6 research outputs found

    Quantum Inspired Genetic Programming Model to Predict Toxicity Degree for Chemical Compounds

    Get PDF
    Cheminformatics plays a vital role to maintain a large amount of chemical data. A reliable prediction of toxic effects of chemicals in living systems is highly desirable in domains such as cosmetics, drug design, food safety, and manufacturing chemical compounds. Toxicity prediction topic requires several new approaches for knowledge discovery from data to paradigm composite associations between the modules of the chemical compound; such techniques need more computational cost as the number of chemical compounds increases. State-of-the-art prediction methods such as neural network and multi-layer regression that requires either tuning parameters or complex transformations of predictor or outcome variables are not achieving high accuracy results.  This paper proposes a Quantum Inspired Genetic Programming “QIGP” model to improve the prediction accuracy. Genetic Programming is utilized to give a linear equation for calculating toxicity degree more accurately. Quantum computing is employed to improve the selection of the best-of-run individuals and handles parsimony pressure to reduce the complexity of the solutions. The results of the internal validation analysis indicated that the QIGP model has the better goodness of fit statistics and significantly outperforms the Neural Network model

    DYNAMIC THRESHOLDING GA-BASED ECG FEATURE SELECTION IN CARDIOVASCULAR DISEASE DIAGNOSIS

    Get PDF
    Electrocardiogram (ECG) data are usually used to diagnose cardiovascular disease (CVD) with the help of a revolutionary algorithm. Feature selection is a crucial step in the development of accurate and reliable diagnostic models for CVDs. This research introduces the dynamic threshold genetic algorithm (DTGA) algorithm, a type of genetic algorithm that is used for optimization problems and discusses its use in the context of feature selection. This research reveals the success of DTGA in selecting relevant ECG features that ultimately enhance accuracy and efficiency in the diagnosis of CVD. This work also proves the benefits of employing DTGA in clinical practice, including a reduction in the amount of time spent diagnosing patients and an increase in the precision with which individuals who are at risk of CVD can be identified

    Improved Quantum-Inspired Evolutionary Algorithm for Engineering Design Optimization

    Get PDF
    An improved quantum-inspired evolutionary algorithm is proposed for solving mixed discrete-continuous nonlinear problems in engineering design. The proposed Latin square quantum-inspired evolutionary algorithm (LSQEA) combines Latin squares and quantum-inspired genetic algorithm (QGA). The novel contribution of the proposed LSQEA is the use of a QGA to explore the optimal feasible region in macrospace and the use of a systematic reasoning mechanism of the Latin square to exploit the better solution in microspace. By combining the advantages of exploration and exploitation, the LSQEA provides higher computational efficiency and robustness compared to QGA and real-coded GA when solving global numerical optimization problems with continuous variables. Additionally, the proposed LSQEA approach effectively solves mixed discrete-continuous nonlinear design optimization problems in which the design variables are integers, discrete values, and continuous values. The computational experiments show that the proposed LSQEA approach obtains better results compared to existing methods reported in the literature

    DYNAMIC THRESHOLDING GA-BASED ECG FEATURE SELECTION IN CARDIOVASCULAR DISEASE DIAGNOSIS

    Get PDF
    Electrocardiogram (ECG) data are usually used to diagnose cardiovascular disease (CVD) with the help of a revolutionary algorithm. Feature selection is a crucial step in the development of accurate and reliable diagnostic models for CVDs. This research introduces the dynamic threshold genetic algorithm (DTGA) algorithm, a type of genetic algorithm that is used for optimization problems and discusses its use in the context of feature selection. This research reveals the success of DTGA in selecting relevant ECG features that ultimately enhance accuracy and efficiency in the diagnosis of CVD. This work also proves the benefits of employing DTGA in clinical practice, including a reduction in the amount of time spent diagnosing patients and an increase in the precision with which individuals who are at risk of CVD can be identified

    Study of hybrid strategies for multi-objective optimization using gradient based methods and evolutionary algorithms

    Get PDF
    Most of the optimization problems encountered in engineering have conflicting objectives. In order to solve these problems, genetic algorithms (GAs) and gradient-based methods are widely used. GAs are relatively easy to implement, because these algorithms only require first-order information of the objectives and constraints. On the other hand, GAs do not have a standard termination condition and therefore they may not converge to the exact solutions. Gradient-based methods, on the other hand, are based on first- and higher-order information of the objectives and constraints. These algorithms converge faster to the exact solutions in solving single-objective optimization problems, but are inefficient for multi-objective optimization problems (MOOPs) and unable to solve those with non-convex objective spaces. The work in this dissertation focuses on developing a hybrid strategy for solving MOOPs based on feasible sequential quadratic programming (FSQP) and nondominated sorting genetic algorithm II (NSGA-II). The hybrid algorithms developed in this dissertation are tested using benchmark problems and evaluated based on solution distribution, solution accuracy, and execution time. Based on these performance factors, the best hybrid strategy is determined and found to be generally efficient with good solution distributions in most of the cases studied. The best hybrid algorithm is applied to the design of a crushing tube and is shown to have relatively well-distributed solutions and good efficiency compared to solutions obtained by NSGA-II and FSQP alone

    Wind turbine blade geometry design based on multi-objective optimization using metaheuristics

    Get PDF
    Abstract: The application of Evolutionary Algorithms (EAs) to wind turbine blade design can be interesting, by reducing the number of aerodynamic-to-structural design loops in the conventional design process, hence reducing the design time and cost. Recent developments showed satisfactory results with this approach, mostly combining Genetic Algorithms (GAs) with the Blade Element Momentum (BEM) theory. The general objective of the present work is to define and evaluate a design methodology for the rotor blade geometry in order to maximize the energy production of wind turbines and minimize the mass of the blade itself, using for that purpose stochastic multi-objective optimization methods. Therefore, the multi-objective optimization problem and its constraints were formulated, and the vector representation of the optimization parameters was defined. An optimization benchmark problem was proposed, which represents the wind conditions and present wind turbine concepts found in Brazil. This problem was used as a test-bed for the performance comparison of several metaheuristics, and also for the validation of the defined design methodology. A variable speed pitch-controlled 2.5 MW Direct-Drive Synchronous Generator (DDSG) turbine with a rotor diameter of 120 m was chosen as concept. Five different Multi-objective Evolutionary Algorithms (MOEAs) were selected for evaluation in solving this benchmark problem: Non-dominated Sorting Genetic Algorithm version II (NSGA-II), Quantum-inspired Multi-objective Evolutionary Algorithm (QMEA), two approaches of the Multi-objective Evolutionary Algorithm Based on Decomposition (MOEA/D), and Multi-objective Optimization Differential Evolution Algorithm (MODE). The results have shown that the two best performing techniques in this type of problem are NSGA-II and MOEA/D, one having more spread and evenly spaced solutions, and the other having a better convergence in the region of interest. QMEA was the worst MOEA in convergence and MODE the worst one in solutions distribution. But the differences in overall performance were slight, because the algorithms have alternated their positions in the evaluation rank of each metric. This was also evident by the fact that the known Pareto Front (PF) consisted of solutions from several techniques, with each dominating a different region of the objective space. Detailed analysis of the best blade design showed that the output of the design methodology is feasible in practice, given that flow conditions and operational features of the rotor were as desired, and also that the blade geometry is very smooth and easy to manufacture. Moreover, this geometry is easily exported to a Computer-Aided Design (CAD) or Computer-Aided Engineering (CAE) software. In this way, the design methodology defined by the present work was validated
    corecore