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Chapter 1

Introduction

During the twentieth century, important developments in the theoretical and
applied sciences have achieved. These developments led to an increase of
human desire/greed in an attempt to identify and explain the phenomena,
whether simple or complex, in their environment in order to be able to control
them, to guide them in service, and to improve environmental conditions.
Additionally, these developments have been dramatically contributed to the
evolution and complexity of systems used by the humans in all areas of their
life such as in Figure 1.1 [Kon00, Moe06, KGS07, Boc10].

Medical systems Telecommunication systems

Information systems Transportation systems

Figure 1.1: Examples of the modern complex systems

However, these developments have presented huge challenges for humans
in terms of handling of a large number of information and results from, in
the context of determination which of them are beneficial in favor of humans.



The most important challenges are modeling and pattern recognition
processes. The modeling is the process of conversion for relevant and/or
perceived issues or phenomena to a simpler representation. The mapping
typically used in engineering has to be suitable for analysis, interpretation,
diagnosis, control, and simulation. The complexity of current systems con-
sisting of interconnected parts is increasing. Additionally, the behavior of
these systems includes internal and hidden relationships that are often not
directly observable; therefore, the related modeling process becomes more
complex and difficult [Kon00, Moe06, KGS07, CKLS07, Boc10].

The pattern recognition is defined as an assignment and classification
process of the available information/data into the predefined patterns set
(such as in the medical application, the person is sick as pattern 1 or healthy
as pattern 2). This pattern is also called class or state. Usually, this clas-
sification process is realized by transferring the original information into a
new format, so-called features or attributes, with high distinguishing ability
of these considered states/classes [Kun04, SSD07, TK09].

In order to achieve the modeling and pattern recognition processes of the
modern systems, theoretical sciences and techniques of the Computational In-
telligence (CI) and Artificial Intelligence (AI) have been introduced /develop-
ed (such as support vector machine (SVM), artificial neural networks (ANNs),
etc.) [SS10, Ert11]. Figure 1.2 gives a suggested procedure of Cl-based pat-
tern recognition for each of time series data as in the electrocardiogram
(ECG) system (right side in Figure 1.2) and structured data as in the Mag-
netic resonance imaging (MRI) system (left side in Figure 1.2 ).

The time series signal is defined as sequence of data points, which are
measured typically at successive time instants, spaced at uniform time in-
tervals. This signal is converted into a set of statistical characteristics or
features to be used by the computational intelligence system for achievement
of the assignment and classification tasks [DLO07].

The structured data is determined as specific information to be stored
based on a methodology of columns and rows. For example, the image shown
in the second row of the left side of Figure 1.2 can be converted by means
of the image processing technique into the matrix. This matrix contains
the columns representing each pixel of this image; while the rows contain the
characteristics or features such as the shape area, the center of mass, the mo-
ment of inertia, amplitude histogram of each gray-level image, lines, curves,
and so on for each considered pixel. Then, this matrix is used by the com-
putational intelligence technique to achieve the assignment and classification
process into the sick state or the healthy state [CKLS07, NAOS§].

For supervised human guidance of complex systems and the realization of
complex autonomous systems to replace human direct guidance and human
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Computational Computational
intelligence intelligence
Healthy Sick Healthy Sick

Figure 1.2: Example of procedure of pattern recognition process

cognition, the main features of human reasoning and perception play a ma-
jor role in achieving simplification and realizing related cognitive functions
and procedures [Wol01]. With the introduction of fuzzy logic [Zad65], sim-
plification and appropriate conclusions based on suitable classification and
recognition processes became possible. Thus, fuzzy rule-based systems have
been widely applied for classification and recognition goals [Zha08, Fenl0,
Ros10, WI11].

1.1 State of art

In this section, the state of art of non-fuzzy-based pattern recognition ap-
proaches, pattern recognition approaches of time series data, and fuzzy-based
pattern recognition approaches will be presented.



1.1. State of art

1.1.1 Non-fuzzy-based pattern recognition approaches

In the context of this thesis, a "non-fuzzy” term denotes that the design
process of recognition approaches is based on the techniques of computational
intelligence models (such as support vector machine (SVM), artificial neural
networks (ANNSs), etc.) except fuzzy model.

The authors of [RAT11] suggested a classification-driven biomedical im-
age retrieval framework as pattern recognition approach. This approach con-
sists of a content-based image retrieval system as feature extraction stage. A
relevance feedback technique is used to determine the most useful features
set. The selected features set is introduced to a SVM classifier for achieving
the desired tasks. Wang and Chen used deterministic learning theory to de-
sign a pattern recognition approach for small oscillation faults [WC11]. The
authors used ANNs in a training process to obtain knowledge from system
dynamics for diagnostic purposes. During the diagnosis phase, a residual set
is obtained and average norms are calculated as indicators to monitor po-
tential differences induced by changes in system dynamics. The solution is
based on comparison of system-specific properties using signal features mea-
sured for error detection. Several packets of wavelet transform and Gabor
transform as feature extraction process, ranking and correlation techniques-
based feature selection process, and SVM classifier, are used by [TGAT11] to
build a texture classification approach of atherosclerosis from the B-mode
ultrasound. Boquera et al. developed a recognition process for uncon-
strained offline handwritten text using optical hybrid hidden Markov and
ANN models [BBMM11]. A SVM-based pattern recognition approach with
new kernel function, so-called context-dependent, is presented by [SAK11].
A neuromuscular-mechanical fusion-based interface and SVM classifier is de-
veloped as pattern recognition approach for locomotion modes and tran-
sition modes performed by patients with TF amputations [HZH11]. An
electrooculography (EOG) system as a features extractor of the eye move-
ment and minimum redundancy maximum relevance-based features selector
are combined to generate a feature set as input of SVM classifier. This
combination constructed a pattern recognition approach in the contribution
of  BWGT11]. The contribution of [CLZY11] suggested a pattern recognition
approach composed of a 3-D watershed transform to extract a features set
of computed tomographic colonography images, then a genetic algorithms
(GAs) used as a features selector. The informative features from the GAs
stage were used as input of SVM classifier. A bag-of-features technique is
suggested by Dardas and Georganas as a features extractor and then a SVM
model as a classifier used to detect the patterns of hand gestures [DG11].
The contribution of [TL11] focused on a design of novel classification method

4
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based on a probabilistic distance SVM to characterize the sound signals. In
this contribution a unification process between structural large margin ma-
chine and Laplacian SVM technique in terms of a framework of structural
granularity concept is suggested to design the pattern recognition approach.
The SVM classifier is used by [MZ11] to propose a novel learning-based
unmixing-to-classification conversion model to treat an abundance quantifi-
cation task. k-nearest neighbor, decision stumps, and linear SVM techniques
are integrated to build a real-time textual query-based personal photo re-
trieval system [LXTL11]. In [LYL'11], a discrete representation of speech
signals as feature extraction stage and SVM classifier are used to design the
speaker verification system.

Wade et al. suggested a spiking neural network, a Bienenstock-Cooper-
Munro learning rule, and spike timing dependent plasticity to design a pat-
tern recognition approach for several classification applications [WMSS10].
A suggested pattern recognition approach of [FKZ10] is a nonlinear approach
based on a mixing of linear SVM classifiers. A gene classification approach
based on a relative synonymous usage frequency of a codon in feature extrac-
tion stage and SVM classifier is proposed by [JMNRO09]. In another study,
neural networks and Bayesian classifiers were hybridized to design a com-
putational system for automatic tissue identification in wound images. A
mean shift procedure and a region-growing strategy were integrated in an
effective region segmentation process to generate color and texture features.
This features set was then used to train a multilayer perceptron network and
Bayesian classifiers for the classification stage [VMM10].

In terms of pattern recognition approaches of unbalanced data sets, the
authors of [TZCKO09] proposed a novel granular SVM-repetitive understand-
ing algorithm. The contribution of [SGT*09] proposed a new neural network
model, so-called graph neural network model, for processing the data used
in graph domains. Mohamad and co-workers suggested a pattern recogni-
tion approach that depends on a combination of three homogeneous hid-
den Markov model-based classifiers for recognition of Arabic handwriting
[MSMO09]. A pattern recognition approach of each static-, dynamic-, and
mixed-eccentricity faults of permanent-magnet synchronous motors was de-
signed by [EFR09]. For image recognition problems, a new specialized tiny
neural networks-hardware architecture is suggested by [MASR09].

A classification approach of electrocardiogram signals is proposed by
[MBO08]. In this approach, a particle swarm optimization technique is used
to optimize the parameters of SVM classifier. A SVM-based classification
scheme for myoelectric control applied to upper limb is suggested by [OHO0S].
This contribution focused on a usage of segmentation process to generate an
initial features set, then an entropy feature technique as a features selector,
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and SVM technique are used. A self-organization artificial neural network
was proposed to construct a pattern recognition approach in an area of image
processing [MPO08b]. In another study, a wavelet-based neural network was
constructed using time—frequency localization functions from wavelet trans-
forms to those from a neural network [MP08a]. To recognize patterns of sco-
liosis spinal deformity, a total curvature analysis is used to generate features
of central axis curve of the spinal deformity patterns in 3-D space [Lin0§].
These features are used as input of a multilayer feed-forward artificial neural
network trainable based on back-propagation algorithm.

A multiclass SVM classifier of an electroencephalogram signal is suggested
by [GUO07]. This approach consists of a wavelet transform and Lyapunov ex-
ponents used in a feature extraction stage and multiclass SVM technique used
in the classification stage. A distinguishing process between pathological and
non-pathological heart sounds had been achieved based on a pattern recogni-
tion approach, which is composed of an automated artificial neural network
as classification technique and a combination of a direct ratio and wavelet
analysis techniques as the features extractor [dVB07]. In the [DBMO07], a
pattern recognition approach is based on logistic model tree (LMT) extract-
ing from ANNs. An electromyography signal classifier, so-called cascaded
kernel learning machine (CKLM), is built by [LHWO07]. The CKLM classifier
used an autoregressive model and electromyographic histogram in a feature
extraction phase and a combination of one-against-one SVM and general-
ized discriminant analysis algorithm techniques in a classification phase. A
weighted Mahalanobis distance kernel as new function is suggested to be
used in the SVM model of classification [WSYTO07]. A supervised pattern
recognition approach based on an artificial immune classifier was introduced
by [ZZGLO7] for the remote-sensing imagery application.

A wavelet transform and an ANNs model were incorporated in [SSB06]
to build fault detection and classification technique of transmission lines.
This wavelet transform was used as a detection module of current waveform
analysis in time and wavelet domains.

1.1.2 Pattern recognition approaches of time series data

The authors of [PH11] suggested pattern recognition approach of emotion
elicitation procedures in an electroencephalogram. In this approach, higher
order crossings and cross-correlation techniques are used to construct feature
vector set, which will be later used as input of SVM classifier for achieving
the classification tasks. Huang et al. proposed a chaos synchronization-based
detector as pattern recognition approach for power-quality disturbances clas-
sification in a power system. In the terms of this approach, dynamic error
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equations technique as feature extraction process and probabilistic neural
network as an adaptive classifier were integrated [HLK11]. A sliding band-
pass filtering-based time-frequency analysis technique is suggested to extract
the features in the Fourier domain [STS11]. A chaos theory-based feature
extraction technique was advised by [CPW™11] to generate feature vector of
nonlinear dynamical in EEG signal. Then a combination of support feature
machine and network-based support vector machine models/classifies are ap-
plied to complete the classification process. A nonlinear analysis technique
based on a conventional nonlinear statistics was proposed as a core of feature
extraction process in [LLLT11] to build features set. The conventional nonlin-
ear statistics included largest Lyapunov exponent and correlation dimension,
recurrence and fractal-scaling analysis, and different estimations of entropy.
This extracted features set is used as input of classification technique based
on a combination of Gaussian mixture models, support vector machine, and
fusing generative and discriminative classifiers. A pattern recognition ap-
proach of nuclear power plants is proposed by [JGST11]. The authors of this
contribution used symbolic dynamic filtering technique in a feature extraction
process and k-nn, linear discriminant analysis, and least squares algorithm
in classification process.

A hybrid adaptive filtering technique was suggested as an extraction pro-
cess of emotion-related electroencephalogram features. Then, higher order
crossings classifier was designed for achieving the classification process by
using the extracted features set [PH10a]. A discrete wavelet transform de-
rived contexture was integrated with grey-level co-occurrence matrices to
construct a feature extraction process of high-resolution satellite imagery.
Then in next step, these features were inputted to a maximum-likelihood
classifier [OTS10]. A combination of least-squares parameter estimator and
autoregressive modeling was advised as the feature extraction process of
electroencephalogram signals. These extracted features are used as input
SVM-based classification stage [CMP*10]. A higher order crossings analysis
technique was employed as a feature extraction process. Then, a HOC-
emotion classifier was integrated with the techniques of quadratic discrim-
inant analysis, k-nearest neighbor, Mahalanobis distance, and support vec-
tor machines to design electroencephalogram-based emotion recognition ap-
proach [PH10b]. A wavelet transform-based feature extraction technique and
ANNs model technique as classifier were merged to construct a pattern recog-
nition of faults of electric power system. In this approach, the ANNs model is
trained by using particle swarm optimization technique [UGSR10]. A signal
turns count of standard deviation parameters of stride interval as a feature
extractor and linear discriminant analysis and least squares support vector
machine were notified as the pattern recognition approach. The signal turns
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count was constructed by using Parzen window method in a gait rhythm
time series [WK10]. Zhang et al. suggested a high-resolution time-frequency
analysis algorithm and matching pursuit techniques to extract a correspond-
ing time-frequency feature description. Then, a principle component analysis
technique was used to reduce a size of this description. This new description
was inputted to a density-guided k-means clustering classifier [ZLH10]. An
electroencephalogram signal was filtered by means of a spatial filtering tech-
nique in gamma frequency band to extract informative features to be suit-
able for a radial basis function classifier-based classification stage [KS10]. A
suggested incorporating process between a minimum-redundancy maximum-
relevancy (MRMR) filter and a support vector machine recursive feature
elimination (SVM-RFE) classifier was achieved by [MR10] as a core of a
pattern recognition approach of gene series.

High-voltage signals were analyzed through Fourier and wavelet trans-
forms to extract statistical features in each of the time and wavelet do-
mains as well as spectrum intervals and total energy in the frequency do-
main. These extracted features were used as input of each of Fisher and
Karhunen-Loeve models as the linear classification technique, also as input
for the ANNs as non-linear classification technique, for monitoring insula-
tor pollution [BLDC09]. A neural-time-series-prediction-preprocessing tech-
nique was a basic of a feature extraction in a proposed pattern recogni-
tion approach of electroencephalogram-based brain-computer interface sys-
tem [Coy09]. A local regression-based stimulus-evoked activity estimation
technique was recommended by [WMLL09] as a feature extraction process
of local field potential data and SVM classifier. Statistical methods and sig-
nal analysis techniques as feature extraction process and SVM classifier were
combined to build a recognition approach in [KMNO09]. Wavelet decomposi-
tion as a filtering technique, nonlinear pulse detection technique as a feature
extractor, and statistical pulse as a modeling technique were unified to create
a pattern recognition approach of esophageal manometry signal [NDST09].
Filter banks technique was suggested as a core of features extractor of a
material based on image patch exemplars, where statistical characters of
extracted features represented an input of nearest neighbor model in classi-
fication stage [VZ09].

Common spatial patterns and discriminative spatial patterns techniques
were combined to extract relative features of electroencephalogram of brain-
computer interface system. A SVM model was later used to classify consid-
ered states of signal based on their extracted features [LYWLO7]. In contri-
bution of [SWSCO07], the radial basis function neural network was proposes
as a basic of pattern recognition system of electroencephalogram signal. In
this approach, Fourier and wavelet transforms were implemented as a fea-



1. INTRODUCTION

ture extractor of raw electroencephalogram signal. The correlation filters and
palm-specific segmentation techniques were feature extractor in palm print
classification system [YKS07].

A bin-based distribution model and Gaussian mixture model-based distri-
bution model were used in [PJL106] to represent time series signal and then
these models were input of classification stage consisted of Bayes maximum
likelihood and ANNs classifiers.

1.1.3 Fuzzy-based pattern recognition approaches

This subsection summarizes the state of art of the fuzzy-based pattern recog-
nition approaches in the following aspects:

e classification techniques (Table 1.1),

fuzzy rules (Section 1.2.1),

fuzzy partition techniques (Section 1.2.2),

fuzzy rule extraction techniques (Section 1.2.3),

criteria for determining the number of fuzzy rules (Section 1.2.4), and

fuzzy rule selection techniques (Section 1.2.5).

1.2 Motivation

Despite the learning and adaptation abilities and the general advantages of
approaches such as SVM and ANNs, they are often characterized by an in-
ability to interpret physically their internal relations and parameters, known
as the ”black box” problem. Acquisition of internal information is often diffi-
cult and complex. On the one hand, theoretical or axiomatic approaches used
for modeling do not necessarily involve relevant and task-related physical
variables. In addition, relations are built based on theoretical assumptions.
Well-known techniques have worked well for decades, but these are strongly
related to non-complex relations. Related theoretical techniques are able to
extend underlying fuzzy-based approaches. More complex phenomena that
cross domain borders can often not be modeled easily; in these cases, non-
fuzzy approaches based on computational intelligence models (such as SVM
and ANNs) often fail. On the other hand, experimental modeling approaches,
including pattern recognition methods that yield input—output relations, do



1.2. Motivation

Technique Related work

Fuzzy logic & Artifi- || [IN96, INT99, Ass07, SAC07, NB0O7, Now08,
cial Neural Networks | TNQO8, Wan08a, Wan08b, NB09, CPMO09,
LWG10, QLT10, SMWT11]

Fuzzy logic [INT92, INYT94a, INYT94b, NIT94, INT95,
INYT95, IMT95, NTI97, INT97, IN97,
NNI02, IY05, KA06, BPBT06, WH06, INK0G,
NYSI06, KKO07, Ish07, AFAHO07, YLM*07,
KN07, SNYIO7, AZ08, TNQO8, AMGOS,
MZKO08, IKNO08a, IKNO08b, HH09, NI09a,
NNIO9, NIO9b, MSR09, LFWO09, MZKO09,
ANHI09, NNI10, NKI10, SEAJK10, SN10,
NMI10, INN10, LCGI11, AFAH11, IN11,
NNI11]

Fuzzy logic & Artifi- | [AS06, HHET06, MSG07, JC07, GLQ09]

cial Neural Networks
& Baysian

Fuzzy logic & Support || [LCO7, JCS07, ZGO07, MTAT08, CLOS,
Vector Machines BBC10]

Fuzzy logic & Evolu- || [NIT98, CYAP07, PCM09]

tionary Algorithms
Fuzzy logic & k- || [PP09]
nearest neighbor

Table 1.1: Overview of classification techniques used with fuzzy logic

not include comprehensive internal structures and explanations for an under-
standing of internal relations, features or meaningful rules, or do not allow
logically related predictions. The comprehensive understanding required can
often be achieved by using fuzzy-based pattern recognition approaches be-
cause of their phenomenological qualitative modeling basis afforded by fuzzy
logic. Here a specific and important modeling task is realized by introduction
of a posteriori structuring.

Feature extraction techniques for time series data are introduced in Sec-
tion 1.1.2. These techniques often suffer from drawbacks in the generation
of specific feature types. In addition, they involve complexity in achieving
adaptation, adjustment or optimization processes because their structures
are based on many parameters.

Motivated by the above-mentioned drawbacks, this contribution intro-
duces a filtering technique as a feature extractor for automatic generation of

10



1. INTRODUCTION

different types of features. The key property is that the feature extraction
process can be used to achieve the tasks desired via a simple mechanism.

In terms of the design of fuzzy-based pattern recognition approaches,
this contribution introduces a number of new aspects, as described in the
following sections.

1.2.1 Representation form for fuzzy rules

Fuzzy systems are usually built by using conditional statements with linguis-
tic variables to be represented by fuzzy sets and their logical connections
for antecedents and consequences. The conditional statement is usually de-
scribed as follows: If antecedent, Then consequences. The antecedent can
be understood as a condition that has to be satisfied. A canonical approach
is used to build fuzzy systems, whereby the rules chosen are the simplest
and most significant ones without loss of generality for the system. The
fuzzy rules can take one of the forms listed in Table 1.2, which are the most
widely used in fuzzy-based systems. In general, each state considered can be
represented by a set of one or more rules.

For the first representation form, the rules are assigned different weight
factor wpr parameter to describe the state. Therefore, a weighting process
is required to determine redundant and less important rules within the set.
The redundancy or importance of each suggested rule can be determined ac-
cording to the value of wrg in relation to the predefined hypothesis space.
This weighting process makes the fuzzy inference mechanism more robust
because more unreliable rules are excluded and the reliable data-based rules
are retained. However, the usage of this form can lead to a loss of information
about the other states to be included in the antecedent for the rule set. This
information loss means that samples for other states located within the rule
range will be assigned to the state described by this set. For the second rep-
resentation form, in addition to information loss, a weighting process can not
be used because of a lack of adjustment parameters. This leads to difficulty
in adjusting the set size generated, namely selection of the most important
rules, and thus the confidence and robustness of the decision-making process
will be reduced. The third form is similar to the second one in terms of draw-
backs, but it introduces more flexibility in the interpretation process because
of use of the symbolic translation parameter «. The representation form
proposed here avoids the above-mentioned drawbacks because of a weighting
process that can be realized in both parts of each rule.

11
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Representation form

Related work

If 2y is A ... and axy, is
ANEME then y is C" with
WFR

[INT92, INYTO4a, INYT94b, NIT94, INT95,
INYT95, IMT95, NTI97, INT97, INO7,
NIT98, INT99, NNI02, Y05, KA06, INKO6,

NYSI06, Ish07, SNYIO7, MZK08, Wan0Sa,
Wan08b, IKN08a, IKN0Sb, NB09, PCM09,
MZK09, NT09a, NNT09, NI09b, ANHI09,
NKI10, QLT10, LWG10, SN10, NNII0,
INN10, SMW+11, NMI10, IN11, NNI11]

[BPB¥06, CYAP07, SACO07, YLM¥07,
MTA*08, TNQO8, AMGO0S, CPMO09,
MSR09, LFW09, SEAJK10, LCG11]

If 2y is A ... and xy, is
ANEME then 4 is O

If wp is (A', oq) ... and xy, || [WHO6, AFAHO7, AFAH11|
is (ANFMF,O(NFMF) then Yy

is C"

Table 1.2: Overview of fuzzy rules

1.2.2 Fuzzy partition technique

An important step in the design of fuzzy systems is the fuzzification or fuzzy
partition, which transforms the original crisp data space into a fuzzy set
space. Fuzzy partition should achieve a balance between the level of per-
formance required for the system and the complexity associated with the
number of fuzzy partitions. If a fuzzy system with less complexity is desired,
then the number of fuzzy partitions should be small; this type of fuzzy parti-
tion is called coarse partition. Conversely, if the objective is a fuzzy system
with best performance regardless of the complexity, then the number of fuzzy
partitions should be large; this type of fuzzy partition is called fine partition.
Therefore, a fuzzy partition process that is more accurate, adjustable and
reliable yields a fuzzy system that is more robust with greater confidence.
These techniques (Table 1.3) have either a lack of precision or a large
complexity because of multiple parameters and iterations. Therefore, in this
work a statistical characteristics-based technique for fuzzy partition is devel-
oped to overcome these problems. The statistical properties of the data are
used to determine whether fuzzy partition should be fine or coarse. Thus,
in terms of the boundary number and values, the fuzzy partitions are au-
tomatically related to the statistical properties of the data. Consequently,
the balance between performance level and complexity depends on the in-
trinsic statistical properties of the data. In contrast to other techniques, no

12
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Technique Related work

Human expertise [KAO6, BPB*06, SNYI07, YLMT"07,
AFAHO7, AMGO8, Wan0O8a, Wan0O8b,
MSR09, LFW09, LWG10, SN10, SMW*11,

AFAH11]
Clustering [SACO07, MTAT08, LCG11]
Quantization process [QLT10]
Decision tree [SEAJK10]
Hierarchical manner [TNQOS]
Square distributed simple || [INT92, INYT94a, NIT94, INT95, INYT95,
fuzzy grid NKI10, IN11]
Rectangular distributed || [INYT94b, IMT95, NTI97, INT97, NIT98,
simple fuzzy grid MZKO08, MZKO09]

"Don’t Care” approach and || [IN97, INT99, IY05, INK06, NYSI06, Ish07,
Rectangular distributed || IKN08a, IKNO8b, ANHI09, NI09a, NNI09,
simple fuzzy grid NI09b, QLT10, NMI10, INN10]

Information entropy and || [NNI02]
rectangular distributed sim-
ple fuzzy grid

Table 1.3: Overview of fuzzy partition techniques

predefined external properties are needed besides signal classification.

1.2.3 Fuzzy rule extraction

After fuzzy partition, the results should be related to the states being con-
sidered using one of the representation forms in Table 1.2. This process is
called rule extraction, which requires acceptable accuracy and confidence and
should be able to handle complexity. The most widely used techniques are
listed in Table 1.4.

These techniques suffer from computational cost problems because of the
iteration process required to identify a set of rules to represent the desired
tasks. The principle, whereby the number of fuzzy rules is equal to the
number of states considered, is adopted in the terms of this contribution to
overcome the above-mentioned drawbacks. According to this principle, fuzzy
rules are extracted without any type of iteration.

13
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Technique Related work

Human expertise [KA0O6, BPB*06, YLM"07, Wan08a, Wan08b,
LWG10, SMW+11]

Genetic Algorithms || [INT92, INYTO4a, NIT94, INYT94b, INTO5,
INYT95, IMT95, NTIO7, IN97, INT97, NIT9S,
INT99, 1Y05, INK06, NYSIO6, Ish07, AFAHO7,
MZK08, IKN08a, IKNOSb, ANHI09, MZK09,
LFW09, PCM09, NI09a, NNI09, NI09b, QLT10,
NMI10, INN10, SN10, NKI10, AFAH11, IN11]

Steady-state Genetic || [MZK08, MZK09, PCM09]
Algorithms

Extreme learning ma- || [SACO7]
chine

Table 1.4: Overview of fuzzy rule extraction techniques

1.2.4 Criterion for determining the number of fuzzy
rules

In determining the number of fuzzy rules, the principle used to identify the
initial size of the fuzzy rule base and the relationship between this size and
the parameters (e.g. number of neurons or support vectors) should be con-
sidered. The keystone of fuzzy rule-based systems is a rule base. The struc-
ture and size of this base, as determined by the number of rules used, have
the greatest influence on the performance of the system. The structure of
the base is determined by the fuzzy partition and the fuzzy rule extraction
processes. In addition, the number of rules is strongly related to the clas-
sification technique used. For example, the number of rules is equal to the
number of hidden neurons for combinations of ANNs and fuzzy logic (row 7
in Table 1.5) or to the number of clusters for combinations of fuzzy logic and
clustering (row 8 in Table 1.5). If the classification approach is based only
on fuzzy logic, the size of the base depends on the number of fuzzy partitions
(NFMF) generated from the fuzzification process (row 9 in Table 1.5), on
the number of feature space dimensions (N F', row 3 in Table 1.5), or on both
of them (row 2 in Table 1.5). Therefore, the base size is proportional to the
number of neurons and clusters; while this size is exponential to the values of
NFMF and NF. Consequently, the effects of complexity and dimensionality
problems are strongly related to these criteria. The present study introduces
a new idea to avoid complexity and dimensionality problems, whereby the
number of fuzzy rules and the parameters NFMF and NF' are separated

14
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Criterion Related work
NF « QNFMF [SN10]
2
ONF _ 9 [QLT10]

Number of selected || [NNT10]
single granularity

NFMFENF [INT92, INT95, IMT95, NTI97, INT97, INO7,
NIT98, INT99, NNI0O2, IY05, INK06, NYSIO6,
Ish07, MZKO08, IKN08a, IKNOSb, NI09a, NNI09,
NIO9b, ANHI09, NKI10, SEAJK10, NMII10,
INN10, IN11, NNI11]

Human expertise [KA06, YLM'07, Wan08a, Wan08b, MSRO09,
LFW09, LWG10]

Number of neurons [CPMO09, SMWT11]

Number of used clus- || [SAC07, MTA*08, LCG11]
ters

1/6 « NFMF x| [INT92, INYT94a, INYT94b, INYTO5]
(NFMF + 1) % (2
NFMF +1) -1

Table 1.5: Overview of criteria for determining the number of fuzzy rules

when designing a fuzzy rule-based system. This involves restricting the num-
ber of fuzzy rules to the number of states considered. Then the number of
fuzzy rules is independent from NFMF and NF and from the parameters
of the classification technique.

1.2.5 Fuzzy rule selection

An initial rule set is generated according to the fuzzy partition, rule extrac-
tion processes, and the criterion for determining the number of fuzzy rules.
This set can include both important and redundant rules with respect to the
desired tasks. Therefore, it is necessary to separate the rules to yield a rule

15



1.3. Organization of the work

base with high accuracy and simple interpretation possibilities. This process
should be achieved with the lowest computational cost in the shortest time

possible. The most important techniques for fuzzy rule selection are shown
in Table 1.6.

Technique Related work

Human expertise [AFAHO7, Wan08a, Wan08b, LWG10, AFAH11]

Genetic Algorithms || [INYT94a, INYT94b, INT95, INYT95, IMTO5,
IN97, NIT98, KA06, INK06, AFAHO07, Ish07,
MTA*08, MZK08, TKN0Sa, LFW09, PCMO09,
ANHI09, MZK09, NI09a, NNT09, NT09b, NKI10,
QLT10, SN10, NNI10, NMI10, INN10, NNT11,

AFAH11]
Matching principle [TNQOS]
Heuristic specification | [TY05]

methods

Table 1.6: Overview of fuzzy rule selection techniques

These techniques (genetic algorithms, matching and heuristic specifica-
tion methods) generally suffer from large computational costs because of the
iteration process involved. To overcome these drawbacks, the suggested ap-
proach does not include any rule selection because of the assumption that
the number of fuzzy rules has to equal the number of states considered.

1.3 Organization of the work

In Chapter 2, pattern recognition and fuzzy rule-based systems are presented
in terms of the definition, structure, concepts, and techniques. The adaptive
fuzzy-based approach (AFBA) used within this thesis/work as the pattern
recognition system is described in detail in Chapter 3. The application and
verification of the suggested approach and comparison of the results with
those for other methods using benchmark data are illustrated in Chapter 4.
Finally, in Chapter 5, this thesis/work is summarized; the scientific contri-
bution and the future aspects are introduced.
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Chapter 2

Pattern recognition and fuzzy
rule-based systems

In this chapter, the concepts of pattern recognition and fuzzy rule-based
systems are introduced.

2.1 Pattern recognition systems

In this section, definition, concepts, and most widely used structures of pat-
tern recognition systems will be introduced in detail.

2.1.1 Definition

"pattern recognition is the scientific discipline whose goal is the
classification of objects into a number of categories or classes” [TK09].

An objective of the pattern recognition process is to discover regularities and
similarities hidden in the considered data by automatic computer-based al-
gorithms. A goal of this discovery process is to accomplish several tasks such
as classification process. The classification process can be understood as a
process to classify/relate/assign an object/event, so-called patterns into/with
one of predefined categories, so-called classes, states or categories. The clas-
sification is realized by using a set of quantities/measurements, so-called fea-
tures or attributes [Abe01, Kun04, HDRT04, Bis06, CM07, Abel0, Ros10].

2.1.2 Basic concepts

The pattern recognition system includes the following basic concepts [HDRT04,
Kun04, GGNZ06, TK09, Abel0, Ros10]
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2.1. Pattern recognition systems

10.

. input space contains objects to be classified,
. output space contains related states/classes/categories/targets,

. state/target is understood as a linguistic expression or description dis-

tinguishing different present conditions of system/process to be consid-
ered,

. training data set contains the considered objects/events. The training

data can be divided into two types

e labeled data, in which the states/classes/categories/targets of con-
sidered objects are known as in case of supervised pattern recog-
nition system,

e unlabeled data, in which the states/classes/categories/targets of
considered objects are unknown as in case of unsupervised pattern
recognition system,

. feature space contains a set of measurable quantities being able to

distinguish the related states/classes/categories/targets,

. validation data set contains the objects with predefined labels to check

the performance of pattern recognition system,

. test data set contains the unknown objects to be classified,

. generalization ability denotes to available reliability degree for a use of

the designed pattern recognition system in evaluation process of any
data, which should have the same properties as the training data set,
generated from the considered system/process,

discriminant /decision function defines boundaries of separation between
the predefined states in the feature space, and

accuracy /recognition rate indicates an amount of performance and ef-
fectiveness of the designed pattern recognition system performing dur-
ing the evaluation process of unknown data.

2.1.3 Design procedure

The steps of design procedure of the pattern recognition system can be de-
fined by an answer process of the following questions [HDRT04, Kun04,
GGNZ06, TK09, Abel0]

18



2. PATTERN RECOGNITION AND FUZZY RULE-BASED SYSTEMS

1. which method should be used to determine the training data and test
data, as well as their size?

2. which method should be used to determine type and quality of the
features used for the classification process?

3. what is the size of the used feature space?

4. which method should be used to select the best size of the used feature
space?

5. which criteria should be used to determine the best pattern recognition
system corresponding to the considered application?

Basic steps in the design process of the supervised pattern recognition system
are illustrated in Figure 2.1. As it can be noticed from Figure 2.1, there are
feedback arrows between the steps. An existence of these arrows indicates
that these steps are not independent from each other. This means that there
is a type of interaction between the predefined design hypothesis space for
each step during the design process of the approach. This interaction allows
achieving optimization/adjustment processes for the current step according
to the evaluation process of any previous or later step. This partial opti-
mization/adjustment process contributes to improve the performance of the
general pattern recognition system. Additionally, these arrows can indicate
that the two or more steps can be integrated into one step such as in the
integration process between the feature selection and the classifier design
steps [Kun04, SSD07, TK09].
These basic steps are briefly introduced in the next sections.

2.1.4 Data collection

A key step of the design process of supervised pattern recognition system is
a collection process of the objects/patterns of the considered system. This
step includes the following tasks

1. determination of each training and test data set, if necessary of the
validation data set as well, and

2. determination of the targets/labels vector.

The first task is very important because the suitable selection of these
data sets and their sizes will lead to high efficiency design process [Kun04,
AKS04, SSDO7]. The division/determination methods of the data set can be
achieved by means of one of the following most widely used methods [Kun04]
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Figure 2.1: Basic steps in the design procedure

e resubstitution (R-method)
In this method, the available data is used for each of the training and
testing phases.

e hold-out (H-method)
In this method, the available data is equally divided into two datasets.
The first one is used in the training/learning phase; while the second
one is used in the testing phase.

e cross-validation
In this method, the available data is randomly divided into an integer
number of sets. The (integer number-1) sets are used in the train-
ing/learning phase and the remaining set is used in the testing phase.
For example, 10-fold cross-validation method means the original data

20



2. PATTERN RECOGNITION AND FUZZY RULE-BASED SYSTEMS

will be divided into ten subsets, where nine subsets are for training
phase and one is for testing phase.

In the second task, the targets and labels vector can be determined by us-
ing a human classification of objects of considered application or automated

clustering method [GGNZ06, CKLS07].

2.1.5 Feature extraction

"The purpose of feature extraction is the measurement of those attributes of
patterns that are most pertinent to a given classification task” [CKLS07].

The feature extraction can be defined as a trained artificial intelligent
subsystem to treat original data for generating a series of semantic quanti-
ties, so-called features, representing useful information/facts hidden behind
these data. These information/facts are used to achieve desired demands
of considered application [Moe06]. The authors of [GJNO5] defined the fea-
ture extraction as the process of construction of identification tools, namely
features, to obtain potential relations between the data of the given sys-
tem /process and their possible classes/states. These potential relations are
often hidden and difficult to understand by human perception.

The generalization ability of designed pattern recognition system is
strongly related to the type and quality of used features [Abe01, Kun04,
GGNZ06, DZ07, CKLS07, TK09]. Hence, the feature extraction should be
carefully realized to discover all useful hidden information in the original
data [GGNZ06].

Automated feature extraction can be achieved by geometric, structural,
and transformation methods [CKLS07, NA08]. The transformation methods
are divided into linear methods such as (principle component analysis (PCA),
linear discriminant analysis (LDA), independent component analysis (ICA),
singular value decomposition (SVD), and nonnegative matrix factorization
(NMF)) and nonlinear methods such as (multidimensional scaling (MDS)
and artificial neural networks (ANNs)) [CKLS07, LMO0S, 1ze08, TK09, Abel0,
MMS11, RACS11].

2.1.6 Feature selection

Feature selection process is introduced /defined as a process of separating rel-
evant from irrelevant features according to the considered classes/

states [GGNZ06, CKLS07]. In this context, a term of importance/significance
is defined as effect of each suggested feature in the recognition rate of the
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designed pattern recognition system. This effect can be improvement or re-
duction of the related recognition rate [GGNZ06, CKLS07, Abel0]. From
the statistical point of view, the feature selection is a process to define a
threshold to distinguish between relevant and irrelevant features based on
the predefined hypothesis space [GGNZ06].

Feature selection techniques can be classified according to a interactive
relationship between the predefined design hypothesis space of each used
classification technique and feature selection process as follows [CKLS07]

1. Filter techniques

A filter feature selection technique, which also is known as ranking
method, is based on a filtering process of original features set via
their intrinsic properties and independent of the used classification
technique [GGNZ06, CKLS07]. In this technique, a research process
is only realized to find out each feature (related significance) to be
able to represent crucial aspects (for example, state’s changes of the
considered signal in the time). The filter method is an identifica-
tion process of the feature’s significance/ranking without any optimiza-
tion process of the designed classifier to fit the predefined hypothesis
space [GGNZ06, CKLSO07].

The feature ranking/significance can be determined by different criteria
such as Bhattacharya probabilistic distance, fuzzy parameters, recog-
nition rate, mutual information, ellipsoids, and hyperboxes intersection
regions among the considered crucial aspects [Abe01, GGNZ06, SIL07,
CKLSO07].

Advantages of filter technique are very suitable and useful in the case
of the large volumes of data, simple and fast structure of computa-
tional algorithm, independent of the type of the classification tech-
nique/method [Abe01, GGNZ06, SIL07, CKLS07]. A main drawback
is that this technique does not take care of the predefined hypothe-
sis space of the classifier design process during the feature selection
process [Abe01, GGNZ06, SIL07, CKLSO0T7].

2. Wrapper techniques
Wrapper technique introduces integration idea between the predefined
hypothesis space of the design process of the classifier and the fea-
ture selection process. In this technique, the feature selection process
is wrapped around a classification/learning algorithm, as well as tak-
ing into account effects of interaction relations between the suggested
features to build the classifier. The wrapper method is defined as a
synchronous process between an identification process of the feature’s
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significance and the optimization process of the classifier using each
suggested feature [GGNZO06, SIL07, CKLS07]. According to a gen-
eration principle of the features subset, the wrapper technique can be
distinguished as deterministic and randomized techniques [SILO7]. The
wrapper technique suffers from high computational cost and overfitting
problems [OBC06, GGNZ06, SILOT7].

The wrapper technique can be realized by one of the following meth-
ods [OBC06, GGNZ06, SIL07]

e sequential pruning method (sequential backwards selection),
e sequential growing method (sequential forward selection),

e backtracking during search method, beam search method, floating
search,

e oscillating search method,
e stochastic search,
e decision trees, and

e naive Bayes methods (genetic algorithms and simulated anneal-
ing).

3. Hybrid techniques

This type of feature selection technique is an attempt to fuse all fil-
ter and wrapper techniques to reinforce their advantages and to im-
prove/remove their drawbacks as far as possible. The hybrid technique
uses firstly one of the filter techniques to reduce the original feature
space by defining the most useful feature subsets, then the suitable
wrapper technique is used to select the suitable feature subsets build-
ing the pattern recognition system satisfying the predefined hypotheses
space [GGNZ06, CKLS07].

4. Embedded techniques
Embedded technique aims to establish the feature selection process in-
side the design process of the classifier. The design process of the clas-
sifier is strongly related to both the feature subsets and the hypotheses
spaces. Like with the wrapper methods, the embedded method consid-
ers effects of interaction relations among the proposed features.

The embedded methods are less computationally intensive compared
with the wrapper methods. The embedded technique can be realized
by sequential forward method, backward elimination method, weighted
naive Bayes, or nested methods [SILO7].
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Objective functions of the feature selection techniques can be minimum
error (ME), minimum subset (MS), or multicriteria compromise (CP). These
functions are generally related to the wrapper, hybrid, and embedded tech-
niques [CKLSO07].

The feature selection techniques often need the following evaluation cri-
teria such as

1. data intrinsic measures including the following measurements such as
distance, information, and consistency.

2. performance of learning algorithms including the minimum subset (MS)
and multicriteria compromise (CP) objectives.

2.1.7 Classifier design

Basically, the supervised pattern recognition system includes the original
data and state spaces. The design process of pattern recognition system
purposes to relate/map these spaces to classify correctly any unknown sam-
ples into the targets/label/state as far as possible. The relation/mapping
process is realized using tool/mechanism, so-called classifier or classification
method. The classifier is built based on mathematical and/or computing
techniques [Abe01, GGNZ06, CKLS07, Abel0].

Categorisation principles of classifier

The classifiers can be categorized into parametric or nonparametric [Moe06,
TKO09, Abel0, MD11]. In the parametric classifier, the kind of design/devel-
opment approach of classifier is based on a prior knowledge about the data
distribution as in the case of Gaussian classifier. The classifier, wherein
the design/development approach does not need any prior knowledge about
the data distribution, is nonparametric such as in the case of neural net-
work, fuzzy, and SVM classifiers. According to the type of the discrimi-
nant/decision function used in separating the state space into subspaces of
considered states, the classifiers can be distinguished to

e [inear classifier
In this type, the discriminant/decision function is linear, and

e nonlinear classifier

In this type, the discriminant/decision function is nonlinear [Moe06,
TKO09, Abel0, MD11].
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Classification methods/classifier types

In this sequel, a review of most important methods used in the design process
of classifier is given.

Artificial Neural Networks (ANNSs) classifier

”A neural network is a massively parallel distributed processor that has a
natural propensity for storing experimental knowledge and making it
available for use” [Aizll].

Also a neural network is understood as a process of information processing
in context of a structure based on a structure inspired by the way biologi-
cal nervous systems, such as the brain, process information [YKTZ11]. In
the terms of modeling process, the neural networks can be classified as com-
plementary method of the classical modeling methods or alternative meth-
ods. The neural networks provide the high efficient modeling method of
the systems, in which there is availability of sufficient data to link consid-
ered input-output spaces, especially in the case of systems that require a
real time application [AKS04]. In context of the pattern recognition process,
the neural networks are understood as a flexible, adaptive learning system
with analysis ability of observed data generating from the considered sys-
tem/process to discover the patterns, which are used to develop nonlinear
system models, including a reliable prediction ability and promising solution
for many real-world problems [Sam07]. A learning process of ANNs classifier
can be achieved by using the learning/training samples/data containing re-
lated information about the considered environment. The structure of ANNs
is able to acquire knowledge contained in the training data. The obtainable
knowledge, which is saved in their synaptic weights, is used to realize the
model of the considered system/process [AKS04, Sam07, YKTZ11].

A basic unit of the neural network is a neuron, in short (), consisting
of the following elements as illustrated in Figure 2.2.
According to [AKS04, Sam07, YKTZ11], a functional procedure of the neuron
is described as follows

Inputs of the neuron are n input signals/features vector x1, zs, ..., x,, com-
ing from the considered system/environment. Then n+1 weights wy, w1, wo, ...
,wy, are used to construct a corresponding weighting vector, where the first
weight wy is called bias or free weight because there is not any input signal
connected with it. These input and weighting vectors are received, accumu-
lated, or summed by a summing function to produce an output Z based on
the equation Z = wy + wir1 + woxs + ... + w,x,. The Z output is calculated
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Figure 2.2: Neuron model

based on an activation function ¢ to generate a neuron output. The map-
ping function between the input and output spaces in the neuron is defined
as follows

y=f(x1,29,...;2,)) = p(Z) = p(wo + w11 +woty + ... + wyxy). (2.1)

Most used types of the activation function ¢ are illustrated in Figure 2.3

[Abe01, AKS04, Sam07, YKTZ11].

The most common type of the neural networks classifiers is multilayer
neural network classifier (Figure 2.4). The structure of classifier consists of
three layers

e input layer
This layer includes input units to spread the input data coming from
the surrounding environmental, which can be the outside world or other
neural networks, to units of next layer,

e hidden layer
This layer is an interface layer between input-output neural network
for accumulating and processing the input data. Its name is based
on the fact that this layer is related indirectly with the surrounding
environmental, and

e output layer
A task of this layer is to offer the information processed in the hid-
den layers to the surrounding environmental [Abe01, AKS04, Sam07,
YKTZ11, Aizl1].

The structure of neural network should be activated by the learning pro-
cess based on a repeated exposure to training data to achieve an incremental
change of the connection strengths (synaptic weights) until the network pro-

duces a correct output [Abe01, AKS04, Sam07, YCSN10, YKTZ11, Aiz11].
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Figure 2.3: Activation functions
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Figure 2.4: Multilayer neural network
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Support Vector Machine (SVM) classifier

Support vector machines (SVMs) are learning methods based on super-
vised technique for generation of input-output mapping functions depen-
dent of a set of labeled training data. The task of the generated mapping
function is to categorize the input space into the considered states [ODOS].
According to [WK09, MD11] a support vector machine (SVM) is defined
as a binary classifier to abstract a suitable decision boundary in multi-
dimensional input/feature space based on an appropriate sub-set, so-called
support vectors, of the training set of vectors. From another viewpoint, the
SVM is a machine learning technique based on a mixture between linear
modeling and examples-based learning to select a small number of critical
boundary examples, which are called support vectors, for each considered
class/state within the input/feature space to build a new function distin-
guishing the two classes/states with biggest range/margin as far as possi-
ble [HDRT04, WF05, WMO08]. In terms of the statistical learning theory
(SLT)/Vapnik-Chervonenkis (VC) theory, the SVM is a systematic and prac-
tical application/tool including a theoretical framework of a predictive learn-
ing idea to reduce/minimize the classification errors rate generated between
usage of the classifier with the training data and its usage with the test
data [Vap95, Vap98|. The standpoint of [Bis06, CKLS07] explains that the
support vector machine introduces a suitable tool/approach to discover the
solution, which includes smallest generalization error for the classification
process of the input/feature space, among all the available solutions. This
suitable tool/approach is based on a concept of margin, which is understood
as smallest distance between the suggested decision boundary and any sample
in the input/feature space. The support vector machines discover the maxi-
mum decision boundary among all available boundaries in the input/feature
space. The maximum margin solution/boundary can be determined based
on statistical learning theory, also known as computational learning theory,
therefore, the SVM is the maximum margin classifier.

The decision function, in short D, of the SVM classifier for the linearly
separable training inputs (x1, s, ..., Z;, ..., &, ) belong to Sy and Sy with labels
y; = 1 for Sy and y; = —1 for Sy is defined as follows [Abe01, OD08, HAMO09,
WKO09, Abel0, MD11]

D(z) =w'z +0b, (2.2)
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where w is weight vector, b is a bias/threshold. In terms of the two labels
this decision function is defined by

>0 fory, =1,

2.3
<0 fory, =—1. (2:3)

D(m):wa—i-b{

In case of the linearly separable training inputs and in terms of the two labels
this decision function is defined by

>1 fory =1,
D(z)=wTz+b{= oy (2.4)
< -1 fory, =—1.
The equation 2.4 is equivalent to
yi (W' +0) >1fori=1,2,..,n. (2.5)

Th separating hyperplane of the n dimensional input/feature space is calcu-
lated as follows

D(zr)=wlr+b=cfor —1<c<l. (2.6)

The equations (2.2) to (2.6) are graphically illustrated in in Figure 2.5.
Nearest neighbor classifier

All training data are used in nearest-neighbor classifiers to build templates
of the classification process for a given input vector. The classification pro-
cess is based on discovery procedure for the template to be nearest to the
considered input sample. Then state of this template is state of the consid-
ered input sample. In general, based on clustering process, the input/feature
space is divided in k templates in k-nearest-neighbor (k-nn) classifier. Then
based on distance measurements, such as Euclidean, a distance between each
considered input sample and center of each template is calculated to de-

termine the corresponding state dependent of the calculated minimum dis-
tance [Bis06, Abel0, MD11].

2.1.8 System evaluation

In this step, the performance and effectiveness of the designed classifier is
evaluated based on a calculation of the recognition rate or recognition ac-
curacy, which is defined as the percentage ratio between the number of the
samples with correct classification and the total number of the samples, to
determine whether this classifier fits the predefined hypothesis space [TK09,
Abel0].
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Figure 2.5: Optimal hyperplane and maximal margin in feature space

2.2 Fuzzy rule-based systems

In this section, the definition, concepts, fuzzy logic as well as their application
in the fields of pattern recognition and control are described.

2.2.1 Basic concepts

In this section, the concepts of fuzzy logic, fuzzy set, fuzzy membership
function, fuzzy operation, and fuzzy rule-based system are introduced.
Fuzzy logic

Fuzzy logic introduced by [Zad65] consists of the concepts of the classical
logic and the Lukasiewicz sets, namely multiple-valued logic, represented by
a new definition of gradual membership idea.

This logic is based on the following assumptions

1. large attention of the gradual interval between true and false words
and also between white and black colors and

2. mathematics can be able to link between language expressions and
human intelligence.
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The fuzzy logic provides several linguistic expressions scopes such as

1. scope of quantification expressions consisting of all, most, many, about
half, few, no, represents a gradualness of status at a measurement of
some quantity,

2. scope of wsuality expressions consisting of always, frequently, often,
occastonally, seldom, never, represents a gradualness of status of event
frequency, and

3. scope of likelihood expressions consisting of certain, likely, uncertain,
unlikely, certainly no, explains a gradualness of status of the event
probability.

Fuzzy set

Fuzzy set is a set that has elements with degrees of membership (¢) ranging
between [0, 1]. The fuzzy set, denoted by Xy can be represented by one of
the forms

o X;= {(:r,qul (93)) lx € Xf}.
o Xy = /w1 + pofxs + p3/xs + ...+ UNFMEF/Tn.

e membership function px, (Most used membership functions will be
later illustrated in Section 2.2.1).

Here (/) and (4) do not denote division and summation processes, respec-
tively, but they denote a connection of terms of a union of single-term (en-
tity and its membership value) subsets [KB06, SSD07, Ros10, Fen10, SS10,
YKTZ11, WI11].

Fuzzy membership function

A fuzzy membership function is defined as a representation form of the fuzzy
set. This function is defined as a mapping function between the crisp space
and fuzzy space. The conversion/mapping process is called the fuzzifica-
tion process [KB06, SSD07, Ros10, Fenl0, SS10, YKTZ11, WI11]. These
functions can be represented graphical as in Figure 2.6 or mathematical as
follows [KB06, SSD07, Ros10, Fen10, SS10, YKTZ11, WI11]
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Figure 2.6: Forms of the standard membership functions (triangular, trape-
zoidal, and generalized Bell-shaped)

e triangular membership function is defined as follows (see Figure 2.6a)

alb—=x)/(b—2c);x €b,c)
a(d—=x)/(d—c);z €lcd)

0 ; otherwise

jx, (&) = (2.7)

e trapezoidal membership function is defined as follows (see Figure 2.6Db)

alb—z)/(b—c);x € [b,c)
o) = a;x € e, d]
@ =Y o) e —d) iz e (de] (28)

0 ; otherwise

e generalized Bell-shaped built-in membership function (see Figure 2.6¢)

1
px, () = —— (2.9)
1+ (z—¢)

a
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Figure 2.7: Forms of the standard membership functions (Gaussian, Z-
shaped, and Sigmoidal)

e Gaussian membership function is defined as follows (see Figure 2.7a)

(—x—b)*

5 (2.10)

px; (r) =a exp

e Z-shaped built-in membership function is defined as follows (see Fig-
ure 2.7b)

a,x <b
- 2() 0 <
btc

o 9
px, () 2 (- 22 (22 (2.11)

< (°
<z

|/\ m|+

x
0; x 2 c
e sigmoidal membership function is defined as follows (see Figure 2.7¢)

1
1+ exp(—a(x —c))

px, (r) = (2.12)

Most specifications of the membership function are the core, support, and
boundary as illustrated in Figure 2.8.

The membership function concept includes the following assumptions
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v

Boundary  Core  Boundary

Figure 2.8: Specifications of the membership function

1. all above-mentioned forms of the membership functions have a parame-
ters set of control in the shape (width, height, and slope) of the member-
ship function. In general, a criterion of their definition/determination/
adjustment is based either on human experiences and/or knowledge-
based about the considered system/process or known data-based gen-
erated by the considered system/process, and

2. an interpretation of the membership function does never denote to a
probability of entity in the input space, but to its possibility. Therefore,
the sum/integration of the membership functions for whole input space
is not necessarily equal to one [CP01, Ibr04, Rut04, EVWO05, KB06,
SSDO07, Ros10, Fen10, SS10, YKTZ11, WI11].

Fuzzy operations

Operations of the fuzzy sets can be distinguished as follows [KB06, SSDO07,
Ros10, Fen10, SS10, YKTZ11, WI11]

1. logic operations

e union
11X 10X g (T) = pixp, () V pixg, (2)

e intersection
1x X, () = pxg, () A pxg, (@)

e complement
pxy (@) =1 = pxy, (2)

2. T-norm, S-norm, and negation operators
These operators are as follows
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e t-norm
A t-norm, which is denoted by an operator (T), is defined for the
two fuzzy numbers/variables (z1,z5) as follows
T :[0,1] x [0,1] — [0, 1]=
(r1 AND 235) = (x1 T 22) = T (21, x9)

e t-conorm
A t-conorm, which is denoted by an operator (S), is defined for
the two fuzzy numbers/variables (z1, x2) as follows
S:[0,1] x [0,1] — [0,1]=
(x1 OR ) = (21 S 2) = S (21, x2)
e negation

A negation, which is denoted by an operator
(N), is defined as follows N [0,1] = [0,1]=N(z) =1—=z

These operations can be understood as generalization of (AND) and
(OR) operations, respectively, to deal with the fuzzy numbers.

Properties of Fuzzy set

Important properties of the fuzzy sets can be summarized as [KB06, SSD07,
Ros10, Fen10, SS10, YKTZ11, WI11]

commutativity
Xfl meQ = Xfl ﬂXfQ and Xfl UXf2 = Xfl UXf2

associativity
Xf1 N (XfQ ﬂng) = (Xfl N XfQ) ﬂXf3 and
XU (XpUXps) = (X UXp) U Xys.

distributivity
Xfl N (ng Ung) = (Xfl ﬂsz) U (Xfl meg) and

idempotency
Xf1 UXf1 = Xfl and Xfl ﬂXfl = Xfl.

identity
Xf1 Uo :Xfl, Xf1 ﬂXf :Xfl, Xfl N = @, and Xfl UXf :Xf.

transitive
if Xfl g ng and ng g ng, then Xfl g ng.

involution Xy = Xyq.
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2.2.2 Fuzzy rule-based system
Definition

Fuzzy systems are usually built using conditional statements with linguistic
variables to be represented by fuzzy sets and their logical connections for an-
tecedents and consequences. The conditional statement is usually described
as follows

If antecedent, Then consequences.

The antecedent can be understood as a condition that has to be satisfied. A
canonical approach is used to build fuzzy systems whereby the rules chosen
are the simplest and most significant ones without loss of generality for the
system (see Table 2.1) [KB06, Ros10, Fen10, SS10].

Formation of rules

The linguistic variables can be organized by means of the following most
widely used types of the canonical formation [KB06, Ros10, Fen10, SS10]

e assignment statements
In this organization, a combination between the variable and its as-
signed value is based on usage of an assignment operator (=). There-
fore this statement is built to put the value of variable into a specific
equality regardless of their related conditions.

e conditional statements
In this organization, a combination between the variable and its as-
signed value is achieved by realization of some conditions. Therefore,
this statement is understood as the fuzzy conditional statement.

Rule 1 | IF antecedent A THEN consequence C*
Rule 2 || IF antecedent A> THEN consequence C?

Rule m || IF antecedent A™ THEN consequence C™

Table 2.1: Canonical form of fuzzy rule-based system
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Decomposition of rules

In general, the fuzzy rule is a compound of the conditions related to many
variables and their assigned values. Because of that these variables are fuzzy
sets, hence the fuzzy operations and properties can be used to decompose
a structure of this fuzzy rule to generate the simple canonical formation.
The decomposition process is related to If-part/If antecedent of the fuzzy
rule [KB06, Ros10, Fen10, SS10].

The most widely used methods of the decomposition of the rules are as
follows [KB06, Ros10, Fenl0, SS10]

e multiple conjunction antecedents
This method is based on a linguistic (AN D) connective operator. The
structure of the corresponding rule is as follows
If x5 is A" Then y is C,
where A" = AY AND A% ... AND ANFME = Al 0 A2 N ANFME,
The fuzzy membership value of the variable z; is calculated as follows

prar (xg) = min [par (xg) , paz (x4) 5 oo prav e (34)]-

e multiple disjunctive antecedents
This method is based on a linguistic (OR) connective operator. The
structure of the corresponding rule is as follows
If zy is A" Then y is C,
where A" = A' OR A? ... OR ANFME = Al 4 A2 | Uy ANFME,
The fuzzy membership value of the variable z; is calculated as follows

par (xf) = max [par (zy), praz (Tg), ..., ppanear (xf)].

Aggregation of rules

The structure of the fuzzy rule-based system include usually many rules. An
objective of building this structure is to get one value/conclusion for many
values including in these rules to achieve a desired goal such as control, clas-
sification, making decision, etc. This objective can be performed in the fuzzy
rule-based system based on the aggregation process. Therefore, the aggre-
gation process is related to the Then-part/consequences-part of the fuzzy
rule [KB06, Ros10, Fen10, SS10].

The aggregation process can be established by using the following most
widely used methods [KB06, Ros10, Fen10, SS10]

e conjunctive system of rules
This method is based on a linguistic (AN D) connective operator as

follows
y=y' AND A? ... AND yNFMF = Al A A2 . AN ANFME,
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The fuzzy membership value of the variable y is calculated as follows
per (y) = min [uen (y) s pez (Y) o povenr (y)).

e disjunctive system of rules
This method is based on a linguistic (OR) connective operator as fol-
lows
y=y" OR A% .. OR yNfMFI= Al v A% . v ANFME The

fuzzy membership value of the variable y is calculated as follows
per (y) = max [uer (y) , ez (Y) 5 oos ponrur (y)).
Fuzzy inference system

Fuzzy rule-based system is also known as fuzzy inference system, fuzzy expert
system, and fuzzy associative memory. The basic structure of this system is
illustrated in Figure 2.9 [KB06, Zha08, SS10, Fen10, Ros10, WI11].

4 N

Fuzzy rule base

[Data base] [ Rule base }
\ \

i 2

Cris - 5 ; ; risp
Fuzzification Inference Defuzzification

Hputs interface T engine T[ interface outputs

N

Fuzzy
Iputs

Fuzzy
outputs

J

Figure 2.9: Basic structure of the fuzzy-based system

These components/steps are explained as follows

1. fuzzification/fuzzifier component/step

Fuzzification /fuzzifier component/step can be described as an input of
the fuzzy-based system. Task of this component/step is to convert con-
sidered crisp real-valued system /process/operations variables/quantities
into the normalized fuzzy value/fuzzy set by using one or more the suit-
able membership function (see Figure 2.6) [Zha08, SS10, Fen10, Ros10,
WI11]. According to size, which denotes a number of elements, of
support set of used membership functions, the fuzzification/fuzzifier
component /step can be one of the two types as follows

e a singleton fuzzification/fuzzifier component /step
A used membership function has the support set consisting of one
elements/members as in singleton membership function,
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e a non singleton fuzzification /fuzzifier component /step
A used membership function has the support set consisting of
many element/member as in triangular/ramp membership func-
tion, step membership function, trapezoidal membership function,
and Gaussian membership function (see Figure 2.6) [Zha08, SS10,
Fen10, Ros10, WI11].

The fuzzification process is understood as representation of the system
inputs in context of linguistic terms so that rules can be applied in
a simple manner to express a complex system [Zha08, SS10, Fenl0,
Ros10, WI11].

2. knowledge/fuzzy rule base component /step
Knowledge/fuzzy rule base component/step consists of two following
bases [Zha08, SS10, Fen10, Ros10, WI11]

(a) database is used to define each of objects and membership func-
tions used in the fuzzy rules. The database is the declarative part
of the knowledge/fuzzy rule base, and

(b) rule base contains information of how these objects can be used
to infer conclusions. The rule base is the procedural part of the
knowledge/fuzzy rule base [Zha08, SS10, Fen10, Ros10, WI11].

3. logic inference/inference engine component /step
This component/step is used to perform the inference operations on the
suggested fuzzy rules. The inference operations include the following

e comparison process between the input variables and the mem-
bership functions used in the If-part of each rule to generate the
membership value of each linguistic label,

e combination process of the membership values the If-part of each
rule by using t-norm to get the firing strength of each rule, and

e generation process of qualified consequents of each rule depending
on its firing strength.

4. defuzzification component /step
A prefix (De) in the term of defuzzification indicates a meaning of do the
opposite, what happens in the fuzzification process. The defuzzification
is process to convert a fuzzy output of the inference engine component
based on information of rule base into the crisp value that will be sent

to execute appropriately the system/operation according to conditions
of related input [Zha08, SS10, Fen10, Ros10, WI11].
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Defuzzification methods include the following methods [Jam97, CP01,
Zha08, SS10, Fen10, Ros10, WI11]

e centroid method/center of mass/center of gravity
The defuzzified value/output is calculated as follows

Sy @) @d@
fMXf (z)d(z)

where the symbol ( [) denotes algebraic integration.

(2.13)

center of largest area

The center of largest area method can be applied only if the output
consists of at least two convex fuzzy subsets, which do not overlap,
resulted in a bias toward a side of one membership function.

max-membership/height

The max-membership/height method can be applied only if the
output/function is peaked, where the defuzzified value/output is
a value of a domain with the maximum membership value

weighted average
The weighted average method can be applied only if the output
membership functions are symmetrical, where each membership
function is weighted by its maximum membership value. The
defuzzified value/output is calculated as follows
mf o ()
ot = Z%ﬂjff”“fi Tui (2.14)
Zi:l 1 (Twi)
where the symbol (>°) denotes algebraic summation and a (T;)
is a weighted average of the i*" fuzzy set.

mean-max membership/middle-of-maxima
The defuzzified value/output is calculated as follows
Nop f .
o = it Tut (2.15)

N f

where a (T;) is a weighted average of the (i) fuzzy set.

2.2.3 Application areas of fuzzy rule-based systems

In this section, most important application areas of the fuzzy rule-based
systems are introduced.
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Control techniques

Control techniques are particularly the most important/earliest application
area of the fuzzy rule-based systems. The fuzzy control techniques has shown
successful and powerful ability in many practical and industrial applications.
Especially in those applications, wherein the related systems can be described
as complex nonlinear or even non-analytic. Additionally the fuzzy control
introduced an alternative or complementary approach to conventional control
techniques in many engineering applications [Zha08, Fen10].

The fuzzy logic control systems are knowledge-based systems, wherein
the design process is based on the designer knowledge/experience and/or
on available information about the system/problem to define input-output
intervals and the describing membership functions. Therefore, the definition
process of the input-output intervals and the membership functions can be
characterized as subjective process [CP01].

The fuzzy logic control approaches can be roughly classified into the fol-
lowing categories [Zha08, SS10, Fen10, Ros10, WI11]

1. conventional fuzzy control or Mamdani fuzzy control

A basic of Mamdani fuzzy control algorithm is a set of heuristic control
rules, and fuzzy sets. The fuzzy logic is used to represent linguistic
terms and to evaluate the control rules as follows [SS10, Fen10, Ros10,
WI11]

Rule 1:

If xpp =AY AND If xp9 = A2 AND ... If x;; = AY Then y = C*!
Rule 2 :

If xpp =AY AND If wpp = A* AND ... If xy; = A% Then y = C?

Rule m :

If xpp =A™ AND If xpo = A™* AND ... If xp; = A™ Then y =
cm.

In the original Mamdani fuzzy control the ¢ — norm = min operator,
maximum aggregation method and center of gravity method as defuzzy-
fication method are used. But later, the variety of the fuzzy operators
and the aggregation and defuzzyfication methods are used to develop
the Mamdani fuzzy control. The Figure 2.10 illustrates the Mamdani
fuzzy control as a 2-input fuzzy rule-based system [SS10, Fen10, Ros10,
WI11].

2. Takagi-Sugeno model-based fuzzy control
A basic of Takagi-Sugeno fuzzy control algorithm is a set of local linear
models that are smoothly connected by nonlinear fuzzy rules/membership
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Figure 2.10: Mamdani fuzzy control as the binary fuzzy rule-based system

functions as follows [SS10, Fen10, Ros10, WI11]

Rule 1 :

If xpp = A" AND If xypp = A2 AND ... If xy; = AY Then y' =
f1 ($f1,$f2,...,$fi,xo>

Rule 2 :

If xyy = A2 AND If 2y = A* AND ... If xy; = A¥ Then y* =
fo(xpr, Tpas e, Ty, Xo)

Rule m :

If xpp =A™ AND If xpo =A™ AND ... If xy; = A™ Then y™ =
fm (l'fl,l'fg,...,fffi,,xo).

where z is constant value.

The difference between the Mamdani and Takagi-Sugeno model can
be distinguished in the Then-part of the used fuzzy rule form. The
Mamdani system uses the fuzzy rule with the Then-part based on the
fuzzy set, while the Then-part of the fuzzy rule used in the Takagi-
Sugeno system is based on a function containing the input variables
and constant value.

In the original Takagi-Sugeno fuzzy control the t — norm = min oper-
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ator, maximum aggregation method and weighted average method as
defuzzyfication method are used [SS10, Fen10, Ros10, WI11]. The Fig-
ure 2.11 illustrates the Takagi-Sugeno fuzzy control as a 2-input fuzzy
rule-based system [SS10, Fenl0, Ros10, WI11].

IF-Part THEN-Part
All A12 Cl

t-norm=min yll = fi(x1, 22, ..., 20)

J \\\_A L J_»
A2l 422 —> o
A t-norm=min v = fy (21,22, ..., Tg)
|
s — —

v

. Cri .Cri Crisp output=1
1npu§cp1| 1npu$cp2 | weighted . i
average
Input distributions Output distributions

Figure 2.11: Takagi-Sugeno fuzzy control as the binary fuzzy rule-based sys-
tem

3. fuzzy proportional-integral-derivative (PID) control

Due to number of distinctive advantages related to PID technique (such
as their simple structure, simplicity of design, and low cost of imple-
mentation in comparison to many other control methods), the conven-
tional proportional-integral-derivative (PID) controllers are still one of
the most widely control techniques adopted in the industry areas for
achieving of variety tasks of the control. On the other hand, a perfor-
mance of the PID controllers is still not satisfactory in the following
cases [Zha08, SS10, Fen10, Ros10, WI11]

e high levels of nonlinearity and uncertainty associated with the
considered system and

e high levels of the control performance specification is very de-
manding.

The nonlinearity and uncertainty problems can be solved by the fuzzy
control using of the fuzzy set theory. Therefore, it is advisable to
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2.2. Fuzzy rule-based systems

integrate the advantages each of PID control and fuzzy control to build
the control technique to be more robust and adaptive to achieve the
control tasks [KB06, Zha08, SS10, Fen10].

The relationship between each input and output of the classical PID
controller is (see Figure 2.12a)

u= Kpe+ Kre + Kpe (2.16)

€ —»

F PID
Ae — clcl)%lzt}foller —Au
AZe —»

a: Classical PID controller b: Incremental variant

Figure 2.12: Classical PID controller and incremental variant of the fuzzy
PID controller

The most widely used integration process of the PID controller and

fuzzy logic can be achieved in different variants, e.g. incremental vari-
ant (see Figure 2.12b) [KB06, Zha08, SS10, Fen10].

4. neuro-fuzzy control or fuzzy-neuro control
The neural network control and fuzzy control are of the most popu-
lar techniques in the intelligent control areas. There are a number of
common features between them such as basically model-free control
techniques, storage of knowledge as base to deduce control actions,
and robustness property. But their differences can be summarized in
distinctive ways of obtaining knowledge, whereas the neuro control ac-
quires knowledge mainly through data training/learning. FEither the
fuzzy control obtains knowledge via an operator or expert perspective.

There is a kind of complement between each other in the context of
the learning capabilities and high computational efficiency in parallel
implementation associated with the neural control and powerful frame-
work for expert knowledge representation provided by fuzzy control.
Therefore, a combination/integration process of the neural network
control and fuzzy control techniques introduces promising results in
generation of better control approaches.

The neuro-fuzzy control is characterized by no need of existence of
information about a mathematical model of the system to be controlled.

44



2. PATTERN RECOGNITION AND FUZZY RULE-BASED SYSTEMS

Thus, this technique offers a new avenue to solve many difficult control
problems in real life where the mathematical model of a system might
be difficult to obtain [Fen10, WI11].

Figure 2.13 illustrates a possible structure of the neuro-fuzzy/fuzzy-
neuro controller.

()
Fuzzifier

Yy —» Output

Fuzzifier

N
Fuzzifier

Figure 2.13: Possible structure of a neuro-fuzzy /fuzzy-neuro controller

5. adaptive fuzzy control

The basic structure of a fuzzy system can be used for implementation
of a supervisory/adaptation algorithm. Gain-scheduling techniques are
the most frequently used adaptation technique, whereas the operat-
ing point and gain coefficients of conventional controller are changed
according to the designed nonlinear fuzzy mapping function(s). The
fuzzy algorithm can be expressed as an external control element [KB0G6,
Fenl0]. Figure 2.14 illustrates the general structure of adaptive fuzzy
control systems.

Generally, the above-mentioned classification of the fuzzy logic control ap-
proaches is neither unique nor exhaustive and many other different classifi-
cations can also be employed. These classifications can be inevitably over-
lapped to enhance the properties of the designed systems as an addition of
adaptive property for the conventional fuzzy control system and for neuro-
fuzzy control system, or to tune the fuzzy PID control based on neuro-fuzzy
systems [Fen10)].

The assumptions of the design process of fuzzy logic controller are as
follows
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Figure 2.14: General structure of adaptive fuzzy control systems

—_

. a plant/system/process to be controlled is observable and controllable.

2. a presence of knowledge/experience/sufficient information about the
system in terms of linguistic rules, which could reflect the operational
requirements, as well as understanding of engineering for it or a set of
data on measurements of input-output, which can be used to extract

rules that represent the system,

3. an existence of solutions, which are able to express in term the linguistic
rules, can be able to overcome the engineering problems encountered

in the system,

4. a control engineer should focus its full attention on getting an adequate
enough solution of the problem, not an optimum solution, and

ot

. accuracy /precision of designed controller should be within an accept-

able range [Zha08, SS10, Fen10, Ros10, WI11].

The design steps of the fuzzy logic controller can be summarized as follows

e variables (input, states and output) of the considered system should be

defined,

4
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2. PATTERN RECOGNITION AND FUZZY RULE-BASED SYSTEMS

e range/interval of each variable is divided into the fuzzy subsets and a
linguistic label (i.e. small, large, middle, ect.) and its linguistic hedges
(i.e. fast small, very large) of range/interval are determined,

e a suitable membership function, which can be the triangular, trape-
zoidal, and Gaussian according to a nature of the application/data, is
determined for each fuzzy subset in the range/interval of each consid-
ered variable,

e the fuzzy relations between the input and/or state fuzzy subsets and
the output fuzzy subsets are assigned to create a rule-base, namely,
[f-Then rules,

e a normalization process is achieved to transfer the ranges/intervals of
the inputs and outputs variables to [0, 1] range,

e a fuzzification process,

e a fuzzy approximate logic/reasoning is used to infer the output of each
rule in the rule-base,

e outputs of each rule in the rule-base is combined in the aggregation
process,

e a defuzzification is performed to generate a crisp output, which will be
used to achieve a certain control purpose [Zha08, SS10, Fen10, Ros10,
WI11).

Pattern recognition techniques
The most widely used fuzzy-based pattern recognition systems are explained

in the next subsections.

Fuzzy rule-based classifiers/Conventional fuzzy classifier A design
process of conventional fuzzy classifier is based on the fuzzy rule-base that is
determined according to human experiences/observations on the system/

process. The steps of the conventional classifier design can be summa-
rized [Abel0]

1. ranges of input variables are divided into several non-overlapping in-
tervals,

2. a membership function is defined for each interval,
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2.2. Fuzzy rule-based systems

3. the input space is covered by several non-overlapping hyper rectangles,
which represent the decision functions,

4. a fuzzy rule is assigned for each hyper rectangle.

The generalization ability of fuzzy rule-based classifier is based essentially on
the number /size of the input variables and the number of the training data,
where this ability will be low in case of the small number of training data or
in case of a large number of input variables [Abel0].

Fuzzy-neural/neuro-fuzzy classifier (FNNs) Learning and adaptive
capacities of traditional forms of fuzzy systems such as fuzzy classifiers can
be characterized by a property of weakness. But the fuzzy mathematics ac-
cording to its principles will be able to provide a strong inference mechanism
for an approximate reasoning in the terms of cognitive uncertainty. The
neural networks can be characterized with the learning, adaptation, gen-
eralization, approximation, fault tolerance characters. Additionally, neural
networks have strong ability to deal with the features of computational com-
plexity, uncertainty, and nonlinearity characters, which can be escorted to
the considered systems. An idea of merging these technologies have been
introduced /developed to build fuzzy neural network classifier. This classi-
fier introduces the dual ability for avoidance of the individual disadvantages
as well as for reinforcement of the individual advantages in the view of a
mechanism construction with robust capacity in simulation of many behav-
iors associated with activities of intelligence and cognition of the human
being [GGNZ06]. One type of the fuzzy neural network classifiers can be
defined as

"The distributed parallel information processing schemes that employ
neuron like processing unit with learning capabilities and fuzzy operations

for dealing with fuzzy signals” [GGNZ06].

Most common classes of the (FNNs) are based on two types of configura-
tion

1. mapping of a fuzzy input set to a fuzzy output set by using the fuzzy
triangular inputs and outputs,

2. mapping of a crisp input set and output signals by using many fuzzy op-
erations and approximate reasoning dependent of the rule-based knowl-
edge framework such as Takagi-Sugeno neuro-fuzzy systems.
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Figure 2.15: Types of the fuzzy neuron based on the operations

In the context of improvement of the fuzzy neural networks classifier, the
concepts of the t-norm, t-conorm, and fuzzy implications were the develop-
ment basis of various types of fuzzy neurons used in the (FNNs) such as
t-conorm-based Mamdani-type neuro-fuzzy systems and fuzzy implications-
based logical-type neuro-fuzzy systems [GGNZ06, Rut04].

A structure of the (FNNs) is similar to the structure of the (ANNSs) (see
Figure 2.4). Here the used neuron is replaced by a new type, the so-called
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2.2. Fuzzy rule-based systems

fuzzy neuron, that is a neuron with the fuzzy uncertainties and the member-
ship functions to express its input, weights, and also the activation functions
used in the (FNNs) are similar to those used in the (ANNs) see (Figure
2.3) [Rut04, GGNZ06].

The types of the fuzzy neurons can be distinguished according to the logic
operations as follows [Rut04, GGNZ06]

1. OR-AND-type fuzzy neuron (see Figure 2.15a) and is described as
follows: y = f(OR}, (w; AND z;)).

2. AND-OR-type fuzzy neuron (see Figure 2.15b)and is described as
follows: y = f(AND], (w; OR x;)).

Maximum-margin fuzzy Classifier Generally, the conventional fuzzy
classifiers have a difficulty of adaptation due to the used design principle.
The adaptation process of these classifiers means that the related fuzzy rules
base should completely changed/redesigned in order to be consistent with
the new changes related to the operation conditions of the considered sys-
tem/process. This leads to the fact that the redesign of the related classifier
will repeat from the beginning without any type of benefit of the information
related to the classifier before changes of the operation conditions. Thus, the
redesign process of the conventional fuzzy classifiers is strongly related to
computational cost and time consuming problems [Abel0].

In order to avoid this problem, an idea of trainable fuzzy classifier is
introduced. The trainable fuzzy classifiers can be distinguished according to
shape of decision function regions into three types as

e fuzzy classifiers based on hyperbox regions,
e fuzzy classifiers based on polyhedral regions, and

e fuzzy classifiers based on ellipsoidal regions [Abel0).
The trainable fuzzy classifiers use one of the following procedures [Abel0]

e pre-clustering procedure
Pre-clustering procedure can be achieved as
— clusters are determined according to the own training data,

— a fuzzy rule base is assigned by using the training data of the
clusters, and

— slopes and /or locations of the membership functions will be tuned
in order to maximize the recognition rate of classifier using the
given training data.
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e post-clustering procedure
Post-clustering procedure can be achieved as

— for each class, the initial fuzzy rule is determined according to the
own training data,

— membership functions are tuned, and

— based on the recognition rate of classifier using the given training

data, new fuzzy rules can be defined.

For example, the design process of a conventional fuzzy classifier based

on the ellipsoidal regions and the pre-clustering procedure is explained as
follows [Abel0]

e center vector of the class i by

1
7 j:1
where (M;) denotes the number of the training data for class i and
(z;) is the j™ training datum in the class "
e membership functions are defined by
pi (25) = exp (hi () , (2.18)
d? (zy 1
hi (i) = = oy) L (s =)' Q' (25 — ¢, (2.19)
4 (6

where (z;; — ¢;) is the distance between the datum (z;;) and center vec-
tor of class i'", Mahalanobis distance d;(z;;), h; (z;;) is tuned distance,
«; is the tuning parameter for class ", and @), is the covariance matrix
for class 7" in the input space.

e the membership value of datum (x;;) for each considered class is deter-
mined by using equation (2.18),

e the maximum membership value is calculated, as consequence the cor-
responding class of datum is defined(x;;),

e the misclassification rate is evaluated to determine whether it needs to
adjust all generated functions based on its related «; parameter, and
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e the adjustment process of «; parameter related to each generated mem-
bership function will be repeated until getting the smallest percentage
of misclassification, namely, the maximum generalization ability of de-
signed classifier.

A design process of the Maximum-margin fuzzy classifier based on the
ellipsoidal regions and the pre-clustering procedure is similar to the procedure
of the design of the conventional fuzzy classifier based on the ellipsoidal
regions and the pre-clustering procedure; but new steps should be added to
adjust the parameter «; as follows

e setting of the parameter «; values for all membership functions of the
classes to value equal to (1),

e adjustment of the parameter a; to get the maximum margin of the
membership function slope for all classes without causing the new mis-
classification,

e repetition of the adjustment of the parameter a; within certain bounds
so that the generalization ability is maximum as far as possible [Abel0)].

Fuzzy min-max classifier A design process for a fuzzy min-max classifier
is as follows
Due to distribution of classes/states associated with the training data, the
hyperboxes are generated in the input space by a scanning process of the
training data. Hereby the hyperboxes of the same class/state are allowed
to overlap, whereas overlapping is not allowed between the hyperboxes of
different classes/states. The principle of fuzzy min-max classifier is based
on the generation, expansion, and contraction processes of the hyperboxes
regions in the input space to get the maximum generalization ability as far
as possible.

The training procedure, which can be characterized as incremental train-
ing process of the fuzzy min-max classifier can be summarized as follows

1. during the scanning process of the training data, the hyperbox is gen-
erated for each training sample. This hyperbox behaves in one of the
two ways

e in the first one, it expands within a predefined certain distance to
unify with the other hyperbox for the same class.

e in the second one, the generated hyperbox stays as it is because of
the non-existence of any hyperbox including its state within the
predefined certain distance.
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2. overlapping between the hyperboxes of different classes is checked to
achieve the contraction process to avoid the overlapping between them,

3. repetition of the previous steps to get a best discrimination between
the hyperboxes of the different classes. Thus the generalization ability
will be maximized [Abe01].
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Chapter 3

Adaptive Fuzzy-Based
Approach (AFBA)

In this chapter, the adaptive fuzzy-based approach is explained in terms of
the structure and basic concept.

3.1 Used terminology
In the context of this suggested approach, the following terms are used

e state (S)

This term is understood as a linguistic expression or description dis-
tinguishing different conditions or operating states of the system to be
considered. The related states are usually achieved by human clas-
sification or statements based on observations, study, and analysis of
the considered system. So the expression ”fault-free” represents the
situation of regular operation of system and the status of operation in
abnormal state can be expressed by ”faulty”. The total number of the
related states of the considered system is denoted by M.

o feature (F)
This term is understood as a synonym of attribute or an input variable
to be able to highlight important relationships and underlying repre-
sentations inside the raw signals with the related states in the best
possible form of interpretation.

e hybrid
This term denotes that an output of the feature extraction process
consists of several types or different quantities of features.
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3. ADAPTIVE FUZZY-BASED APPROACH (AFBA)

e time series data
The time series data are defined as sequence of data points, which are
measured typically at successive time instants, spaced at uniform time
intervals.

e structured data
Structured data are data organized in a matrix structure whose rows
contain the process features generated for the data and whose columns
contain the data samples.

3.2 General structure

A block diagram of AFBA, which comprises training and modeling module
and a classification module, is shown in Fig. 3.1 [AS10, AS1la, AS11b].
In the first module, the training data generated from the system are used
to determine the M states considered. These states are determined based
on human expertise, previous experience and/or operational observations.
According to the data type, an additional feature extraction step may be
applied. For time series or streamed data, a feature extraction process based
on a sliding window is required to transfer the data into the feature space.
The feature space introduces more detailed specifications with respect to
the distinguishing property of the states considered; if the data are already
structured, feature extraction is not necessary. These transferred time series
or structured data are modeled using an embedded fuzzy-based process to
generate a fuzzy model. The modeling process includes fuzzy partition, fuzzy
partition selection, fuzzy rule generation and adaptation processes.

Unknown or test data for the system are evaluated using the fuzzy model.
The classification results are then integrated via the decision unit to generate
a classification statement used to achieve further functionalities such as con-
trol, online evaluation and prediction tasks. The fuzzy model and decision
unit are components of the classification module in our approach and the
fuzzy model is a common component between the modules.

3.3 Feature extraction based on a sliding win-
dow
Measurement data in engineering applications are usually time series (offline)

or streamed data (measured online without buffering and used for control or
classification at the time of measurement). They can not be used directly as
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Figure 3.1: Basic structure of AFBA

the input for pattern recognition approaches. Because of their specifications,
these data can not be used to set decision boundaries to distinguish the states
considered for the system.

The suggested approach generates suitable decision boundaries using fea-
ture extraction based on a sliding window concept (Fig.3.2).

The feature extractor transfers the data continuously into the feature
space so that the states considered can be distinguished. The feature ex-
tractor can be adjusted using the first and the last desired parameter for
the window, denoted SWgg and SWgy, respectively. Thus, a vector of time
series or streamed data consisting of n samples can be scanned by NW sub-
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Figure 3.2: Feature extraction process using sliding windows

vectors, which continuously shift by one sample value. NW is calculated
as

NW = (n—(SWEN—SWBE))+1. (31)

Each subvector generates a new vector, a so-called hybrid state vector
(HSV), consisting of p features. The statistical, mathematical, geometric and
other features of the system can be used to build the HSV. The term ”hybrid”
indicates that the design of the state vector is based on different feature types
and quantities. Finally, all the HSVs generated are combined to construct
the hybrid state matrix (HSM) with p rows and NW columns [SAS08].

3.4 Embedded fuzzy-based modeling

Embedded fuzzy-based modeling (EFBM) is a key element of the proposed
approach. EFBM includes the following steps

e Fuzzy partition/fuzzification process,
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e Adaptation of the parameter boundaries,
e Fuzzy partition selection, and
e Fuzzy rule generation.

In combination with these steps, the concept of a homogeneity-oriented
vector is introduced.

3.4.1 Homogeneity-oriented vector

In the design of pattern recognition approaches, the objective is to divide the
feature space into several regions. These regions should be separable as far as
possible to represent the states considered for the system. Separation is usu-
ally achieved by generating suitable decision boundaries. The performance
of the design approach is strongly related to these decision boundaries. The
boundaries should be carefully determined to avoid misclassification. The
principle used for assignment has an important effect on the performance of
the design approach. In the most widely used principle for assignment, the
state of each range defined by generated decision boundaries corresponds to
the state for the greatest number of data within the boundary. This principle
does not hold for real applications because the samples are not easily separa-
ble in the real state or feature space for the system or process considered. In
addition, application of this principle weakens the decision-making process
because of misclassification and information loss problems.

To avoid these problems, a homogeneity-oriented vector (HOV) is pro-
posed, defined as a weighting process for all states considered within the
range of any range defined by generated decision boundaries, which can be
derived from the fuzzy membership function here. HOV for the states in the
fuzzy membership function within the feature range considered is defined as

ws,
w
HOV (1 (8)) = ||| (3.2)
ws,
where wg, = jly]\?fs is a weighting factor for each state within the considered

range, NoS; is the number of samples classified as the i*" state and TNoS
is the total number of samples, with ¢ = 1 : M. The decision boundary
representing the fuzzy membership function of Fig. 3.3 is used to explain the
effects of HOV in the assignment process. According to the most widely used
assignment principle, this function represents the first state because Statel
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Figure 3.3: Example to explain the homogeneity-oriented vector

has the largest number of samples within the function range. This principle
leads to misclassification and information loss problems because any sample
within the function range will be always classified into the Statel, although
the sample can actually belong to other states. Using the HOV concept, the
function will represent all states to be included within the range as follows.

1. Calculation of the number of samples for each state, NoS;, within the
function range. In Fig. 3.3, the values of NoS; for the three states
considered are NoS;=15, NoS,=10, and NoS3=5 samples.

2. Calculation of the total number of samples, T"NoS, within the function
range. In Fig. 3.3, the value of T NoS is 30.

3. Calculation of the weighting factor wg, for each state. In Fig. 3.3, the
values for the three states are wg, = % = 0.5000, wg, = % = 0.3333,
and wg, = % = 0.1667.

4. HOV for the function in Fig. 3.3 is

0.5000 w1
HOV (ur (S)) = [0.3333| = |wsa|.
0.1667 Wss

Therefore, HOV can guarantee that all information to be included within
any decision boundary will be considered in the decision-making process.
Thus, misclassification and information loss problems can be reduced as far
as possible.

3.4.2 Fuzzy partition process

Fuzzy partition is an important stage in the design of fuzzy rule-based sys-
tems and affects the accuracy. The process includes determination of the
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fuzzy membership function to be used (such as triangular, trapezoidal or
Gaussian).
The most widely used function is the triangular membership function.
The proposed approach uses a triangular fuzzy membership function
(Fig. 3.4), defined as

1—(b—2x)/(b—a), for x € [a,]
pr(x) =< 1—(x—>b)/(c—10), for z € [b, ] (3.3)

0, otherwise.

Figure 3.4: Triangular fuzzy membership function

In the terms of the suggested approach, the fuzzification process is achieved
by using a developed technique, the so-called statistical characteristics-based
technique.

The statistical characteristics-based technique used is as follows (Fig. 3.5
shows the procedure for two states, green for state 1 and red for state 2,
within the range for feature F1):

1. A value vector of the samples is sorted in ascending order.

2. The mean p and standard deviation o are calculated for the positions.

3. The first fuzzy partition, called central function, is limited by the p£+ o
positions for each state.

4. Other fuzzy partitions, called secondary functions, are limited by the
remaining positions located outside the central function. The initial
determination process of the secondary functions is arbitrarily realized.
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Figure 3.5: Statistical characteristics-based fuzzy partition technique within
the range of feature (F1)

5. The boundary parameters, namely a and ¢, for the central and sec-
ondary functions are defined according to the values for samples located
in positions defined in steps 4 and 5.

The ”position” term indicates the location place of each considered sample
within the range of the training data vector.

Fig 3.6 illustrates the boundary parameters of the fuzzy partitions of two
states within the range of three features (F1, F2, and F3). From this figure
it can be seen that the number of the secondary functions can be different
between the considered states within the range of individual feature (For
example, within the range of the feature F1, the first state (green) needs the
two secondary functions; while the secondary function of the second state
(red) is one function). Also the number of the secondary functions can be
different for the same state within the range of the different features (For
example, the secondary functions of the first state (green) is two functions
within the range of the feature F1 and the feature F2; while the number of
these functions is one within the range of the feature F3). This difference is
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strongly related to the statistical and real distribution of the training data
for each state and for each considered feature.

HF1
. Vi
. Vi
/\ ‘ ' /\ >
Vps

Figure 3.6: Initial values of the boundary parameters for the central and
secondary functions

3.4.3 Adaptation of the boundary parameters in the
feature space

The suggested fuzzy partition/fuzzification process (see Section 3.3.2) gen-
erates usually the functions fitting to the statistical and real distribution
of the training data. However, these partitions can not be able to sepa-
rate/distinguish very well the related states in the feature space. Therefore
these partitions should be readjusted to achieve the fuzzy process with the
best distinguish ability for the considered states.

The distinguish ability of each partition can be determined by means of
the weighting factor values of HOV related to this function and the considered
state. If the homogeneity of the considered fuzzy partition is bias for the
considered state with the specific quality level, then this function is fitting to
suitable separation of the considered states within the range of the feature
space.

The quality level of the homogeneity related to any considered fuzzy par-
tition and any considered state can be determined by the weighting factor
value, namely wg,, of the considered " state in the (HOV) related to this
partition. The quality level of the homogeneity is often calculated as maxi-
mum possible for the considered state and the weighting factor values of the
other states as minimum possible.
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The adaptation/readjustment process plays an important role in the pro-
posed approach and uses a two-dimensional adaptation criterion. This cri-
terion is realized by adjusting the boundary parameters for the central and
secondary functions for each state considered within the range for each sug-
gested feature in two dimensions, as follows

1. Horizontal dimension
A horizontal adaptation process aims to readjust the initial values of
the boundary parameter(s) of the central function for each considered
state within the range of each individual feature. The adaptation is
realized to generate the new central and secondary functions, where
the weighting factor value, namely wg,, of the considered i state in
the HOV related to these functions should become as large as possible
and the weighting factor values of the other states as small as possible.

The procedure for horizontal dimension adaptation is as follows

e Initial values of the boundary parameters for the central and sec-
ondary functions are defined for each state within the range for
each suggested feature using the fuzzy partition process in Sec-
tion 3.4.2, as illustrated in Fig. 3.6.

e Adaptation of the initial values of the boundary parameters for
the central and secondary functions is realized as in Fig. 3.7.
The determination process of which boundary parameter(s) to be
shifted /readjusted is realized by using a checking process of what
state of an adjacent fuzzy partition. If the state of the next func-
tion is the same then the related parameter is shifted /readjusted
in the direction of this function (as in the case of the parame-
ter ajp of the central function of the first state (green) (see last
row in Fig. 3.5); while if the state of the next function is not
from the same considered state, then the related parameter is not
shifted /readjusted (as in the case of the parameter ci5 of the cen-
tral function of the first state (green)(see last row in Fig. 3.5).

The calculation process of HOV is used as criteria to define whether
this new fuzzy partition/function has better properties to distin-

guish the considered state or not. A determination process of

the distinguish ability quality of each new function is denoted by

"Fitting” process in Fig. 3.7.

The output of the horizontal dimension adaptation (Fig. 3.6) is illus-
trated in Fig. 3.8.
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Figure 3.7: Adaptation of the initial values of the boundary parameters for
the central and secondary functions (horizontal adaptation)

2. Vertical dimension
The horizontal dimensional adaptation process ensures to readjust the
boundary parameters within the range of each individual feature. But
the suggested fuzzy classifier consists of the features combination. There-
fore, it is necessary to achieve the additional readjustment process
within this combination. This process is realized in the context of the
suggested approach using a vertical dimensional adaptation process
(Fig. 3.9).
A checking concept of the overlapping region aims to reduce a complex-
ity problem associated to the fuzzy rule base. The reduction process
is based on a removing of the fuzzy partitions introducing same infor-
mation with keeping the fuzzy partition, whose HOV is best between
theses partitions, within the fuzzy partitions set related to each state.
This concept ensures improvement of the accuracy with the reduction
of the complexity problem. The output of the vertical dimensional
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Figure 3.8: Output for horizontal dimension adaptation of the boundary
parameters for the central and secondary functions generated in Fig. 3.6

adaptation (Fig. 3.8) is illustrated in Fig. 3.10.

From Fig. 3.8 it can be seen that the feature F3) should be removed
as the achievement of the two-dimensional adaptation process. Because the
range of this feature can not include the decision boundaries to distinguish
the related states.

Also it can be remarkable that there are the removed fuzzy partitions such
as left secondary function of the first state (green) within the range of the
feature F2, because this partition includes the information, which can be
introduced by the positions of the central function of the considered state
within the range of the feature F1. For avoidance of the repetition of the
same information, the left secondary function of the first state (green) within
the range of the feature F2 is removed. Also for the same reason, the central
function of the considered state over the range of the feature F3 is removed.

The whole suggested two-dimensional adaptation process introduces an
embedded principle in terms of the partition and feature selection process.
Therefore, the approach is termed embedded fuzzy-based modeling.

3.4.4 Fuzzy rule generation and extraction

Fuzzy partition and adaptation generate a specific set of fuzzy partitions in

the feature space to describe each state. These fuzzy descriptors should be

combined in one format with all the relevant information. The number of

fuzzy rules is equal to the number of states considered, denoted by M.
AFBA uses the format
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3. ADAPTIVE FUZZY-BASED APPROACH (AFBA)

as the j' fuzzy rule to fuse all the relevant information for K; fuzzy partitions
within the range for L; features.

The values of K; and L; differ between the states. The U includes mul-
tiplication and summation processes used in the classification process (as
illustrated in Fig. 3.11), k =1: K;, l=1:L;, j=1:M,i=1: M,
xp; the value of [ feature of the input z, pg, (S) the k' fuzzy parti-
tion/antecedent /function within the range of I'* feature, HOV (up,, (S)) the
k" homogeneity-oriented vector within the range of I** feature.

CFj
Here | C'Fj; | is the vector of confidence factors for the states, where

CF
NoA

CFj; = K, is the confidence factor for the i*" state based on all the an-

tecedents for the j* rule and NoA is the number of antecedents to be in-
cluded in the i** state within the range for the 5% rule.

3.5 Fuzzy model

The suggested fuzzy model is based on a set of M fuzzy rules and evaluates
the state of any sample using the following inference mechanism:

1. The p features of a sample are used as the input for the fuzzy model
consisting of M fuzzy rules.

2. Each rule generates a number of fuzzy membership values equal to the
number of fuzzy partitions or antecedents.

3.6 Classification process

The fuzzy model generates the number of fuzzy membership values for each
of the input samples according to the number of rules and fuzzy partitions.
The objective in the classification step is to obtain one fuzzy membership
value for each state. These new values are used as a set to classify the final
state of the input sample. To achieve this goal, the proposed approach uses a
maximum operator based decision making process (Fig. 3.11). The procedure
involves five steps:

1. Each fuzzy membership value is multiplied by the HOV of the an-
tecedent /fuzzy membership function generating this value. The mem-
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3.6. Classification process

bership value itself can not be used to represent one state. This is be-
cause the corresponding antecedent or function usually includes many
states within its range. Therefore, the multiplication process guaran-
tees that this individual fuzzy membership value represents all possible
states in range of corresponding antecedent /function, with percentages
based on HOV values.

2. The values from step 1 are summed for each state to generate one
classification value for each state within the range for each rule.

3. All classification values for the same state generated from all rules are
summarized to generate one classification value for each state.

4. A maximum process is applied to the values from step 4 to define the
final state of the input sample as a single output number.

The 3; process used in (Fig. 3.11) denotes the summation of all values
representing the i'* state generated in the previous step
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Chapter 4

Experimental validation of the
new approach

After introducing of the AFBA approach in Chapter 3, this chapter shows
the application and verification of the proposed approach as well as the com-
parison of the results with those of other approaches using benchmark data,
using time series data, structured data and data resulting from a tribological
system.

4.1 Implementation of the (AFBA) approach
based on the benchmark datasets

4.1.1 Time series/streamed datasets

The proposed approach was evaluated using 12 benchmark sets from the
UCR time series data set (Table 4.1.1) [KXWRO06]. These data sets cover a
wide variety of problems, ranging from two states to 7 states, for different
applications areas, including biomedical, electromagnetic, and image process-
ing.

The approaches used for comparison included k-nearest neighbor (k-nn),
SVM, multi-layer perceptron (MLP; ANN method), Nets Bayes (NB; Bayesian
classifier), C4.5 (decision tree classifier), logistic model tree (LMT), and Ran-
dom Forests (RandForest), which are included in the Weka toolbox [KXWRO06].

Percentage accuracy results for the benchmark data sets are shown for all
the approaches, including the proposed AFBA, in Table 4.2. The percent-
age accuracy is defined as the ratio between the number of samples to be
correctly classified by using the suggested approach and the total number of
the considered samples. The results in Table 4.2 show clear differences in
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4. EXPERIMENTAL VALIDATION OF THE NEW APPROACH

Name #States Length of | #Training | #Test
signal data data
CBF 3 128 30 900
ECG200 2 96 100 100
Face (four) 4 350 24 88
Gun-Point 2 150 50 150
Lighting-2 2 637 60 61
Lighting-7 7 319 70 73
OSU Leaf 6 427 200 242
Synthetic  con- | 6 150 50 150
trol
Trace 4 275 100 100
Wafer 2 152 1000 6174
Coffee 2 286 28 28
Olive Oil 4 570 30 30

Table 4.1: Basic information for the benchmark data sets used

performance among the approaches for the benchmark data sets. The best
approaches in terms of accuracy for each data set are shown in bold. To
determine which approach is best in the terms of the whole used benchmark
datasets, Friedman and Wilcoxon signed rank tests will be applied. The
Friedman ranking process aims to compare the performance of the used ap-
proaches within the range of the complete dataset; while the Wilcoxon signed
rank test is used to compare their related performance within the range of
each individual dataset.

The Friedman test involves checking a null hypothesis that states that all
approaches are equivalent and so their ranks should be equal. A p value is
calculated and the null hypothesis is true if p is greater than 5% (significance
level); otherwise, the hypothesis is rejected. When the Friedman test is
applied to the results in Table 4.2, the results p = 0.00002 is < 0.05, so the
null hypothesis is rejected. Friedman’s ranking of the approaches according
to the results in Table 4.2 is shown in Table 4.3.

The Wilcoxon signed rank test is similar to the Friedman test in terms of
checking a null hypothesis. The results are shown in Table 4.5 and Table 4.4.
According to the Wilcoxon signed sum test, the p = 0.0078 value is less than
the significance level of 0.05. Thus, the null hypothesis is rejected.
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4.1. Implementation of the (AFBA) approach based on the benchmark

datasets
’ Data set H Approach ‘
k-nn || NB | C45 | MLP | Rand-|| LMT | SVM | AFBA
Forest
CBF 85.00 || 89.67] 67.33 | 85.33 | 83.56 || 77.00 || 87.67 || 89.89
ECG200 [ 89.00 || 77.00 || 72.00 || 84.00 || 81.00 || 82.00 || 81.00 | 94.00
Face (four) || 87.50 || 84.09 | 71.59 || 87.50 || 78.41 || 77.27 || 88.64 | 89.77
Gun-Point || 92.00 || 78.67 || 77.33 | 93.33| 89.33 || 79.33 || 80.00 || 91.33
Lighting-2 || 80.33 | 67.21 || 62.30 [| 73.77 || 78.69 | 63.93 | 72.13 | 81.97
Lighting-7 || 63.01 | 64.38 || 54.79 || 64.38 || 56.16 || 64.38 | 71.23| 67.12
OSU Leaf || 54.55| 37.19 || 36.78 | 44.63 || 41.74 [| 49.17 || 43.80 || 52.89
Synthetic || 83.00 | 96.00] 81.00 || 91.33 || 86.00 || 92.00 | 92.33 | 94.67
control
Trace 82.00 || 80.00 || 74.00 || 77.00 | 81.00 || 76.00 || 73.00 | 99.00
Wafer 99.40]| 70.83 || 98.20 | 96.28 | 99.32 || 98.09 || 95.96 || 99.11
Coffee 75.00 || 67.86 || 57.14 | 96.43 | 75.00 | 100 [ 96.43 || 100
Olive Oil || 76.67 || 76.67 || 73.33 || 86.67 || 86.67 || 83.33 || 86.67 | 90.00
| Mean | 81.03 || 74.13 || 68.81 || 81.72 | 78.07 || 78.54 || 80.73 | 87.47|

Table 4.2: Accuracy values of the AFBA approach and the comparative
approaches applied to the used benchmark datasets

An increasing of the ranking value in Table 4.3 and Table 4.4 denotes that
the related approach is best. According to results of Table 4.3 and Table 4.4,
the suggested approach is best approach in the terms of the whole evaluation
results of the used benchmark datasets.

Approach Ranking
AFBA 13.2083
MLP 9.9167
k-nn 9.6250
SVM 9.1667
RandForest 8.0000
LMT 7.8333
NB 6.5833
C4.5 3.6667

Table 4.3: Average ranking for the comparative approaches for all of the data
sets according to Friedman test (highest is best)
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4. EXPERIMENTAL VALIDATION OF THE NEW APPROACH

Approach Ranking
AFBA 7.3750
k-nn 5.4583
MLP 5.1667
SVM 4.7500
RandForest 4.1667
LMT 4.0417
NB 3.6250
C4.5 1.4167

Table 4.4: Average ranking for the comparative approaches for all the bench-
mark data sets according to Wilcoxon test (highest is best)

4.1.2 Structured datasets

In this section the application results of the proposed approach to structured
datasets are shown. In the context of this contribution, structured data
are data organized in a matrix structure whose rows contain the process
features generated for the data and whose columns contain the data samples.
The basic information of the used benchmark structure datasets are given in
Table 4.6 [AFFL"11]. Each benchmark data set is described as follows.

1. Iris dataset
This data set contains 50 samples for each state from three classes (Iris
setosa, Iris versicolor, and Iris virginica). The related features are four
continuous features as follows

e sepal length,
e sepal width,
e petal length, and
e petal width

2. PID dataset
This data set contains 500 samples for the first class (diabetic) and 268
samples for the second class (healthy). The related features are eight
features (as shown in Table 4.7).

3. Sonar dataset
This data set is characterized by a high-dimensional property. The data
set contains 111 and 97 samples from two classes, i.e., sonar signals from
mine (metal cylinders) (class 1) or rocks (class 2), respectively. The
related features are 60 features.
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4.1. Implementation of the (AFBA) approach based on the benchmark

datasets
’ Data set H Approach ‘
k-nn || NB | C4.5 || MLP| Rand-| LMT | SVM || AFBA
Forest

CBF 4 7 1 5 3 2 6 8
ECG200 7 2 1 6 3.5 5 3.5 8
Face (four) || 5.5 4 1 5.5 || 3 2 7 8
Gun-Point || 7 2 1 8 5 3 4 6
Lighting-2 || 7 3 1 5 6 2 4 8
Lighting-7 || 3 5 1 5 2 5 8 7
OSU Leaf | 8 2 1 5 3 6 4 7
Synthetic 3 8 1 4 2 5 6 7
control
Trace 7 ) 2 4 6 3 1 8
Wafer 8 1 5 3 7 4 2 6
Coffee 3.5 2 1 5.5 3.5 7.5 5.5 7.5
Olive Oil 2.5 2.5 1 6 6 4 6 8

Table 4.5: Average ranking for the comparative approaches for each individ-
ual data set according to Wilcoxon test(highest is best)

Name #Classes #Features || #Samples | IR

Iris 3 4 150 1 (Balanced)

PID 2 8 768 1.87  (Imbal
anced)

Sonar 2 60 208 1.15 (Imbal-
anced)

Table 4.6: Basic information of the benchmark structure datasets

The datasets are chosen for the evaluation of the AFBA approach due to

e Variety in high-dimensional problems such as large (Sonar dataset),
medium (PID datasets) and small (Iris dataset) and

e Variety in values with respect to their Imbalance Ratio. The Imbalance
Ratio (IR) is defined by the ratio between instances/samples of the
majority state and the minority state.

To develop different experiments, the tenfold-cross validation model is used.
The cross validation model divides the considered benchmark dataset into
ten folds, whereby nine folds are used as training data and the remaining fold
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4. EXPERIMENTAL VALIDATION OF THE NEW APPROACH

Feature number Feature name

Number of thimes pregnant
Plasma glucose concentration
Diastolic blood pressure (mm Hg)
Triceps skin fold thickness (mm)
2-Hour serum insulin (mu U/ml)
Bodu mass index

Diabetes pedigree function
Age

QO || O = WO N —

Table 4.7: Features for the PID dataset

is used for the testing phase. In the context of the evaluation phase of the
AFBA approach, the tenfold-cross validation process is iterated three, five,
and ten times, namely, 3-10cv, 5-10cv, and 10-10cv, respectively. As final
result, the average value for the generative results during the corresponding
iterative process is given.

The main reason to use this model and this iteration process is to avoid a
bias problem. The proposed method will be tested randomly and according
to the different conditions.

In the sequel, the evaluation results of the structured benchmark datasets
based on the AFBA approach as well as the comparison of the results to those
of other approaches are introduced.

1. 7Iris” dataset
The evaluation and comparison results using the "Iris” dataset using
3-10cv, 5-10cv, and 10-10cv, respectively, are given in Table 4.8, Ta-
ble 4.9, and Table 4.10.

2. ”Pima Indians Diabetes (PID/Pima)” dataset
The evaluation and comparison results using the ”PID/Pima” dataset

using 3-10cv, 5-10cv, and 10-10cv, respectively, are given in Table 4.11,
Table 4.12, and Table 4.13.

3. "Sonar” dataset
The evaluation and comparison results using the ”Sonar” dataset us-
ing 3-10cv, 5-10cv, and 10-10cv, respectively, are given in Table 4.14,
Table 4.15, and Table 4.16.

The comparison process of these results focuses to the relationship between
the accuracy level and the number of rules associated with each proposed
approach. This dependency determines, which priority quality level for each
part (accuracy and number of rules) is realized during the design process.
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datasets
FARC-HD Product 1-2-3 || AFBA
([AFAH11]) ([ANHIO09])
Accuracy 96.00 95.33 96.00
#Rules 4 5.23 3

Table 4.8: Evaluation results for AFBA compared to other approaches using

iris dataset and 3-10cv

Hipo ([IKNO8D]) SGERD AFBA
([MZKO08])
Accuracy 96.13 96.93 96.53
#Rules 300.0 3.96 3

Table 4.9: Evaluation results for AFBA compared to other approaches using

iris dataset and 5-10cv

FMM-GA ([QLT10]) AFBA
Accuracy 98.27 95.13
#Rules 7 3

Table 4.10: Evaluation results for AFBA compared to other approaches using

iris dataset and 10-10cv

FARC-HD All granularities | AFBA
([AFAH11]) ([ANHI09])
Accuracy 75.66 74.92 59.52
#Rules 22.7 6.63 2

Table 4.11: Evaluation results for AFBA compared to other approaches using
PID/Pima dataset and 3-10cv

SGERD ([MZKO08]) AFBA
Accuracy 74.64 57.53
#Rules 6.12 2

Table 4.12: Evaluation results for AFBA compared to other approaches using
PID/Pima dataset and 5-10cv
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FMM-GA [AZO08] AFBA
([QLT10])
Accuracy 89.74 74.71 56.36
#Rules 37 5.36 2

Table 4.13: Evaluation results for AFBA compared to other approaches using
PID/Pima dataset and 10-10cv

FARC-HD AFBA
([AFAH11])
Accuracy 80.19 63.49
#Rules 18 2

Table 4.14: Evaluation results for AFBA compared to other approaches using
sonar dataset and 3-10cv

SGERD ([MZKO08]) AFBA
Accuracy 74.80 62.00
#Rules 4.92 2

Table 4.15: Evaluation results for AFBA compared to other approaches using
sonar dataset and 5-10cv

FMM-GA [AZO08] AFBA
([QLT10])
Accuracy 98.45 74.90 59.90
#Rules 12 7 2

Table 4.16: Evaluation results for AFBA compared to other approaches using
sonar dataset and 10-10cv

The priority quality level can be one of the following cases.

1. priority for accuracy
In this case, the accuracy part is prioritized regardless the number of
rules part. In the context of this case, the proposed approach has two
properties to be detailed.

e balanced datasets
The proposed approach shows promising results (see Tables [4.8-
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4.2. Application of AFBA approach to tribological system

4.10)).

e imbalanced datasets
The related results of the proposed approach are not satisfying in
comparison with other approaches (see Tables [4.11-4.16]).

It can be concluded that the proposed approach has a strong sensitivity
for the imbalance ratio value of the considered dataset.

2. priority for number of rules
In this case, the rules number part is desired regardless the accuracy
part. Here, the proposed approach shows better results than other
approaches because the number of the extracted rules is always equal
to the related states; also this number is independent of the parameters
of the used classification technique (see Tables [4.8-4.16]).

3. priority for both
In this case, the accuracy and the number of rules parts are desired.
In the context of this case, the proposed approach shows acceptable
results. The generated accuracy level with the used number of rules is
acceptable in comparison with other approaches.

For example, from Table 4.10, it can be noticed that the first approach
[QLT10] needs seven rules to realize 98.27% as accuracy value; while
the proposed approach needs three rules to get 95.13% as accuracy
value. The first approach [AFAH11] in Table 4.11 needs 22 rules to get
75.66% as accuracy value; while the proposed approach needs two rules
to get 59.52% as accuracy value, and so on.

Consequently, as future aspect the proposed approach could be modified to
reach the satisfied degree for the interactive relationship between the accu-
racy and the rules number parts.

4.2 Application of AFBA approach to tribo-
logical system

In the following section, the suggested approach is evaluated and verified
using time series/streamed dataset generating from mechanical system. The
considered mechanical system is understood as the tribological system. The
tribology term is understood as a theoretical framework defining the inter-
active relationships between surfaces due to relative movements. The study
and application of principles of friction, lubrication, and wear are covered
using the tribology science and engineering [Hut92].
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4. EXPERIMENTAL VALIDATION OF THE NEW APPROACH

4.2.1 Test rig

A test rig illustrated in Figure 4.1 is designed to mimic the real tribological
system [Detll]. In order to realize operation conditions related to consid-
ered field application, the dimensions of components used in this test rig are
carefully determined.

The considered test rig consists of the following parts

1. two wear plates,
2. body locked into position,

3. counter body connected to the cylinder

A linear movement of washboard profile of wear plates limits a horizontal
movement. While a vertical movement is prevented by an adjustable contact
pressure, realized by a pneumatic cylinder and a lever arm. A lubrication
process is automatically realized at fixed time intervals. Typical measure-
ments from field application (normal force, acceleration, hydraulic pressure,
temperature, etc.) are recorded by the real-time system, which is not de-
picted here. As operation phases, the counter body strokes within a load
phase with length 40s and subsequently pauses for 70s. This cycle of 110s is
repeated steadily.

Tribological
system

%@W Q ‘T/

\ ﬁvﬁlﬂﬁﬁx\ ]:lzﬁz

Fixed part

TRMEEAPTETREE T

©SRS2007/2012

4

Figure 4.1: Test rig as the tribological system
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4.2. Application of AFBA approach to tribological system

4.2.2 Problem statement and hypothesis

A test rig is used for studying/analysis the erosion rate-based friction and
wear processes of metal surface (see Figure (4.2)) related to changes of condi-
tions of operation such as changes of lubrication and temperature, etc. based
on analysis of the pressure, force, and acceleration signals generating from
this system [Det11]. According to the results, the best signal being is de-
termined and used to build the classifying model. Therefore, temperature,
pressures, and force as well as acceleration signals generated from the sys-
tem can be used to be analyzed. A suggested hypothesis of behavior of

Figure 4.2: Example of erosion rate of the metal surface

the metal surface based on the erosion rate illustrates in Figure 4.3. This
behavior consists of three regions as follows

1. running in region (I)
This region represents a beginning of the operation. The changes re-
lated to this region can contain all related states of the considered
operation.

2. stable region (II)
This region includes the acceptable level of the erosion rate of the metal
surface. If there is any change in the erosion rate, this change does not
take long time to come back to the stable states.
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Figure 4.3: Hypothetical behavior of the erosion rate during the operation
time

3. unstable region (III)
The region indicates that the erosion rate of the metal surface should
be carefully observed in order to make correct decision before reaching
to the running out moment.

4.2.3 Training and modeling phase

All related examinations between surface conditions, changing of operation
conditions, and all typical measurements from field application have shown
that the pressure signal is a suitable signal to be used for further examinations
about the changes of the surface conditions. Additionally, based on the
evaluation of all related experiments, the five/four related states (M = 5)
of surface conditions should be distinguished (Table 4.17) [AS11b]. The 34
statistical feature set are used to build the hybrid state matrix (HSM) for
each operation cycle. The 12 features are selected from this set to build the
desired fuzzy model/classifier.

4.2.4 Representations spaces

For representation of the proposed approach-based evaluation/analysis re-
sults of each operation cycle, the following spaces are suggested

1. fuzzy classifier output space
A building of fuzzy classifier output space is based on a vector, so-called
Fuzzy Classifier Output Vector, in short FCOV, for each operation cy-
cle. This vector consists of M values related to all considered states.
The FCOV indicates the classification of the corresponding cycle based
on the suggested fuzzy classifier/model of M related states.
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4.2. Application of AFBA approach to tribological system

Nr. || Linguistic  ex- || Color represen- || Human classification
pression tation
1 Regular 1 Green Stable operation
Regular 2 Blue Stable operation with minor
changes
3 Regular 3 Cyan Stable operation with ac-
ceptable changes
4 Regular 4 Yellow Abrupt changing surface
conditions with acceptable
changes
5 Regular 5 Red Abrupt changing surface
conditions with non-
acceptable changes

Table 4.17: Overview of the related states of surface conditions/erosion rate
the oil lubrication

The objective of this space is to highlight generally which state is dom-
inant for each operation cycle. The dominant state is corresponding
to the state, which has the maximum numerical value of the FCOV.
However, this representation is only useful to make decision for classi-
fication and diagnosis goals; but in the terms of the tasks and goals of
this tribological system, it necessarily needs more details information
about the state of the erosion rate to make correct decision (such as
setting to the suitable condition operation or change of the sheet). The
fuzzy classifier output space is not the best representation for achieving
this goal.

The operation cycle number 211 in Figure 4.4 is used to clarify the
above-mentioned idea. In the fuzzy classifier output space, the FCOV
of this cycle is

FCOg;s 0.0042
FCOg, 0.2543
FCOg3| = [0.3371] (4.1)
FCOgs 0.2905
FCOg, 0.3645

According to FCOV, the state of the corresponding cycle is within the
range of the stable operation, namely S1. But here in this application,
the goal is to define a percentage of the erosion rate of the metal sur-
face. From the FCOV of this corresponding cycle, it can be noticed
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that there is a type of convergence between the first four states, which
indicates basically different percentage of changes of the erosion rate of
the metal surface. Thus, it is not advisable to say that the state of the
corresponding cycle is S1. For avoidance of this conflict, the concept
of the state and spectrum spaces are introduced.

Fuzzy classifier output space
O.4J T T T T T |

0.35- -
0'3*
0.25
0.2- B
0.15- *
0.1~ *

0.05- i

0
-0.05- 1

| | | | | | | |
210.98 210985 21099 _ 210.995 211  211.005 211.01 211.015 211.02
Number of operation cycle

Fuzzy classifier output

Figure 4.4: Representations of the operation cycle number 2011 based on
fuzzy classifier output space

2. state space
As it is earlier mentioned, the fuzzy classifier output space is strongly
related to the conflict problem for determination the percentage of the
erosion rate of the metal surface. The representation of state space is
therefore suggested for getting rid this problem.

The state space includes the M lines represented the related states
of the considered system (here, i.e. state space with 5 lines (see Fig-
ure 4.5)). A building of this space is based on the following hypotheses

(a) 7"the erosion rate increases due to the increase of damages of the
metal surface combined with the continued operation”

(b) "a sequence of the color representation/coding of the related states
is from state 1 to state M”

The representation procedure of each operation cycle within the state
space is as follows
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State space
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Figure 4.5: Representations of the operation cycle number 2011 based on
State Space

(a) determination of the state number corresponding to maximum
value of FCOV.
In the case of the example of the cycle number 2011, the corre-
sponding state is S1 because this state has maximum value of
FCOV, namely 0.3645, (see 4.1).

(b) determination of number of states to be lower than the state to
be defined in the first step.
In the case of the example of the cycle number 2011, there is no
state lower than S1 (see 4.1), because this state represents the
first state in this space according the second hypothesis.

(c) calculation of summation of the FCO values of the states to be
defined in the second step.
In the case of the example of the cycle number 2011, the summa-
tion value is equal to 0.000 (see 4.1).

(d) determination of number of states to be higher than the state to
be defined in the first step.
In the case of the example of the cycle number 2011, the number
of the states to be higher than S1 is four states [S2—S5] (see 4.1).

(e) calculation of summation of the the FCO values of the states to
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4. EXPERIMENTAL VALIDATION OF THE NEW APPROACH

be defined in the fourth step.

In the case of the example of the cycle number 2011, the sum-
mation value is equal to FCOgy + FCOg3 + FCOg4 + FCOg5 =
0.2905 + 0.3371 + 0.2543 + 0.0042 = 0.8861 (see 4.1).

(f) subtraction process of the values generated from the first step and
the third step.
In the case of the example of the cycle number 2011, 0.3645 —
0.0000 = 0.3645.
The (—) sign denotes the FCO values of these state will pull the
value of the state defined in the first step toward a new position
to be lower than the old position.

(g) summation process of the values generated from the fifth step and
the sixth step.
In the case of the example of the cycle number 2011, 0.3645 +
0.8861 = 1.2506.
The (+) sign denotes the FCO values of these state will pull the
value of the state defined in the sixth step toward a new position
to be higher than the old position.

(h) painting the value generated from the previous step in the state
space.

This suggested procedure is applied to the example of the operation
cycle number 211 in Figure 4.4 to generate a value of 1.2506.

The representation of the state space introduces a visualizing frame-
work of all available information generated from several sources, here
the several sources are the fuzzy model/classifier consisting M fuzzy
rules, about the same operation cycle.

3. spectrum space
A goal of spectrum space is similar to the framework of the state space
in the visualizing of all available information generated from several
sources. But in this space, the final value is represented by the color
visualization instead of the numerical visualization as in the state space.

The procedure of the color visualization in the spectrum space is as
follows
(a) determination of the final value from the representation procedure
of each operation cycle within the state space.

(b) determination of the colors of two boundaries of subspace, wherein
the final value is located in the state space.
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4.2. Application of AFBA approach to tribological system

(c) determination of a color scale related to the colors to be defined
in the second step.

(d) determination of a color of the considered final value based on
the color scale to be defined in the third step and the value to be
located after a decimal point in this value.

(e) painting of the final value as rectangle in the spectrum space with
the color corresponding to the color defining in the fourth step.

The color visualization of the operation cycle number 211 in Figure 4.6
is the rectangle with the color scale [red green blue] = [0 0.7496 0.2506]
because this the numerical representation of this cycle in the state space
located between S1 line (represented by green color) and the S2 line
(represented by blue color).

Spectrum space

| | | | | | | | |
210 2102 2104 2106 2108 211 2112 2114 2116 2118 212
Number of operation cycle

Figure 4.6: Representations of the operation cycle number 2011 based on
Spectrum Space

4.2.5 Testing and evaluation phase

To test the suggested algorithm, two datasets are used. According to the
human classification, an erosion rate of these datasets is as follows

86



4. EXPERIMENTAL VALIDATION OF THE NEW APPROACH

1. in the first dataset, the erosion rate increases combined with the con-
tinued operation.

2. the erosion rate of the second dataset is within regular operation range.

Fuzzy classifier output space

Fuzzy classifier output

” 4 1"ﬂlhu il bk

J | 1] 4 ) I.L” l u nunl]uh o

1 15 2 25
Number of operation Cycle X 104

Figure 4.7: Evaluation results of the first dataset the fuzzy classifier output
space

The evaluation results of the first dataset are illustrated in Figure (4.7),
Figure (4.8), and Figure (4.9).

As it can be seen from Figure (4.7), a gradual disappearance of the related
colors, namely green, blue, and cyan colors, presenting the states of regular
1, regular 2, and regular 3 of erosion rate and a gradual appearance of colors,
namely yellow and red colors, representing the states of abnormal 1 and
abnormal 2 of erosion rate changes with the progress of run-time.

Additionally, an approximate and continuously transition of the states
from states 1, 2, and 3 to states 4 and 5 can be seen from Figure (4.8).

The spectrum space of the evaluation results for the first dataset demon-
strates that the color change related to the change of the erosion rate transits
gradually form the area of the stable operation into the unstable area with
the progress of run-time (see Figure 4.9).

The evaluation results of the second dataset in Figure (4.10), Figure (4.11),
and Figure (4.12). These results are also consistent with the human classifi-
cation to the changes of states for this data, which can also be seen by the
complete appearance of the colors green, blue and cyan colors, represented
the states of regular 1, regular 2, and regular 3 of erosion rate in Figure (4.10).
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State space
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Figure 4.8: Evaluation results of the first dataset in the state space

From Figure (4.11) and Figure (4.12), it is observed that the change of state
is approximately between the states 1, 2, and 3.

The evaluation results show that there approximately is consistence be-
tween the theoretical hypothesis (see Figure 4.3) and the applicable hypoth-
esis (see Figure [4.7- 4.12]) about the behavior of the erosion rate with the
progress of the operation.
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Figure 4.9: Evaluation results of the first dataset in the spectrum space
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State space

1
. . n ii:l s

1 1 1 1 1 1 1 1
0 2000 4000 6000 8000 10090 12000 14000 16000
Number of operation cycle

Figure 4.11: Evaluation results of the second dataset in the state space
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Figure 4.12: Evaluation results of the second dataset in the spectrum space
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Chapter 5

Summary and conclusions

In the terms of the wide usage of systems based on fuzzy rules the develop-
ment of pattern recognition, machine intelligence, and control systems, this
work focuses on the development of a fuzzy rule-based system.

In the present work, the suggested adaptive fuzzy-based approach (AFBA)
is based on the following new aspects

1. automated and improved generation of fuzzy rules based on the statis-
tical properties of the data considered and

2. automated generation of features to be more informative for the state
related to the data considered.

This work consisted of the following chapters. The chapter 1 introduced
the state of art of non-fuzzy-based pattern recognition approaches, pattern
recognition approaches of time series data, and fuzzy-based pattern recogni-
tion approaches in the context of the current techniques and the related ad-
vantages and disadvantages. The chapter 2 presented the pattern recognition
and fuzzy rule-based systems in the terms of the basic concepts, structure,
and application. The proposed approach is introduced in the chapter 3 in
the context of the following sections

1. general structure,
2. automatic and adaptive sliding-window feature extraction process,
3. embedded fuzzy-based modeling process including,

e homogeneity-oriented vector-based assignment process for over-
coming the loss information and misclassification problems,
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e statistical characteristics-based fuzzy partition process,

e two-dimensional adaptation process for improvement of the accu-
racy and performance of the fuzzy rule-based systems, and

e fuzzy rule generation and extraction.
4. fuzzy model and classification process.

The proposed approach was evaluated using the benchmark time series
and structure datasets and was compared by the comparative approaches.
As real application, the approach suggested was applied to the tribologi-
cal system. All results of the evaluation, comparison, and application were
shown in the chapter 4. According to these evaluation results, the suggested
approach performance can be summarized as follows

1. the benchmark time series dataset

The suggested approach is competitive and comparable to the stan-
dard approaches such as ANNs, SVM, k-nn, etc (see Table 4.3 and
Table 4.4). Additionally the suggested structure of AFBA introduces
the suitable framework for building of the pattern recognition technique
without need to predefine the modeling parameter such as (number of
layers, of neurons, the initial values of the weights vector in ANNs or
margin control parameter and the number of support vectors in SVM
or the number of clusters in k-nn). Whereby, in the context of this
approach, the determination and adjustment processes of the modeling
parameters (Here number of the fuzzy triangular membership functions
and the related their control parameters (a, b, and ¢ parameters)) were
realized based on the statistical properties of the data considered.

2. the benchmark structured dataset
The performance of AFBA can be distinguished to priority type in
the interactive relationship between the accuracy level and the rules
number.

(a) priority for the accuracy
In this case, the accuracy part is desired regardless of the rules
number part. In the context of this case, the proposed approach
has two behaviors as follows

e balanced datasets
The proposed approach shows the promising results (see Ta-

bles [4.8-4.10]).
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(b)

e imbalanced datasets
The related results of the proposed approach are not satisfied
in comparison with the other approaches (see Tables [4.11-

4.16]).

priority for the rules number

In this case, the rules number part is desired regardless of the
accuracy part. In the context of this case, the proposed approach
shows the results better than the other approaches because the
number of the extracted rules is always equal to the related states
and also this number is independent of the parameters of the used
classification technique (see Tables [4.8-4.16]).

priority for both

In this case, the accuracy and rules number parts are desired.
In the context of this case, the proposed approach shows the re-
sults to be acceptable because the generated accuracy level with
the used rules number is acceptable in comparison with the other
approaches.

3. tribological system

The AFBA-based automated evaluation results of the considered datase-
ts showed the ability of this approach to classify/determine the state
of the erosion rate of the metal surface at each operation cycle. These
results showed the consistence type between the human evaluation and
the automated evaluation for the erosion rate of the metal surface. Also
this approach introduced the visualizing framework, namely state and
spectrum spaces, of all available information generated from several
sources, here the several sources are the fuzzy model/classifier consist-
ing M fuzzy rules, about the same operation cycle.

5.1 Scientific contribution

The scientific contribution of this work can be highlighted as follows

1. a filtering technique for time series data was developed for automatic
generation of different types of feature. The suggested approach also
includes an adaptation process,

2. homogeneity-oriented vector-based assignment process for overcoming
the loss information and misclassification problems,
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3. constriction of the size of the fuzzy rule base to the number of the
related states for avoidance of the complexity and dimensionality prob-
lems,

4. statistical characteristics-based fuzzy partition process,

5. two-dimensional adaptation process for improvement of the accuracy
and performance of the fuzzy rule-based systems, and

6. introduction of the modeling process framework without any type of
advanced predefinition process for the modeling parameters.

5.2 Future aspects

The future work related to this work can be summarized as follows

1. reduction of the sensitivity of the proposed approach against the im-
balance ration related to the data considered,

2. experimental implementation to fuzzy control systems, and

3. realization of online learning and adaptation processes.
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