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ABSTRACT This survey reviews the scientific literature on techniques for reducing interference in real-
time multicore systems, focusing on the approaches proposed between 2015 and 2020. It also presents
proposals that use interference reduction techniques without considering the predictability issue. The survey
highlights interference sources and categorizes proposals from the perspective of the shared resource.
It covers techniques for reducing contentions in main memory, cache memory, a memory bus, and the
integration of interference effects into schedulability analysis. Every section contains an overview of each
proposal and an assessment of its advantages and disadvantages.

INDEX TERMS Real-time systems, architecture, multicore, timing analysis, schedulability analysis,WCET,
co-runner interference.

I. INTRODUCTION
In a real-time system, the application’s response time to
external stimulimust bewithin a specified time interval. Real-
time systems can be classified into hard real-time systems
and soft real-time systems. Hard real-time systems have a
strict response time, and failure to meet a single response
time is enough for the system to fail. Examples of these types
of systems are aeronautics, satellite control, automotive, etc.
In soft real-time systems, the response time is flexible; the
occasional loss of its deadlines can cause the system to have
a degraded operation during an interval that must be limited
and allow the system to recover regular operation quickly.

One of the main problems in developing a real-time system
is ensuring that it always meets the required functionality
within the specified time margins. Through schedulability
analysis, the use restrictions of each of the available
resources can determine the response time of a running task.
This analysis requires obtaining the Worst-Case Execution
Time (WCET) as accurately as possible [1], [2]. WCET is the
maximum time it takes for a task to run on a specific hardware
platform. The predictability of the response time determines
whether the system will offer a correct response to the arrival
of a particular stimulus in a limited time.
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Traditionally, aerospace systems have used very conserva-
tive architectures to ensure correct execution, reliability, and
predictability. Platforms traditionally used in space applica-
tions are embedded systems with a single-core CPU and sev-
eral specialized devices. Moreover, most of them are FPGA-
based, as many examples have demonstrated the increased
performance and efficiency of reconfigurable systems over
traditional programmable processor approaches [3]. A well-
known example is LEON3, an FPGA-based architecture with
a single-core RISC microprocessor initially designed by the
European Space Agency [4].

In the last decade, the arrival of multicore processors
has provided a solution in embedded systems to allow
the execution of mixed-criticality application workloads
comprised of various hard real-time (HRT) and non-HRT
(NHRT) applications and to provide integrated architectures
[5]. Figure 1 shows, for example, the multicore architecture
designed for LEON4.

However, in multicore systems, the predictability of
response time and WCET analysis is more complex because
of the parallel execution of applications, which creates
interferences among the tasks due to simultaneous accesses to
shared resources and causes variations in the execution time
of the tasks depending on the execution order [6].

Interference is a challenge in real-time systems running
on multicore platforms due to the complexity of the systems
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FIGURE 1. Example of a multiprocessor system on a chip (MPSoC) architecture.

and the impossibility of completely controlling all hardware
resources. In recent years, a robust research effort has been
made to avoid, or at least alleviate, the interferences so
that the execution time could be more deterministic. Users
who design and implement real-time systems on multicore
platforms need to identify the main sources of interference
and the techniques to obtain more deterministic runtime
behavior.

This survey provides an overview of the scientific lit-
erature on reducing interference in real-time applications
on multicore platforms. It also includes the proposals that
use interference reduction techniques without considering
the predictability issue. Although our survey focuses on the
context of real-time applications, we consider that the works
focused on achieving a better performance are also relevant
for researchers and engineers dealing with interferences in
real-time systems. The proposals are categorized from the
point of view of the shared resource. The survey includes
an independent section for the discussion and analysis
of the proposals that integrate the effects of interference
into schedulability, taking into account that of the total of
publications reviewed in this period, they show the highest
incidence. The proposals in each section are categorized
and concluded with a discussion of the advantages and
disadvantages.

A. RESEARCH SCOPE AND PAPER ORGANIZATION
Following research carried out [7]–[9], there are two major
topics in this aspect: main sources of interference inmulticore
systems and how to integrate interference effects into
schedulability analysis. Thus, wemade a bibliographic search
on those topics. After a first refinement of the results found,
three significant sources of interferences were identified: the
cache, the memory bus, and the main memory.

We made a second more focused bibliographic search on
those three categories plus schedulability. Figure 2 illustrates
the behavior of the publications made in each of the four
main categories, in 2-year periods, from 2015/16 to 2019/20.
Reviewed papers are compiled from repositories such as

FIGURE 2. Distribution of classified papers over the past 5 years.

IEEE Xplore, ACM Digital Library, arXiv, and Google
Scholar. The distribution of the publications reviewed in
this period shows a greater incidence in the proposals
that integrate the effects of interference into schedulability,
representing 33 percent of the total publications reviewed
in this period. It is followed in order of incidence by the
proposals focused on reducing the effects of interference
in the shared cache, which shows a growing trend and
represents 27 percent of all publications. To a lesser extent,
but equally significant, were the proposals for interference
reduction techniques in the shared main memory and the
shared memory bus, representing 16 percent and 24 percent,
respectively.

Thus, in this survey, we have grouped the techniques for
reducing interference in shared resources of multicore real-
time systems using those three fundamental categories.

The structure of the survey is described below.
Section II presents information about the main sources of

interference due to the simultaneous use of shared resources
in multicore systems. The causes of interference from those
shared resources and their effect on the execution time of a
task are initially exposed.

Section III shows the proposed techniques for interference
reduction. They are grouped according to the source of
interference on which it is focused. Techniques focused
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on main memory. Proposals in this category focus on
interference reduction techniques in shared main memory
divided into three fundamental categories: Spatial memory
resource isolation, Temporal memory resource isolation, and
Predictable DRAM controllers. Techniques focused on cache
memory. This section presents the techniques for reducing
interference in shared cache memory divided into four fun-
damental categories: cache-partitioning techniques, cache-
locking techniques, designing predictable cache coherence
protocols, and other approaches. Techniques focused on
memory bus. In this category, the approaches are divided into
four fundamental categories: Memory Bandwidth Regulator,
Phased Execution Model, Offline Scheduling, and Hardware
isolation. Each section begins with an overview of the
proposals and ends with a discussion of the advantages and
disadvantages of each approach. Each one also includes
a discussion of interference reduction techniques without
considering the issue of predictability.

Section IV presents techniques to integrate the effects of
interference into schedulability analysis. Proposals in this
category focus on integrating interference effects due to the
use of shared hardware resources into schedulability analysis.
The investigations carried out are grouped into different
categories considering the shared resource they consider and
the integration of the effect of multiple shared resources.

Finally, Section V shows major conclusions from this
survey.

The overall organization of this article is shown in Figure 3.

FIGURE 3. Paper organization.

II. INTERFERENCE ON SHARED RESOURCES OF
MULTICORE SYSTEMS
In general, the problem with the use of shared resources
in multicore systems lies in the unpredictable delays in the
execution time of the tasks. Two requests issued to a hardware
resource that can only handle one request at the same time,
for example, causes one of the requests to wait for the
resource to become available. Arbitration mechanisms are
used to assign shared resources to tasks. The delays caused
by the implemented arbitration mechanism increase with the
increase in the number of simultaneous requests [10].

Research carried out [7]–[9] indicates the main sources
of interference in multicore systems. Dasari et al. [7]
and Löfwenmark and Nadjm-Tehrani [8] identified the main
sources of unpredictability in multicore systems based
on shared resource interference. Shared caches, shared
interconnect networks, and shared main memory are iden-
tified as the main sources of interference. Also, in 2016,
Nagalakshmi and Gomathi [9] identified and evaluated the
main sources of unpredictability in a critical security domain
such as the aeronautical industry. The sources of interference
identified are the main memory and shared memory bus,
DRAM Access Controller, Cache Memories, Logical units
pipelines, and addressable peripheral, considering the most
significant interference in memories and shared bus.

This section considers shared cache memory, a memory
bus, and main memory as significant sources of interference.
The causes of interference from these shared resources in
multicore systems and their effect on the execution time of
a task are explained below.

A. SHARED CACHE MEMORY
Cachememory is located between the CPU andmainmemory
to allow the system to operate faster. For this reason, the areas
of main memory most likely to be referenced are stored in the
cache. A mechanism for updating the cache with the most
likely data is implemented by dividing the main memory into
blocks of several bytes and the cache into lines of equal size.
A cache hit occurs if the content of the physical address is
found in a block located on a cache line, and a cache miss
occurs when the content of the physical address is not found
in a block located on any line of cache. When a cache miss
occurs, it is necessary to access the main memory to obtain
the block containing the physical address, bring the content of
the physical address to the CPU, and load the main memory
block into the allocated cache frame.

Generally, the architecture of a multicore system has
a shared last-level cache (LLC) and one or more levels
of private caches. This architecture poses challenges when
analyzing the effect on the execution time of the shared cache
due to non-deterministic replacement algorithms and the use
of preemptive scheduling, which is more severe in multicore
systems.

The shared cache level between tasks that could preempt
each other on the same core causes additional delays with
complex computational analysis [7]. When a task starts
executing by expelling another, the cache contents will be
modified, loading the code and data of the other running task.
When the task that has been expelled resumes its execution,
it will find a different cache state than it had before its
expulsion. This change in cache content will cause a cache
miss burst until the cache reloads the instructions and data of
the ejected task. As a result, the ejected task will increase its
response time because it must wait for the execution time of
the ejection task to finish. In addition, the ejected task must
restore the cache contents it had before the ejection. The delay
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caused by this effect is called the cache-related preemption
delay [11].

In multicore systems, the co-execution of tasks in multiple
cores leads to an increase in the probability of replacing cache
lines in the LLC. This increase in the replacement of the
contents of the cache lines shared between all cores causes
an increase in cache misses, and consequently, an increase in
requests to main memory [7].

Shared cache interference occurs when tasks on the same
core replace their private cache lines (intratask interference)
or replace the private cache lines of another task (intertask
interference). Inter-core interference occurs when a task
replaces the contents of a shared cache line that is used by
a different task on another core [8].

Other necessary aspects to consider are write cache policy,
cache-coherence issues, and the use of scratchpads as an
alternative to caches.

There are two standard options for the write policy: write
through and write back. The data is written directly to the
main memory in a write-through cache. On the other hand,
in a write-back, the data is stored in the cache line marked as
dirty and is only written to the main memory when the dirty
cache is evicted. The lack ofWCET analysis support, because
the write backs are decoupled in time from the corresponding
stores in the program, prevents its use on hard real-time
systems [12]. Benedicte et al. [13] presented an extensive
analysis of write policies.

Cache coherence allows high programmability by moving
data and keeping them coherent between all caches in
the system. However, this generates power consumption
and an increasing amount of coherence traffic. Scratchpad
memories [14] are an alternative to cache hierarchies; they
allow access as fast as a cache, without coherence traffic and
more efficient energy consumption. Still, unlike shared coher-
ent cache memory, they have poor programmability [15].
Also, scratchpad memories support is rare in commercially
available platforms [16], [17]. Several proposed approaches
focus on using scratchpads instead of caches [18], [19].
Gracioli et al. [17] presented a summary of work concerning
scratchpads and compared them with the caches. Puaut and
Pais [20] presented a quantitative comparison of scratchpad
memories vs. locked caches in hard real-time systems.

B. SHARED MEMORY BUS
In 2016, Nagalakshmi and Gomathi [9] described the sys-
tem bus as an interconnection structure for data transfer,
establishing that only one system component can access the
bus at a time. The shared bus to access main memory also
affects task execution times due to contentions [21]. When
multiple components attempt to access a bus simultaneously,
they cause conflicts. Arbitration mechanisms such as Round
Robin or First Come First Served (FCFS) policies control
access to the bus. Thus, the additional delay in execution time
is a function of the time required for the bus to be available,
the speed and data width of the bus, and the arbitration
mechanism implemented.

FIGURE 4. DRAM Device Organization.

C. SHARED MAIN MEMORY
Each DRAM chip is made up of banks, and these are made up
of a matrix of rows and columns of memory locations. Each
DRAM bank has a row buffer that can store the content of
one row [7]. Figure 4 shows the organization of the DRAM
device. Access to the content of a memory location is done
through the row buffer. A row stored in the row buffer by a
previous activation command is considered open, and access
to an open row is considered a row hit. If the desired row is
not stored in the row buffer, it is considered closed (rowmiss).
A row hit allows executing read/write commands to access the
data; however, a rowmiss requires first executing a command
to write the row to the array and executing the activation
command to load the desired row into the row buffer.

DRAM access latency varies depending on the row stored
in the requested bank’s row buffer. The access latency is lower
if the memory request corresponds to the row already in the
row buffer. If the memory request does not correspond to the
row that is in the row buffer, the access latency is higher since
it is required to close the currently open row and load the
requested row into the row buffer [22].

Interleaved accesses to main memory cause additional
delays due to the operation of the cores in different memory
pages that require the controller to continuously open and
close new memory pages [23].

1) DRAM ACCESS CONTROLLER
The memory controller schedules memory accesses based
on system requirements. The memory controller consists
of a request buffer that contains the status information for
each memory request, read/write buffers that contain the
data read or to be written, and a memory scheduler that
determines the order of attention of the memory requests.
The memory scheduler is composed of one level of priority
queues per memory bank and bank schedulers, and a second
level consisting of a channel scheduler that issues the highest
priority command of all ready commands from the bank
schedulers. Figure 5 shows the Logical Structure of DRAM
Controllers.

Memory controllers typically use First Ready First-Come
First-Serve (FR-FCFS) [24] as their base scheduling policy.
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FIGURE 5. Logical Structure of DRAM Controllers.

FR-FCFS reorders memory requests so that row hit requests
have higher priority than row miss requests, and in the
case of a tie, older requests have higher priority. The
scheduling algorithm implemented in the memory controller
will influence the response time of memory requests [7].

The interference delay for a memory request can be
classified into interbank interference and intrabank inter-
ference. In an architecture with dedicated bank partitions
for each core, interbank interference occurs when a mem-
ory request command is sent to the channel scheduler.
Memory request commands from other banks delay serving
the request because the FR-FCFS policy issues ready
commands. The intrabank interference occurs in an archi-
tecture where the cores share bank partitions when the
request buffer for a memory request gets slowed down due
to other, higher priority requests the bank’s scheduler is
servicing. [22].

III. TECHNIQUES FOR REDUCING INTERFERENCE ON
SHARED RESOURCES OF MULTICORE SYSTEMS
Several techniques have been proposed to reduce interference
in shared resources of multicore systems. The proposed
techniques select an isolation architecture early in the design
life cycle, using other isolation mechanisms combining
variousmedia and software partitioning. Proposed techniques
for interference analysis in software partitions include the
division and allocation of the software in partitions according
to its functionality, the use of an arbitration mechanism to
guarantee that all the requirements are fulfilled when using a
shared communication channel, the analysis of the potential
for interference due to the use of a shared resource and the
management of shared resources through the use of control
mechanisms that restrict the number of resources that each
partition can use, or monitoring mechanisms that employ
corrective actions if needed [25], [26].

Interference reduction techniques allow a more predictable
estimation of the WCET of programs in a multicore
system [27]. Other approaches [28], [29] focus on limiting
contentions, although they do not ensure the identification of
the worst-case. Bin et al. [28] use two different measurement
techniques (hardware Performance Monitoring Counters and
the execution of a set of stressing benchmarks dedicated

to stressing a particular shared hardware resource) to carry
out a study of co-running real-time avionic applications on
multicore COTS architectures. The fundamental objective
is to characterize the application workload at the system
level and obtain resource contention models at the hardware
level. Evaluating these results allows identifying applications
that can be executed together without modifying the WCET.
Iorga et al. [29], explore the design and evaluation of
empirical techniques to estimate the upper limits of the
interference to which a program that runs on a multicore
processor could be subjected from the implementation of
enemy programs accessing shared resources to maximize
contention. The application of these techniques allows
comparisons between processors to evaluate their capabilities
in scenarios that imply real-time restrictions.

In 2019, Maiza et al. [30] presented a survey of timing
verification techniques for real-time multicore systems in
the period from 2006 to 2018. The authors categorize the
works from the point of view of the approach and divide
the proposals discussed into four fundamental categories:
full integration, temporal isolation, integrating interference
effects into schedulability analysis, and mapping and allo-
cation. Our survey categorizes the works from the point of
view of the shared resource: main memory, cache memory,
and shared memory bus. In this sense, our survey adds the
discussion of new and relevant proposals not previously
discussed, such as [31]–[58].

The following subsections focus on proposals for interfer-
ence reduction techniques implemented in real-time multi-
core systems and proposals that use interference reduction
techniques without considering the predictability issue. The
proposals are divided according to the shared resource they
focus on: i) main memory, ii) cache memory, and iii) memory
bus.

A. MAIN MEMORY INTERFERENCE
Modern multicore systems consist of various components,
such as processing cores, prefetchers, and Direct Memory
Access (DMA) engines, generating memory requests with
different characteristics and priorities. Memory requests
from multiple components on multicore systems with
shared DRAM cause interference and system performance
degradation.

Various approaches have been proposed to reduce con-
tention due to shared resources. For example, the use of
scheduling algorithms to allocate threads [59], approaches
that use channel partitioning [60], and approaches that
adjust their scheduling policy based on memory access
behavior [61], [62].

Proposals focused on solving the problem of application
execution delay due to memory access contention can
be classified into spatial memory resource isolation and
temporal memory resource isolation depending on how
memory resources are isolated. Spatial memory resource
isolation is performed by physically partitioning memory
hardware resources. Temporal memory resource isolation
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FIGURE 6. Distribution of proposals focused on shared main memory.

avoids interference by allocating a specific amount of time
for applications to use memory hardware resources.

The proposals for interference reduction techniques in
shared main memory are discussed below, divided into
three fundamental categories: Spatial memory resource iso-
lation, Temporal memory resource isolation, and Predictable
DRAM controllers. In addition, the main proposals that
use interference reduction techniques without considering
the predictability issue are discussed. A taxonomy of the
proposals focused on shared main memory is illustrated
in Figure 6.

1) SPATIAL MEMORY RESOURCE ISOLATION
Proposals in this sub-category reduce interference in
main memory by physically partitioning memory hardware
resources. Several of the proposed approaches employ
DRAM bank partitioning and private bank allocation tech-
niques to make memory access more predictable [63]–[68].

A Single Core Equivalence (SCE) technology that imple-
ments a set of techniques at the OS level to provide isolation
in obtaining the results of the schedulability analysis for
each core was introduced in 2015 by Mancuso et al. [63].
Access to shared memory is regulated by applying Col-
ored Lockdown - Cache Assignment, Memory Bandwidth
Partitioning, and DRAM Bank Partitioning techniques. The
WCET is estimated given the knowledge of the behavior
of the task in isolation. Later, in 2017, Mancuso et al. [64]
proposed a more precise analysis for obtaining the WCET
considering the exact distribution of memory budgets to
cores.

Yun et al. [65] introduced PALLOC, a DRAM bank-
aware memory allocator. With PALLOC, the designer can
assign private DRAM banks without requiring any hardware
modification.

These approaches [63]–[65] do not consider non-uniform
memory access (NUMA). In a NUMA system, the multicore
architecture is divided into nodes of sets of cores with
a memory controller. Pan et al. [66], [67] proposed a
controller/node-aware memory coloring (CAMC) allocator.
It divides the memory space into different sets (Colors)
and assigns each memory bank a different color.

The implemented mechanism allows assigning a private
memory space for each task in its local memory node.
In contrast to the previous TintMalloc proposal made by
Pan et al. [68], the entire memory space is ‘‘colored’’ without
requiring application modifications.

2) TEMPORAL MEMORY RESOURCE ISOLATION
Papers in this sub-category reduce interference by allocating
a specific amount of time for applications to use memory
hardware resources. Temporal memory resource isolation
approaches can be divided into memory requests scheduling
and memory requests throttling.

Memory requests scheduling determines the order
of attention of memory requests, and memory request
throttling varies the frequency of non-critical application
memory requests to ensure proper operation of critical
applications [69].

Alhammaed et al. [70] proposed an approach that reduces
the timing interference when accessing the main memory by
using a DMA component. The DMA operations scheduling
algorithm allows that while a task is executing from one of the
partitions of the core’s local memory, the next task is placed in
the other partition of the same size, avoiding time interference
in the access to the main memory.

Kim et al. [69] proposed an operating system-level mecha-
nism to reducememory interference latency in dual-criticality
systems dynamically. Using the cgroup of the Linux Kernel
mechanism, critical execution tasks are dynamically identi-
fied and grouped. A memory request rate controller is added
to the original cgroup mechanism. The memory interference
experienced by the group of critical tasks is estimated from
the number of pending memory requests in the memory
controller. Based on the interference estimates experienced
by the critical task group, the memory request rate controller
reduces the number of memory requests from the non-critical
task group. The implemented mechanism reduces latency in
executing a critical application by reducing contentions in
shared memory.

Other scheduling proposals are discussed in the subsection
Integrating interference effects into schedulability analysis
[22], [71]–[73].

3) PREDICTABLE DRAM CONTROLLERS
Papers in this sub-category focus on designing predictable
DRAM controllers to produce tightWCET bounds [74]–[77].

Hassan et al. [74] focuses on reduced latency DRAM
(RLDRAM) for multicore safety-critical real-time systems.
The use of an RLDRAM capable of complying with stricter
latency limits is proposed, and a memory controller design
that predictably manages accesses to the RLDRAM is
presented.

Ecco and Ernst [75] proposed a real-time memory
controller that reorders read and write commands to obtain
improved DRAM timing bounds. In 2017, Guo and Pel-
lizzoni [76] proposed a DRAM Controller for Mixed-
Criticality Systems. The proposal focuses on the one hand
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on guaranteeing a tight upper-bounded HRT request latency
through the use of a close-page policy for HRT requestors.
As a result, the HRT requestor is not delayed due to interbank
interference through a private bank scheme for HRT and
SRTs and reordering of reading and write requests. On the
other hand, it focuses on a configurable guarantee for SRT
requests bandwidth, employing an open page policy for SRT
banks and an FR-FCFS scheduling algorithm.

A comparative study of predictable DRAM controllers was
presented in 2018 by Guo et al. [77]. The authors carry
out a comparison of the proposed designs based on crucial
configuration parameters such as the impact of the number of
requestors on the analytical and simulated worst-case latency
per memory request, the impact of row hit ratio, effects of
the variation of data bus width, the impact of memory device
frequency, etc. In addition, a discussion of the advantages
and disadvantages of different controller architectures is
presented, and the evaluation of tradeoffs between latency
bounds provided to real-time tasks and average memory
bandwidth offered to non-real-time tasks.

4) PROPOSAL FOCUSED ON ACHIEVING A BETTER
PERFORMANCE
The proposals in this subsection employ interference reduc-
tion techniques to achieve better performance on a multicore
platform without considering predictability issues.
Spatial memory resource isolation: Different approaches

have been proposed to limit the hardware resources shared
by different cores. In 2010, Mi et al. [78], proposed
for the first time a DRAM bank partitioning scheme to
reduce intracore and intercore interference. The proposed
approach uses the classic OS page-coloring technique [79] to
partition DRAM banks combined with XOR cache mapping.
In 2011, Muralidhara et al. [60], aimed to reduce inter-
ference by dividing application data into different channels
based on application memory usage and implementing per-
channel page allocation and memory request scheduling.
Xie et al. [80] considered memory usage intensity and spatial
locality of the applications to guide page policy assignments,
and Liu et al. [81] implemented a bank-level partitioning
mechanism based on page coloring, which assigns specific
DRAM banks to each core.

In 2016, Jia et al. [82] proposed PUMA, a method
that achieves isolation by partitioning memory banks and
allocating memory banks and private bandwidth for each
core. The threads are divided into groups, and 16 unique
memory banks are assigned to each core. The bandwidth is
allocated equally to each thread running simultaneously.

However, modifying the operating system in systems such
as avionics would imply costs for security verification.
To avoid this problem, Shen et al. [83] proposed the use of
a row-based policy, but it does not consider the inter-thread
memory interference. In 2015, Fang et al. [84] introduced
an approach that reduces inter-thread interference without
modifying the operating system. It proposed partitioning the
DRAMmemory banks and using an adaptive page policy that

varies dynamically depending on the flow of memory access
and the row buffer total hits or misses of each bank.

Other hardware designs have also been proposed to ensure
that each core has access only to its assigned DRAM
banks [85]. For example, a Decoupled DirectMemoryAccess
hardware-software mechanism was proposed in 2015 by
Lee et al. [85] to avoid the increasingly data-intensive
applications cause contentions in the main memory channel
by increasing the transfer of data from Input/Output (IO)
devices to main memory, and the access of the CPU to main
memory. The mechanism separates CPU and IO requests
using two hardware components: dual data port DRAM and
off-the-processor-chip control logic to reduce the contention
problem.
Temporal memory resource isolation: In 2020,

Fang et al. [42] proposed a memory access scheduling
strategy to solve the problem of shared memory contention
in systems where GPUs are used. The method consists of
three steps: initially, the memory requests are separated
into two queues in the memory controller, avoiding GPU
memory access requests interfering with CPU requests.
Then, depending on the memory access behavior of the
applications, they are divided into classes and assigned
dynamic bank partitions that allow eliminating interference
between applications without affecting parallelism at the
bank level. Finally, for GPU requests, a core criticality-aware
scheduling is implemented.

In 2019, Rashid [86] modeled contention in main memory
using a server-based approach. The modeling uses the
concepts of notional processors/servers [87]. The main
memory contention problem is modeled as a task assignment
problem, based on the work proposed by [88]. Initially,
a simple First Fit Decreasing Memory Demand (FFDM)
heuristic is used; servers are ordered by non-increasing
memory demands and assigned to cores using the First-Fit
heuristic. Later, two algorithms were proposed to improve the
initial solution: select the best neighborhood solutions and
use a simulated annealing-based meta-heuristic approach.
Experimental results show that feasible solutions with these
approaches require a total number of servers per core below
a certain threshold.

5) SUMMARY
Interference reduction techniques in multicore systems with
shared main memory focus on achieving isolation of the
shared resource: temporal or spatial isolation. However,
spatial memory resource isolation approaches can cause
memory resources to be underutilized. Furthermore, if mul-
tiple applications simultaneously are assigned the same
memory partition, the interference in accessing the shared
resource will not be eliminated. Temporal memory resource
isolation techniques can be divided into memory request
scheduling and memory request throttling. Techniques that
focus on memory request scheduling require a hardware
modification of the memory controller.
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TABLE 1. Comparative Table of Interference Reduction Techniques due to Shared Main Memory in Multicore Systems.

Table 1 shows a summary of the proposals discussed above,
indicating in each case the implemented technique, if it allows
temporal or spatial isolation, whether it requires software or
hardware modifications and its use in hard real-time systems,
soft real-time systems, or average-case if it is a proposal
focused on achieving better performance on the multicore
platform and are not proposed for real-time systems.

Initial proposals focus on scheduling algorithms to allocate
threads, channel partitioning, and scheduling policy based
on memory access behavior. However, although thread
scheduling alleviates contention, it does not eliminate bank
interference among threads, channel partition does not
provide optimal bandwidth usage, and thread-aware memory
scheduling requires a hardware modification.

In the 2015-2020 period, approaches to handling interfer-
ence in real-time multicore systems have mainly focused on
DRAM bank partitioning techniques, private DRAM banks,
memory request scheduling, and memory request throttling.
To estimate the WCET as accurately as possible, SCE [63]
employs Memory Bandwidth Partitioning and DRAM Bank
Partitioning techniques. In addition, the authors provide
a methodology for response time analysis; however, they
assume the worst-case of the memory access pattern, and the
WCET estimate shows a certain degree of pessimism. Adding
to the research, the exact knowledge of the budget to core
assignments allows a more accurate estimate.

The allocation of private DRAM banks implemented in
PALLOC [65] improves isolation and real-time performance
but requires exact knowledge of the DRAM controller
address mapping.

CAMC [66], [67] considers multiple memory controllers
and assess its performance on a NUMA architecture. It does
not require any code modifications for applications and
improves performance and timing predictability through
bank isolation techniques. On the other hand, it cannot
provide a Single Core Equivalence for multicore executions
per controller and does not guarantee compositionality for
policies with interference.

The memory request scheduling technique proposed
by Alhammaed et al. [70] manages contention among

cores for access to main memory, but its implementa-
tion requires hardware modifications. On the other hand,
the memory request throttling technique proposed by
Kim et al. [69] does not require hardware modifications,
and its application in a mixed critical system allows to
reduce the memory interference latency of critical appli-
cations dynamically. Finally, design proposals for DRAM
Controllers are presented to make main memory access more
predictable.

The most relevant proposals for interference reduction
techniques focused on achieving a better performance
include Memory Bandwidth Partitioning and DRAM Bank
Partitioning involves or not modifying the Operating System
or implementing hardware designs. Techniques centered
on memory request scheduling, memory request throttling,
dynamically assigned page policy, and assigning tasks to
cores based on memory resource demand have also been
proposed.

B. CACHE INTERFERENCE
One of the main factors that cause unpredictability in
multicore systems is shared cache. Cache partitioning and
locking are the most commonly used approaches to guarantee
more deterministic behavior. The surveys [17] and [89]
presented the main cache partitioning and cache locking
techniques proposed from 1990 to 2014. Our survey adds
proposals for cache partitioning and cache locking techniques
not previously discussed, such as [90]–[113]. In addition,
proposals for cache management that implement new cache
replacement algorithms and predictable cache coherence
protocols are discussed.

Proposals to reduce interference due to shared cache in
real-time multicore systems are discussed below, divided into
four fundamental categories: Cache-Partitioning techniques,
Cache-locking techniques, Designing Predictable Cache
Coherence Protocols, and Other approaches. In addition, the
main proposals that use interference reduction techniques
without considering the predictability issue are discussed.
Finally, a taxonomy of proposals focused on shared cache is
illustrated in Figure 7.
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FIGURE 7. Distribution of proposals focused on shared cache memory.

1) CACHE-PARTITIONING TECHNIQUES
Papers in this sub-category reduce shared cache interference
by employing the cache partitioning technique. The central
idea of the cache partitioning techniques is the segmentation
of cache space and the allocation of a memory partition to a
particular task or core to avoid interference.

Cache partitioning techniques can be characterized as
static or dynamic depending on whether memory allocation
is offline or runtime. [89]. Static partitioning techniques
have greater predictability since each task has a fixed cache
partition. However, fixed-size partitions cause low cache
utilization and consequently reduced performance. On the
other hand, in dynamic partitioning techniques, the size of the
allocated cache partitions vary during runtime, giving high
cache utilization and causing lower predictability [98].

Furthermore, cache partitioning techniques can be
characterized as index-based partitioning and way-based
partitioning based on the structure of a set-associative cache.
The way-based cache partitioning methods use a specific
hardware implementation. Index-based cache partitioning
methods are divided into hardware and software-based
techniques. The hardware methods of index-based cache
partitioning require special hardware support, and the most
widely used of the software-based techniques is page
coloring [17].
Way-based cache partitioning methods: Way-based cache

partitioning has the advantage of low hardware cost; however,
it is limited by the number of partitions and granularity of
allocations due to cache associativity.

In 2015, Intel Corporation [90] introduced Cache Alloca-
tion Technology (CAT). This technology allows the reserva-
tion of cache portions for individual cores. Xu et al. [91]
present a design for dynamic shared cache management
on multicore virtualization platforms based on CAT, and
Satka et al. [92] evaluated the performance of CAT con-
figured in different ways based on the purpose of the
usage. In 2018, Pons et al. [93] proposed a Critical-Aware
Partitioning Approach (CA) on multicore processors. The
proposed technique uses CAT to partition the cache and
assign the partitions to applications. The central idea of the
proposed partitioning mechanism is to divide the LLC into

two partitions: a larger one for critical applications and a
smaller one for the rest. CA resizes partitions dynamically
based on critical application behavior.
Index-based cache partitioning methods: For real-time

systems, in 2005, Chousein and Mahapatra [114] propose
a hardware-based cache partitioning mechanism for a fully
associative cache architecture, and in 2008, Suhendra and
Mitra [115] suggest the use of a combination of cache
partitioning and locking mechanisms.

Lee et al. [98] presented a dead-block-based cache
partitioning technique on a new shared LLC architecture. The
proposal focuses on reducing the deadline miss rate of Time-
sensitive tasks (TSTs). The method requires an extension of
the shared cache by adding a time-sensitivity field and a decay
counter to each cache block. The first one indicates whether
the cache block belongs to a TSTs, and the second is used
to detect dead blocks. TATS divides the cache space into as
many segments as TSTs, assigns each of the tasks to each
segment, and then assigns each General Task(GT) a segment.
It also implements a matching algorithm to decide which GT
shares the same cache segment with each TST. Experimental
results show lower TST deadline miss rates than the values
obtained with existing shared cache methods.

Software-based cache partitioning approaches have also
been implemented [100], [103]–[105], [116]. Most of them
are based on a page coloring technique.

Ward et al. [116] applied several cache management
schemes based on page coloring in a mixed-criticality
scheduling framework. They consider the colors assigned to
physical memory pages as shared resources and use cache
scheduling and locking techniques to arbitrate access to
these resources. Kim et al. [100] presented an extension
to the MC2 framework (mixed-criticality on multicore)
[116]–[118]. The proposed variant employs page coloring to
eliminate interference within the LLC and memory banks,
providing LLC and DRAM-bank isolation. It also provides
operating system isolation of highly critical tasks in the LLC
via way-based partitioning. Depending on their criticality
level, DRAM memory banks and LLC areas are assigned to
certain task groups.

Kim et al. [103] proposed a cache management framework
for multicore virtualization. The problem of assigning cache
to each task in a virtual machine is solved by using
two new hypervisor-level techniques: vLLC and vColoring.
vLLC allocates a portion of the host machine’s LLC
cache in the form of a virtual LLC to a virtual machine
running a guest operating system with page coloring support.
vColoring allows the hypervisor to directly assign a cache
portion of the host machine’s LLC to a task on a virtual
machine running a guest operating system without support
for page coloring. These cache management schemes focus
on homogeneous multicore processors. Lim et al. [104]
presented a cache management scheme using partitioning
hypervisors for clustered multicore embedded platforms.
The proposal considers the cache underutilization present
in cluster-unaware page coloring-based techniques and the
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cache interference caused by shared memory regions in inter-
VM (virtual machine) communication.

Kloda et al. [106] used the page coloring technique to
partition cache and DRAM through virtualization support.
The proposed implementation considers dynamic coloring
and the analysis of coloring side effects such as the reduction
of available memory space and the undesired partitioning
of other cache levels, among others. Finally, they propose
a strategy for cache allocation based on the principles of
the cache replacement policy. The technique consists of
invalidating a series of lines that are expected to be used by
the task that starts or resumes its execution.

Panchamukhi et al. [107] implemented a new heap alloca-
tor that uses page coloring to provide software partitioning of
the translation lookaside buffer (TLB). This approach enables
task isolation by assigning a memory region of a single color
to a task and ensuring that pages of different colors do not
map to the same TLB set.

Bouquillon et al. [108] proposed to partition the
cache using page coloring combined with Integer-Linear-
Programming (ILP) techniques. Each task is assigned a
certain number of colors, keeping the total of assigned colors
less than or equal to the total available in the cache. Two
heuristic algorithms are used, one that assigns the same
number of pages to each color and the other where a task
that has j colors assigns a different color to the first j-1
pages ordered by decreasing punctuation. The cache space
distribution is represented as a Multiple Choice Knapsack
Problem (MCKP) [119] and encoded as an ILP problem.

A cache management technique that combines set and
way partitioning was proposed in SWAP [109]. SWAP
partitions the shared cache in a two-dimensional structure
providing hundreds of fine-grained cache partitions. The
SWAP implementation introduces small changes to the Linux
page allocator and employs ThunderX’s native architectural
support for way partitioning.

Cache partitioning techniques are used to reduce
interference in the shared cache. However, according to
Valsan et al. [111], in non-blocking caches, partitioning
techniques do not guarantee predictable behavior due to
contention in the miss status holding registers (MSHR) [120],
where the requests cache-miss on a non-blocking cache
are registered. In [111] a mechanism based on hardware
and software is proposed to limit these contentions. It is
considered a multicore system with identical cores where
each core has a private level 1 cache without blocking.MSHR
contention on the private cache is removed by limiting the
maximum number of MSHR entries to be used by all private
caches of all cores to be equal to or less than the number of
MSHRs in the shared cache.

2) CACHE-LOCKING TECHNIQUES
Papers in this sub-category reduce shared cache interference
by employing the cache-locking technique. The use of cache
locking techniques allows access time to be accurately known

through accurate hit/miss prediction for cache accesses,
enabling the use of the cache in hard real-time systems.

Cache-locking techniques prevent cache lines from being
replaced by marking them as locked until an unlock operation
is executed. It is an effective technique to reduce the WCET
of a task by locking the appropriate contents in the caches.
However, effective use of cache locking techniques requires
a good selection of the contents to lock to avoid the increase
of cache misses that cause loss of performance and energy,
as well as addressing the solution of several critical issues
in replacement policies, cache coherence schemes, and the
reduction of the available space for unlocked blocks [115],
[121], [122].

In the work presented in 2015 by Gracioli et al. [17],
the main cache locking proposals from 1990 to 2014 are
discussed [115], [123]–[125]. These proposals present static
and dynamic cache locking techniques, showing better
predictability when using static locking and better utilization
with dynamic locking. The content to lock in the cache
must be carefully selected, requiring computation-intensive
algorithms such as ILP. Various cache locking techniques
have been implemented to reduce cache interference prob-
lems [125], [126]. However, they require hardware support,
which is not available in many commercial processors for
embedded systems [122].

An interesting proposal for cache locking techniques in
multicore systems was made in 2010 by
Asaduzzaman et al. [123]. In this work, from the processing
of the results of the WCET analysis, a miss table is
implemented at the L2 cache level that contains the
information of the blocks that cause the most misses when the
cache locking technique is not used. The locking technique
uses the information provided in this table to select the
blocks to be locked efficiently. This implementation improves
predictability and reduces overall energy consumption.

Sarkar et al. [124] proposed a predictable task migration
scheme using cache locking; several cache migration models
were developed to determine task migration delay. Later,
in 2015, Sarkar et al. [127] proposed a static task partitioning
that assumes that private L2 caches are large enough to
hold the data space and instructions of hard real-time tasks
and considers fixed latencies for L1 locked memory regions
to derive safe WCET limits. Tighten WCET bounds are
subsequently used for static assignment of tasks.

Dugo et al. [112] have proposed algorithms for ARINC-
653 Compliant RTOS to implement static cache locking
content selection to reduce the non-determinism and the
contention on lower-level memories while improving timing
performance. Zhang et al. [113] investigated the WCET-
aware Instruction cache (I-cache) locking problem and
proposed an ILP-based dynamic I-cache locking approach
for reducing the WCET of a task. Their approach not only
selects locking contents that have the most significant benefit
in reducing a task’sWCET but also finds a good locking point
for each locked instruction so that extra execution time spent
on locking instructions is also minimized.
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3) DESIGNING PREDICTABLE CACHE COHERENCE
PROTOCOLS
Papers in this sub-category study the problem of data
interference in a system where data is shared through cache
coherence protocols. Cache coherence protocols specify the
activity of one core on shared cached data as a function of the
activity of other cores on the same data.

Kaushik et al. [128] extends the previous proposal made
by Hassan et al. [129] focused on a predictable cache
coherence protocol based on the use of certain invariants
applied to the classic MSI protocol [130]. The proposal made
by Kaushik et al. [128] focuses on design invariants for
the MESI protocol [130] from analysis of the unpredictable
behavior of the conventional MESI coherence protocol.

Cache coherence is the most frequently used technique in
COTS architectures [131], [132] and compared to previous
solutions it shows better performance [129], [133]. However,
it presents a notably high worst-case memory latency.
The work presented in 2010 by Fuchsen [134] shows a
measure of the interference caused by the coherence protocol.
Hassan et al. [135] propose DISCO: a discriminative coher-
ence protocol considering the importance of data exchange in
real-time systems. This protocol provides high performance
by allowing simultaneous access to shared resources and
provides adjusted latency limits, eliminating scenarios that
cause high coherence interference.

4) OTHER APPROACHES
Most approaches to implementations that ensure QoS require
hardware changes, such as cache partitioning. Sivakumaran
and Siromoney [136] presented a different approach requiring
no hardware modifications to guarantee QoS from the cache
to performance-critical programs. First, pairs of programs
are established, and the effects of shared cache interference
are evaluated. Subsequently, a critical program must be
prioritized in each pair, and another penalized program
whose performance can be degraded is considered. Static
and dynamic methods are proposed to reduce the cache miss
rate and guarantee the adequate functioning of the critical
program. The dynamic approach is more optimal than the
static method because it prevents the penalized program from
disabling cache usagewhen the critical program requires little
memory.

5) PROPOSAL FOCUSED ON ACHIEVING A BETTER
PERFORMANCE
Papers in this sub-category study interference reduction
techniques to achieve better performance on the multicore
platform without considering predictability issues. The most
relevant proposals include cache partitioning techniques and
the design of new cache replacement algorithms.
Cache-Partitioning techniques: In the work presented in

2015 by Gracioli et al. [17], the main proposals for way-
based cache partitioning from 1990 to 2014 are discussed.
The proposals discussed for multicore systems in this

period [137]–[141], according to [17], were not originally
proposed to improve the predictability of real-time systems
and all use a specific hardware implementation.

Lee et al. [94] propose a way-based cache partitioning
scheme for a shared LLC with the limited associativity:
Selective Cache Partitioning (SCP). This technique allows
the allocation of private or dynamic partitions at runtime,
focused on isolating applications with poor locality on private
partitions and allocating applications with the low or medium
locality to a shared partition.

Selfa et al. [95] introduced a hardware-based cache
partitioning approach that reduces shared cache interference
by assigning a private cache partition to each application. The
size of each cache partition is dynamically adjusted at runtime
according to the requirements of each application during its
execution. Partitions can only vary by one unit of cache
way between two consecutive intervals to simplify hardware
implementation. The implemented technique assigns a larger
cache partition size to applications that suffer more slow-
down.

El-Sayed et al. [96] presented Kpart. For offline or online
memory profiling, Kpart employs a novel technique that
estimates cache demand per application by periodically sam-
pling different partition sizes across co-running applications
and using basic performance counters. Kpart groups the
applications into clusters from this information and later
divides the cache space between these clusters.

Sun et al. [97] proposed a mechanism to reduce inter-
core interferences caused by hardware prefetchers on shared
cache multicore processors. The execution of the process is
divided into two stages: an initial phase where the necessary
statistics are compiled to identify the aggressive prefetch
applications, and the second stage of resource allocation.
Subsequently, three approaches to resource allocation are
considered: Prefetch Throttling, Cache Partitioning, and
Coordinated-throttling. In the way-based cache partitioning
approach, they proposed to place the Aggressive Prefetch set
in a small partition or divide the Aggressive Prefetch set into
two subsets, prefetch friendly and unfriendly, and assign each
subset a separate section. Cache partitions combined with
prefetch throttling improve system performance.

The main proposals for index-based cache partitioning
from 1990 to 2014 are discussed in the work presented in
2015 by Gracioli et al. [17]. Proposals for multicore systems
in this period include cache partitioning mechanisms index-
based with hardware-specific implementations [142]–[145]
and software-implemented index-based cache partitioning
mechanisms [116], [146]–[150].

In 2013, Suzuki et al. [99] introduced a coordinated
cache and bank coloring mechanism to avoid cache and
bank interference simultaneously in multicore systems. The
authors develop a virtual page management mechanism that
classifies pages in a two-level structure: their cache colors
and bank colors. Pages with the same cache and bank colors
are linked to a memory cell. Once the cache and bank
colors are assigned to a task, it only has access to the
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physical pages of the corresponding memory cell. In 2014,
Ye et al. [101] introduced a memory management framework
called COLORIS. COLORIS can create static and dynamic
cache partitions using the page coloring technique.

The traditional page coloring technique is inefficient on
multicore architectures that modify the physical addressing
scheme to a more complex scheme that involves a hash
function. In 2016, Scolari et al. [102] expanded the initial
page coloring technique by implementing a mechanism
capable of handling this addressing scheme. Similarly, page
coloring techniques do not work correctly when virtualization
techniques are used in real-time systems. The advantages
of virtualization in embedded systems, such as reduced
cost, space, and power requirements, have recently extended
page coloring techniques to the virtualization environment.
Multiple real-time systems are consolidated onto a single
hardware platform with virtualization, running on spatially
isolated virtual machines.

In 2020, Park et al. [105] proposed a dynamic cache parti-
tioning mechanism that employs the page coloring technique
to partition the cache space into two areas. The cache pages
in each area will be based on page reuse data, divided into
highly reused and slightly reused pages. In this way, it is
possible to maximize the use of the cache by assigning a
more significant portion to the group of highly reused pages.
The proposal does not require additional hardware support,
application modifications, or prior knowledge of workloads.

In 2019, Danielsson et al. [110] proposed a run-time cache
partition controller that optimizes the cache partitioning
approach proposed by Palloc [65] by obtaining more effi-
cient partitions using correlation-based decisions. To create
efficient partitions, it focuses on LLC-bound workloads. The
controller regulates the size of the allocated cache partition
based on the correlation between a performance metric
and the increase in cache size for a specific application.
A saturation point is established in the correlation decrease,
after which the driver stops assigning cache partitions to the
application.
Designing a new cache replacement algorithms: In the

cache, when all blocks in a set are complete, and a new
block needs to be placed from the main memory, according
to the implemented replacement policy, the cache controller
selects a cache line and replaces it with the new block.
Among the most common cache replacement algorithms
are first-in-first-out (FIFO), Least Recently Used (LRU),
the Least Frequently Used (LFU), Not Recently Used
(NRU), and the Dynamic Aware Insertion Policy (DIP).
In practice, Pseudo-LRU (PLRU) is commonly used for high
associativity caches since it requires fewer hardware gates to
implement compared to LRU. Based on those basic policies,
several approaches have been proposed aimed at optimizing
replacement algorithms [151], [152]. However, most of the
former works do not consider the interactions between cores
and access patterns and are unsuitable for partially shared
cache structures. Thus, new approaches have been proposed
more recently to cope with this problem.

Pai et al. [153] proposed an algorithm that selects the
victim based on the block’s recency value, the behavior of the
application, and the cost of the block. The cost of each block
based on Memory Level Parallelism (MLP) is calculated
using the number of LLC accesses to the main memory. The
current information is obtained using recency counters at each
block. The proposed replacement policy considers the MLP
behavior of the application and the data reuse behavior, which
results in decreased interference between applications using
the shared cache.

Warrier [154] proposed an Application-aware Cache
Replacement (ACR) policy. During cache replacement, the
victim is selected, taking into account the hit-gap of the
applications. The article presented the flow chart for victim
selection and concluded that the victim is the cache line
with the least time to live and the least recently used.
Furthermore, compared to replacement policies: LRU policy,
thread-aware dynamic RRIP (TA-DRRIP) [151] policy and
protecting distance-based replacement policy (PDP) [155],
ACR showed a performance improvement and a decrease in
cache misses.

Yang et al. [156] proposed a core-aware re-reference
interval prediction (CA-RRIP) replacement algorithm on
an NoC-based multicore structure with a partially shared
cache. A new cache structure is proposed that integrates
the advantages of the on-chip bus with an L2 cache
partially shared between all cores. The algorithm establishes
a counter (RRIV) of N bits for each cache block that indicates
the prediction of reuse of the cache block, the higher the
value of the counter, the lower the probability of reuse of
the block. It also records the identification of the accessing
core and selects blocks to be replaced according to the core
identification, resulting in dynamic virtual partitions of the
shared cache.

6) SUMMARY
Proposed approaches to reducing interference due to shared
cache memory in real-time multicore systems employ
cache partitioning techniques, cache locking techniques, and
predictable cache coherence protocols.

Cache partitioning can be index-based partitioning or way-
based partitioning. The way-based cache partitioning pro-
posals for real-time systems use CAT for cache partitioning
and allocating cache partitions to applications. The use of
CAT allows mitigating shared cache interference. On the
other hand, its use requires a processor that supports this
technology, and the restrictions regarding cache partitions
must be taken into account (available in Intel’s CAT
specification).

Proposals for index-based cache partitioning employ
hardware-based or software-based mechanisms. For exam-
ple, the hardware-based approach by Lee et al. [98] uses
a cache partitioning technique that considers the memory
access characteristics and time-sensitivity of tasks. The
proposed scheme requires task profiling.
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TABLE 2. Comparative Table of Cache Partitioning Techniques.

Software-based cache partitioning approaches are funda-
mentally based on the page coloring technique.
Ward et al. [116] consider page coloring techniques to
eliminate or control cache conflicts. For implementing
the proposal in real-time systems, they assume that the
memory used by a task is pre-allocated and the tasks
have been divided into processors before the task system
begins execution. Other proposals use the page coloring
technique in hypervisors to enable the cache allocation to
tasks executed in a virtual machine. In this case, to ensure
timing predictability, Kim et al. [103] assume that each
virtual machine has been allocated a sufficient number of
physical host pages and that page swapping does not occur
at run time. The evaluation of the cache-aware real-time
virtualization for clustered multicore platforms technique by
Lim et al. [104] shows that cache partitioning and allocation
prevent cache interference in real-time virtualization. On the
other hand, the evaluation results of virtualization-based
coloring overhead shown by Kloda et al. [106] indicate,
in the presence of external interference, a considerable
overhead in the latency of a memory operation when the
memory footprint is considerably larger than L2 and memory
accesses are randomly distributed. Tests carried out by
the authors indicate that a miss in the translation look-
aside buffer (TLB) is the cause of this overhead. The heap
allocator proposed by Panchamukhi et al. [107] increases

TLB predictability. On the other hand, the use of the page
coloring technique combined with ILP and the cache memory
partition according to the needs of a task show an increase
of high utilization tasks set schedulable compared to a
random partition [108]. Other cache management techniques
combine set and way partitioning to achieve effective cache
partitioning [100], [109].

Table 2 shows a summary of the approaches mentioned
above, specifying in each case the implemented technique if it
is implemented in hardware or software, the structure of a set-
associative cache if a dynamic or static partitioning technique
is implemented, and its use in hard real-time systems, soft
real-time systems or average-case if it is a proposal focused
on achieving better performance on the multicore platform
and not proposed for real-time systems.

The second approach proposed to reduce shared cache
interference is locking techniques. These techniques allow
the use of cache in hard real-time systems, ensuring
predictability in access time. For example, previous inves-
tigations lock the memory line with the highest execution
frequency, lock a part of the cache statically for each task,
lock the most used data or employ partial cache locking
techniques, among others.

On multicore systems, cache locking techniques require
prior knowledge of the entire memory footprint of the task,
which is complex and even impossible. Furthermore, cache
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TABLE 3. Comparative Table of Cache Locking Techniques.

TABLE 4. Comparison Table of Cache Replacement Algorithm.

TABLE 5. Comparison Table of Predictable Cache Coherence Protocols.

locking techniques with pessimistic assumptions reduce the
cache space available for other tasks, leading to a degradation
of performance.

The most recent proposals (2015-2020) employ locking
techniques to tighten WCET bounds further.
Sarkar et al. [127] use these narrowed WCET bounds to
allocate tasks and increase the predictability of memory
accesses statically. Dugo et al. [112] focus on cache
content selection algorithms for cache locking. This approach
improves the hit rate and predictability of the caches.
However, the results show an increase in cache misses due
to an overlock situation when only 60 percent of the cache
is locked. Zhang et al. [113] also focus on selecting a
set of memory blocks from the task code as locked cache
content. The WCET reduction obtained with this approach
varies depending on the cache size. Fewer improvements
are obtained when the cache size is relatively small, such
as 256B. Increasing the cache size allows for better results.
However, once most blocks of memory that are valuable for
locking are selected, an increase in the cache size does not
allow significant improvements.

Table 3 shows the most recent approaches to cache
locking techniques in multicore systems classified according
to the granularity of locking and its static or dynamic
characteristics.

Finally, approaches have been proposed to deal with
the problem of data interference in a system where data
is shared by implementing Predictable Cache Coherence
Protocols. The predictable MSI (PMSI) protocol proposed
by Hassan et al. [129] and the cache coherence protocols
(PMSI and PMESI) presented by Kaushik et al. [128] provide
considerable performance improvements, do not impose any
scheduling restrictions, and do not require any source-code

modifications. On the other hand, implementing these
invariants to deal with unpredictable scenarios requires archi-
tecture changes and the conventional coherence protocol.
In 2020, the discriminative coherence solution proposed by
Hassan [135] achieved lower latency bounds compared to the
state-of-the-art predictable coherence protocol. If the system
on which it is implemented does not support write-through
caches or cache bypassing, its implementation requires
modifying the cache controller to adopt the coherence
protocol.

Table 5 groups the predictable cache coherence protocols
papers reviewed considering the cache coherence protocol
proposed.

The most relevant proposals for interference reduction
techniques focused on achieving a better performance include
cache partitioning techniques and the design of new cache
replacement algorithms. The most recent research proposes
replacement policies that take into account the memory
access behavior of the applications during the victim selec-
tion process: using recency counters at each block, taking into
account the hit-gap of the applications or algorithms that use
indicators the prediction of reuse of the cache block.

Table 4 shows a summary of cache replacement algorithms
considering the cache replacement policy and the victim
selection technique used.

C. MEMORY BUS INTERFERENCE
Proposals to reduce shared memory bus interference in real-
time multicore systems are discussed below, divided into
four fundamental categories: Memory Bandwidth Regulator,
Phased Execution Model, Offline Scheduling, and Hardware
isolation. In addition, the main proposals that use interference
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FIGURE 8. Distribution of proposals focused on shared memory bus.

reduction techniques without considering the predictability
issue are discussed. Finally, a taxonomy of the proposals
focused on the shared memory bus is illustrated in Figure 8.

1) MEMORY BANDWIDTH REGULATOR
Proposals that follow this approach are based on using a
memory bandwidth regulator that allocates a portion of the
total bandwidth to each core. Each task runs with a specific
bandwidth independently of the execution of other tasks in
other cores [30]. Memory bandwidth regulation approaches
have been implemented at the software and hardware levels.

Software-based techniques monitor each core’s memory
access requests and regulate the bandwidth allocation of each
core when it exceeds the allocated value. Several previous
works have focused on memory bus bandwidth control at the
operating system level [32], [88], [157]–[160].

MemGuard [88], [157] partitions memory bandwidth
across all cores and enforces memory bandwidth allocation.
After the bandwidth allocated to a core is exhausted, Mem-
Guard suspends computation on that core. At the beginning
of the following regulation period, a new assignment is
made, and the stopped tasks are resumed. MemGuard also
allows sharing the unused bandwidth of the total bandwidth
allocated to each core among the rest of the cores with the
highest memory consumption. In 2018, Agrawal et al. [160]
presented a framework to determine the worst-case response
time of a task in a real-time multicore system with the
temporal dimension of memory scheduling and dynamic
memory bandwidth regulation. A bandwidth partitioning
scheme such as MemGuard is used. The worst-case response
time calculation is determined from a maximization problem
based on allocating time slots with different bandwidths to
CPU and memory requirements.

BWLOCK [158] proposed a memory access control
mechanism designed to prioritize the performance of soft
real-time applications over other non-real-time applications.
BWLOCK’s main goal is to reduce memory bandwidth
contention selectively. Through an Application Programming
Interface (API), the application specifies the parts of the
program that are memory performance-critical sections
(MPCSs), and BWLOCK eliminates the contention of

bandwidth by regulating the allocations of memory band-
width of the rest of the cores that execute memory-intensive,
non-real-time (NRT) applications.

Agrawal et al. [159] proposed a software mechanism for
dynamic memory bandwidth allocation as an enhancement to
Airbus’ research on the use of COTS multicore for avionics
applications. Starting from the worst-case of memory access
patterns, it creates offline schedule tables that allocate
partitions and dynamic memory bandwidth to each core. Two
servers running on each core jointly control the number of
memory accesses and contention between cores at runtime.

Xu et al. [32] presented CaM, a strategy for allocating
cache and memory bandwidth resources. CaM focuses on
partitioned scheduling, assigned tasks to cores, and shared
cache resources and memory bandwidth are divided and
assigned to each core. To optimally assign the tasks to
each core, the interdependence between a task’s WCET
and its cache partition and memory bandwidth allocation is
investigated. Finally, a heuristic resource allocation algorithm
is proposed from the analysis of the experiments carried out.

On the other hand, hardware-based techniques have been
implemented to regulate the assigned bandwidth. However,
these approaches require hardware modification and cannot
be applied to COTS platforms [33]–[35], [161].

Hassan et al. [33] presented an approach for scheduling
memory access requests in mixed-time critical systems
through the re-design of memory controllers (MCs) and an
optimization framework to guarantee temporal and band-
width requirements. It proposes a new implementation of the
TimeDivisionMultiplexing (TDM) schedule and implements
a page policy scheme that dynamically switches between
open and closed pages. Later it was extended in [161] to allow
for rank interleaving and support dynamically interleaving
across the different number of banks.

A new memory controller architecture capable of effi-
ciently supporting variable transaction sizes was introduced
in 2016 by Li et al. [34]. The front-end uses a TDM arbiter
with a new work-conserving policy, and the back-end uses a
dynamic command scheduling algorithm. Compared to exist-
ing memory controller architectures such as the one based on
First-Ready First-Come-First-Serve (FR-FCFS) policy and
the ROC [162], the proposal adds additional components such
as the lookup table and the parameter queue, included in the
back-end to support variable transaction sizes.

Another approach was adopted in Memory Inter-Arrival
Time Traffic Shaping (MITTS) [35]. MITTS regulates the
memory bandwidth of each application based on the fre-
quency of each memory request inter-arrival time. Compared
to the static allocation of memory bandwidth between
applications, the proposed mechanism allows better isolation
of memory bandwidth, which is vital for real-time systems.

Farshchi et al. [36] proposed a hardware unit: Bandwidth
Regulation Unit (BRU), whose objective is to regulate per-
core accesses to shared memory resources, limiting interfer-
ence between cores without incurring a significant software
overhead, unlike previous software-based proposals [10],
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[88]. This approach improves memory bandwidth utilization
and allows regulation in more precise time intervals.

2) PHASED EXECUTION MODEL
Papers in this sub-category are based on controlling access
to the memory bus to avoid or eliminate contentions using
a phased execution model of each task and a suitable
scheduling algorithm.

A global memory-centric scheduling approach was pro-
posed in 2015 by Yao et al. [163]. Based on previous
Predictable Execution Models (PREM) [164]), the set of
tasks is modelled in two phases, a memory phase, and
an execution phase. The central idea of this work is to
provide isolation in access to main memory by dividing
the execution of tasks into phases. The number of cores
that can access memory simultaneously is limited to avoid
memory bus bandwidth saturation. A memory-centric global
scheduler sets the maximum number of cores that can access
simultaneously and assigns higher priority to memory phases
over execution phases to prevent interference.

Following a model similar to PREM, Rivas et al. [37] pro-
posed implementation ofMemory Centric Scheduling (MCS)
in a Real-time Operating System (HIPPEROS). In the
scheduling framework, tasks follow a similar model to PREM
and use a memory phases scheduler that dynamically decides
which memory phase to execute. It is considered partitioned
scheduling with fixed task priorities (FTP) and a modified
PREM task model that defines two types of memory phases
in addition to the execution phases. To avoid interference,
assigning a shared cache partition to each task is also applied.

In 2018, Pagetti et al. [165] presented a framework to
guarantee time-predictability in the software development
process. To eliminate bus interference, they use the Acqui-
sition Execution Restitution (AER) execution model and to
simplify the calculation of the upper limits of WCET, they
use a non-preemptive partitioned schedule.

In 2021, Gifford et al. [166] presented other strategies
called Dynamic Allocation (DNA) and deadline-aware
DNA (DADNA) for allocating memory bandwidth resources
and cache memory. The proposed algorithms allocate
resources dynamically depending on the execution phase of
a task. The DNA algorithm focuses on allocating resources
to the tasks whose execution rate will increase the most, and
the DADNA algorithm focuses on allocating resources to the
tasks that need them to meet their deadlines. Knowing the set
of tasks to execute before starting the system is necessary.
From the execution profiles obtained, the identification of
phases and resource requirements is carried out.

3) OFFLINE SCHEDULING
Papers in this sub-category focus on regulating access to the
shared memory bus through a table containing the allocations
for use at run-time. This information is obtained from offline
static scheduling techniques.

An algorithm for automatic allocation and schedul-
ing in multiprocessor systems was proposed in 2015 by

Carle et al. [167]. An offline scheduling algorithm is
implemented that calculates a scheduling table. Each task is
associated with a processor in the scheduling table, and a
set of time intervals are assigned for its execution. A static
time-division multiplexing (TDM) mechanism is used, and
the execution of the task is limited to reserved time intervals
to eliminate the interference between the partitions in a
processor.

Perret et al. [168] proposed an execution model that
consists of a set of rules to guarantee temporary isolation
between applications. Taking into account the interference
caused by the shared resources between partitions, four
fundamental rules are defined: each local SRAM bank and
each core can only be reserved for one partition, strictly
periodic time intervals control NoC accesses established
offline, memory buffers used by DMAs are defined offline,
and a bank of the external DDRx-SDRAM can be only
shared if the partitions are not accessed simultaneously.
The approach allows temporal isolation of hard real-time
applications on many-core processors.

4) HARDWARE ISOLATION
Papers in this sub-category focus on the use of arbitration
policies such as TDMA [169] or Round Robin to guarantee
hardware isolation in shared bus access.

Dasari et al. [170] presented a framework for memory
access contention analysis. The approach considers different
bus arbiters and calculates the maximum interference caused
by the shared memory bus. Then, through an arbitration
policy, which depends on the platform considered, the dispute
of the cores that try to access the shared bus is resolved.

A bus-aware ILP formulation for estimating WCET,
including the dynamic prediction of bus offsets and
effects on execution times, was presented in 2017 by
Oehlert et al. [171]. This approach focuses on access lock
times to a shared memory when using the TDMA arbitration
policy on the shared memory bus.

In 2019, Park et al. [38] proposed an approach to
reduce inter-core interference by applying the Time Division
Multiple Access (TDMA) [169] and Acquisition-Execution-
Restitution (AER) [172] executionmodels withoutmodifying
the Operating System. For the application of the execution
models, they use pseudo-partitions. A pseudo-partition
ensures that accesses to the shared resources of each partition
do not interfere with each other. Subsequently, Park et al. [39]
proposed a multi-TDMA model. The proposed model allows
the simultaneous execution of two cores, taking into account
that the memory bus of the target board can process two
requests simultaneously. The use of multi-TDMA shows
a higher utilization than the TDM model and a shorter
execution time than the AER model, which is obtained by
not requiring phase control.

Hebbache et al. [173] presented a dynamic arbitration
scheme based on the Time Division Multiplexing (TDM)
arbitration policy. This work proposed a dynamic arbitration
scheme where the arbiter can change the order in which
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requests are handled based on the slack time of each pending
request in the system. The arbiter prioritizes critical tasks
over non-critical guaranteeing deadlines of critical requests.
In 2018, a new approach [174], instead of TDM slot-level
arbitration schemes, operates at the granularity of clock
cycles.

5) PROPOSAL FOCUSED ON ACHIEVING A BETTER
PERFORMANCE
Papers in this sub-category employ interference reduction
techniques to achieve better performance on the multicore
platform without considering the predictability issues.
Memory Bandwidth Regulator: Combined with virtualiza-

tion techniques for spatial partitioning on Last Level Cache
(LLC), in 2018, Modica et al. [31] proposed implementation
for temporary isolation in the DRAM controller using a
memory bandwidth reservation mechanism combined with
the scheduling logic of the hypervisor.
Other approaches: In 2020, proposals were implemented

focused on evaluating the contentions in the memory bus. The
method proposed by Rashid et al. [40] evaluates the impact
of cache persistence on memory bus contention, considering
that the higher the reuse of cache blocks, the lower the
number of accesses to main memory and, consequently, less
will be the contention on the memory bus. On the other
hand, Restuccia et al. [41] focus on bounding the worst-
case bus contention experienced by the hardware accelerators
deployed in the FPGA fabric, considering that the main
source of the unpredictability of hardware accelerators is
access to memory through the bus.

6) SUMMARY
The techniques proposed to reduce interference in the shared
memory bus focus on controlling access to the bus through
memory bandwidth regulators, mechanisms that use models
of execution in phases, offline scheduling, or arbitration
policies.

Memory bandwidth regulation approaches have been
implemented at the software [32], [157], [158] and hard-
ware level. Memguard [157] ensures temporal isolation
by reserving bandwidth and further improves performance
by exploiting the best effort bandwidth after satisfying
each core’s reserved bandwidth. However, MemGuard does
incur some implementation overhead. CaM [32] integrates
the CAT cache partitioning mechanism and MemGuard
bandwidth regulation mechanisms. BWLOCK [158] reduces
memory bandwidth contention and improves the perfor-
mance of soft real-time applications with a controllable
performance impact on non-real-time tasks. Its limitations
lie in overhead in the millisecond range due to interrupt
handling and not offering protection if all tasks executed
simultaneously are in real-time. The method proposed by
Agrawal et al. [159] allows dynamic memory bandwidth
isolation without application source-code modifications. Its
implementation requires creating offline schedule tables.

Hardware-based techniques for memory bandwidth regu-
lation employ redesigns of the memory controller to allocate
a portion of memory bandwidth to each core [33], [34],
[161]. Proposals such as [35], [36] use other hardware
mechanisms that allow fine-grain bandwidth allocation with
their respective hardware cost. In addition to the independent
requirements of each proposal, the use of bandwidth regula-
tors in many cases leads to not fully utilizing resources.

Proposals focused on a phased execution model provide
temporary isolation by using a scheduling algorithm that
allows a limited number of memory phases simultaneously.
The division of tasks into phases and the global scheduler
implemented by Yao et al. [163] avoid contention on
the memory bus and main memory. The Memory Centric
Scheduling implemented by Rivas et al. [37] is based on
the PREM model and employs an asymmetric master-slave
architecture that allows the slave cores can execute tasks with
a baremetal level of overheads. Pagetti et al. [165] eliminate
bus interference thanks to the AER execution model. The
authors present a framework for producing time-predictable
code for an ARM-based multicore platform. The proposal
requires computing offline mapping and scheduling. Finally,
the allocation algorithms proposed by Gifford et al. [166] can
improve the performance of a system without adding more
resources, but they require knowing the set of tasks to execute
before starting the system. Consideration should be given to
the code overheads added by the memory phases and the
delays that a memory phase experiences until the scheduler
grants it access to the bus in implementing approaches
focused on phased execution models.

Proposals focused on offline scheduling employ schedul-
ing tables [167] or allocation rules [168] obtained through
offline static scheduling techniques. The use of approaches
focused on offline scheduling implies the need to recalculate
the completely assignments for each modification in the set
of tasks.

Other proposals employ arbitration policies to guarantee
hardware isolation in access to the shared memory bus. Hard-
ware isolation techniques require the use of specific hardware
designs. The framework presented by Dasari et al. [170]
allows calculating the maximum interference caused by
the shared memory bus considering different bus arbiters.
Park et al. [38] use TDMA and AER models. Your imple-
mentation of the TDMA model requires additional partitions
on each core. The execution model can reduce interference
without modifying the code. On the other hand, memory
space is wasted to configure such additional partitions.
Compared to the TDMAmodel, running the AERmodel uses
fewer memory areas. Later, Park et al. [39] proposed a multi-
TDMA model. The evaluation shows that the multi-TDMA
model has higher utilization than the TDMA model and a
lower execution time than the AER model.

Other proposals [173], [174] use the time-division multi-
plexing (TDM) arbitration policy. TDM ensures predictable
behaviour by guaranteeing exclusive access to a shared
memory; however, it causesmemory underutilization. Instead
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TABLE 6. Comparison Table of Memory bus Interference Reduction Techniques.

of arbitrating at the TDM slot level, operating at the
granularity of clock cycles improves memory utilization.

Table 6 shows a summary of the main approaches to reduce
interference on the shared memory bus.

IV. SCHEDULABILITY ANALYSIS TECHNIQUES
Schedulability analysis or tests have been developed to
determine if a set of tasks is schedulable or not. Schedulability
analyzes make it possible to guarantee that the time
requirements of the tasks are met according to the scheduling
algorithm implemented. Verifying the time limits of the
system tasks allows improving the efficiency of designing and
implementing real-time systems.

Obtaining the WCET of each task in real-time is the basis
for the schedulability analysis. Different approaches have
been studied for scheduling tasks in real-time multicore sys-
tems: partitioned [54], [175], semi-partitioned [176]–[178]
and global [179]–[181] scheduling. In the partitioned
scheduling approach, tasks are assigned between available
processors, and each task can only be executed on the
processor where it was assigned. The global scheduling
approach allows a task to migrate from one processor
to another, and the semi-partitioned scheduling approach
decides whether a task is divided into subtasks and then
assigns each subtask to a processor [182].

Early research on partitioning and global multiprocessor
scheduling employs the Earliest Deadline First (EDF)
or fixed-priority scheduling using Rate Monotonic (RM)
priority assignment techniques. Pereira andMejia [183] carry
out a study of the real-time scheduling techniques: RM and
EDF and present the schedulability conditions for RM and
EDF used for multiprocessor scheduling.

According to Davis and Burns [182], in preemptive unipro-
cessor scheduling using fixed-task priorities, approaches
like the priority assignment techniques, that includes rate
monotonic (RM) and deadline monotonic (DM), and the

EDF technique used for sporadic tasks sets had a strong
influence on research into multiprocessor scheduling. Let
us consider that all task sets are periodic, preemptable, and
independent of each other. Then, using online scheduling
with fixed priorities where each task has a priority assigned
using RM or DM can benefit from a schedulability test based
on CPU utilization rate. The base condition compares the
utilization of the task set with a utilization bound value to
determine if the task set is schedulable. For arbitrary task
sets using fixed priorities, including RM, DM, and others,
the response time analysis is a valid option for testing the
schedulability of the task set. These tests are based on
the critical instant concept. The critical instant occurs when
the task is requested simultaneously with all the other higher
priority tasks. The schedulability condition establishes that a
feasible schedule is obtained when the task response times
(including the task computational time and the interference
times from higher priority tasks) at their critical instants are
less than their respective deadlines [184]–[186]. The inves-
tigations of preemptive scheduling have been sufficiently
matured to guarantee time restrictions in real-time systems.
However, studies of non-preemptive scheduling have not
matured for real-time tasks subject to timing constraints.
Considering that non-preemptive scheduling is necessary
for tasks that inherently disallow any preemption or have
large preemption/migration overheads, a significant number
of proposals have appeared in recent years to resolve this
issue [187]–[191].

A selection of proposals for scheduling tasks in a real-
time multicore system carried out in the 2015-2020 period
is discussed below.

Fixed-priority partitioned multiprocessor scheduling for
sporadic real-time systems was studied in 2016 by
Chen [175]. They show that when considering task
systems with arbitrary deadlines, a greedy mapping strategy
has a speedup factor that is valid for polynomial-time
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schedulability tests and exponential-time (exact) schedula-
bility tests.

Among the semi-partitioned scheduling approaches, is the
proposal made by Brandenburg and Gül [176]. Brandenburg
and Gül [176] establish that an adequate schedulability
can be achieved with a simpler approach that combines
the techniques of Reservation-based EDF Scheduling, semi-
partitioning, period transformation, and appropriate task-
placement strategies. However, the effects of interference due
to shared resources are not considered.

Although semi-partitioned scheduling allows near-optimal
scheduling performance and is simpler to implement
compared to global scheduling; generally, semi-partitioned
schedulers leverage an offline phase for allocating the
tasks, which requires a-priori knowledge of the workload.
Casini et al. [177] proposed a semi-partitioned approach that
implements the C = D splitting algorithm [178] with linear-
time approximate methods that allow it to be used online
without incurring high overhead.

In global scheduling, a task can migrate from one core to
another. However, in multicore systems, accurate analysis of
the global schedulability of a task would require considering
all possible patterns, which is impractical.

Sun andDi Natale [192], based on the previous work [193],
presented an analysis of pessimism in multicore global
schedulability. Yalcinkaya et al. [179] proposed an exact
schedulability test for non-preemptive self-suspending real-
time tasks under a global fixed-priority scheduling policy.
Zhao et al. [180] and Lee et al. [181] proposed simplified
schedulability models considering only tasks with uncertain
worst-case execution time, respectively. Lee and Choi [194]
generalized the problem by presenting a constraint-based
schedulability analysis in real-time multiprocessor systems,
considering a global approach. Power was included in the
schedulability analysis in Lee et al. [195] by considering
transiently powered processors in the schedule.

Bael et al. [196] proposed an improvement for the
schedulability analysis of the contention-free(CF) policy for
real-time systems. The proposal is based on the principle
of the CF policy: to improve schedulability of the existing
scheduling algorithms by demoting a job’s priority when its
schedulability is guaranteed during its execution.

In Chen et al. [187] the non-preemptive and strictly
periodic scheduling upon a multicore platform is studied.
From the schedulability analysis, the conditions are presented
to determine if a task can be scheduled without modifying
the offsets of the rest of the tasks that are executed, and a
formula is made to select all the valid start time offsets of the
task. Subsequently, a task assignment algorithm is proposed
to obtain the number of cores required by a periodic task set.

Hardware heterogeneity was considered in
Wanget et al. [197]. They presented a schedulability analysis
based on Timed Automata and the symbolic verification
method for heterogeneous multicore real-time systems.
Moulik et al. [198] proposed a low-overhead algorithm for
the scheduling of real-time periodic tasks. The algorithm is

based on DPFair [199], an optimal real-time homogeneous
multiprocessor scheduler. Moulik et al. [198] modified the
task allocation and scheduling to satisfy the constraints
related to the heterogeneous system. The results obtained
in comparison with the implementation of the Sort and
Assign (SA) algorithm [200] improve the rate of accepted
task sets concerning the total number of submitted task sets.
Another scheduling technique for heterogeneous multicore
systems was proposed in 2018 byMoulik [201]. The proposal
extends the optimal Hetero-Fair algorithm [202] to be applied
on generic heterogeneous platforms consisting of more than
two processor types. Bertout et al. [203] proposed and proved
a novel and efficient algorithm to build the second step
of the feasibility analysis of preemptive real-time systems
upon heterogeneous multiprocessor platforms presented by
Baruah [204]. Nair et al. [205] presented a standby-sparing
based fault-tolerant energy-aware scheduling strategy for
heterogeneous systems. The scheduling strategy can handle a
specified number of transient faults per frame and minimize
overall energy consumption. In 2019, Zhang et al. [206]
implemented a linear programming algorithm and a dynamic
programming algorithm for real-time task scheduling under a
heterogeneous platform with task duplication. Subsequently,
Devaraj [207] demonstrated that the linear programming
algorithm fails to produce valid execution schedules because
the proposed problem formulation does not correctly capture
the execution requirements of real-time tasks. Devaraj [207]
presented the necessary modifications for optimal execution
of the algorithm proposed by Zhang et al. [206].

Other proposals consider the delays in the execution of a
task due to the arbitration policies used and the contention
due to the simultaneous use of shared resources and integrate
these delays into schedulability analysis.

A. INTEGRATING INTERFERENCE EFFECTS INTO
SCHEDULABILITY ANALYSIS
In recent years (2015-2020), schedulability analysis tech-
niques in real-time multicore systems have integrated inter-
ference effects into schedulability analysis. The investi-
gations carried out are grouped into different categories
considering the shared resource they consider: memory bus,
main memory, cache memory, or the integration of the effect
of multiple shared resources.

1) MAIN MEMORY INTERFERENCE
The proposals in this subsection mainly focus on analyzing
contention in shared main memory and their integration in
the schedulability analysis.

Kim et al. [22], [71] proposed an analysis that focuses on
limiting the worst response time of a task in the presence
of memory interference. The study considers delays due
to row conflicts, DRAM access scheduling, the FR-FCFS
policy on the DRAM controller, interbank and intrabank
interference. The model implements dedicated and shared
bank partitions, splits DRAM banks, and implements a task
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allocation algorithm that allocates intensive memory tasks on
the same core with dedicated DRAM banks.

An approach to schedule resource access sporadic tasks in
an architecture that has memory banks of limited capacity
was proposed in 2017 by Cheng et al. [208]. They adapt
the symmetric analysis presented by Huang et al. [209] to
systems with multiple memory banks. It suggests limiting
data partitioning between banks for a task, taking into account
that the lower the number of data partitions between different
banks, the less memory interference will be on other tasks.

A detailed analysis of memory contention experienced by
parallel tasks executed on a multicore system was presented
by Casini et al. [72]. The proposal uses a holistic approach
to limit memory contention by formulating an optimization
problem that maximizes the overall interference generated by
all types of inter and intra-bank interfering requests. Another
approach to memory interference analysis is presented by
Dinechin et al. [73], where an algorithm was proposed to
optimize the complexity of the algorithm previously proposed
by Rihani et al. [210], based on calculating the timing of a
task graph to estimate the impact of interference on memory
accesses.

Durand et al. [211] proposed a measurement-based
approach and statistical analysis of task execution times
focused on characterizing the effects of shared memory
interference. In 2020, Hassan et al. [212] proposed an
approach for main memory contention analysis in COTS
MPSoCs to provide a safe limit of the delays that these
memory contentions cause to critical tasks in a Mixed-
Criticality Systems (MCS).

Reder et al. [213] proposed a generic multicore platform
model and an ILP-based memory allocation scheme to cope
with the problem of interference-aware memory allocation.
Both are designed to optimize allocation by mapping the
program data, taking into account interference costs.

2) BUS INTERFERENCE
The proposals in this subsection mainly focus on analyzing
the contention in the sharedmemory bus and integrating these
in the schedulability analysis.

Schedulability analysis for memory bandwidth regulated
multicore real-time systems was presented in Yao et al. [214].
The fundamental advantage of the proposed research is that
it does not require any knowledge about the tasks that are
executed in the other cores.

Maia et al. [43] performed a schedulability test focused on
the global fixed-priority scheduling of the 3-phase task model
bymodelling interference on the shared bus. The 3-phase task
model divides tasks into three successive phases: Acquisition,
Execution, and Restitution. Tasks never have access to the bus
during their execution phase. The schedulability analysis is
performed from the perspective of the bus, considering that
only two memory phases can be executed simultaneously.

In 2016, Usui et al. [215] proposed a Deadline-Aware
memory Scheduler for Heterogeneous systems (DASH) that
requires hardware support to monitor hardware accelerators

(HWAs). The algorithm manages memory bandwidth
between cores and HWAs through a scheduling policy that
prioritizes HWA memory requests over memory-intensive
CPU applications and establishes a combined scheduling
policy for HWAs with a long deadline period and a short
deadline period.

Rouxel et al. [44] presented two bus contention awareness
scheduling strategies to effectively estimate contention delays
while scheduling parallel applications on multicore architec-
tures. The estimation of contention delays is determined from
the knowledge of the structure of the modelled application as
directed acyclic task graphs (DAGs). The proposed approach
applies to multicore platforms where cores are connected to
a round-robin bus.

3) CACHE INTERFERENCE
The proposals in this subsection mainly focus on analyzing
shared cache contention and integrating these into the
schedulability analysis.

Sun and Lipari [45] addressed the schedulability analysis
for a set of tasks scheduled by the Global Earliest Deadline
First (GEDF) policy. It proposes a schedulability test that
integrates the limited carry-in technique and Response Time
Analysis (RTA) procedure in the analysis.

A global Preemptive Fixed-Priority scheduling with
dynamic cache allocation, where shared cache interference is
eliminated through a combination of cache partitioning and
cache-aware scheduling, was proposed in Xu et al. [216].
As an alternative, Xiao et al. [217] presented a schedulability
analysis of non-preemptive real-time scheduling, which,
unlike previous work, addresses the shared cache problem
without implementing any cache isolation techniques. Using
an iterative algorithm obtains the upper limit of cache
interference in executing a task and later integrates it in the
schedulability analysis. In this aspect, Srinivasan et al. [46]
presented an interesting paper trying to define empiri-
cal bounds of multicore cache interference for real-time
schedulability analysis. Finally, interference is included in
the schedulability analysis. Xiao et al. [47] extends the
proposal taking into account in the schedulability analysis in
addition to Fixed Priority (FP) algorithm, Earliest Deadline
First (EDF) algorithm. The evaluations show that EDF is
slightly better than FP in terms of sets of tasks that are
considered schedulable.

In 2020, Xiao et al. [49] proposed a task partitioning
algorithm called CITTA that takes into account the cache
interference exhibited by a task obtained from an integer pro-
gramming formulation. Also, in 2020, Sheikh and Pasha [50]
proposed a dynamic cache-partition schedulability analysis
for partitioned scheduling. The study uses the problem
window approach to obtain the maximum response time for
a task. First, the iterative analysis of Davis et al. [218] is
proposed to determine the upper limit of the interference
experienced by tasks executing on fixed-priority preemptive
scheduling algorithms for single-core processors where a
task can only suffer contentions due to the execution of
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higher priority tasks running on the same core. Subsequently,
Sheikh and Pasha [50] proposed to define the upper limit of
interference, taking into account that cache partitions are a
global resource. Therefore a task with a higher global priority
can precede a task with a relatively lower priority that is
executed on another core if there are not enough free cache
partitions.

Nguyen et al. [219] took into account the effect of
private caches on tasks’ WCETs in task scheduling. The
main objective is to obtain more reduced scheduling from
cache reuse. Two methods are proposed, an Integer Linear
Programming (ILP) formulation and a heuristic method based
on list scheduling, both taking into account the variation of
the WCET of the tasks as a function of the reuse of the cache
according to the order of execution of the task. The proposal
focuses on non-preemptive and partitioned scheduling. Task
scheduling is generated offline, and its execution is triggered
at predefined instants of time.

Other approaches, such as the one proposed by
Sheik et al. [220], focus on modelling cache contention
and using scheduling algorithms to minimize energy
consumption.

4) MULTIPLE RESOURCE INTERFERENCE
The proposals in this subsection mainly focus on analyzing
the contention of several resources and the integration in the
schedulability analysis.

The dependency of tasks on estimating shared resource
contention was studied in Choi et al. [221]. Choi et al. [221]
employ a non-preemptive and preemptive scheduling policy
with a fixed priority. The proposed methodology uses a
shared resource contention module and a WCRT analysis
module. The shared resource contention module verifies
if two tasks are entirely separated based on the tasks’
earliest start and finish times and their restrictions. When
one task is wholly separated from another, you do not
need to consider the resource demands of the other task.
Subsequently, clusters of tasks that do not interfere with each
other are performed executed in a particular order on specific
processing elements. TheWCRT analysis module obtains the
upper limit of demand for shared resources of each cluster
in each processing element. The results obtained show an
improvement in the schedulability due to a reduction in the
demand for resources in a certain execution time window.

Huang et al. [209] proposed asymmetric analysis of the
response time of task processing and access to shared
resources, taking into account that a task runs in the core
until it needs to access a shared resource and suspends
its execution in the core. The scheduling capacity analysis
improves the results obtained by Altmeyer et al. [222].
A partitioned multicore system is considered using fixed-
priority preemptive scheduling. The analysis of the response
time and schedulability considers the so-called execution
intervals and suspension intervals of a task. The time slots
in which the task suspends access to shared resources either
occupied by a higher priority task or in which the task

executes local calculations are called suspend intervals.When
the task is running on or accessing a shared resource, it is
called the execution interval. The proposed analysis strategy
considers that the viability of a task is given if its deadline
does not exceed the sum of the suspension intervals and the
execution intervals.

A framework for schedulability and memory interfer-
ence analysis of multicore preemptive real-time systems
was proposed in Boudjadar and Nadjm-Tehrani [51]. The
platform model consists of a multicore system where the
cores share main memory and L2 cache. The cache coloring
policy [150] and the FR-FCFS policy are used to arbitrate
DRAM accesses and to handle simultaneous access requests
to the L2 cache. In addition, the symbolic model checking
technique [223] is used to perform the schedulability
analysis of the system. In the case of non-schedulability,
Boudjadar and Nadjm-Tehrani [51] propose the reassignment
of tasks according to the utilization of the cores. In 2020,
Guo et al. [52] proposed an intertask interference-aware
scheduling framework on multiprocessors. The mechanism
presents Intertask Interference Matrix (ITIM) to quantify
intertask interference and guide task partitioning to cores.
From the ITIM determined for a system, the cache-aware
partitioned scheduling problem is configured as a mixed-
integer linear programming (MILP) problem. The central
idea is to find the best option to partition the tasks in terms
of interference so that tasks with high cache interference
executed in the same core are mapped to a different core,
leading to an increase in resource use efficiency.

Chwa et al. [53] presented a Global EDF Schedulability
Analysis for Parallel Tasks on Multicore Platforms. The
analysis is based on the Directed Acyclic Graph (DAG)
model, considering concepts such as critical interference and
p-depth critical interference to capture the parallelism at the
thread level more accurately.

Yang et al. [54] proposed a Resource-Oriented Parti-
tioned (ROP) scheduling with a distributed resource sharing
policy based on the concept of Distributed Priority Ceiling
Protocol (DPCP). Tasks and resources are allocated statically
among available processors. Each task can execute its non-
critical sections only on the processor to which it is assigned,
and all task requests for a given resource can only run on
the processor to which that resource has been assigned.
When a task requests a shared resource, the priority of the
corresponding critical sections is increased to ensure that it is
higher than any non-critical section of any task on the same
processor. It is proposed to partition shared resources first and
then assign tasks in decreasing order of priority to ensure task
scheduling.

A schedulability test considering fixed-priority preemptive
partitioned scheduling of constrained-deadline sporadic tasks
was presented in Andersson et al. [224]. The proposed model
describes how the tasks have co-runner-dependent execution
times, the analysis is based on the execution times obtained
through static analysis or measurements. Also, considering
partitioned fixed-priority scheduling, Al-Bayati et al. [55]
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focused on resource-aware partitioning approaches. It imple-
ments an ILP formulation for the efficient assignment of
tasks to the core, the assignment of priorities to the tasks,
and the selection of resource protection mechanisms. The
tradeoffs among these mechanisms are analyzed to select the
most efficient resource protectionmechanisms (lock-based or
wait-free).

Based on the global scheduling algorithm, Lei et al. [56]
proposed a scheduling strategy for real-time parallel tasks.
The proposed scheduling strategy establishes that the total
number of cores that access memory simultaneously cannot
be greater than the total number of memory banks. If the total
number of tasks ready to access the memory exceeds this
value, the lower priority tasks are blocked. Tasks that access
memory have higher priority than those that do not, and tasks
that use data in cache have higher priority over all other
tasks.

Sinha et al. [57] presented a scheduling strategy integrated
into mixed-criticality systems and based on the execution
progress of a task. The proposal focuses on improving QoS
for low-criticality tasks in these systems where all low-
criticality tasks are stopped when a high-criticality task
runs for more than its budget. The application evaluates the
execution time of a critical task from an identified offline
checkpoint. Based on the progress of the checkpoint, a higher
budget is assigned to the critical task without degrading the
performance of low-criticality tasks. In case the task does not
finish within the expected time, the low criticality tasks are
finally dropped.

In 2020, Schwäricke et al. [58] presented and performed
the analysis of a memory-centric scheduler for deterministic
memory management on COTS multiprocessor platforms
without hardware support. The memory-centric scheduler is
implemented in a hypervisor. The proposal uses the Pre-
dictable Execution Model to limit main memory interference
and software cache partitioning based on cache coloring.

In 2021, Aceituno et al. [225] presented a hardware
resource contention-aware scheduling of hard real-time
multiprocessor systems. The proposal focuses on partitioned
scheduling. The authors define a task model that considers
interference delays due to the contention of shared hardware
resources and proposes three task allocation algorithms
(UDmin, UDmax, and Wmin allocator) to reduce this
interference.

5) APPLICATION EXAMPLE
In this subsection, a scheduling algorithm for real-time mul-
ticore systems with its corresponding scheduling condition is
applied. The example includes applying techniques to reduce
interference due to the simultaneous use of shared resources.
We consider a set of 4 real-time tasks t= t1,t2,t3,t4 on a set of
2 processors, P= P1,P2. All tasks are periodic, preemptable,
and independent of each other. The parameters that define a
task are the execution time Ci, the period Ti, and the deadline
Di. The deadline of each task is considered equal to its period.
Tasks are distributed among processors statically using the

FIGURE 9. Example application of the PALLOC technique.

Rate Monotonic Next Fit (RMNF) heuristic algorithm [183].
In this algorithm, the tasks are initially ordered in increasing
order according to the value of their periods. Then a task is
allocated to the processor only if there is a feasible schedule
for the task set after using the schedulability condition
Increasing Period. Otherwise, the task is assigned to the next
processor.

Considering T = 7; 12; 20; 25 ms and an estimate of
C = 3; 3; 5; 7 ms for tasks t1, t2, t3, and t4, respectively, the
schedulability condition is evaluated for the static assignment
of the tasks to the processors. As a result of applying the
condition, tasks t1 and t2 are assigned to processor P1, and
tasks t3 and t4 are assigned to processor P2.

The execution time used to evaluate the schedulability
condition is assumed to be the worst-case execution time for
all tasks. Techniques to eliminate the interference between
the tasks due to simultaneous access to shared resources are
considered to guarantee the predictability of the response
time

To eliminate interference due to shared main memory,
PALLOC [65] can be used. PALLOC creates partitions by
assigning free page frames to virtual pages. The allocated free
page frames belong to a specific list of determined DRAM
banks. Since banks are not shared under this scheme, cores
cannot interfere with each other by closing rows opened by
another core. It is considered that both task 1 (running on
processor 1) and task 3 (running on processor 2) consist of
2 pages stored on disk. Using PALLOC, when it is time to
load each task, the pages of each task are loaded into free
frames from different memory banks. This methodminimizes
unpredictability by eliminating bank sharing among parallel
executing applications. Figure 9 illustrates an example of the
application of the technique for task 1 and task 3.

Another technique can be used to reduce interference
due to shared cache memory. Page coloring is a software
mechanism that allows partitioning the shared cache by
guiding the allocation of physical pages. Each memory page
has a fixedmapping to a physically contiguous group of cache
lines. Figure 10 illustrates an example of the application of
page coloring for task 1 and task 3.

A coordinated cache and bank coloring mechanism to
avoid cache and bank interference simultaneously were
implemented by Suzuki et al. [99].
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FIGURE 10. Example application of the page coloring technique.

FIGURE 11. Task execution diagram.

Finally, meeting the schedulability condition ensures that
the set of tasks on each processor will have a feasible schedule
under the Rate Monotonic algorithm. The Rate Monotonic
scheduler assigns the highest priority to the shortest period
task. When a task is triggered, if another lower priority task is
using the CPU, the lower priority task will go to the ‘‘ready’’
state, and the CPU will execute the higher priority task. The
behaviour of the system is represented in Figure 11.

6) SUMMARY
Task scheduling methods in real-time systems include
scheduling algorithms to determine the order of task access
to system resources and analysis methods to calculate the
temporal behaviour of the system. Schedulability analysis
techniques are used to check whether the temporal require-
ments are guaranteed in all cases. Proposed approaches to
scheduling tasks in real-time multicore systems are divided
into partitioned, semi-partitioned, and global scheduling. The
problem of static assignment of tasks when using partitioned
scheduling can be formulated as a bin packing problem; there
are also heuristic algorithms to provide an efficient solution to
task partitioning between cores. Techniques focused on semi-
partitioned scheduling generally employ an offline phase
for task assignment, and approaches that focus on global
schedulability rely on a set of conditions since it is impractical
to consider all possible patterns.

In recent years (2015-2020), schedulability analysis tech-
niques in real-time multicore systems have integrated inter-
ference effects into schedulability analysis. The proposed
works consider a single shared resource such as the memory
bus, main memory, cache memory, or the integration of the
effect of multiple resources. Table 7 shows a comparison
of the proposals that integrate the interference effects into
schedulability analysis.

Generally, the approaches used for system analysis assume
some kind of hardware or software isolation or model
interference in a time window. Then, the upper limit of
the resource interference is obtained and integrated into the
schedulability analysis.

Existing approaches for interferences take into account:

• Only shared main memory employs hardware or
software modifications to provide predictable system
behaviour. Tomodel interference, Kim et al. [22] assume
that each core has a fully timing compositional archi-
tecture. The iterative response time test is extended by
incorporating memory interference delay for response-
time-based schedulability analysis. In addition to pro-
viding a tighter upper bound on the worst-case response
time of a task in the presence of memory interference,
the isolation techniques implemented reduce the amount
of memory interference among tasks. Cheng et al. [208]
take into account in the response time analysis a fixed-
priority scheduling policy to preemptively schedule
tasks assigned to a core and task partitioning across cores
and memory banks. The two-phase memory partitioning
algorithm implemented significantly outperformed the
state-of-the-art algorithm proposed by Kim et al. [22] in
terms of schedulability test.
Reder et al. [213] rely on synchronization analysis tech-
niques for interference modelling. Their results show
that analyzing the synchronization structure of parallel
programs allows adjusting the limits of interference
costs. They also show a reduction of the interference
when considering these costs in memory allocation.
Other proposals focus on interference analysis and
limiting memory contention [72], [73], [210]–[212].
Quantification of interference effects can be applied
later in developing guidelines for more predictable real-
time multicore systems.

• Only the interference on the shared memory bus feature
a schedulability analysis for memory bandwidth regu-
lated multicore real-time systems and a schedulability
test by modelling the interference on the shared bus. The
analysis proposed by Yao et al. [214] assumes regulated
memory bandwidth and a private or partitioned LLC
for each core. The study does not require information
about the resource demands of tasks on other cores.
The schedulability analysis proposed by Maia et al. [43]
is performed from the perspective of the bus. The
interference is modelled considering the total demand
of the resource in a time window. Other proposals
[44], [215] use precise estimates of contention delays to
define scheduling and mapping strategies.

• Only the interference in the shared cache memory
integrates the effects of contention into the schedulabil-
ity analysis. Some proposals use isolation techniques.
For example, Xu et al. [216] consider cache overhead
and derive an overhead-aware schedulability analysis
combined with cache partitioning techniques.
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TABLE 7. Comparative Table of the Proposals That Integrate the Interference Effects Into Schedulability Analysis.

Proposals [45], [47], [49], [50], [217] calculate an upper
bound on the cache interference exhibited by a task
within a given execution window. A fixed-point iteration
derives the upper bound. Finally, interference is included
in the schedulability analysis. The analysis is better by
integrating task partitioning techniques or requesting
pattern information.
Other proposals consider the context-sensitive WCETs
per task in the scheduling or minimise energy
consumption.

• The contentions of multiple resources, as well as
previous works, focused on the interference of a
specific resource employ isolation techniques, model the
interference exhibited by a task within a given execution
window as well as schedulability analysis taking into
account the intervals of execution and suspension of a
task. The proposals include task partitioning techniques
taking into account intertask interference, scheduling
strategies for parallel real-time tasks, task allocation
algorithms, among others.

Modelling the interference in time windows considering
the total demand for a resource leads to a less pessimistic
value of the WCRT than the methods that employ the sum
of the worst-case resource delays over a short time.

V. CONCLUSION
Multicore processors show an increasing usage trend due
to improvements in performance and efficiency compared

to integrated systems with a single-core CPU and the
possibility of running composite mixed-criticality application
workloads. Thesemulticore hardware platforms share various
hardware resources. When two or more tasks are running
in parallel, the interaction between the tasks on the shared
hardware resources can lead to unforeseen and unpredictable
delays. Real-time systems need to meet both functional
requirements and time constraints. In the future (2020
onwards), real-time systems will involve multiple concurrent
and complex applications on multicore hardware platforms.
Such systems need to handle interference due to contentions
on shared resources to ensure that tasks meet their time
constraints. This survey provides an overview of the scientific
literature on techniques for reducing interference on shared
resources in real-time multicore systems focusing on the
approaches proposed in the 2015-2020 period.

The bibliographic review indicates the main sources
of interference as main memory, cache memory, and the
memory bus. Real-time system requirements could be
ensured by employing contention reduction strategies on
shared resources. In the case of reducing interference due to
contentions in shared main memory, these strategies include
DRAM bank partitioning techniques, private DRAM banks,
memory request scheduling, memory request throttling, and
designing predictable DRAM controllers. In the case of
reducing interference due to contentions in shared cache
memory, these strategies include cache-partitioning tech-
niques, cache-locking techniques, and designing predictable
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cache coherence protocols. In the case of reducing interfer-
ence due to contentions in the shared memory bus, these
strategies include memory bandwidth regulators, mecha-
nisms that use executionmodels in phases, offline scheduling,
or arbitration policies.

The bibliographic review also shows a greater incidence
in the proposals that integrate the interference into schedu-
lability analysis. The integration of the interference effects
into the schedulability analysis has the advantage of a more
precise analysis when considering, for example, the set of
co-running tasks.

In our opinion, the extensive literature review and discus-
sion of the advantages and disadvantages of each approach
presented in this survey are helpful for users designing
and implementing systems that require some quality of
service and guarantees of execution, which includes real-
time systems in sectors such our aerospace, automotive,
industry 4.0 and mobile applications that are time-bound
due to restrictions of the system or the user response time,
etc. The survey also presents proposals that use interference
reduction techniques without considering the predictability
issue.We assume that the works focused on achieving a better
performance are also relevant for researchers and engineers
dealing with interference in real-time systems.

To conclude, while we recognize that significant progress
has been made to exploit the potentials of multicore
systems, we consider that reducing interference in multicore
architectures is still a challenge in real-time systems. This is
especially true for a hard real-time system, where accurately
computing the Worst-Case Execution Time of the tasks is
critical to ensure predictability and increase the platforms’
usage rate.
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