507 research outputs found

    Low Power Processor Architectures and Contemporary Techniques for Power Optimization – A Review

    Get PDF
    The technological evolution has increased the number of transistors for a given die area significantly and increased the switching speed from few MHz to GHz range. Such inversely proportional decline in size and boost in performance consequently demands shrinking of supply voltage and effective power dissipation in chips with millions of transistors. This has triggered substantial amount of research in power reduction techniques into almost every aspect of the chip and particularly the processor cores contained in the chip. This paper presents an overview of techniques for achieving the power efficiency mainly at the processor core level but also visits related domains such as buses and memories. There are various processor parameters and features such as supply voltage, clock frequency, cache and pipelining which can be optimized to reduce the power consumption of the processor. This paper discusses various ways in which these parameters can be optimized. Also, emerging power efficient processor architectures are overviewed and research activities are discussed which should help reader identify how these factors in a processor contribute to power consumption. Some of these concepts have been already established whereas others are still active research areas. © 2009 ACADEMY PUBLISHER

    Resource-aware scheduling for 2D/3D multi-/many-core processor-memory systems

    Get PDF
    This dissertation addresses the complexities of 2D/3D multi-/many-core processor-memory systems, focusing on two key areas: enhancing timing predictability in real-time multi-core processors and optimizing performance within thermal constraints. The integration of an increasing number of transistors into compact chip designs, while boosting computational capacity, presents challenges in resource contention and thermal management. The first part of the thesis improves timing predictability. We enhance shared cache interference analysis for set-associative caches, advancing the calculation of Worst-Case Execution Time (WCET). This development enables accurate assessment of cache interference and the effectiveness of partitioned schedulers in real-world scenarios. We introduce TCPS, a novel task and cache-aware partitioned scheduler that optimizes cache partitioning based on task-specific WCET sensitivity, leading to improved schedulability and predictability. Our research explores various cache and scheduling configurations, providing insights into their performance trade-offs. The second part focuses on thermal management in 2D/3D many-core systems. Recognizing the limitations of Dynamic Voltage and Frequency Scaling (DVFS) in S-NUCA many-core processors, we propose synchronous thread migrations as a thermal management strategy. This approach culminates in the HotPotato scheduler, which balances performance and thermal safety. We also introduce 3D-TTP, a transient temperature-aware power budgeting strategy for 3D-stacked systems, reducing the need for Dynamic Thermal Management (DTM) activation. Finally, we present 3QUTM, a novel method for 3D-stacked systems that combines core DVFS and memory bank Low Power Modes with a learning algorithm, optimizing response times within thermal limits. This research contributes significantly to enhancing performance and thermal management in advanced processor-memory systems

    On the effectiveness of cache partitioning in hard real-time systems

    Get PDF
    In hard real-time systems, cache partitioning is often suggested as a means of increasing the predictability of caches in pre-emptively scheduled systems: when a task is assigned its own cache partition, inter-task cache eviction is avoided, and timing verification is reduced to the standard worst-case execution time analysis used in non-pre-emptive systems. The downside of cache partitioning is the potential increase in execution times. In this paper, we evaluate cache partitioning for hard real-time systems in terms of overall schedulability. To this end, we examine the sensitivity of (i) task execution times and (ii) pre-emption costs to the size of the cache partition allocated and present a cache partitioning algorithm that is optimal with respect to taskset schedulability. We also devise an alternative algorithm which primarily optimises schedulability but also minimises processor utilization. We evaluate the performance of cache partitioning compared to state-of-the-art pre-emption cost analysis based on benchmark code and on a large number of synthetic tasksets with both fixed priority and EDF scheduling. This allows us to derive general conclusions about the usability of cache partitioning and identify taskset and system parameters that influence the relative effectiveness of cache partitioning. We also examine the improvement in processor utilization obtained using an alternative cache partitioning algorithm, and the tradeoff in terms of increased analysis time

    Response-time analysis for fixed-priority systems with a write-back cache

    Get PDF
    This paper introduces analyses of write-back caches integrated into response-time analysis for fixed-priority preemptive and non-preemptive scheduling. For each scheduling paradigm, we derive four different approaches to computing the additional costs incurred due to write backs. We show the dominance relationships between these different approaches and note how they can be combined to form a single state-of-the-art approach in each case. The evaluation explores the relative performance of the different methods using a set of benchmarks, as well as making comparisons with no cache and a write-through cache. We also explore the effect of write buffers used to hide the latency of write-through caches. We show that depending upon the depth of the buffer used and the policies employed, such buffers can result in domino effects. Our evaluation shows that even ignoring domino effects, a substantial write buffer is needed to match the guaranteed performance of write-back caches

    Cache-Aware Real-Time Virtualization

    Get PDF
    Virtualization has been adopted in diverse computing environments, ranging from cloud computing to embedded systems. It enables the consolidation of multi-tenant legacy systems onto a multicore processor for Size, Weight, and Power (SWaP) benefits. In order to be adopted in timing-critical systems, virtualization must provide real-time guarantee for tasks and virtual machines (VMs). However, existing virtualization technologies cannot offer such timing guarantee. Tasks in VMs can interfere with each other through shared hardware components. CPU cache, in particular, is a major source of interference that is hard to analyze or manage. In this work, we focus on challenges of the impact of cache-related interferences on the real-time guarantee of virtualization systems. We propose the cache-aware real-time virtualization that provides both system techniques and theoretical analysis for tackling the challenges. We start with the challenge of the private cache overhead and propose the private cache-aware compositional analysis. To tackle the challenge of the shared cache interference, we start with non-virtualization systems and propose a shared cache-aware scheduler for operating systems to co-allocate both CPU and cache resources to tasks and develop the analysis. We then investigate virtualization systems and propose a dynamic cache management framework that hierarchically allocates shared cache to tasks. After that, we further investigate the resource allocation and analysis technique that considers not only cache resource but also CPU and memory bandwidth resources. Our solutions are applicable to commodity hardware and are essential steps to advance virtualization technology into timing-critical systems

    A survey of techniques for reducing interference in real-time applications on multicore platforms

    Get PDF
    This survey reviews the scientific literature on techniques for reducing interference in real-time multicore systems, focusing on the approaches proposed between 2015 and 2020. It also presents proposals that use interference reduction techniques without considering the predictability issue. The survey highlights interference sources and categorizes proposals from the perspective of the shared resource. It covers techniques for reducing contentions in main memory, cache memory, a memory bus, and the integration of interference effects into schedulability analysis. Every section contains an overview of each proposal and an assessment of its advantages and disadvantages.This work was supported in part by the Comunidad de Madrid Government "Nuevas TĂ©cnicas de Desarrollo de Software de Tiempo Real Embarcado Para Plataformas. MPSoC de PrĂłxima GeneraciĂłn" under Grant IND2019/TIC-17261

    A Survey of Techniques For Improving Energy Efficiency in Embedded Computing Systems

    Full text link
    Recent technological advances have greatly improved the performance and features of embedded systems. With the number of just mobile devices now reaching nearly equal to the population of earth, embedded systems have truly become ubiquitous. These trends, however, have also made the task of managing their power consumption extremely challenging. In recent years, several techniques have been proposed to address this issue. In this paper, we survey the techniques for managing power consumption of embedded systems. We discuss the need of power management and provide a classification of the techniques on several important parameters to highlight their similarities and differences. This paper is intended to help the researchers and application-developers in gaining insights into the working of power management techniques and designing even more efficient high-performance embedded systems of tomorrow

    AMD GPUs as an Alternative to NVIDIA for Supporting Real-Time Workloads

    Get PDF
    • …
    corecore