

H: high, M: medium, L: low 

Biometrics 

Security Convenience 

Required 

security 

level 

Accuracy Long-term 

stability 

User 

acceptance 

Ease of 

Use 

Cost 

Iris H H H M M H 

Signature M H M H H L 

 

 

5.2.2 Obstacles in Feature Fusion Scheme 

 

It is believed that feature set contains richer information about the raw biometric 

data. Thus, integration at this level is of fusion is expected to act better in 

comparison with fusion at the score level and decision level [154,174]. Nevertheless, 

fusion at this level is a challenging problem due to a variety of reasons. Including 

that most feature sets gathered from multiple modalities are incompatible, such as in 

the case of combining fingerprint minutiae and eigenface coefficients [9]. Moreover, 

concatenating several feature vectors will lead to construct a very large feature 

vector or what is called the curse of dimensionality. This definitely increases the 

computational and storage resources demands. As Kludas et al. pointed out that a 

significantly more complex classifier design might be needed to operate on the 

concatenated data set at the feature level space [92]. Furthermore, poor feature 

representation, which mostly contains noisy or redundant data may sharply reduce 

the classification accuracy [41]. 
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The problem of dimensionality reduction can be overcome by either performing 

feature transformation or feature selection. Feature selection, also known as feature 

reduction, attribute selection or variable subset selection, is the technique of 

selecting a subset of relevant features for building robust learning models [43]. By 

removing most irrelevant and redundant features from the data, feature selection 

helps improve the performance of learning model [5]. Assuming an original feature 

set of n features, the objective of feature selection is to identify the most informative 

subset of m features (m < n). Common feature selection approaches, such as 

sequential forward selection (SFS), sequential backward selection (SBS), sequential 

floating forward selection (SFFS), genetic algorithms (GA) have been applied 

successfully to several optimization tasks [53]. 

 

Feature transformation, on the other hand, represents the feature vector in another 

vector space to improve the representative-ness of the data. Moreover, only the 

significant‎―eigenvectors‖‎are‎kept,‎inducing‎a‎subsequent‎reduction‎of‎dimension‎in‎

the representation of the data. Finding such projection space requires a training 

phase on an adequate database. PCA, Linear Discriminant Analysis (LDA) and ICA 

[192] are three main linear techniques used for data reduction and feature 

transformation. Whereas, kernel PCA (KPCA) has been widely studied and applied 

in extracting nonlinear structures in data [186]. 

 

As particle swarm optimization (PSO) has been shown to be very efficient in 

optimizing the feature selection process in large scale application problems 

[70,83,151] we decided to deploy the binary particle swarm optimization (BPSO) 

algorithm to perform feature selection. Therefore, implementing BPSO in biometric 

feature fusion problem of high dimension is another novelty of this thesis. 

 

Next section is devoted to the presentation of the PSO algorithm and to its 

implementation in the context of this thesis. The PSO algorithms for continuous and 

the BPSO are described, BPSO parameters and recommended settings are also 

discussed in detail. 

 

 

5.3 Feature selection using PSO 

PSO is an nature-inspired, evolutionary, population-based optimization algorithm 

whose goal is to minimize or to maximize an objective function Sf : . In this 

thesis, minimization problems are assumed, which means that the goal is to find a 

solution Sx *
such that )()(: * xfxfSx  . A solution 

*x that satisfies this 

condition is called a global minimum of f. If there exists an 0 such that 

)()(: ** xfxfxxwithx   , the solution 
*x  is called a local minimum. 

 

The PSO algorithm was developed by Kennedy and Eberhart in 1995 [83]. A 

detailed description with a lot of background information can be found in their 

textbook Swarm Intelligence [84]. 
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5.3.1 Flocks, herds and schools 

The main idea of swarm intelligence algorithm developed from inspiration of the 

collective‎intelligence‎of‎animal‘s‎societies‎that‎don‘t‎have‎any‎leader‎in‎their‎group‎

or swarm, such as birds, ants, fish and termites. Their collective behaviours emerge 

from interactions among individuals, in a process known as self-organisation. 

Habitually, a flock of animals that have no leaders will find food by randomly 

following one of the members of the group with the closest position to the food 

source. The flocks achieve their best condition simultaneously through 

communication among members who already have a better location. Animal which 

has a better location will inform it to its flocks and the others will move 

simultaneously to that position. This process will be repeated until the best positions 

or a food source discovered [84]. Their collective behaviours emerge from 

interactions among individuals, in a process known as self-organisation. This 

collaborative behaviour among social animals exhibits a remarkable degree of 

intelligence. Each individual may not be intelligent by itself, but together they 

perform complex collaborative behaviours [17]. 

 

In PSO, each particle makes use of its own memory and knowledge gained by the 

swarm as a whole to find the best solution. Each potential solution is considered as a 

particle‎with‎a‎certain‎velocity,‎and‎‗‗flies‘‘‎through‎the‎problem‎space.‎Each‎particle‎

adjusts its flight towards the target according‎to‎its‎own‎flying‎and‎its‎companions‘‎

flying experiences [172]. Hence, the particle swarms find optimal path towards 

destination through the interaction of individuals in a population of particles. 

 

Thus, PSO has been successfully applied to a wide range of difficult combinatorial 

optimization applications [70]. PSO proved to be both effective and efficient in 

reducing feature dimension and removing irrelevant features. 

 

 

5.3.2 Principles of PSO 

In PSO, every possible candidate solution can be considered a particle in the search 

space. Each particle pi makes use of its own memory and knowledge gained by the 

swarm as a whole to find the best solution. With the purpose of discovering the 

optimal solution, each particle adjusts its searching direction according to two 

factors, its own best previous experience (pbest) and the best experience of its 

companions flying experience (gbest). Shi and Eberhart [168] called pbest the 

cognition component, and gbest the social component. Each particle is moving 

around the n-dimensional search space S  with objective function  nSf : . 

Each particle has a position tix , (t represents the iteration counter), a fitness function 

)( ,tixf  and‎‗‗flies‘‘‎ through‎ the‎problem‎space with a velocity tiv , . A new position 

Sz 1  is called better than Sz 2 iff )()( 21 zfzf  . 

 

Particles evolve simultaneously based on knowledge shared with neighboring 

particles; they make use of their own memory and knowledge gained by the swarm 

as a whole to find the best solution. The best search space position particle i has 
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visited until iteration t is its previous experience pbest. To each particle, a subset of 

all particles is assigned as its neighbourhood. The best previous experience of all 

neighbours of particle i is called gbest. Each particle additionally keeps a fraction of 

its old velocity, which results in the following update equations for particle swarm 

optimization [83]. 

 

)(*()*)(*()** 2211
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pdd

old

pdpd
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In Equation 5.1, the first part is the previous flying velocity of the particle; while the 

second part represents the‎ ‗‗cognition‖‎ part, which is the private thinking of the 

particle itself, where C1 is the individual factor. The third part is‎the‎‗‗social‖‎part,‎

which represents the collaboration amongst the particles, where C2 is the societal 

factor [173]. 

 

The acceleration coefficients (C1) and (C2) are constants (also known as learning 

factors) represent the weighting of the stochastic acceleration terms that pull each 

particle toward the pbest and gbest positions. Therefore, the adjustment of these 

acceleration coefficients changes the‎amount‎of‎‗tension‘‎in‎the‎system.‎Small‎values 

allow particles to travel far from target regions before being tugged back. In contrast, 

high values result in sudden movement toward, or past, target regions. In the original 

algorithm, the value of (C1 + C2) is usually limited to 4 [83]. 

 

Particles‘‎velocities‎are‎restricted to a maximum velocity, Vmax. If Vmax is too small, 

particles in this case may not travel around beyond local regions. They could become 

trapped in local optima. In contrast, if Vmax is too high particles might fly past good 

solutions. According to Equation 5.1, the‎ particle‘s‎ new‎ velocity‎ is calculated 

according to its previous velocity and the distances of its current position from its 

own best experience and‎ the‎group‘s‎best‎ experience. Afterwards, the particle flies 

toward a new position according to Equation 5.2. The performance of each particle 

is measured according to a pre-defined fitness function which is related to the 

problem concerned [183]. The PSO algorithm is usually terminated either when a 

maximal number of generations is reached or when the best particle position of the 

entire swarm cannot be improved further after a sufficiently number of iterations. 

 

 

5.3.3 Binary Particle Swarm Optimization 

PSO was initially developed for a space of continuous values and it consequently, 

poses several problems for spaces of discrete values. Kennedy and Eberhart [85] 

presented a discrete binary version of PSO method (BPSO) for discrete optimization 

problems. 

 

In BPSO, particles uses binary string to represent its position in form by 

Xp={xp1,xp2,..., xpd} which is randomly generated. As each bit in the string represents 

a feature, value ‗1‘‎means‎that‎the‎corresponding‎feature‎is‎selected‎while‎‗0‘‎means‎

that it is not selected. The velocity of each particle is represented by 
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Vp={vp1,vp2,...,vpd} , where p is the number of particles, and d is the number of 

features of a given dataset. The initial velocities in particles are probabilities 

constrained to the interval [0.0–1.0]. In BPSO, using the knowledge of pbest and 

gbest, the features of the pbest and gbest particles can be obtained with regard to 

their position and velocity. Each particle is updated according to the following 

equations [85]: 
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In Equation 5.3, w is the inertia weight, C1 and C2 are acceleration parameters, and 

rand, rand1 and rand2 are three independent random numbers in the range [0, 1]. 

Velocity new

pdV is the updated particle and old

pdV is the velocity of the particle before 

being updated, old

pdx is the current particle position and new

pdx is the updated particle 

position. 

 

In Equation 5.4, particle velocities of each dimension are limited to within 

[ minV , maxV ]
D
. If the velocity of that dimension to exceed maxV  as a result of the 

summation of the two accelerations then the velocity of that dimension will be 

limited to maxV . In Equations 5.5 and 5.6, the updated positions of the particles are 

calculated by the function )( new

pdVS , where new

pdV is the updated velocity value. 

 

 

If the function )( new

pdVS is larger than r3, which is the randomly produced disorder 

number that is within the range of [0.0–1.0], then its position of the particle new

pdx will 

be updated to 1, which means that this feature is selected as a required feature for the 

next update. Otherwise, the new

pdx will be assigned to 0, which means that this feature 

is no longer required for the next update cycle. A flowchart of BPSO is shown in 

Figure 5.1. 
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Figure ‎5.1 The BPSO flow chart, adapted from [27] 

 

p: number of particles, d: number of features, D: total number of features, g: number 

of generations, G: maximum number of generations, and N: population size. 
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5.3.4 BPSO Implementation Details 

Feature selection is a crucial process typically carried out to select an optimal subset 

of features and remove the redundant and irrelevant features that cause classification 

degradation. Numerous feature selection algorithms can be used to perform feature 

selection of multimodal biometrics features. 

 

In this chapter, we select the binary PSO to perform a selection of iris and online 

signature combined features for the many of reasons [85]. 

 

 Firstly, feature selection techniques typically involve searching large 

dimensional vector space and PSO has demonstrated that its performance is 

insensitive to the population size [168]. Therefore, it was successfully 

applied in numerous applications such as dynamical systems, operations 

research, bioinformatics, medical informatics, noisy and dynamic 

environments [138]. 

 

 Secondly, PSO requires only simple mathematical operations compared with 

complex evolution operators such as crossover and mutation used in Genetic 

Algorithms. Hence, PSO is conceptually simple in terms of both memory 

requirements and speed. 

 

 Lastly, each particle swarm has a memory remembering the best position of 

the search space that has ever been visited. Therefore, the knowledge of good 

solutions is retained by all particles [27]. 

 

The selection of PSO parameters can have a considerable impact on the performance 

of optimization [85]. Therefore, selecting PSO parameters that yield good 

performance has been the subject of a lot research [27]. In this section, we describe 

several PSO parameters such as fitness function, acceleration constant, inertia weight 

and velocity limitation which need to be estimated before conducting experiments. 

 

 

1. Fitness function 
 

The PSO implementation relies on the appropriate formulation of the fitness 

function. The main objective of the closed identification fitness function is to 

maximize the recognition rate. 

 

Given the test sample, we compute its distance against all the samples in the 

reference dataset to obtain the match scores. Then, we select the sample from the 

reference dataset with the lowest distance value and we check whether it belongs to 

the same class as the testing sample. We will repeat this for all testing samples and 

count the number of success and failures. In every iteration, each particle is 

evaluated, and a value of goodness or fitness of a given trail solution is returned by a 

fitness function. The fitness function F evaluates the quality of evolved particles in 

terms of their ability to maximize the class separation term indicated by the scatter 

index among the different classes [3]. Let w1, w2,..,wL and N1, N2,...,NL denote the 
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classes and number of features within each class, respectively. Let M1, M2,...,ML and 

Mo be the means of corresponding classes and the grand mean in the feature space, 

Mi can be calculated as: 
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Where‎ ‗N‘‎ is‎ the‎ total‎ dimension‎ of‎ the‎ feature‎ set.‎ Thus, we define the fitness 

function F as follows: 
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2. Velocity limitation Vmax 
 

The velocity limit Vmax plays an important role as it in the binary version of PSO, the 

value of Vmax limits the probability that bit xid will take on a value of 1 or 0 and 

consequently the use of high Vmax value in BPSO will decrease the mutation rate 

[85]. In this thesis, we have tried several values of Vmax and at last set Vmax to 2, as 

we noticed it allows the particle to reach an optimum solution. 

 

 

3. Inertia weight and acceleration constant 
 

The weight of inertia is an essential variable in the BPSO algorithm as it affords the 

particles with a degree of memory capability. Many experimental studies found that 

inertia‎ weight‎ ‗‗w‘‘‎ in‎ the‎ range of [0.8, 1.2] leads to a good performance [85]. 

Therefore in this chapter, we‎initially‎set‎‗‗w‘‘‎to‎0.6 in all iterations. 

 

Although the rate of acceleration constants C1 and C2 are not so significant in the 

convergence of PSO, carefully chosen value may lead to faster convergence. In our 

experiments, we varied the value of C1 and C2 from 0 to 2 and finally chose C1=2 

and C2=2. 

 

 

4. Population size 
 

The population size of PSO influences the performance and the computation cost. In 

our experiments, we experimentally varied the size of the population from 20 to 35 

and finally, we fixed the population size as 30. 

The parameters used for the BPSO are summarized in Table 5.2. 
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Table ‎5.2 Summary of BPSO parameters 

Parameters Values 

Population size 30 

Maximum Number of iterations (G) 100 

Velocity limitation (Vmax) 2 

Inertia weight (w) 0.6  

Acceleration constant (C1 and C2) C1=C2=2 

 

 

5.4 Feature Level Fusion of Iris and Signature 

 

As described in former chapters, we have extracted the features of iris and online 

signature separately. For the iris modality, we have applied the 2D-DTCWT on the 

normalized iris images and obtain the real parts of the complex coefficients at 

several resolution scales to form a feature vector that represents the iris image. 

Whereas, for online signature modality, we obtained a selection of 31 global 

functions to represent signature dynamics. Figure 5.2 shows the proposed block 

diagram of feature level fusion of iris and online signature before deploying BPSO. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure ‎5.2 Schematic for proposed multimodal identification scheme based on the 

fusion of iris and online signature 
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Afterwards, we obtain a joint feature vector by vertically concatenating the columns 

of the iris and online signature features. We repeat this for all the subjects in the 

database in order to obtain a complete fused set for the entire database as explained 

as follows. 

 

Let SIris = [S1Iris, S2Iris,…,‎ SNIris] represents the iris extracted features and 

SSignature=[S1Signature , S2Signature,…,‎SNSignature] represents the online signature features. 

 

We vertically concatenate SIris and SSignature to obtain the fused feature vector 

XFusedFeatures= [S1Iris, S2Iris,…,‎SNIris, S1Signature , S2Signature,…,‎SNSignature] and we repeat 

this for all the subjects to obtain a new fused set XFusedFeatures. 

 

As the fused feature values of vectors of signature and iris exhibit significant 

variations both in their range and distribution, feature vector normalization is carried 

out. The objective behind feature normalization (also called range-normalization) is 

to modify the location (mean) and scale (variance) of the features values and to 

independently normalize each feature component to the range between 0 and 1 as 

follows [44]. 

 

resFusedFeatu

resFusedFeaturesFusedFeatu
resFusedFeatu

X
X






     ‎5.10 

 

 

Where resFusedFeatu and resFusedFeatu indicates the mean and variance value of 

XFusedFeatures. Finally we obtain the normalized feature vector set resFusedFeatuX . Figure 

5.3 illustrates the proposed PSO-based feature selection algorithm. 
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Figure ‎5.3 BPSO Proposed scheme of feature fusion selection (scheme I) 
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5.4.1 Suggested feature level scenarios  

 

As previously stated, we plan to design a simple iris-signature multi biometrics 

system based on feature level fusion. In real-world application, the feature set is 

generally large in terms of dimensionality. Usually, the resulting feature vector may 

be noisy and contain irrelevant or redundant information about the target classes. 

This may possibly degrade the performance of the classifiers. Furthermore, large 

feature vector also increases the storage cost and requires more computation time to 

process it [80]. 

 

Feature‎selection‎ in‎ this‎case,‎ is‎ crucial‎ to‎ select‎an‎―optimized‖‎subset‎of‎ features‎

from the original feature set based on certain objective function. Overall, feature 

selection removes redundant or irrelevant data while retaining classification 

accuracy. 

 

 

Scheme I 
 

In feature fusion scheme I, the proposed scheme is based on the idea of applying the 

PSO on the normalized companied features resFusedFeatuX in order to select the most 

dominant features from the fused feature space. We will now describe in detail the 

steps needed to implement this scheme: 

 

 

Step 1: Apply the 2DT-CWT on the extracted iris images to obtain SIris 

wavelet coefficients. 

Step 2: Extract the global features from the dynamic signatures SSignature . 

Step 3: Vertically concatenate SIris and SSignature  to obtain the fused features 

vector XFusedFeatures . 

Step 4: Normalize the fused feature using min-max normalization to 

obtain resFusedFeatuX . 

Step 5: Randomly initialize the PSO particles with binary values (0 and 1). 

Step 6: Carry out the feature selection by considering the value of the bit in 

the particle. More precisely, if bit value is 1, select the 

corresponding feature from resFusedFeatuX .This way we construct a new 

feature vector. 

 

 

Scheme II 
 

Whereas, Scheme II starts first with performing the PCA to reduce the size of SIris 

and then further reducing the dimension of the fused features resFusedFeatuX using the 

BPSO before performing the matching step. Here is a description of the steps 

involved in scheme II: 
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Step 1: Apply the 2DT-CWT on the extracted iris images to obtain SIris 

wavelet coefficients. 

Step 2: Extract the global features from the dynamic signatures SSignature . 

Step 3: Apply PCA to the iris feature vector SIris to obtain SIrisR. 

Step 4: Vertically concatenate SIrisR and SSignature to obtain the fused features 

vector XFusedFeatures . 

Step 5: Normalize the fused feature using min-max normalization to 

obtain resFusedFeatuX
. 

Step 6: Randomly initialize the PSO particles with binary values (0 and 1). 

Step 7: Carry out the feature selection by considering the value of the bit in 

the particle. More precisely, if bit value is 1, select the 

corresponding feature from resFusedFeatuX .This way we construct a new 

feature vector 
aturesNewFusedFeX . 

Step 8: Apply PCA to the new feature vector 
aturesNewFusedFeX . 

 

 

Scheme III 
 

Scheme III starts with applying the BPSO to the normalized fused feature vector 

resFusedFeatuX  and then it applies the PCA on the remaining fused features. The 

procedure is as following: 

 

 

Step 1: Apply the 2DT-CWT on the extracted iris images to obtain SIris 

wavelet coefficients. 

Step 2: Extract the global features from the dynamic signatures SSignature . 

Step 3: Vertically concatenate SIris and SSignature  to obtain the fused features 

vector XFusedFeatures . 

Step 4: Normalize the fused feature using min-max normalization to 

obtain resFusedFeatuX . 

Step 5: Randomly initialize the PSO particles with binary values (0 and 1). 

Step 6: Carry out the feature selection by considering the value of the bit in 

the particle. More precisely, if bit value is 1, select the 

corresponding feature from resFusedFeatuX .This way we construct a new 

feature vector 
aturesNewFusedFeX . 

Step 7: Apply PCA to the resulting feature vector
aturesNewFusedFeX . 

 

 

 

Scheme IV 
 

Scheme IV is quite similar to scheme III; yet, it starts with applying the PCA to the 

normalized companied feature vector resFusedFeatuX  and then it applies the BPSO on 

the rest of the fused features. Here is the proposed scheme in detail: 
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Step 1: Apply the 2DT-CWT on the extracted iris images to obtain SIris 

wavelet coefficients. 

Step 2: Extract the global features from the dynamic signatures SSignature. 

Step 3: Vertically concatenate SIris and SSignature to obtain the fused features 

vector XFusedFeatures . 

Step 4: Normalize the fused feature using min-max normalization to 

obtain resFusedFeatuX . 

Step 5: Apply PCA to the resulting feature vector resFusedFeatuX to 

obtain
aturesNewFusedFeX . 

Step 6: Randomly initialize the PSO particles with binary values (0 and 1). 

Step 7: Carry out the feature selection by considering the value of the bit in 

the particle. More precisely, if bit value is 1, select the 

corresponding feature from
aturesNewFusedFeX . 

 

 

Scheme V 
Scheme V is quite similar to schemes III and IV; yet, it starts with applying the 

BPSO to the normalized fused feature vector resFusedFeatuX  and then it applies the CFS 

on the remaining fused features. The procedure is as following: 

 

 

Step 1: Apply the 2DT-CWT on the extracted iris images to obtain SIris 

wavelet coefficients. 

Step 2: Extract the global features from the dynamic signatures SSignature . 

Step 3: Vertically concatenate SIris and SSignature  to obtain the fused features 

vector XFusedFeatures . 

Step 4: Normalize the fused feature using min-max normalization to 

obtain resFusedFeatuX . 

Step 5: Randomly initialize the PSO particles with binary values (0 and 1). 

Step 6: Carry out the feature selection by considering the value of the bit in 

the particle. More precisely, if bit value is 1, select the 

corresponding feature from resFusedFeatuX .This way we construct a new 

feature vector 
aturesNewFusedFeX . 

Step 7: Apply CFS to the resulting feature vector
aturesNewFusedFeX . 

 

 

Finally, the decision about accept/reject in all the schemes is evaluated using number 

of supervised learning classifiers. For comparison purpose, we implemented and 

evaluated three classifiers, namely: Naïve Bayes, k-NN and SVM. 

 

Figures 5.4-5.8 show the block diagram of the proposed feature fusion, where all the 

techniques start with acquiring the features of iris and online signatures separately. 
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Figure ‎5.4 BPSO Proposed scheme of feature fusion (Scheme I) 

 

 

 

 

 

 

 

 

 

 

 

 

Figure ‎5.5 PCA-BPSO Proposed scheme of feature fusion (Scheme II) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure ‎5.6 BPSO-PCA Proposed scheme of feature fusion (Scheme III) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure ‎5.7 PCA-BPSO Proposed scheme of feature fusion (Scheme IV) 

Sig. Features 

Iris Features 

 
Features  

Concatenated 

Classification 

Features  
Selection 

Using BPSO  

Sig. Features 

Iris Features 

 
Features  

Concatenated 

Features  
Reduction 

Using PCA 
 

 

Classification 

Features  
Selection 

Using BPSO 

Sig. Features 

Iris Features 

 
Features  

Concatenated 

Features  
Selection 

Using BPSO  

Classification 

Features  
Reduction 

Using PCA 

Sig. Features 

 

Classification 

 
Features  

Concatenated Iris Features  
Reduction 

Using PCA 
 

Features  
Selection 

Using BPSO 

Iris Features 



103 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure ‎5.8 BPSO-CFS Proposed scheme of feature fusion (Scheme V) 

 

 

5.5 Experimental Results 

 

This section describes the experimental setup, including database and the assessment 

protocol that we have built in order to evaluate the proposed feature level fusion 

schemes. 

 

 

5.5.1 On the Use of Chimeric Users in Multimodal Biometric 

The first difficulty we are facing when working on multi-biometrics is the lack of 

real-user databases. In order to evaluate the performance of a multimodal system 

based on iris and online signature modalities, it is essential to have a database that 

contains data of the two modalities. Unfortunately, as far our knowledge is 

concerned, there is no public multimodal real-user database which combines online 

signature and iris modalities of the same individuals available. However, there exist 

few well established datasets for iris images, thus implying the combination of 

biometric modalities from different databases. Since both databases do not 

necessarily contain the same users, such combination results in the creation of virtual 

multimodal dataset, or so-called chimeric users. 

 

Creating such chimeric users has lately been widely accepted and reasonable practice 

in the field of multimodal biometrics research as a way to overcome the problem of 

shortage of actual multimodal biometric databases [154]. An investigation into the 

using of chimeric users to construct fusion classifiers in biometric authentication 

tasks was reported in [72] with the conclusion that a fusion operator derived from 

multiple chimeric-user databases does not enhance nor degrade the generalization 

performance (on real users) with respect to training it on real users databases. 
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5.5.2 The Chimeric Database 

We‎ have‎ created‎ a‎ ‗virtual multimodal database‘‎ by‎ aggregating‎ two‎ different‎

database using online signature and iris modalities coming from two different 

databases. A user from the online signature dataset is randomly associated with a 

user from the iris dataset, creating a virtual user with online signature and iris 

samples. 

 

For online signature modality, we chose the database we have gathered in Chapter 

Three. The signature database contains 2160 signatures of 108 volunteers with 20 

images per each class taken from two sessions, and each session was taken with an 

interval of several weeks. From this database, we selected 7 signature scripts from 

108 different users. For the iris modality, we chose the CASIA eye image database 

version 1.0 [21]. The CASIA database contains 756 frontal iris images of 108 classes 

with 7 images per each class taken from two sessions, and each session were taken 

with an interval of one month. In building our multimodal biometric database of 

online signature and iris, each virtual subject was associated with 7 randomly 

samples of iris and online signature from two subjects in the aforementioned 

databases. Thus, the resulting virtual multimodal biometric database consists of 108 

subjects, so that each subject has seven samples. 

 

 

5.5.3 Results and discussion 

As mentioned earlier, the first set of experiments (Scheme I) is based on applying 

BPSO after fusing the features of the iris and signature. Whereas, the second, the 

third and the fourth feature fusion experiments (i.e. schemes II, III and IV), study the 

effect of further reducing the same set of reduced set of features using PCA 

prior/subsequent to classification. While the last scheme, Scheme IV, study the 

effect of reducing the obtained set of features using CFS after applying BPSO to the 

fused feature vector. Note that for the feature fusion schemes Ia ,IIa ,III a , IVa and Va 

we have applied all the 31 extracted signature features, while for the feature fusion 

schemes Ib, IIb, IIIb , IVb and Vb we have applied the minimal reducted set of 

signature features using the rough set. 

 

All experiments were carried out using 10-fold cross-validation to minimize the bias 

associated with the random sampling of the training. In 10-fold cross-validation the 

whole database is randomly partitioned into 10 mutually and approximately equally 

sized subsets. The classification task is carried out 10 times, each time using one 

distinct partition as the testing set and the remaining 9 partitions as the training set. 

Thus, 10 different test results exist for each training test configuration. The precision 

and recall is computed as the average of the total runs. 

 

Table 5.3 shows the best classification rate and the number of features, together with 

the classifier applied in building unimodal approach. It is clear that the performance 

of the online signature unimodal system outperforms the iris unimodal model with 

GAR of 97.48% achieved with 31 features and a GAR of 95.11% with 9 features 
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using the k-NN classifier. Whilst, the iris modality achieved a GAR of 92.86% with 

a feature vector of at the third level of 2D-DTCWT decomposition using the SVM 

Gaussian RBF kernel. The fact that the results of the online signature features are 

better than iris is due to that the fact that the iris preprocessing phase has trimmed a 

significant part of the iris with the purpose of eliminating the effect of the eye lid and 

eye lashes. 

 

 

Table ‎5.3 Unimodal recognition rates 

Method Classifier Number of 

features 

Recognition 

Rate (%) 

Iris alone SVM-RBF 1040 92.86 

SVM- Polynomial 1040 92.46 

SVM-Linear 1040 92.32 

k-NN 1040 80.82 

Naïve Bayes 280 77.11 

Online signature alone  k-NN 31 97.48 

k-NN 9 95.11 

Naïve Bayes 31 94.57 

Naïve Bayes 9 93.91 

 

 

Tables 5.4 and 5.5 show the performance of feature fusion scheme Ia and scheme Ib. 

The tables present the performance of each classifier along with the number of 

features obtained after applying the BPSO. It is observed that, the best performance 

is noted for fusion scheme Ia was a GAR of 98.14% with the SVM-RBF kernel with 

a feature vector of 50, while the fusion scheme Ib scored the best classification rate 

of 93.78% using 45 features using the SVM-RBF kernel. Naïve bayes and k-NN 

classifiers recorded a GAR of 94.84 and 97.08 with 80 features, respectively. 

 

We also observed that, Scheme Ia recorded better classification rates than Scheme Ib. 

We have noticed that the SVM has outperformed the other classifiers in most of the 

experiments. 

 

It can be noticed from both tables that the best classification results was recorded 

when fusing the iris features of the 5
th

 level of 2D-DTCWT decomposition with the 

online signature features. 
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Table ‎5.4 BPSO Proposed scheme of feature fusion (scheme Ia) 

Biometrics 

dim. 

Classifier 

Accuracy rate (%) 

Online 

signature 

Iris Naïve 

Bayes 

k-NN SVM 

G
au

ss
ia

n
 

R
B

F
 

P
o
ly

n
o
m

ia
l 

L
in

ea
r 

31 1040 515 84.78 93.25 93.65 94.44 94.44 

31 280 155 91.93 95.37 95.50 95.02 95.63 

31 80 50 94.84 97.08 98.14 97.22 98.01 

31 24 24 94.04 95.76 97.88 96.82 97.22 

 

 

Table ‎5.5 BPSO Proposed scheme of feature fusion (scheme Ib) 

Biometrics 

dim. 

 

Classifier 

Accuracy rate (%) 

Online 

signature 

Iris Naïve 

Bayes 

k-NN SVM 

G
au

ss
ia

n
 

R
B

F
 

P
o
ly

n
o
m

ia
l

 

L
in

ea
r

 

9 1040 524 80.02 92.67 92.98 93.65 93.65 

9 280 134 64.94 81.34 83.46 80.82 82.67 

9 80 45 87.30 91.66 93.78 93.12 93.51 

9 24 12 86.50 84.65 90.07 88.09 89.81 

 

In the next set of experiments, the considered fusion method Scheme II, is applied 

based on performing the PCA first to reduce the dimensionality of iris features SIris 

to the half. Followed by combining the resulted feature set with the online signature 

feature set prior to further reducing the dimension of the combined features 

resFusedFeatuX using the BPSO before performing the matching step. Tables 5.6 and 5.7 

present the results in terms of GARs again for all the possible feature/classifier 

combinations for iris and signature features, respectively. 

 

We noticed that this fusion approach shows similar performance as compared with 

the previous scheme. Nevertheless, the best performance is noted with the fusion 
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scheme IIa by SVM classifier with Linear kernel function which scored a GAR of 

98.94% with 282 features. The highest GAR (95.76%) in Scheme IIb is observed in 

the case of combing the 9 signature features with the 6
th

 level of 2D-DTCWT 

decomposition using the SVM Gaussian RBF function. We also noticed that, 

Scheme IIa recorded better classification rates than Scheme IIb.  

 

The best performance for this scheme in most of the experiments is achieved with 

SVM classifiers is used. However, the achieved performance of the Naïve Bayes 

classifier suggests that it may be most sensitive to irrelevant and redundant features. 

 

 

Table ‎5.6 PCA-BPSO Proposed scheme of feature fusion (scheme IIa) 

Biometrics 

dim. 

Classifier 

Accuracy rate (%) 

Online 

signature 

Iris Naïve 

Bayes 

k-NN SVM 

G
au

ss
ia

n
 

R
B

F
 

P
o
ly

n
o
m

ia
l 

L
in

ea
r 

31 1040 282 27.64 52.51 98.54 98.54 98.94 

31 280 76 94.70 94.97 97.88 97.61 97.75 

31 80 41 94.44 97.35 98.14 97.88 98.14 

31 24 22 94.04 95.76 97.22 98.54 98.67 

 

 

Table ‎5.7 PCA-BPSO Proposed scheme of feature fusion (scheme IIb) 

Biometrics 

dim. 

 

Classifier 

Accuracy rate (%) 

Online 

signature 

Iris Naïve 

Bayes 

k-NN SVM 

G
au

ss
ia

n
 

R
B

F
 P
o
ly

n
o
m

ia
l

 

L
in

ea
r

 

9 1040 272 74.73 20.76 51.19 51.32 52.11 

9 280 76 86.77 89.02 94.70 92.72 92.72 

9 80 21 82.67 84.65 86.50 84.78 84.78 

9 24 16 94.97 95.1 95.76 95.63 95.63 
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As described previously, Scheme III was carried out by applying BPSO first to the 

fused feature space resFusedFeatuX . We then carry out the PCA to look for an axis in the 

kernel space that highlights the difference between classes. The best performance is 

noted for fusion scheme IIIa by the k-NN classifier with a GAR of 98.01% and 30 

features. The highest GAR (96.29%) in Scheme IIIb is observed in the case of 

combing the 9 signature features with the 5
th

 level of 2D-DTCWT iris coefficients 

using the k-NN classifier. Clearly the results suggest that applying feature reduction 

with PCA after BPSO did not enhance the performance. It is also observed that, 

Scheme IIIa recorded better classification rates than Scheme IIIb. 

 

 

Table ‎5.8 BPSO-PCA Proposed scheme of feature fusion (scheme IIIa) 

Biometrics 

dim. 

Classifier 

Accuracy rate (%) 

Online 

signature 

Iris Naïve 

Bayes 

k-NN SVM 

G
au

ss
ia

n
 

R
B

F
 

P
o
ly

n
o
m

ia
l 

L
in

ea
r 

31 1040 257 61.37 81.21 64.94 89.55 94.57 

31 280 87 81.48 96.95 92.98 91.37 95.10 

31 80 30 88.88 98.01 96.82 92.85 97.35 

31 24 13 90.87 95.89 96.56 93.25 96.95 

 

Table ‎5.9 BPSO-PCA Proposed scheme of feature fusion (scheme IIIb) 

Biometrics 

dim. 

 

Classifier 

Accuracy rate (%) 

Online 

signature 

Iris Naïve 

Bayes 

k-NN SVM 

G
au

ss
ia

n
 

R
B

F
 P
o
ly

n
o
m

ia
l

 

L
in

ea
r

 

9 1040 272 74.735 51.19 51.19 51.32 52.11 

9 280 72 80.95 96.29 91 86.37 92.72 

9 80 18 79.36 91.53 91.53 83.33 90.87 

9 24 7 75 79.76 82.86 55.42 82.27 
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In the following set of experiments, Scheme IV, we started with applying the PCA to 

the combined features resFusedFeatuX , and then we applied the BPSO on the remainders 

of the fused features. The best performance is noted for this fusion scheme was 

achieved by the SVM classifier with the Gaussian RBF function with a GAR of 

98.48% with 37 features. The highest GAR (95.76%) in Scheme IVb is observed in 

the case of combing the 9 signature features with the 5
th

 level of 2D-DTCWT 

decomposition using the Gaussian RBF kernel function. We also noticed that 

Scheme IVa recorded better classification rates than Scheme IVb. We observed that 

the SVM has outperformed the other classifiers in most of this experiment set. 

 

Table ‎5.10 PCA-BPSO Proposed scheme of feature fusion (scheme IVa) 

Biometrics 

dim. 

Classifier 

Accuracy rate (%) 

Online 

signature 

Iris Naïve 

Bayes 

k-NN SVM 

G
au

ss
ia

n
 

R
B

F
 

P
o
ly

n
o
m

ia
l 

L
in

ea
r 

31 1040 263 86.5 31.87 67.98 66.66 69.97 

31 280 81 73.94 91.4 94.84 63.09 94.97 

31 80 37 93.78 97.48 98.48 98.28 98.28 

31 24 14 86.64 93.38 91 40.47 90.21 

 

 

Table ‎5.11 PCA-BPSO Proposed scheme of feature fusion (scheme IVb) 

Biometrics 

dim. 

 

Classifier 

Accuracy rate (%) 

Online 

signature 

Iris Naïve 

Bayes 

k-NN SVM 

G
au

ss
ia

n
 

R
B

F
 P
o
ly

n
o
m

ia
l

 

L
in

ea
r

 

9 1040 281 73.54 26.98 56.87 61.5 63.49 

9 280 67 71.42 90.34 91.13 36.11 91.13 

9 80 29 85.31 93.91 95.37 93.38 93.78 

9 24 12 90.97 86.9 90.6 88.75 86.24 
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In the last set of experiments, Scheme V, we start with applying the BPSO to the 

combined features resFusedFeatuX , and then we apply the CFS on the remainders of the 

fused features. The best performance is noted for this fusion scheme by the k-NN 

classifier with a GAR of 98.94% from 18 features. The highest GAR (93.65%) in 

Scheme Vb is observed in the case of combing the 9 signature features with the 4
th

 

level of 2D-DTCWT decomposition using the SVM Gaussian RBF function. We 

also noticed that Scheme Va recorded better classification rates than Scheme Vb. We 

observed that the SVM has outperformed the other classifiers in most of this 

experiment set. 

 

 

Table ‎5.12 BPSO-CFS Proposed scheme of feature fusion (scheme Va) 

Biometrics 

dim. 

Classifier 

Accuracy rate (%) 

Online 

signature 

Iris Naïve 

Bayes 

k-NN SVM 

G
au

ss
ia

n
 

R
B

F
 

P
o
ly

n
o
m

ia
l 

L
in

ea
r 

31 1040 24 93.78 95.89 96.95 94.44 96.95 

31 280 25 95.63 97.08 97.48 95.48 97.61 

31 80 18 95.76 98.94 98.41 87.433 98.67 

31 24 7 87.03 83.46 98.01 97.48 86.11 

 

 

Table ‎5.13 BPSO-CFS Proposed scheme of feature fusion (scheme Vb) 

Biometrics 

dim. 

 

Classifier 

Accuracy rate (%) 

Online 

signature 

Iris Naïve 

Bayes 

k-NN SVM 

G
au

ss
ia

n
 

R
B

F
 P
o
ly

n
o
m

ia
l

 

L
in

ea
r

 

9 1040 37 80.48 90.21 91.79 91.66 91.40 

9 280 14 92.85 90.34 93.65 92.32 93.12 

9 80 11 89.41 91.26 91.53 90.47 92.46 

9 24 7 87.03 83.46 87.03 85.18 86.11 
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Table 5.14 shows the comparative recognition rates of the suggested feature 

selection schemes. 

 

Table ‎5.14 Comparative recognition rates of the different feature selection schemes 

Method Classifier Number of 

features 

Recognition 

Rate (%) 

Iris alone SVM-RBF 1040 92.86 

Online signature alone k-NN 31 97.48 

Online signature alone k-NN 9 95.11 

Feature Fusion-Scheme Ia SVM-RBF 50 98.14 

Feature Fusion-Scheme Ib SVM-RBF 45 93.78 

Feature Fusion-Scheme IIa k-NN 30 98.01 

Feature Fusion-Scheme IIb k-NN 72 96.29 

Feature Fusion-Scheme IIIa k-NN 30 98.48 

Feature Fusion-Scheme IIIb k-NN 72 96.29 

Feature Fusion-Scheme IVa SVM-RBF 37 98.48 

Feature Fusion-Scheme IVb SVM-RBF 29 95.76 

Feature Fusion-Scheme Va k-NN 18 98.94 

Feature Fusion-Scheme Vb SVM-RBF 14 93.65 

 

 

A number of important outcomes of the experimental analysis can be observed by 

considering the results in all the tables shown above. From these results, it is clearly 

seen that the best performance is noted for fusion scheme Va was a GAR of 98.94% 

with the k-NN classifier with a feature vector of size 18 which outperforms the 

online signature in terms of accuracy rate and size of feature vector. 

 

The experimental results showed that the SVM classifier achieved the best 

performance which is closely followed by k-NN. The performance of the Naïve 

Bayes was the worst, this may be due to the large number of features that make the 

repeated portioning of data not easy. However, the performance of k-NN is also 

promising. 

 

It can be observed that the performance of any of the feature level fusion methods is 

superior to that of iris modality alone. More importantly, the feature fusion schemes 

with the 31 online signature features showed a better performance as compared with 

the feature fusion schemes with the reducted set of online signature features. This 

clearly indicates that the number of online signature features plays a significant role 

in classification. We also noticed that in most cases, the proposed schemes scored its 

best classification rates while using the 5
th

 level of 2D DT-CWT decomposition with 

a feature vector of 80. 

 

The usage of the BPSO-based fusion (Schemes I, II and V) has resulted in 

significant performance improvement, while the usage of PCA on the fused feature 

vector before or after applying the BPSO (Schemes III and IV) has degraded the 

accuracy rate. The best classification performance allows reducing the original 
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feature space by 97% and hence it also reduces the computation time as compared 

with conventional methods. This demonstrates that the BPSO based methods allow 

the same level of performance to be kept while reducing considerably the 

computation load. 

 

It can be noted that the combination of iris and online signature features has been 

useful in improving the performance for all the classifiers except for the case from 

Naïve Bayes classifier in some cases. The performances of the fused features using 

reduced feature subset indicated that the Naïve Bayesian classifier is very simple and 

useful, yet it is highly sensitive to feature selection, therefore feature selection is 

significant. 

 

We have noticed that the accomplished performance of the k-NN classifier 

suggested that it may be ideal in some applications as it is essentially simple and 

does not require prior training experience. 

 

One of the important conclusions from Table 5.14 is that the proposed fusion 

schemes have improved the classification performance rates in terms of accuracy 

rate and size of feature vectors. The results clearly show that we get reasonable 

results from the fusion of online signature and iris at the feature level compared with 

the unimodal systems. 

 

 

5.6 Summary 

 

In this chapter, we have tackled the problem of feature level fusion in the context of 

multimodal biometrics. Our concern was to compare different fusion schemes and to 

provide a clear analysis of their comparative advantages in terms of performance and 

complexity. With this objective, we considered two independent modalities (iris and 

online signature) that are represented with different feature extraction techniques. 

The comparison and combination of proposed features fusion schemes is evaluated 

on the diverse classification schemes; Naïve Bayes, k-NN and SVM. 

 

The chapter has proposed and investigated the usefulness of Binary Particle Swarm 

Optimization in a multimodal biometric scenario. The experimental investigations 

have been shown that we can obtain a considerable improvement in terms of 

identification performance when Appling the BPSO feature selection scheme to the 

fused unimodal systems features before performing classification. The 

implementation of a BPSO algorithm reduced the number of features by a factor of 

roughly 97% while keeping the same level of performance. Therefore, this approach 

offers new perspectives for multimodal biometric implementation for biometric traits 

which are efficiently represented in a high dimension feature space. 

 

Overall, comparing the results with the iris and online signature baselines, it is 

observed that the feature-level fusion leads to improve the authentication accuracy. 
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Chapter 6  
Hybrid Fusion: Combining 
Feature and Decision 
Levels 

 

 

 

 

 

 

 

ecision-level fusion is the most abstract level and consolidates 

multiple accept/reject decisions from multiple biometric traits to 

find out the final decision or authentication result. Decision level 

fusion is the highest level combination possible. This level of fusion takes 

advantage of the tailored processing performed by each biometric trait. It 

requires the minimum amount of interaction with user. This chapter 

studies the performance of decision-level fusion and proposes a new 

multimodal biometric system based on a hybrid-level-fusion between 

feature and decision levels in an attempt to improve the final 

authentication performance. 

D 
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As discussed in the former chapters, each modality has its strengths and limitations. 

One approach to improving biometric identification accuracy is to use multiple 

modalities. Achieving good classification results at the decision level, involves the 

selection of multiple classifiers and fusion rules that minimize the classification 

error. 

 

Multiple classifiers systems have been applied to a large number of fields and 

application domain for decision fusion. Classifier combination is a popular technique 

in the domain of pattern recognition to improve classification accuracy. In literature, 

it has been shown that combining classifiers is often practical and effective solution 

for difficult pattern recognition tasks [65]. 

 

The classifier combination approach can be found with different names in literature 

such as decision combination [66], mixture of experts [79], classifier ensembles [61], 

classifier fusion [99] consensus aggregation [12], dynamic classifier selection [54], 

hybrid methods [30] and so on. The difference between these approaches stems 

mainly from the dependencies between individual classifiers, the selection of 

classifier outputs, architecture and aggregation strategy. The main benefit of 

classifier combination is that the performance of classifiers combined is significantly 

higher than the best obtainable from the individual. In this thesis we shall use the 

term combing classifiers in its widest meaning, in order to include the whole range 

of ensemble techniques. This variety of terms and specifications reflects the 

remarkable effort of the researchers dedicated to this promising discipline. 

 

In this chapter we will consider the combination between classifiers to achieve better 

detection results through the concept of decision fusion. We study the effect of using 

a combination of classifiers trained on the different feature sets, over the overall 

accuracy results. 

 

 

6.1 Decision Level Fusion 

 

Decision level fusion, also known as fusion at the abstract level [145], considers 

only classification information of single matchers. Hence, it is possible to apply, as 

no assumptions about matchers or distributions could be made. This is an advantage 

as it makes implementation easier. Fusion in a multimodal biometric system is 

carried out at the decision level when only accept or reject decisions by the 

individual biometric matchers are available. Figure 6.1 shows the general scheme for 

decision level fusion. Performing decision fusion therefore means finding the 

discrete class labels. Although, earlier combination achieves better result than 

decision level fusion and thus can be more effective [51,154,180]. Nevertheless, this 

is not always true, as Kumar et al. [98] showed that fusion at decision level 

outperformed fusion at feature level for multimodal system based on fusion of hand 

geometry and palmprint. 
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In this chapter we study the decision fusion in the context of fully automatic iris and 

online authentication. Firstly decision fusion is used combine the outputs of several 

iris and online signature authentication algorithms. This type of fusion has been 

recently studied for different biometric modalities [51,180]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure ‎6.1 Block diagram for decision level fusion 

 

 

 

Fusion at decision score level is challenging and less studied in literature, on the 

basis that decisions have less information content compared to earlier levels of 

fusion. The majority of the techniques proposed for decision level fusion include 

majority voting, Bayesian decision fusion, the Dempster-Shafer theory of evidence, 

"AND" and "OR" rules and weighted majority voting. A brief description of such 

techniques is presented below. 

 

 

 "AND" and "OR" Rules 

Using the "AND" and "OR" rules is the simplest means of combining decisions 

output by the different matchers. The "AND" rule issues a "match" decision only 

when all the biometric matchers agree that the claimed identity sample matches with 

the stored template. In case of "OR" rule, the output is a "match" decision on 

condition that at least one matcher issues a match decision. When applying the 

"AND" rule, the FAR is expected to extremely drop compared with the FAR of the 

individual matchers, whilst the FRR is expected to rise greater than the FRR of the 

individual matchers. Likewise, the "OR" rule leads to significantly higher FAR and 

lower FRR than the individual matchers. Thus, it may actually degrade the overall 

performance of the multimodal biometric system [35]. 

Final 

Decision 

 

 

 

 

 

 

 

Decision 

 

Fusion 

dN 
Modality N Feature 

Extractor N 
Classifier N 

. 

. 

. 

. 

d1 
Modality 1 Feature 

Extractor 1 
Classifier 1 

d2 
Modality 2 Feature 

Extractor 2 
Classifier 2 



116 

 

 Majority Voting 

This is the most widespread and intuitive approach for decision level fusion where 

the input biometric sample is assigned to that identity on which the majority of the 

matchers agree on that identity. Majority voting is based on the assumption that all 

the matchers perform equally well. This does not require either a priori knowledge 

about the matchers or any additional training to come up with the final decision. 

Kuncheva et al. [100] introduced a theoretical analysis of the majority voting fusion 

scheme by establishing limits on the accuracy of the majority vote rule based on the 

number of matchers, the individual accuracy of each matcher and the pair wise 

dependence between the matchers. 

 

 

 

 Weighted Majority Voting 

This technique is usually applied when the recognition accuracy of different 

matchers are not identical. Therefore, it is reasonable to assign different weights to 

the decision of different classifiers. Bearing in mind that higher weights are assigned 

to the decisions made by the more accurate classifiers. In this case the recognition 

procedure is similar to the majority voting approach, except that the weights of 

individual classifiers are also considered [154]. 

 

 

 

 Bayesian Decision Fusion 

This fusion scheme depends on transforming the discrete decision labels output into 

continuous probability values. Using Bayes rule, the posterior probability of class wk 

P(wk|C) can be rewritten as 




)(

)()
)

xP

wPwcP
cwP

kk

k          ‎6.1 

Where  kwP  and  xP  are the a priori probabilities of class i and x, respectively. 

And  kwcP  is the conditional probability of x given c. we will shed more light on 

this technique in the next section. 

 

 

 

 Dempster-Shafer Theory of Evidence 

Dempster–Shafer evidence is a mathematical theory was developed as an attempt to 

overcome the limitation of conventional probability theory by handling uncertain, 

imprecise and incomplete information [36,164]. Dempster–Shafer theory, also 

known as the theory of belief functions, is often viewed as a generalisation of 

Baysian probability theory and it is more flexible than Baysian when knowledge is 

incomplete [164]. Major advantage of this theory is the ability to easily represent 

evidence at different levels of abstraction and the possibility to combine evidence 

from different sources. The idea in Dempster-Shafer theory is to build beliefs about 

the true state of a class from smaller and distinct pieces of evidence. 
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6.2 The Suggested Decision Level Scenarios 

The purpose of this chapter is to investigate the usefulness of decision fusion in the 

context of fully automatic iris and online authentication. 

 

 

6.2.1 Architecture of the Individual Classifiers 

 

Choosing base classifiers is also very important task in combing classifiers. The 

composition of the single classifiers will affect its performance [39]; yet, the number 

of combinations of single classifiers and parameters is almost infinite and thus a 

thorough evaluation of this experimental factor is outside the scope of this thesis. 

Therefore, the classifiers that are used are the same those used throughout this thesis 

which represents a broad number of machine learning approaches. Except we have 

employed the SVM with the radial basis function (RBF) as the basic kernel function 

as it seemed to offer the best results in the previous chapters. 

6.2.2 Architecture of the multiple classifier system 

 

There are two main approaches being applied in building multiple classifiers: serial 

and parallel strategies [67]. Serial approach, invoke the classifiers in a cascade order, 

where some of the classifier may be used only if the first classifier failed to satisfy 

an acceptable result. On the contrary, in the parallel approach all classifiers are 

invoked independently with the same input data, and afterwards their decisions are 

combined. Thus, in serial architecture, the order of classifiers arrangement is critical 

for the classification performance, whereas in parallel approach, system performance 

depends mainly on the combination procedure. Moreover, in serial architecture, most 

of legitimate users can be accepted by using the first biometric in the processing 

chain, while all available biometrics should be required to the unacceptable users 

from the first matcher. The method described in this chapter follows the parallel 

approach. The structures of serial and parallel approaches are shown in Figure 6.2. 
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Figure ‎6.2 The block diagram of (a) serial and (b) parallel classifier combinations 

 

 

6.2.3 Combination method 

 

A numerous of possible schemes have been proposed in the literature to combine 

individual classifiers [75,90,97,98]. Regarding biometrics, it has been shown despite 

their simplicity, simple combination schemes, have resulted in high recognition rates 

than trainable fusion rules [91]. 

 

The work in this chapter continues in the general direction of combining classifiers 

based on different feature sets developed in Kittler et al. [90]. In their findings, they 

state that the sum rule and its elementary fixed combination schemes on 

measurement level (such as: max rule, majority vote rule, and median rule) 

consistently outperform other classifier combination schemes. They showed that 

these elementary combination schemes can be seen as compound classification, 

where all classifiers are used to make a decision. 

 

… 

Reject 

Yes 

No 

Classifier 1 

Result 1 

Yes 

No 

Classifier 2 

Result 2 

Yes 

No 

Classifier N 

Result N 

… 

Classifier 1 

Classifier 2 

Classifier N 

. 

. 

. 

Combining Module Result Input 



119 

 

In [89], Kittler extends his work analytically to proof that sum fusion strategy 

outperforms the majority vote when all classifiers are of equal strength and 

estimation errors are conditionally independent and identically distributed. We 

briefly introduce the framework in this section. 

 

Suppose N individual classifiers cn (n =1,....,N) are selected through the classifier-

selection step. Each classifier assigns one input sample (represented as 

xk=(x1,x2,...,xN) to one of the possible a classes Lk ( mk wwL ,...,1 ). Then, according 

to Bayesian theory, the classifier cn gives every output a measurement which is 

represented as a posterior probability vector, Pn = [p(w1|wn),‎…‎ ,‎p(wm|wn)]
t
 where 

p(wi|wn) denotes the probability that the classifier considers that x was labelled with 

wi. 

 

The pattern z should be assigned to class wj provided that a posterior probability is 

maximum, i.e. 
 

assign 
jwz   

 

),...,(max),...,( 11 Nkk
Nj

xxwPxxwp 
    ‎6.2 

 

From the Bayes theorem, the posteriori probability can be rewritten as 

 

),...,(

)(),...,(
),...,(

1

1
1

N

kkN
Nk

xxP

wPwxxp
xxwP 

    ‎6.3 

 

 

where 
),...,(

1 kN
wxxp

 is the conditional joint probability density function for 

measurements on class wk  and ),...,(
1 N

xxp  is the unconditional measurement joint 

probability function. 
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6.2.4 Classifier Algebraic Combination Strategies 

 

 Sum rule 

The sum rule can be derived if we assume that the a posteriori probabilities 

computed from the classifiers do not differ greatly from the a priori 

probabilities. Then the a posteriori probabilities can be expressed as 

 

)1)(()(
kikik

wPxwP 
      ‎6.4 

where 
1

ki


. Substituting the a posteriori probability in equation (6.8) into 

the posteriori probabilities in equation (6.9),  







 
N

i
kik

N

i
ikk

N wPxwPwP
11

)1( )1()()()( 
    ‎6.5 

By expanding the product and neglecting terms of the second and higher 

order in 
ki
 , 







 
N

i
kikk

N

i
ikk

N wPwPxwPwP
11

)1( )()()()( 
   ‎6.6 

 

Then using (6.8) to eliminate 
ki
 , we obtain the sum decision rule as 

assign 
jwz    if 

)]()()1[(max)()()1(
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1
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R
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
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  ‎6.7 

 

 

 Max rule 

Starting from (6.7) and approximating the sum by the maximum of the 

posterior probabilities, we obtain the max rule as 

 

assign 
jwz    if 
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which, with the assumption of equal a priori probabilities, becomes 

 

assign 
jwz    if 
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121 

 

 Minimum rule 

Starting from (6.7) we obtain a minimum decision rule 

 

assign 
jwz    if 
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with the assumption of equal a priori probabilities, a minimum decision rule 

becomes 

 

assign jwz 
  if 
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 Majority voting rule 

Starting from (6.7) under the assumption of equal priors and if the a 

posteriori probabilities are hardened to produce a binary valued function, 

 

assign 
jwz    if 
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where 
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And at the end the class with the largest number of votes is selected. 

 

 

6.3 Decision-Level Fusion System 

The basic idea here is to fuse the decisions of the individual iris and online signature 

biometrics. Each biometric decision was evaluated by the three classifiers: SVM, 

Naïve Bayes and k-NN. In a multi-classifier decision fusion context, each classifier 

has a decision, the decisions from multiple classifiers are then fused in order to 

generate the final decision. The input of each classifier is a vector composed of 

values of the selected features and the output is a class label of the sample. Let 

Fsignature and Firis denote the feature vectors of the online signature and iris 
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respectively. The combined decision can be obtained into two steps, first by training 

each classifier independently on the same feature set and thus, obtaining an 

individual decision using the well-known fixed rules. 

 

To combine the final decision of the individual classifiers in order to find Dsignature 

and Diris the estimated class wi, given input Fsignature and Firis is given by 

 

),,( ___ NaiveBayesirisNNkirisSVMirisiris DDDD 
     ‎6.13 

 

),,( ___ NaiveBayessignatureNNksignatureSVMsignaturesignature DDDD 
    ‎6.14 

 

where   is the selected combining rule (i.e. maximum, sum, majority or minimum 

rule) evaluated in this chapter. 

 

One of the weaknesses of fixed rules is the fusion of the decisions of the individual 

classifiers is based on assumption that the classifiers are independent. This 

assumption may be quite suited, especially for the iris and online signature based 

features. Therefore AND rule can be better alternative for consolidating single 

decisions (Figure 6.3) as the AND rule is estimated to perform better on the 

assumption of independent data representation [35,51,146]. Therefore, we decided to 

fuse the decisions by the AND rule to obtain the final decision. 

 

To combine the final decision of the multi-classifiers in order to obtain the DFinalClass 

the estimated class wi, given Dsignature and Diris as inputs, is as follows. 

 

),( signatureirisFinalClass DDAndD 
       ‎6.15 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure ‎6.3 Schematic for proposed multimodal decision-level fusion scheme 
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6.4 Hybrid Fusion System 

In an attempt to improve the final authentication performance, we further propose a 

hybrid fusion technique, which combines the feature-level and decision-level 

fusions, taking advantage of both fusion modes. The motivation behind the 

suggested hybrid fusion is twofold. Firstly, we demonstrate that the decision fusion 

framework can be integrated easily. Secondly, by hybrid fusion we expect to take 

advantage of the feature-level and decision-level fusion, and eventually achieve 

more reliable and robust biometric system. 

 

We summarize the hybrid fusion method as follows: the proposed scheme starts first 

with performing the PCA to reduce the size of SIris SSignature independently before 

vertically fusing both features into one feature vector resFusedFeatuX . Followed by 

reducing the dimension of the fused features resFusedFeatuX using the BPSO. 

Afterwards, each classifier vector will be trained and tested independently with the 

fused feature sets and the output is the class label of the sample. To combine the 

final decision of the individual classifiers in order to obtain the DFinalClass the 

estimated class wi, given input resFusedFeatuX is given by 

 

),,( ___ NaiveBayesresFusedFeatuNNkuresiFusedFeatSVMresFusedFeatuFinalClass DDDD 
  ‎6.16 

 

Where   is the selected combining rule (i.e. maximum, sum, majority or minimum 

rule) evaluated in this chapter, as shown in Figure 6.4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure ‎6.4 Schematic for proposed hybrid multimodal fusion scheme 
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6.5 Experimental Results 

6.5.1 Decision-level Fusion Scheme 

 

This section describes the experimental setup, including the assessment protocol that 

we have built in order to evaluate the proposed decision and hybrid level fusion 

schemes. For all of the experiments in this chapter, the same underlying conditions 

applied in the previous chapters have been carried out in this chapter. In the first 

decision fusion scheme, the individual classifiers were trained and tested first with 

the 31 global functions of the online signatures along with the 2D-DTCWT iris 

features. Then the individual decisions from the three classifiers combined with 

maximum, sum, majority and minimum rule. Finally the resulted two decisions were 

combined with the AND rule. Here is a description of the steps involved in the first 

scheme 

 

 

Step 1: Extract and normalize the iris image 

Step 2: Apply the 2DT-CWT on the extracted iris images to obtain SIris 

wavelet coefficients, 

Step 3: Carry out the iris classification using the three classifiers 

independently: 

- SVM (RBF Kernel) 

- k-NN  

- Naïve Bayes. 

Step 4 : Combine the three decisions in step 3 with the four algebraic rules 

(maximum, sum, majority ,minimum) at each time 

Step 5: Extract the 31 global features from the dynamic signatures SSignature . 

Step 6: Carry out the online signature classification using the three 

classifiers independently: 

- SVM (RBF Kernel) 

- k-NN  

- Naïve Bayes. 

Step 7 : Combine the two decisions in step 6 with the four algebraic rules 

(maximum, sum, majority ,minimum) at each time 

Step 8 : Combine the two decisions from steps 4 and 7 with the AND rule. 

 

 

 

Table 6.1 presents the summary of experimental results of the first scheme, i.e., 

percentage recognition rate using different combination schemes considered in this 

chapter. As previously stated, we plan to design a simple iris-signature multi 

biometrics system based on decision level fusion. 
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Table ‎6.1 Performance rates from the proposed decision level fusion, Scheme I 

Biometrics   

Online 

signature 

Iris  Combination Strategy 

Dim. Sum Majority Minimum Maximum 

31 1040 1071 98.97 98.93 98.94 98.39 

31 280 311 98.96 98.96 98.91 98.63 

31 80 111 98.45 98.46 98.49 98.36 

31 24 55 97.38 97.41 97.41 97.39 

 

 

The best performance is achieved by the Sum rule with the combination of the online 

signatures with the iris of the 3
rd

 and 4
th

 level. The combination of the 6
th

 level of 

2DT-CWT with the online signature features has been worst and this may be due to 

the small number of features that make the classification of data difficult. The 

performance of Sum rule is better than Minimum and Maximum rules but quite 

similar to that from Majority rule. One of the important conclusions from the Table 

is that the proposed is that the proposed framework has effectively reduced the 

number of features by 89.63% while improving or maintaining similar performance 

in most cases. 

This surely suggests that only a small subset of iris features is necessary in practice 

for building an accurate model for authentication. The performed experiments over 

the decision level fusion using fixed combination rules suggests that the performance 

from the Sum, Majority and Minimum rules have been effective in improving the 

performance. 

 

The second decision fusion scheme is quite similar to the first scheme except that the 

online signature individual classifiers were trained and tested first with the reducted 

set of the global functions. Here is a description of the steps involved in the second 

scheme: 

 

 

Step 1: Extract and normalize the iris image 

Step 2: Apply the 2DT-CWT on the extracted iris images to obtain SIris 

wavelet coefficients, 

Step 3: Carry out the iris classification using the three classifiers 

independently: 

- SVM (RBF Kernel function) 

- k-NN  

- Naïve Bayes. 

Step 4 : Combine the three decisions in step 3 with the four algebraic rules 

(maximum, sum, majority ,minimum) at each time 

Step 5: Extract the 31 global features from the dynamic signatures. 
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Step 6: Reduct the dynamic signatures SSignature using the Rough set. 

Step 7: Carry out the online signature classification using the three 

classifiers independently: 

- SVM (RBF Kernel function) 

- k-NN  

- Naïve Bayes. 

Step 8 : Combine the two decisions in step 7 with the four algebraic rules 

(maximum, sum, majority ,minimum) at each time 

Step 9 : Combine the two decisions from steps 4 and 8 with the AND rule. 

 

 

Table ‎6.2 Performance rates from the proposed decision level fusion, Scheme II 

Biometrics   

Online 

signature 

Iris  Combination Strategy 

Dim. Sum Majority Minimum Maximum 

9 1040 1049 97.41 98.77 98.88 98.30 

9 280 289 98.81 98.80 98.79 98.49 

9 80 89 98.38 98.37 98.41 98.30 

9 24 33 97.30 97.30 97.29 97.29 

 

 

The best performance is achieved by the Sum rule with the most combinations of the 

9 features of the online signatures with the iris features. The combination of the 6
th

 

level of 2DT-CWT with the online signature features has been worst and this may be 

due to the small number of features (33 in this case) that make the classification of 

data difficult. 

 

The performance of Sum, Minimum and Maximum rules rule is better than Majority 

rule. One of the notable remarks extracted from Table 6.1 is that the proposed 

framework has effectively reduced the number of features by 91.51% while 

maintaining a similar performance to the best cases. 

 

The performed experiments over the decision level fusion using fixed combination 

rules suggests that the performance from the Sum, Majority and Minimum rules 

have been effective in improving the performance. 

 

One major advantage of this fusion level scheme is that fusing multimodal biometric 

features at decision level with AND rule is simple and feasible. As the two modal 

features are extracted from different parts of the body, thus, the two levels of 

features are not correlated and the classifiers in this case are independent which can 

ensure the AND rule to enhance the authentication performance theoretically 

[35,154]. 
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6.5.2 Hybrid Fusion Scheme 

 

The proposed hybrid fusion technique aims to improve the final authentication 

performance taking advantage of the feature and decision-levels. The steps involved 

in the hybrid fusion technique include the following steps: 

 

 

Step 1: Apply the 2DT-CWT on the extracted iris images to obtain SIris 

wavelet coefficients. 

Step 2: Extract the global features from the dynamic signatures SSignature. 

Step 3: Apply PCA to the iris feature vector SIris to obtain SIrisR. 

Step 4: Vertically concatenate SIrisR and SSignature to obtain the fused features 

vector XFusedFeatures. 

Step 5: Normalize the fused feature using min-max normalization to obtain 

resFusedFeatuX
. 

Step 6: Randomly initialize the PSO particles with binary values (0 and 1). 

Step 7: Carry out the feature selection by considering the value of the bit in 

the particle. More precisely, if bit value is 1, select the corresponding feature 

from resFusedFeatuX .This way we construct a new feature vector 
aturesNewFusedFeX . 

Step 8: Carry out the classification using the three classifiers independently 

with the new feature vector 
aturesNewFusedFeX : 

- SVM (RBF Kernel function) 

- k-NN  

- Naïve Bayes. 

Step 9 : Combine the three decisions in step 8 with one of the four algebraic 

rules (maximum, sum, majority ,minimum) one at each time. 

 

 

In the first set of experiments, the decision fusion scheme is applied where the single 

classifiers were trained and tested first with the 31 global functions of the online 

signatures and the 2D-DTCWT iris features. Whilst, the second set of experiments 

the decision fusion scheme is applied by the single classifiers were trained and tested 

first with the nine global functions of the online signatures. Tables 6.3 and 6.4 

present the results of the hybrid fusion approach of the first and the second set of 

experiments respectively. 

 

The best performance, in both set of experiments, is achieved by the Sum rule with 

the combination between the online signatures with the 6
th

 level of 2DT-CWT iris 

features. In most cases, the performance of Sum and Majority rules is better than 

Minimum and Maximum rule.  

 

The performed experiments over the decision level fusion using fixed combination 

rules suggests that the performance from the Sum and Majority rules have been 

effective in improving the overall performance. It can be observed that the suggested 

hybrid fusion scheme performed better than the decision-level fusion. It is interesting 

to note that this strategy has been able to achieve an accuracy of 99.73% with 22 

features only. 
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Table ‎6.3 Performance rates from the hybrid fusion scheme I 

Biometrics   

Online 

signature 

Iris  Combination Strategy 

Dim. Sum Majority Minimum Maximum 

31 1040 86 97.75 97.75 97.35 96.42 

31 280 76 97.61 97.75 97.88 96.82 

31 80 41 99.33 99.47 99.33 98.41 

31 24 22 99.73 99.33 99.20 99.20 

 

 

 

 

Table ‎6.4 Performance rates from the hybrid fusion scheme II 

Biometrics   

Online 

signature 

Iris  Combination Strategy 

Dim. Sum Majority Minimum Maximum 

9 1040 254 78.30 75.13 70.23 78.04 

9 280 76 95.10 94.97 94.57 94.17 

9 80 22 87.56 87.43 86.50 86.50 

9 24 16 97.22 97.08 95.76 96.03 
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Table ‎6.5 Proposed schemes recognition rates (%) 

Method Classifier/Scheme Dimension Recognition Rate (%) 

Iris alone SVM-RBF 1040 92.86 

SVM- Polynomial 1040 92.46 

SVM-Linear 1040 92.32 

k-NN 1040 80.82 

Naïve Bayes 280 77.11 

Online signature 

alone 

k-NN 31 98.33 

k-NN 9 95.41 

Naïve Bayes 31 97.10 

Naïve Bayes 9 96.30 

SVM-RBF 31 98.54 

SVM- Polynomial 31 98.54 

SVM-Linear 31 98.94 

SVM-RBF 9 95.76 

SVM- Polynomial 9 95.50 

SVM-Linear 9 95.23 

Iris and Online signature 

Feature Fusion Scheme Va 18 98.94 

 Scheme IIb 72 96.29 

Decision Fusion Sum Rule 1049 97.41 

 Sum Rule 289 98.81 

Hybrid Fusion Sum Rule 22 99.73 

 Sum Rule 16 97.22 

 

As discussed in [127,154], it is usually believed that applying the combination 

strategy at an early stage of the integration stage can guarantee better performance 

results. As the feature-level contains more information about the unknown biometric 

patterns, thus this level is expected to provide better performance than the decision-

level combination. This agrees with the results we obtained where the feature level 

fusion outperformed the decision level fusion.  

 

A number of important outcomes of the experimental analysis can be observed by 

considering the results in all the tables shown above. From these results, it is clearly 

seen that the best performance is noted for hybrid fusion scheme Ia was a GAR of 

99.73% with the Sum rule with a feature vector of size 22 which outperforms the 

feature level schemes in terms of accuracy rate and size of feature vector. The best 

classification performance allows reducing the original feature space by 98% and 

hence it also reduces the computation time as compared with conventional methods. 

This demonstrates that the BPSO based methods allow the same level of 

performance to be kept while reducing considerably the computation load. 

 

The experimental results showed that the Sum rule achieved the best performance 

which synchronizes with the results obtained by [51,89]. More importantly, the 

hybrid fusion scheme with the 31 online signature features showed a better 

performance as compared with the hybrid fusion scheme with the reducted set of 

online signature features. This clearly indicates that the number of online signature 

features plays a significant role in classification. We also noticed that in most cases, 



130 

 

the proposed schemes scored its best classification rates while using the 6
th

 level of 

2D DT-CWT decomposition with a feature vector of 24. 

 

Table ‎6.6 Performance of some multimodal systems 

Authors Biometric traits Recognition rate 

Yao et al. [189] Face and palmprint 90.73% 

Kumar et al. [97] palmprint and hand 

geometry 

98.59% 

Jain et al. [171] Face, fingerprint and 

hand-geometry 

98.6% 

Bergamini et al. [14] Face and fingerprint 99.80% 

Nandakumar et al. [154] Fingerprint and Iris 94.8% 

Proposed-feature-level fusion 

Iris and online signature 

98.94 

Proposed-decision-level fusion 98.81 

Proposed-hybrid fusion 99.73 

 

 

Table 6.6 summarizes the performance of some of the reported multimodal systems 

that have been examined by a number of researchers. We can notice that the best- 

reported accuracy rate is similar to suggested hybrid fusion technique. One of the 

important conclusions from Tables 6.3-6.6 is that the proposed multimodal biometric 

authentication schemes achieved promising results and –at the same time- improved 

the classification performance rates in terms of accuracy rate and size of feature 

vectors. The results clearly show that we got reasonable results from the fusion of 

online signature and iris compared with the unimodal systems and feature and 

decision levels. 

 

6.6 Summary 

The objective of this work was to investigate the integration of online signature and 

iris features, and to achieve a better performance that may not be achievable with 

single biometric alone. The experimental investigations have been concerned with 

the fusion of online signature and iris biometrics in the decision and hybrid fusion 

modes. The basic idea was to fuse and evaluate the decisions of the SVM, Naïve 

Bayes and k-NN classifiers using fixed rules: Maximum, Sum, Majority and 

Minimum rules. The individual decisions from the two modalities were further 

combined with the AND logic rule to obtain the final decision. The AND logic was 

applied to ensure a satisfactory level of security, since a positive authentication is 

only accomplished in case if only all the fusion levels approaches produce positive 

authentication [35,80]. 

 

In an attempt to improve the final authentication performance, we further proposed a 

hybrid fusion technique, which combines the feature-level and decision-level 

fusions, taking advantage of both fusion modes. The motivation behind the 

suggested hybrid fusion is twofold. Firstly, we demonstrate that the decision fusion 

framework can be integrated easily within the authentication procedure. Secondly, 

we expect to take advantage of the feature-level and decision-level fusion, and 
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eventually achieve more reliable and robust biometric system. Based on the 

experimental investigations, it has been shown that the hybrid approach offers 

considerable improvements to the accuracy of multimodal biometrics. 

The experimental results presented on the chimeric database suggest that the 

proposed feature-decision-level combination approach can be effectively employed 

to achieve the performance improvement from the feature or decision level alone. 

 

We remark that our suggested biometric system was able to achieve good accuracy 

recognition results. We have been able to reduce the feature vector yet, while 

keeping enough discriminatory power to be used as a possible biometric in 

recognition applications. 

 

One of the main advantages of the suggested framework is that the individual 

classifiers can be trained separately; thus extending a multimodal system to 

incorporate new modalities is effortless. In addition, the process of collecting and 

training data separately is more practical more than collecting and training the whole 

dataset. 
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Chapter 7  
 
 
Conclusion and Future 
Work 

 

 

 

 

 

 

 

ven though further work remains to be done, our results to date 

indicate that the combination of online signature and iris features 

represents a promising addition to the biometrics-based personal 

authentication systems. Our experimental results demonstrate that while 

majority of iris and online signature characteristics are useful in 

predicting the person’s identity, only a small subset of these features are 

required in practice for building an accurate model for authentication. 

E 
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7.1 Research Summary 

The work in this thesis can be summed up as follows: 

 

At the start we introduced the topic of biometric and main characteristics and 

challenges of Biometrics. Later we investigated the key issues in multimodal 

biometric systems along with the different architectures for information integration, 

and review the previous investigations in multimodal biometrics. We have observed 

that, only limited work is reported on feature level fusion of multimodal biometric 

system. Furthermore, we also noticed there is no reported research work that 

combines iris and online signature (Chapter 2). 

 

The first step towards our goal was to build an online signature authenticating 

system using global features. We described our work on building an online signature 

database and performing statistical analysis of online signature signals. An online 

signature authentication algorithm based on comparing the performance of three 

feature selection algorithms was constructed for the selected feature set (Chapter 3). 

 

The next step was to develop a novel iris segmentation approach based on 

minimizing the effect of the eyelids and eyelashes by trimming the iris area above 

the upper and the area below the lower boundaries of the pupil. To increase the 

recognition accuracy we extracted the 2D dual-tree complex wavelet transform from 

the iris images. The proposed features was evaluated by a diverse classification 

schemes namely; Naïve Bayes, k-NN and SVM. The approach was evaluated on a 

benchmark iris dataset (Chapter 4). 

 

Afterwards, we proposed and investigated the usefulness of Binary Particle Swarm 

Optimization in a range of feature-level fusion scenarios between iris and online 

signature. The experimental investigations have been shown that we can obtain a 

considerable improvement in terms of identification performance when Appling the 

BPSO feature selection scheme to the fused unimodal systems features before 

performing classification. In general, comparing the results with the iris and online 

signature baselines, it is observed that the feature-level fusion leads to the 

improvement of the authentication accuracy (Chapter 5). 

 

Next, an experimental investigation is conducted on the fusion of online signature 

and iris biometrics at the decision fusion mode. The basic idea was to fuse and 

evaluate the decisions of the SVM, Naïve Bayes and k-NN classifiers using fixed 

rules: Maximum, Sum, Majority and Minimum rules. The individual decisions from 

the two modalities were further combined with the AND logic rule to obtain the final 

decision. Finally, in an attempt to improve the final authentication performance, we 

proposed a hybrid fusion technique, which combines the feature-level and decision-

level fusions, taking advantage of both fusion modes. We remarked that our 

suggested biometric system was able to achieve good accuracy recognition results. 

We have been able to deduce the feature vector yet, while keeping enough 

discriminatory power to be used as a possible biometric in recognition applications 

(Chapter 6). 
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7.2 Contribution to Knowledge 

 

The essential objective of current research work is to examine whether the 

performance of a biometric system can be improved by integrating complementary 

information which comes primarily from two different and independent modalities. 

Therefore, this thesis makes the following main original contributions. 

 

 

A Novel Online Signature Authentication Approach 

 

A novel online signature identification scheme based on global features and Rough 

set is proposed. The information was extracted as time functions of various dynamic 

properties of the signatures. Rough set approach has resulted in a reduced set of nine 

features that were found to capture the essential characteristics required for signature 

identification. The reported results demonstrate the suitability and effectiveness of 

the Rough set approach in the application of online signature identification. 

 

Iris Authentication Technique using 2D Dual-Tree Complex Wavelet 

Transform and Support Vector Machine 

 

Iris patterns are believed to be unique due to the complexity of the underlying the 

environmental and genetic processes that influence the generation of iris pattern. 

Segmenting iris area is a challenging task since the iris region can be occluded by 

eyelids or eyelashes. In this thesis we proposed new iris segmentation approach 

based on minimizing the effect of the eyelids and eyelashes. The dual-tree complex 

wavelet transform was extracted from the iris images and used to increase the 

recognition accuracy. The proposed innovative technique proofed to be 

computationally effective as well as reliable in term of recognition compared with 

other techniques. 

 

Hybrid Fusion: Combining Feature and Decision-Levels 

 

The experimental investigations have been concerned with the fusion of online 

signature and iris biometrics in the decision and hybrid fusion modes. The individual 

decisions from the two modalities were further combined with the AND logic rule to 

obtain the final decision. 

 

In an attempt to improve the final authentication performance, we further proposed a 

hybrid fusion technique, which combined the feature-level and decision-level 

fusions, taking advantage of both fusion modes. Based on the experimental 

investigations, it has been shown that the hybrid approach offers considerable 

improvements to the accuracy of multimodal biometrics. 
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7.3 Success Criteria Revisited 

To answer the research questions that we pointed out in Chapter 1, an automated 

multimodal biometric authentication system have been built and tested throughout 

the thesis. The objective of this work was to investigate the integration of online 

signature and iris clues, and to achieve a better performance that may not be 

achievable with single biometric alone. The experimental investigations, which 

combined the feature-level and decision-level fusions, have improved the final 

authentication performance. Therefore, it has been shown that the proposed hybrid 

approach offers considerable improvements to the accuracy of multimodal 

biometrics. 

 

7.4 Future Work 

So far, the issue of recognising people by using iris and online signature has been 

thoroughly discussed. Despite its promise, which has been shown in this thesis, in 

this section we discuss possible directions for future research. 

 

1. To begin with, the authentication results presented in this thesis should be 

validated using other public multimodal real-user databases. Specifically, it would be 

necessary to measure the performance of the suggested approaches with a larger 

dataset, containing more individuals. Unfortunately, as far our knowledge is 

concerned, there are no public real-user database which combines online signature 

and iris modalities of the same individuals available that could be suited to evaluate 

our schemes. 

 

2. In the multimodal biometric literature a lot of attention has been paid to parallel 

fusion of multiple classifiers. A few of reported works dealt so far with serial 

architecture. Serial approach, invoke the classifiers in a cascade order, where some 

of the classifier may be used only if the first classifier failed to satisfy an acceptable 

result. While, in the parallel approach, all classifiers are invoked independently with 

the same input data, and afterwards their decisions are combined. It would also be of 

interest to study the performance of the proposed techniques with the serial fusion of 

multiple classifiers. 

 

3. The proposed techniques in this thesis can also be applied with other kinds of 

biometrics. It would be interesting to integrate other behavioural and physiological 

biometrics such as palm vein and face in conjunction with iris and online signature 

biometrics to enhance recognition performance. 

 

4. A future way to improve the recognition system introduced in Chapter six could 

be to develop an alternative space reduction strategy that demonstrates better 

discriminative properties than BPSO such as Markov Blanket filtering algorithm. 

 

5. As present investigation is only limited to identification accuracy, future research 

could be to extend for possible verification applications. 
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