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An improved quantum-inspired evolutionary algorithm is proposed for solving mixed discrete-
continuous nonlinear problems in engineering design. The proposed Latin square quantum-
inspired evolutionary algorithm (LSQEA) combines Latin squares and quantum-inspired genetic
algorithm (QGA). The novel contribution of the proposed LSQEA is the use of a QGA to explore
the optimal feasible region in macrospace and the use of a systematic reasoning mechanism of
the Latin square to exploit the better solution in microspace. By combining the advantages of
exploration and exploitation, the LSQEA provides higher computational efficiency and robustness
compared to QGA and real-coded GA when solving global numerical optimization problems
with continuous variables. Additionally, the proposed LSQEA approach effectively solves mixed
discrete-continuous nonlinear design optimization problems in which the design variables are
integers, discrete values, and continuous values. The computational experiments show that the
proposed LSQEA approach obtains better results compared to existing methods reported in the
literature.

1. Introduction

Solving engineering design optimization problems usually requires consideration of many
different types of design variables and many constraints. Practical problems in engineering
design often involve a mix of integers, discrete variables, and continuous variables. These
constraints are often problematic during the engineering design optimization process.
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Since the 1960s, researchers have attempted to solve this problem, which is known as
the mixed discrete nonlinear programming (MDNLP) problem. One of the most effective
solutions reported so far is a nonlinear branch and bound method (BBM) for solving
nonlinear and discrete programming in mechanical design optimization [1, 2]. In BBM,
however, subproblems result from portioning the feasible domain to obtain solutions by
ignoring discrete conditions, and the number of times the problem needs to be resolved
increases exponentially with the number of variables [3]. The better method, such as the
sequential linear programming (SLP), was developed by Bremicker et al. [4] and by Loh
and Papalambros [5] to solve general MDNLP problems. The linearized discrete problem
is solved by the simplex method to obtain information at each node of the tree. Their SLP
approach is compared with the pure BBM, where the sequential quadratic programming
is used to solve the nonlinear problem to obtain information at each node. The study
shows the SLP method to be superior to the pure BBM. Other approaches to solving
MDNLP problems include the penalty function approach [6–8] and the Lagrangian relaxation
approach [9]. The penalty function approach to treat the requirement of discreteness is to
define additional constraints and construct a penalty function for them. This term imposes
penalty for deviations from the discrete values. The difficulties with a penalty approach
are the introduction of additional local minima and repeated minimizations by adjusting
the penalty parameters [3]. The Lagrangian relaxation method is similar to the penalty
function method. The main difference is that the additional terms due to discrete variables
are added to a Lagrangian function instead of a penalty function. The Lagrangian relaxation
approach does not guarantee finding a global solution, even if it is a convex problem before
discrete variables are introduced. It is observed that some of the methods for discrete variable
optimization use the structure of the problem to speed up the search for the discrete solution.
These methods are not suitable for implementation into general purpose applications. The
BBM is the most general methods; however, it is time consuming. In recent years, the focus
has shifted to applications of soft-computing optimization techniques that naturally use
mixed-discrete and continuous variables for solving practical engineering problems. These
approaches include genetic algorithms (GAs) [10–18], simulated annealing [19], differential
evolution [20, 21], and evolutionary programming approach [22]. The major challenge when
solving MDNLP problems is that numerous local optima can result in the methods becoming
trapped in the local optima of the objective functions [12]. Therefore, an efficient and
robust algorithm is needed to solve mixed discrete-continuous nonlinear design optimization
problems in the engineering design field.

In the past decade, the emerging field of quantum-inspired computing has motivated
intensive studies of algorithms such as the Shor factorizing algorithm [23] and the Grover
quantum search algorithm [24, 25]. By applying quantum mechanical principles such as
quantum-bit representation and superposition of states, quantum-inspired computing can
simultaneously process huge numbers of quantum states simultaneously and in parallel. To
introduce a strong parallelism in the evolutionary algorithm, Han et al. [26] andHan and Kim
[27–29] proposed the quantum-inspired genetic algorithm (QGA). For solving combinatorial
optimization problems, QGA has proven superior to conventional GAs. Malossini et al. [30]
showed that, by taking advantage of quantum phenomena, QGA improves the speed and
efficiency of genetic procedures. Quantum-inspired evolutionary algorithms have also been
used to solve optimization problems such as partition function calculation [31], nonlinear
blind source separation [32], filter design [33], numerical optimization [34–36], hyperspectral
anomaly detection [37], multiple sequence alignment [38], thermal process identification
[39], and multiobjective optimization [40]. However, the performance of the simple QGA
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is often unsatisfactory, and it is easily trapped in the local optima, which results in premature
convergence. That is, the quantum-inspired bit (Q-bit) searchwith quantummechanismmust
be well coordinated with the genetic search with evolution mechanism, and the exploration
and exploitation behaviors must also be well balanced [35]. Therefore, a big challenge is to
improve QGA capability of exploration and exploitation and develop an efficient and robust
algorithm.

The efficient and robust Latin square quantum-inspired evolutionary algorithm
(LSQEA) proposed in this study solves global numerical optimization problems with con-
tinuous variables and mixed discrete-continuous nonlinear design optimization problems.
The LSQEA approach integrates Latin squares [41–43] and QGA (i.e., quantum-inspired
individual andmechanismwith GAs). The concept of the use of QGA came from theworks of
Han et al. [26] and Han and Kim [27–29], while the development steps were implemented by
authors and shown in Section 3 . The role of the Latin square is to generate better individuals
by implementing the Latin square-based recombination since the systematic reasoning ability
of Latin square of the Taguchi method is, in due course, incorporated into the recombination
operation to select better Q-bits. This role is important for improving the efficiency of the
crossover operation in generating representative individuals and better-fit trial individuals.
The Latin square is applied to recombine the better Q-bits so that potential individuals in
microspace can be exploited. TheQGA is used to explore the optimal feasible region inmacro-
space. Therefore, the LSQEA approach is highly robust and achieves quick convergence.

The paper is organized as follows. Section 2 gives the problem statements. The
LSQEA for solving the mixed discrete-continuous nonlinear design optimization problems
is described in Section 3. In Section 4, the proposed LSQEA approach is compared with
QGA and real-coded GA (RGA) [44–47] in terms of performance in solving global numerical
optimization problems with continuous variables. The LSQEA approach is then used to solve
mixed discrete-continuous nonlinear design problems encountered in the engineering design
field, and the results obtained by LSQEA are compared with those obtained by existing
methods reported in the literature. Finally, Section 5 concludes the study.

2. Problem Statements

This section states the considered problems, which include a global numerical optimization
problemwith continuous variables and a mixed discrete-continuous nonlinear programming
problem.

The following global numerical optimization problem with continuous variables is
considered:

minimize f(X)

subject to XL ≤ X ≤ XU,

gj(X) ≤ 0
(
j = 1, 2, . . . , t

)
,

(2.1)

where X = [x1, x2, . . . , xi, . . . , xn] is a continuous variable vector, f(X) is an objective
function, XL = [xL

1 , . . . , x
L
i , . . . , x

L
n], and XU = [xU

1 , . . . , x
U
i , . . . , x

U
n ] define the feasible

solution vector spaces. The domain of xi is denoted by [xL
i , x

U
i ], and the feasible solution

space is defined by [XL, XU]. For this problem, gj(X) and j = 1, 2, . . . , t are the constraint
functions. Although many design problems can be cast as the above optimization problem,
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efficiently obtaining optimal solution is difficult because the problem involves designs that
are high-dimensional, nondifferentiable, and multimodal [35].

The mixed discrete-continuous nonlinear programming problem is expressed as
follows [12]:

minimize f(X)

subject to gj(X) ≤ 0
(
j = 1, 2, . . . , t

)
,

xL
i ≤ xi ≤ xU

i (i = 1, 2, . . . , n),

X = [Xd,Xc]
T
,

Xd =
[
x1, x2, . . . , xnq, xnq+1, . . . , xnd

]T
,

Xc = [xnd+1, xnd+2, . . . , xn]
T ,

(2.2)

where x1, x2, . . . , xnq are nonnegative discrete variables with permissible values equally
spaced; xnq+1, . . . , xnd are nonnegative discrete variables with permissible values unequally
spaced; xnd+1, xnd+2, . . . , xn are nonnegative continuous variables. Practical optimization
problems encountered in the engineering design field often have many constraints and
require consideration of different types of design variables as shown in (2.2). Again, because
these problems involve high-dimensional, nondifferentiable, and multimodal properties, an
effective algorithm is needed to solve them optimally and efficiently. According to the above
statements, the problem in (2.2) is a special case of the problem in (2.1).

For the mixed discrete-continuous design problem in (2.2), the discrete variables with
equal spacing (i.e., individuals with arithmetical progression) are xi = xL

i + (Ni − 1)Δxi,
where i = 1, 2, . . . , nq; xL

i is the lower bound of xi; Ni is the natural number corresponding
to xi; Δxi is the discrete increment of the ith discrete variable; nq is the number of discrete
variables with equal spacing. Let xi = eMi,1 for the discrete variables with unequal spacing,
where nq < i ≤ nd,Mi denotes the natural number corresponding to xi,Mi is generated from
[1, wi], eMi,1 denotes the Mith element of the wi × 1 vector Ei, Ei represents the wi × 1 vector
of values of discrete variables with unequal spacing, and wi is the maximum permissible
number of discrete values for the ith discrete variable with unequal spacing.

3. The LSQEA Approach for Solving Mixed Discrete-Continuous
Design Problems

This section describes the details of the LSQEA approach for solving mixed discrete-
continuous nonlinear programming problems.

3.1. Q-Bit Representation

In quantum-inspired computing, the smallest unit of information stored in a two-state
quantum computer is called a quantum bit. It may be in a “0” state, a “1” state, or any
superposition of the two. The state of a quantum bit can be represented as

|Ψ〉 = α |0〉 + β |1〉, (3.1)
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where α and β are complex numbers that describe the probability amplitudes of the
corresponding states. The |α|2 and |β|2 are probabilities of the quantum bit being in the “0”
state and “1” state, respectively, such that |α|2 + |β|2 = 1.

The use of a Q-bit to represent an individual in this study was inspired by
quantum computing concepts. The advantage of the representation is the capability to use
linear superposition method to generate any possible solution. A Q-bit individual can be
represented by a string of n Q-bits such as

[
α1

β1

∣
∣
∣
∣
α2 · · ·
β2 · · ·

∣
∣
∣
∣
αn

βn

]
, (3.2)

where |αi|2 + |βi|2 = 1, i = 1, 2, . . . , n. Since Q-bits represent a linear superposition of states, a
Q-bit representation provides better population diversity compared to other representations
used in evolutionary computing. For example, for following three Q-bits system with three
pairs of amplitudes

⎡

⎢⎢⎢
⎣

1√
2
1√
2

∣∣∣∣∣∣∣∣∣

1√
2

− 1√
2

∣∣∣∣∣∣∣∣∣

1
2√
3
2

⎤

⎥⎥⎥
⎦
, (3.3)

the states of the system can be represented as

1
4
|000〉 +

√
3
4

|001〉 − 1
4
|010 〉 −

√
3
4

|011〉 + 1
4
|100〉 +

√
3
4

|101〉 − 1
4
|110 〉 −

√
3
4

|111〉. (3.4)

The above result means that the probabilities to represent the states |000〉, |001〉, |010〉,
|011〉, |100〉, |101〉, |110〉, and |111〉 are 1/16, 3/16, 1/16,3/16, 1/16, 3/16, 1/16, and 3/16,
respectively. By consequence, the above three Q-bits system contains the information of eight
states.

3.2. Initial Population

The initialization procedure produces ps Q-bit individuals where ps denotes the population
size.

3.3. Crossover Operation

The crossover operators are the one cut-point operator, which randomly determines one cut-
point and exchanges the cut-point right parts of the Q-bits of two parents to generate new
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offspring. If the ith position is selected as one cut-point, the one cut-point crossover operator
is used for Q-bits as shown in (3.5)

[
α1,1 · · · α1,i α1,i+1 · · · α1,n

β1,1 · · · β1,i β1,i+1 · · · β1,n

] [
α1,1 · · · α1,i α2,i+1 · · · α2,n

β1,1 · · · β1,i β2,i+1 · · · β2,n

]

=⇒
[
α2,1 · · · α2,i α2,i+1 · · · α2,n

β2,1 · · · β2,i β2,i+1 · · · β2,n

] [
α2,1 · · · α2,i α1,i+1 · · · α1,n

β2,1 · · · β2,i β1,i+1 · · · β1,n

]
.

(3.5)

For example, for following four Q-bits system, the 2nd position is selected as one cut-point,
the crossover operation is shown below

⎡
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2

1
2

√
3
2
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2

− 1√
2
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3
2
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2
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3
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2

⎤

⎥⎥
⎦.

(3.6)

3.4. Mutation Operation

Mutation of Q-bits is performed by randomly determining one position (e.g., position i) and
then exchanging the corresponding αi and βi

[
α1

β1

∣∣∣∣
· · ·
· · ·

∣∣∣∣
αi

βi

∣∣∣∣
· · ·
· · ·

∣∣∣∣
αn

βn

]
=⇒

[
α1

β1

∣∣∣∣
· · ·
· · ·

∣∣∣∣
βi
αi

∣∣∣∣
· · ·
· · ·

∣∣∣∣
αn

βn

]
. (3.7)

For example, for following four Q-bits system, the 2nd position is selected for mutation, the
mutation operation is shown below.

⎡

⎢⎢
⎣

1√
2

1√
2

1
2

√
3
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− 1√
2

√
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√
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2

⎤

⎥⎥
⎦. (3.8)
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3.5. Q-Bit Rotation Operation

The purpose of a rotation gate U(θ) is to update a Q-bit individual by rotating the Q-bit
toward the direction of the corresponding Q-bit to obtain a better value. The (αi, βi) of the ith
Q-bit is updated as follows:

[
α′
i

β′i

]
= U(θi)

[
αi

βi

]
=
[
cos θi − sin θi
sin θi cos θi

][
αi

βi

]
, (3.9)

where θi is a rotation angle by [0, 0.05π].
For example, if |Ψ〉 = 2/

√
5|0〉 + 1/

√
5|1〉= 1/

√
5
(
2
1

)
and U = 1/

√
2
(
1 1
1 −1

)
, the result

obtained by Q-bit rotation operation is |Ψ′〉 = 3/
√
10|0〉 + 1/

√
10|1〉. The probability of |0

becomes larger, and the probability of |1 becomes smaller.

3.6. Penalty Function

When using evolutionary method to solve a constrained optimization problem, a penalty
function is used to relax the constraints by penalizing the unfeasible individuals in the
population. This method improves the probability of approaching a feasible region of the
search space by navigating through unfeasible regions and by reducing the penalty when
a feasible region is approached. To clarify this point, it is important to distinguish between
feasible and unfeasible individuals. The unfeasible individuals violate constraints included
in the range [1, R] where R is the number of design constraints. The higher this index of
violation is, the larger the penalty should be. Given these considerations, the penalty value P
is defined as follows:

P = wp

R∑

j=1

∣∣wL

(
Lj − yj

)
+wU

(
yj −Uj

)∣∣, (3.10)

where yj is a value computed from the constraint function when the values of design
variables are determined; Uj and Lj are the upper and lower bounds, respectively, of the
constraint function; wp is a value distinguishing the feasible from the unfeasible individuals;
and wL and wU denote the weights. Additionally, if yj < Lj , then wL = 1 and wU = 0; if
yj > Uj , then wL = 0 and wU = 1; if Lj ≤ yj ≤ Uj , then wL = 0 and wU = 0. Equation
(3.10) generally requires that each value calculated for yj of the constraint function should
be limited to its upper and lower bounds. If the value is located within the feasible region,
the value is not punished. Otherwise, the value is punished by being multiplied with a large
number wp. The penalty value equals 0 when the optimization process is complete since the
values of the design variables no longer violate the design constraints.

3.7. Latin Square

The Latin square experimental design method screens for the important factors that impact
product performance. Therefore, it can be used to study a large number of decision variables
with a small number of experiments. The design variables (parameters) are called factors, and
parameter settings are called levels. The name Latin square originates from Leonhard Euler,
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who used Latin characters as symbols. The details regarding the experimental design method
can be found in texts by Phadke [41], Montgomery [42], and Park [43]. For an orthogonal
array, matrix experiments are conducted by randomly choosing two individuals from the Q-
bit population pool. Each factor of one Q-bit individual is designated level 1, and each factor
of the other Q-bit individual is designated level 2. The two-level orthogonal array of Latin
squares applied here is Lm(2m−1). Additionally, each of Z number of design factors has two
levels. To establish a two-level orthogonal array of Z factors, let Lm(2m−1) represent m − 1
columns and m individual experiments corresponding to the m rows, where m = 2k, k is a
positive integer (k > 1) and Z ≤ m − 1. If Z < m − 1, only the first Z columns are used while
the other m − 1 − Z columns are ignored. For example, if each of six factors has two levels,
only six columns are needed to allocate these factors. In this case, L8(27) is sufficient for this
purpose because it has seven columns.

The better combinations of decision variables are also determined by integrating
the orthogonal array of the Latin square and the signal-to-noise ratio of the Taguchi
method. The concept of Taguchi method is to maximize signal-to-noise ratios used as
performance measures by using the orthogonal array to run a partial set of experiments.
The signal-to-noise ratio (η) refers to the mean-square deviation in the objective function. For
cases of the larger-the-better characteristic and the smaller-the-better characteristic, Taguchi
defined η, which is expressed in decibels, as η = −10 log((1/n)

∑n
t=1(1/y

2
t )) and η =

−10 log((1/n)
∑n

t=1(y
2
t )), respectively, where {y1, y2, . . . , yn} denotes a set of characteristics.

Further details can be found in works by Phadke [41], Montgomery [42], and Park [43].
If only the degree of η in the orthogonal array experiments is being described, the

previous equations can be modified as ηi = yi if the objective function is to be maximized
(larger-the-better) and as 1/yi if the objective function is to be minimized (smaller-the-
better). Let yi denote the evaluation value of the objective function of experiment i, where
i = 1, 2, . . . , m, andm is the number of orthogonal array experiments. The effects of the various
factors (variables or individuals) can be defined as follows:

Efl = sum of ηi for factor f at level l, (3.11)

where i is the number of experiments, f is the factor name or number, and l is the level number.
The main objective of the matrix experiments is to choose a new Q-bit individual from

the two Q-bit individuals at each locus (factor). At each locus (factor), a Q-bit is chosen if the
Efl has the highest value in the experimental region. That is, the objective is to determine the
best level for each factor. The best level for a factor is the level that maximizes the value of
Efl in the experimental region. For the two-level problem, if Ef1 > Ef2, the better level is level
1 for factor f ∈ [1, Z]. Otherwise, level 2 is better. After the best level is determined for each
factor, the best levels can be combined to obtain the new individual. Therefore, systematic
reasoning ability of the orthogonal array of the Latin square combined with the signal-to-
noise ratio of the Taguchi method ensures that the new Q-bit individual has the best or close-
to-best evaluation value of the objective function among the 2Z combinations of factor levels,
where 2Z is the total number of experiments needed for all combinations of factor levels.

For the matrix experiments of an orthogonal array of Latin squares, generation of
better individuals requires random selection of two Q-bit individuals at a time from the Q-
bit population pool generated by the one cut-point crossover operation. A new individual
generated by each matrix experiment is superior to its parents by using the systematic
reasoning ability of an orthogonal array of Latin squares and by following the below
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algorithm [46]. The two individuals recombine the better Q-bits to be a better-fit individual,
so that potential individuals in microspace can be exploited. The detailed steps for each
matrix experiment are described as follows.

Algorithm

Step 1. Set j = 1. Generate two setsU1 andU2, each of which hasZ design factors (variables).
From the first Z columns of the orthogonal array Lm(2m−1), allocate Z design factors, where
m ≥ Z + 1.

Step 2. Designate sets U1 and U2 as level 1 and level 2, respectively, by using a uniformly
distributed random method to choose two Q-bit individuals from the Q-bit population pool
generated by the crossover operation.

Step 3. Assign the level 1 values obtained fromU1 and the level 2 values obtained fromU2 to
level cells of the j experiment in the orthogonal array.

Step 4. Calculate the fitness value and the signal-to-noise ratio for the new individual.

Step 5. If j > m, then go to Step 6. Otherwise, j = j + 1, and repeat Steps 3–5.

Step 6. Calculate the effects of the various factors (Ef1 and Ef2), where f = 1, 2, . . . , Z.

Step 7. The Q-bit of locus f of the new Q-bit individual is obtained from U1 if Ef1 > Ef2.
Otherwise, it is obtained from U2, where f = 1, 2, . . . , Z. Implementing the process for each
Q-bit at each locus then obtains the new Q-bit individual.

3.8. Steps of LSQEA

The LSQEA approach is a method of integrating Latin squares and QGA. The Latin square
method is performed between the one-cut-point crossover operation and the mutation
operation. The penalty function is considered for a constrained problem, as the fitness value
is calculated. The steps of the LSQEA approach are described as follows.

Step 1. Set parameters, including population size ps, crossover rate pc, mutation rate pm, and
number of generations.

Step 2. Generate an initial Q-bit population, and calculate the fitness values for the
population.

Step 3. Perform selection operation by roulette wheel approach [44].

Step 4. Perform the one-cut-point crossover operation for each Q-bit. Select Q-bit individuals
for crossover according to crossover rate pc.

Step 5. Perform matrix experiments for Latin squares method, and use signal-to-noise ratios
to generate the better offspring.

Step 6. Repeat Step 5 until the loop number ((1/4) × ps × pc) has been met.



10 Mathematical Problems in Engineering

Step 7. Generate the Q-bit population via Latin squares method.

Step 8. Perform the mutation operation in the Q-bit population. Select Q-bits for mutation
according to mutation rate pm.

Step 9. Except for the best individual, select ps Q-bit individuals for the Q-bit rotation
operation.

Step 10. Generate the new Q-bit population.

Step 11. Has the stopping criterion been met? If so, then go to Step 12. Otherwise, repeat
Step 3 to Step 11.

Step 12. Display the best individual and fitness value.

4. Design Examples and Comparisons

This section first describes the performance evaluation results for the proposed LSQEA
approach. The performance of the LSQEA is then compared with those of the QGA and
RGA methods in solving nonlinear programming optimization problems with continuous
variables. Finally, the LSQEA approach is used to solve mixed discrete-continuous nonlinear
design problems in the engineering design field, and its solutions are compared with those of
other methods reported in the literature.

4.1. Solving Nonlinear Programming Optimization Problems with
Continuous Variables

For performance evaluation, the proposed LSQEA approach was used to solve the nonlinear
programming optimization problems shown in Table 1 [48–50]. The test functions included
quadratic, linear, polynomial, and nonlinear forms. The constraints of these functions (f1,
f2, f3, and f4) were linear and nonlinear inequalities, and their dimensions were 13, 8,
7, and 10, respectively. The penalty function of (3.10) was used to handle constrains of
linear and nonlinear inequalities for optimization. Therefore, the test functions had sufficient
local minima to provide a challenging problem for the purpose of performance evaluation.
To identify any performance improvements obtained by application of Latin square and
quantum computing-inspired concepts, the QGA and RGA approaches were used to solve
the test functions.

Optimizing the main parameters in evolutionary environments continues to be a
area of active research in this field. Studies have shown how the performance of a GA
can be improved by modifying its main parameters [51, 52]. For example, Chou et al. [53]
applied an experimental design method to improve the performance of a GA by optimizing
its evolutionary parameters. Therefore, this study adjusted evolutionary parameters by
using the same experimental design method applied in Chou et al. [53]. The evolutionary
environments used for experimental computation by LSQEA, QGA, and RGA approaches
were as follows. For f1, f2, f3, and f4, the population size ps was 300, the crossover rate pc was
0.9, and themutation rate pm was 0.1. For f1, f2, and f4, the stopping criterion for all methods
and test functions was 540000 function calls. For f3, however, the stopping criterion was set
to only 300000 function calls because it approached the optimal value fastest. Additionally,
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Table 1: Test functions.

f1(X) = 5x1 + 5x2 + 5x3 + 5x4 − 5
∑4

i=1 x
2
i −

∑13
i=5 xi,

subject to
2x1 + 2x2 + x10 + x11 ≤ 10, 2x1 + 2x3 + x10 + x12 ≤ 10, −8x1 + x10 ≤ 0,
2x2 + 2x3 + x11 + x12 ≤ 10, −8x2 + x11 ≤ 0, −8x3 + x12 ≤ 0,
−2x4 − x5 + x10 ≤ 0, −2x6 − x7 + x11 ≤ 0, −2x8 − x9 + x12 ≤ 0,
0 ≤ xi ≤ 1, i = 1, . . . , 9, 0 ≤ xi ≤ 100, i = 10, 11, 12, 0 ≤ x13 ≤ 1.
f2(X) = x1 + x2 + x3,

subject to
1 − 0.0025(x4 + x6) ≥ 0, 1 − 0.0025(x5 + x7 − x4) ≥ 0,
1 − 0.01(x8 − x5) ≥ 0, x1x6 − 833.33252x4 − 100x1 + 83333.333 ≥ 0,
x2x7 − 1250x5 − x2x4 + 1250x4 ≥ 0, x3x8 − 1250000 − x3x5 + 2500x5 ≥ 0,
100 ≤ x1 ≤ 10000, 1000 ≤ xi ≤ 10000, i = 2, 3, 10 ≤ xi ≤ 1000, i = 4, . . . , 8.

f3(X) = (x1 − 10)2 + 5(x2 − 12)2 + x4
3 + 3(x4 − 11)2 + 10x6

5 + 7x2
6 + x4

7 − 4x6x7 − 10x6 − 8x7,

subject to
127 − 2x2

1 − 3x4
2 − x3 − 4x2

4 − 5x5 ≥ 0, 282 − 7x1 − 3x2 − 10x2
3 − x4 + x5 ≥ 0,

196 − 23x1 − x2
2 − 6x2

6 + 8x7 ≥ 0, −4x2
1 − x2

2 + 3x1x2 − 2x2
3 − 5x6 + 11x7 ≥ 0,

−10 ≤ xi ≤ 10, i = 1, . . . , 7.

f4(X) = x2
1 + x2

2 + x1x2 − 14x1 − 16x2 + (x3 − 10)2 + 4(x4 − 5)2 + (x5 − 3)2 + 2(x6 − 1)2 + 5x2
7

+7(x8 − 11)2 + 2(x9 − 10)2 + (x10 − 7)2 + 45,
subject to

105 − 4x1 − 5x2 + 3x7 − 9x8 ≥ 0, −10x1 + 8x2 + 17x7 − 2x8 ≥ 0,
8x1 − 2x2 − 5x9 + 2x10 + 12 ≥ 0, −5x2

1 − 8x2 − (x3 − 6)2 + 2x4 + 40 ≥ 0,
−3(x1 − 2)2 − 4(x2 − 3)2 − 2x2

3 + 7x4 + 120 ≥ 0,
−x2

1 − 2(x2 − 2)2 + 2x1x2 − 14x5 + 6x6 ≥ 0,
−0.5(x1 − 8)2 − 2(x2 − 4)2 − 3x2

5 + x6 + 30 ≥ 0,
3x1 − 6x2 − 12(x9 − 8)2 + 7x10 ≥ 0, −10 ≤ xi ≤ 10, i = 1, . . . , 10.

each test function was performed in 30 independent runs, and data collection included (1)
the best value, (2) the mean function value, and (3) the standard deviation of the function
values.

Table 1 shows that the test functions involved 13, 8, 7, or 10 variables (factors), which
required 13, 8, 7, or 10 columns, respectively, to allocate them in the Latin square used in the
LSQEA approach. The Latin square L8(27)was used for 7 variables because it had 7 columns.
The Latin square L16(215) was used for 13, 8, or 10 variables because it had 15 columns. In
this case, the first 13, 8, or 10 columns were used, whereas the remaining 2, 7, or 5 columns,
respectively, were ignored. The computational procedures and evolutionary environments
used to solve the test functions by QGA and RGA approaches were the same as those used in
the LSQEA approach. However, Latin square was not used in QGA and RGA, and quantum-
inspired computing was not used in the RGA.

In Table 2, the comparison of results obtained by LSQEA, QGA, and RGA approaches
reveals the following.

(1) The proposed LSQEA finds optimal or near-optimal solutions.

(2) For all test functions, the LSQEA solutions are closer to optimal compared to the
QGA and RGA solutions.
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Table 2: Results of performance comparisons of LSQEA, QGA, and RGA.

Best value Mean function value
(standard deviation)

Test function

Globally
minimal
function
value

LSQEA QGA RGA LSQEA QGA RGA

f1(X) −15.000 −15.000 −15.000 −14.998
(0.005)

−14.997
(0.007)

−14.988
(0.055) −15.000

f2(X) 7117.961 7135.440 7178.168 7390.259
(197.317)

7614.255
(322.821)

7791.224
(480.058) 7049.331

f3(X) 680.630 680.660 680.804 680.772
(0.104)

681.459
(0.836)

681.515
(0.891) 680.630

f4(X) 24.306 24.462 24.694 24.981
(0.479)

25.980
(0.886)

26.051
(1.697) 24.306

(3) For all test functions, the deviations in function values are smaller in the proposed
LSQEA than in the QGA and RGA. That is, the proposed LSQEA has a relatively
more stable solution quality. Since the RGA is largely based on stochastic search
techniques, the standard deviations in all evaluations of test functions are higher in
the RGA than in the LSQEA and QGA.

Figure 1 shows convergence results on test functions f1, f2, f3, and f4 by using the
LSQEA, QGA, and RGA. The LSQEA requires fewer function calls to reach the best value
and has the sharper decline than the QGA and GA. That is, the LSQEA has faster convergence
speed than the QGA and GA.

In the computational experiment by using the systematic reasoning ability of Latin
squares, it was confirmed that a new individual generated by each matrix experiment is
superior to its parents, two Q-bit individuals. That is, potential individuals in microspace
can be exploited. In micro Q-bit space, the systematic reasoning mechanism of the Latin
square with signal-to-noise ratio enhanced the performance of the LSQEA by accelerating
convergence to the global solution. In macro Q-bit space, quantum-inspired computing with
the GA enhanced the performance of the LSQEA. Table 2 shows that the QGA outperformed
the RGA, which indicates that quantum-inspired computing with GA improves the
performance of the QGA. Therefore, the LSQEA outperforms the QGA and RGA methods
in both exploration and exploitation.

Garcı́a et al. [54, 55] confirmed the use of the most powerful nonparametric statistical
tests to carry out multiple comparisons. Therefore, this study used the nonparametric
Wilcoxon matched-pairs signed-rank test [56] to tackle a multiple-problem analysis to
compare two algorithms over a set of problems simultaneously. Let di be the difference
between the performance scores of the two algorithms on ith out of n different runs. The
differences are ranked according to their absolute values, and average ranks are assigned in
case of ties. Let T+ be the sum of ranks for the different runs on which the second algorithm
outperformed the first, and let T− be the sum of ranks for the opposite. Ranks of di = 0 are
split evenly among the sums, and if there is an odd number of them, one is ignored

T+ =
∑

di>0

rank(di) +
1
2

∑

di=0

rank(di), T− =
∑

di<0

rank(di) +
1
2

∑

di=0

rank(di). (4.1)
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Figure 1: Convergence results on test functions f1, f2, f3, and f4 by using the LSQEA, QGA, and RGA.

Let T be the smaller of the two values, T = min(T+, T−). If T is less than or equal to
the value of the distribution of Wilcoxon for n degrees of freedom, the null hypothesis of
equality of means is rejected [54, 55]. Also, to calculate the significance of the test statistic
(T), the mean (T) and standard error (SET )were defined as follows [57]:

T =
n(n + 1)

4
, SET =

√
n(n + 1)(2n + 1)

24
, (4.2)

where n is the sample size. Therefore, Z = (T − T)/SET . If Z is bigger than 1.96 (ignoring the
minus sign) then it is significant at P < 0.05.

The sample data obtained by Table 2 include the best values, mean function values,
and standard deviation of mean function values. The Z values are all 2.934 (P = 0.0033) in
LSQEA versus QGA, LSQEA versus RGA, and QGA versus RGA. So, the tests mean there
is a significant difference between LSQEA and the two algorithms, QGA and RGA. That is,
the performance of LSQEA really outperform those of QGA and RGA, since the Wilcoxon
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Figure 2: Convergence results on test functions h1 and h 2 by using the LSQEA, PSO, and AIA.

test Z > 1.96 and P < 0.05. There is a significant difference between QGA and RGA. The
performance of QGA is superior to that of RGA.

For evaluating the LSQEA in a problem which has a relatively larger dimensionality,
two test examples which are 100 dimensions were used and minimized. They are h1 =
−∑n

i=1 sin(xi)sin20((i × x2
i )/π), 0 ≤ xi ≤ π , and h2 =

∑n−1
j=1 [100(x

2
j − xj+1)

2 + (xj − 1)2], −5
≤ xj ≤ 10, where n = 100. To ensure a fair comparison of the performance of the LSQEA
with that of recently proposed algorithms which are particle swarm optimization (PSO) [58]
and artificial immune algorithm (AIA) [59], the study use the same population size that is
200 for 50 independent runs. The results of LSQEA on h1(x) in terms of mean function value
(standard deviation) and mean function call (standard deviation) are −92.830 (0) and 178347
(14362), respectively, and on h2(x) are 0.7 (0) and 60377 (3368), respectively. The results of
PSO on h1(x) in terms of mean function value (standard deviation) and mean function call
(standard deviation) are −92.825 (0.03) and 330772 (29516), respectively, and on h2(x) are
0.752 (0.02) and 168736 (19325), respectively, while the results of AIA on h1(x) are −90.54
(0.93) and 346972 (29842), respectively, and on h2(x) are 2.95 (1.29) and 178048 (75619),
respectively. Figure 2 shows convergence results on test functions h1 and h4 by using the
LSQEA, PSO, and AIA. The LSQEA requires fewer function calls to reach the best value and
has the sharper decline than the PSO and AIA. That is, the LSQEA has faster convergence
speed than the PSO and AIA. In general, the performance of the LSQEA is superior to those
of the PSO andAIA in the two examples. Additionally, the nonparametricWilcoxonmatched-
pairs signed-rank test was used to evaluate the performance in two algorithms. TheWilcoxon
test Z values are all 2.521 (P = 0.0117) in LSQEA versus PSO and LSQEA versus AIA. So, the
tests mean there is a significant difference between LSQEA and the two algorithms, PSO and
AIA. That is, the performance of LSQEA really outperforms those of PSO and AIA, since the
Wilcoxon test Z > 1.96 and P < 0.05. There is also a significant difference between PSO and
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Figure 3: Compression coil spring.

AIA, since Z value is 2.521, and P value is 0.0117. The performance of PSO is superior to that
of AIA in the two examples.

Hence, the performance improvement in the proposed LSQEA is achieved by using
quantum-inspired computing and the systematic reasoning mechanism of Latin square with
signal-to-noise ratio. Therefore, we conclude that the proposed LSQEA approach effectively
solves the six nonlinear programming optimization problems with continuous variables.
After confirming this capability of the LSQEA approach, the LSQEA approach was then
evaluated for use in solving mixed discrete-continuous nonlinear design problems.

4.2. Solving Mixed Discrete-Continuous Nonlinear Design Problems

To evaluate the use of the LSQEA approach for solving mixed discrete-continuous nonlinear
design problems in the engineering design field, this study applied the experimental design
method reported in Chou et al. [53] for parameter adjustment in different evolutionary
environments.

Example 4.1 (compression coil spring design). Figure 3 shows the first example, which is the
design for a compression coil spring under a constant load for minimum volume of material.
The relationships among the three design variables can be expressed as X = [N,d,D]T =
[x1, x2, x3]

T , where N is an integer representing the number of coil springs; d is a discrete
value representing the wire diameter according to ASTM code; D is a continuous variable
representing winding diameter. As described by Sandgren [2], the objective and constraint
equations can be mathematically derived as follows:

minimize f(X) =
π2x3x

2
2(x1 + 2)
4

, (4.3)
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subject to

g1(X) = S − 8KsPmaxx3

πx3
2

≥ 0,

g2(X) = lmax − (δ + 1.05(x1 + 2)x2) ≥ 0,

g3(X) = x2 − dmin ≥ 0,

g4(X) = Dmax − x3 ≥ 0,

g5(X) = C − 3 ≥ 0,

g6(X) = δpm − δ ≥ 0,

g7(X) = lf − δ − Pmax − Pload

K
− 1.05(x1 + 2)x2 ≥ 0,

g8(X) =
Pmax − Pload

K
− δw ≥ 0,

(4.4)

where

C =
x3

x2
,

Ks = (4C − 1)(4C − 4) +
0.615
C

,

δ =
8Pmaxx

3
3x1

Gx4
2

,

K =
Gx4

2

8x3
3x1

,

5 ≤ x1 ≤ 20, x1 = 5 + k, k = 0, 1, . . . , 15,

x2 ∈ {0.207, 0.225, 0.244, 0.263, 0.283, 0.307, 0.331, 0.362, 0.394, 0.4375, 0.500},
1.0 ≤ x3 ≤ 3.0.

(4.5)

The assigned parameter values are Pmax = 1000, S = 1.89 × 105, G = 1.15 × 107,
lmax= 14, dmin = 0.2, Dmax = 3, δpm = 6, Pload = 300, lf = 6.6, and δw = 1.25 [12].

The evolutionary environmental parameters applied in the computational experi-
ments performed using the proposed LSQEA approach are ps (population size) 100, pc
(crossover rate) 0.9, pm (mutation rate) 0.3, and generation number 100. The design function
is performed in 30 independent runs. Table 3 shows that the computational results obtained
by the proposed LSQEA approach are superior to those obtained by the methods developed
by Sandgren [2] and by Rao and Xiong [12]. Another observed advantage is that, unlike
the approach presented in Sandgren [2], the LSQEA can use arbitrary starting points, which
enhances its versatility and effectiveness. Table 4 further shows that the robustness analysis of
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Table 3: Optimal design of compression coil spring.

Quantity Best solutions Remarks
Branch and bound [2] GA-based [12] LSQEA

x1 10 9 9 Integer
x2 0.283 0.283 0.283 Discrete
x3 1.180701 1.22528 1.223042 Continuous
f(X) 2.7995 2.66342 2.658557

Table 4: Robustness analysis results for compression coil spring design obtained by LSQEA.

Method Min f(X) Average f(X)
Standard

deviation of
f(X)

LSQEA 2.658557 2.672943 2.167 × 10−2

GA based [12] 2.66342 NA NA
Branch and bound [2] 2.7995 NA NA

the LSQEA obtains a very small standard deviation in 30 independent runs, which confirms
its robustness for designing a compression coil spring.

Example 4.2 (pressure vessel design). Figure 4 shows a compressed air storage tank consisting
of a cylindrical pressure vessel capped by hemispherical heads at both ends [2]. The vessel
design problem is formulated according to the ASME boiler and pressure vessel code.
The relationships among the design variables can be expressed as X = [Ts, Th, R, L]

T =
[x1, x2, x3, x4]

T , where Ts is shell thickness, Th is spherical head thickness, R is shell radius,
and L is shell length. The purpose of the objective function is to minimize the total cost,
including the cost of the material and the cost of forming and welding the pressure vessel.
The problem can be modeled as

minimize f(X) = 0.6224x1x3x4 + 1.7781x2x
2
3 + 3.1661x2

1x4 + 19.8621x2
1x3, (4.6)

subject to

g1(X) = x1 − 0.0193x3 ≥ 0,

g2(X) = x2 − 0.00954x3 ≥ 0,

g3(X) = πx2
3x4 +

4
3
π3
3 − 750 × 1728 ≥ 0,

g4(X) = 240 − x4 ≥ 0,

g5(X) = x1 − 1.1 ≥ 0,

g6(X) = x2 − 0.6 ≥ 0,

(4.7)

where Ts and Th represent discrete values, integer multiples of 0.0625 inches, while R and L
are continuous variables.



18 Mathematical Problems in Engineering

Table 5: Optimal design for pressure vessel.

Quantity Best solutions Remarks
Sandgren [2] Fu et al. [7] Shih and Lai [60] Rao and Xiong [12] LSQEA

x1 1.125 1.125 1.125 1.1875 1.125 Discrete
x2 0.625 0.625 0.625 0.625 0.625 Discrete
x3 48.97 48.3807 47.448 61.4483 58.27 Continuous
x4 106.72 111.7449 119.98 27.4037 43.9 Continuous
f(X) 7982.5 8048.619 8160.80 7284.02 7204.914

Table 6: Robustness analysis of pressure vessel design obtained by LSQEA.

Method Minf(X) Average f(X)
Standard

deviation of
f(X)

LSQEA 7204.914 7277.262 43.543
Rao and Xiong [12] 7284.02 NA NA
Shih and Lai [60] 8160.80 NA NA
Fu et al. [7] 8048.619 NA NA
Sandgren [2] 7982.5 NA NA

In the computational experiments to evaluate the proposed LSQEA approach,
population size ps is 300, the crossover rate pc is 0.9, the mutation rate pm is 0.3, and the
generation number is 200. The design function was performed in 30 independent runs.
Table 5 compares the computational results obtained by the proposed LSQEA approach and
by the methods introduced by Sandgren [2], Fu et al. [7], Rao and Xiong [12], and Shih
and Lai [60]. The comparison shows that the proposed LSQEA approach outperforms the
methods developed by Sandgren [2], Fu et al. [7], Rao and Xiong [12], and Shih and Lai
[60]. Additionally, unlike the methods developed by Sandgren [2], Fu et al. [7], Rao and
Xiong [12], and Shih and Lai [60], LSQEA approach can use arbitrary starting points, which
enhances its versatility and effectiveness. Table 6 further shows the results of the robustness
analysis of the LSQEA. The standard deviation obtained in 30 independent runs is small, and
the average value is better than the best values obtained by themethods reported in Sandgren
[2], Fu et al. [7], Rao and Xiong [12], and Shih and Lai [60].

Example 4.3 (welded beam design). The objective in this example, which was given in
Ragsdell and Phillips [61], is to find the structural welded beam design with the lowest
cost (Figure 5). The considered constraints are weld stress, buckling load, beam deflection,
and beam bending stress. The relationships among the design variables can be expressed as
X = [t, b, h, l]T = [x1, x2, x3, x4]

T , where t is bar thickness, b is bar breadth, h is weld thickness,
and l is weld length. The objective of the problem is to minimize design cost. The major cost
components of such a welded beam include the setup labor cost, welding labor cost, and
material cost. The objective function can be described as

f(X) = (1 + c1)x2
3x4 + c2x1x2(L + x4). (4.8)

The following behavior constraints are considered [12].
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(a) Upper bound of maximum shear stress τ(X) on the weld:

τ(X) ≤ τd (4.9)

with

τ(X) =
[(
τ ′
)2 + 2τ ′τ” cos θ + (τ”)2

]1/2
,

τ ′ =
F√
2x3x4

,

τ” =
MR

J
,

M =
F

L + x4/2
,

R =

{
x2
4

4
+
[
(x1 + x3)

2

]2}1/2

,

J = 2 × 0.707x3x4

{
x2
4

12
+
[
(x1 + x3)

2

]2}

,

cos θ =
x4

2R
.

(4.10)

(b) Upper bound of maximum normal stress σ(X) on the beam:

σ(X) ≤ σd (4.11)

with

σ(X) =
6FL
x2x

2
1

. (4.12)
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(c) Lower bound of bulking load Pc(x) on the beam:

Pc(X) ≥ F (4.13)

with

Pc(X) =
4.013

√
EIα

L2

⎡

⎣1 − x1

2L

√
EI

α

⎤

⎦,

I =
x1x

3
2

12
,

α =
Gx1x

3
2

3
.

(4.14)

(d) Upper bound of end deflection DEL(x) on the beam:

DEL(X) ≤ δd (4.15)

with

DEL(X) ≤ 4FL3

Ex3
1x2

. (4.16)

Additionally, the side constraints, which are expressed as x3 ≤ x2 and x3 ≥ 0.125, are
considered along with the following numerical data [12]:

c1 = 0.37 × 0.283, c2 = 0.17 × 0.283, L = 14, F = 6000,

τd = 13600, σd = 30000, δd = 0.25, E = 3 × 107, G = 12 × 106.
(4.17)

The variables t and b are considered discrete variables (integer multiples of 0.5); h and l are
considered integers.
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Figure 6: Twenty-five bar truss.

Table 7: Robustness analysis of welded beam design obtained by LSQEA.

Method Min f(X) Average f(X)
Standard

deviation of
f(X)

LSQEA 5.67334 5.67334 0
Rao and Xiong [12] 5.67334 NA NA

The parameters used in the computational experiments performed to evaluate the
proposed LSQEA approach are population size ps of 10, crossover rate pc of 0.9, mutation
rate pm of 0.3, and generation number of 20. The design function was performed in 30
independent runs. The computational results obtained by the proposed LSQEA approach
are comparable to those obtained by Rao and Xiong [12]. The minimum cost is 5.67334,
and [t, b, h, l]T = [4.5, 1.0, 1, 2]T . Table 7 also shows the results of robustness analysis of the
LSQEA. The standard deviation of 0 obtained in 30 independent runs indicates that the
LSQEA finds the optimal solution each run. That is, the LSQEA is a very robust and stable
method for designing the welded beam. Additionally, the solution space in this welded beam
design problem is small since only 4 design variables are used, and all are discrete variables
(integer multiples and integers). Therefore, the LSQEA easily finds the optimal solution.

Example 4.4 (twenty-five bar truss design). Figure 6 shows Example 4.4, a twenty-five bar
truss which is a classic test case often used to test optimization algorithms for both continuous
and discrete structural optimization problems. Table 8 gives the two load conditions for this
truss, which is designed under constraints on both member stress and Euler buckling stress.
Since the truss is symmetrical, the member areas can be divided into eight groups: A1, A2 =
A3 = A4 = A5, A6 = A7 = A8 = A9, A10 = A11, A12 = A13, A14 = A15 = A16 = A17, A18 =
A19 = A20 = A21, and A22 = A23 = A24 = A25, thus eight independent areas are selected
as continuous or discrete design variables. Three objective functions are considered in this
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Table 8: Load conditions for twenty-five bar truss.

Joint 1 2 3 6
Load condition 1 (pounds)

Fx 0 0 0 0
Fy 20,000 −20,000 0 0
Fz −5,000 −5,000 0 0

Load condition 2 (pounds)
Fx 1,000 0 500 500
Fy 10,000 10,000 0 0
Fz −5,000 −5,000 0 0

example: (i)minimization of weight, (ii)minimization of deflection on nodes 1 and 2, and (iii)
maximization of the fundamental natural frequency of vibration in the truss. The objective
functions are as follows [12]:

minimize f1(X) =
25∑

i=1

ρAili ,

f2(X) =
(
δ2
1x + δ2

1y + δ2
1z

)1/2
+
(
δ2
2x + δ2

2y + δ2
2z

)1/2
,

f3(X) =
1
ω1

,

(4.18)

where li denotes the length of the member i; ρ = 0.1 lb/in3 is the weight density; δix, δiy, and
δiz are the x, y, and z components, respectively, of deflections in node i(i = 1, 2); ω1 is the
fundamental natural frequency of vibration. The constraints can be stated as

∣∣σij(X)
∣∣ ≤ S

(
i = 1, 2, . . . , 25, j = 1, 2

)
,

σij(X) ≥ Bi(X)
(
i = 1, 2, . . . , 25, j = 1, 2

)
,

xl
i ≤ xi ≤ xu

i (i = 1, 2, . . . , 8),

(4.19)

where σij denotes the tension or compression stress in member i under load condition j;
allowable stress S is set to 40000 psi; xl

i and xu
i are the lower and upper bounds of xi, which

are set to be 0.1 in2 and 5.0 in2, respectively; the Euler bulking stress Bi(X) in member i is

Bi(X) =
−100.01πEAi

8l2i
(i = 1, 2, . . . , 25), (4.20)

in which E is the Young modulus of 1.0 × 107 psi.
If each xi is considered a discrete variable, the following expression is used: xi = 0.1 +

0.1k, where k = 0, 1, 2, . . . , 49. The length of each bar is calculated according to the coordinates
of the nodes of the truss. The deflections (δix, δiy, and δiz) of node i, the fundamental natural
vibration frequencyω1, and the stress σij in member i under the load condition j are obtained
by finite-element analysis of the truss with ANSYS CAE Toolbox [62].
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Table 9: Best results for individual objective functions obtained by LSQEA.

Quantity Min. weight Min. deflection Max. frequency
Continuous results

x1 0.1 3.456 0.1000
x2 0.8023 5.0 0.7880
x3 0.7479 5.0 0.7538
x4 0.1 3.3183 0.9000
x5 0.1245 5.0 0.1001
x6 0.5711 5.0 4.8713
x7 0.9783 5.0 2.8019
x8 0.8026 5.0 5.0000
ANSYS CAE Toolbox

Weight (lb.) 233.0609 1616.798 911.9918
Deflection (in.) 1.9271 0.3085 1.2854
Frequency (Hz) 73.4297 70.7414 113.8128

Discrete results

x1 0.1 1.4 0.1
x2 0.9 5.0 0.8
x3 1.0 5.0 0.8
x4 0.1 2.1 0.9
x5 0.1 4.8 0.1
x6 0.5 5.0 4.8
x7 0.9 5.0 2.9
x8 1.0 5.0 5.0
ANSYS CAE Toolbox

Weight (lb.) 248.2764 1580.1035 916.5322
Deflection (in.) 1.6542 0.3086 1.2371
Frequency (Hz) 73.1060 73.1025 113.2998

Table 9 shows the best continuous and discrete results obtained by the proposed
LSQEA approach with ANSYS CAE Toolbox. In contrast, Table 10 shows the best results
obtained by the Rao and Xiong [12] approach using the ANSYS CAE Toolbox. The
comparison of results in Tables 9 and 10 confirm that the proposed LSQEA approach provides
better results in each main objective function compared to the method developed by Rao
and Xiong [12]. Meanwhile, for each specified design objective function, the other two
objectives are also better than those reported in Rao and Xiong [12]. An interesting question
is why the discrete results given in Rao and Xiong [12] achieve a higher optimal natural
frequency compared to the continuous results (Table 10). Intuitively, the answers found in
a continuous space should be best. That is, in the case in which the natural frequency is
maximized, the results presented by Rao and Xiong [12] are inapplicable. Another issue
is the three individual objective functions, which are apparently dependent. Reducing the
weight of the truss requires an increase in deflection and a decrease in the fundamental
natural frequency, and vice versa. Although reaching the global optimum is possible in single-
objective optimization problems, it is reached at the expense of performance in achieving
the other two objectives. Therefore, the reasonable design specification for a practical
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Table 10: Best results for individual objective functions [12].

Quantity Min. weight Min. deflection Max. frequency
Continuous results

x1 0.1 3.7931 0.1
x2 0.8023 5.0 0.7977
x3 0.7479 5.0 0.7461
x4 0.1 3.3183 0.7282
x5 0.1245 5.0 0.8484
x6 0.5712 5.0 1.9944
x7 0.9785 5.0 1.9176
x8 0.8025 5.0 4.1119
ANSYS CAE Toolbox

Weight (lb.) 233.0727 1619.3258 600.8789
Deflection (in.) 1.9271 0.3085 1.3565
Frequency (Hz) 73.4255 70.3725 108.8761

Discrete results

x1 0.1 3.0 0.1
x2 0.9 5.0 0.8
x3 0.9 5.0 0.8
x4 0.1 3.0 0.9
x5 0.2 4.8 0.1
x6 0.6 5.0 4.8
x7 1.0 5.0 2.9
x8 0.8 5.0 5.0
ANSYS CAE Toolbox

Weight (lb.) 249.3187 1605.6035 916.5322
Deflection (in.) 1.7542 0.3086 1.2371
Frequency (Hz) 70.0243 71.2641 113.2998

engineering application is an essential consideration. If the defined objective is maximizing
the fundamental natural frequency of vibration in the truss subject to the limited deflections
in nodes 1 and 2, reasonable results are obtained. In this example, the results in the third case
(maximizing the fundamental natural frequency of vibration in the truss) show the design
characteristics.

In summary, the above results confirm that the LSQEA approach obtains robust and
stable results. Therefore, we conclude that the LSQEA is highly feasible for solving the four
examples that are mixed-discrete-continuous nonlinear design optimization problems.

5. Conclusions

The LSQEA approach proposed in this study solves the problems of mixed discrete-
continuous nonlinear design optimization. The approach combines the merit of QGA, which
is its powerful global exploration capability for exploring the optimal feasible region, with
that of the Latin square, which is exploitation of the better offspring. In this study, the
LSQEA approach efficiently solved global numerical optimization problems with continuous
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variables. The computational experiments show that, compared to QGA and RGA, the
proposed LSQEA is more efficient in finding optimal or near-optimal solutions for nonlinear
programming optimization problems with continuous variables. Additional advantages of
the LSQEA approach include its superior robustness compared to QGA and RGA and its
global exploration capability. Finally, applications of the LSQEA to solve various mixed
discrete-continuous nonlinear design optimization problems in computational experiments
in this study confirm its superior solution quality and superior robustness compared
to existing methods. Therefore, the proposed LSQEA approach can be used as a global
optimization method for solving mixed discrete-continuous nonlinear design problems
complicated by multiple constraints.

Acknowledgment

This work was partially supported by the National Science Council, Taiwan, under Grant no.
NSC96-2221-E-153-002-MY2, NSC99-2221-E-151-071-MY3, NSC100-2221-E-153-001, NSC101-
2221-E-153-003, and NSC 101-2320-B-037-022.

References

[1] P. Hajela and C. J. Shih, “Optimal design of laminated composites using a modified mixed integer
and discrete programming algorithm,” Computers and Structures, vol. 32, no. 1, pp. 213–221, 1989.

[2] E. Sandgren, “Nonlinear integer and discrete programming in mechnical design optimization,”
ASME Journal of Mechanical Design, vol. 112, no. 2, pp. 223–229, 1990.

[3] J. S. Arora, M. W. Huang, and C. C. Hsieh, “Methods for optimization of nonlinear problems with
discrete variables: a review,” Structural Optimization, vol. 8, no. 2-3, pp. 69–85, 1994.

[4] M. Bremicker, P. Y. Papalambros, and H. T. Loh, “Solution of mixed-discrete structural optimization
problems with a new sequential linearization algorithm,” Computers and Structures, vol. 37, no. 4, pp.
451–461, 1990.

[5] H. T. Loh and P. Y. Papalambros, “Sequential linearization approach for solving mixed-discrete
nonlinear design optimization problems,” ASME Journal of Mechanical Design, vol. 113, no. 3, pp. 325–
334, 1991.

[6] D. K. Shin, Z. Gurdal, and O. H. Grin, “A penalty approach for nonlinear optimization with discrete
design variables,” Engineering Optimization, vol. 16, pp. 29–42, 1990.

[7] J. F. Fu, R. G. Fenton, andW. L. Cleghorn, “Amixed integer-discrete continuous programmingmethod
and its application to engineering design optimization,” Engineering Optimization, vol. 17, pp. 263–280,
1991.

[8] J. Cai and G. Thieraut, “Discrete optimization of structures using an improved penalty function
method,” Engineering Optimization, vol. 17, pp. 293–306, 1993.

[9] O. Jonsson and T. Larsson, “Lagrangean relaxation and sub-gradient optimization applied to optimal
design with discrete sizing,” Engineering Optimization, vol. 16, pp. 221–233, 1990.

[10] S. S. Lin, C. Zhang, and H. P. Wang, “On mixed-discrete nonlinear optimization problems: a
comparative study,” Engineering Optimization, vol. 23, pp. 287–300, 1995.

[11] S. J. Wu and P. T. Chow, “Applications of genetic algorithms to discrete optimization problems,”
Journal of the Chinese Society of Mechanical Engineers, vol. 16, no. 6, pp. 587–598, 1995.

[12] S. S. Rao and Y. Xiong, “A hybrid genetic algorithm for mixed-discrete design optimization,” Journal
of Mechanical Design, vol. 127, no. 6, pp. 1100–1112, 2005.

[13] W. Tang and Q. Yuan, “Improved genetic algorithm for shape optimization of truss structures,”
Chinese Journal of Theoretical and Applied Mechanics, vol. 38, no. 6, pp. 843–849, 2006.

[14] R. L. Haupt, “Antenna design with a mixed integer genetic algorithm,” IEEE Transactions on Antennas
and Propagation, vol. 55, no. 3, pp. 577–582, 2007.

[15] K. Deep, K. P. Singh, M. L. Kansal, and C. Mohan, “A real coded genetic algorithm for solving integer
and mixed integer optimization problems,” Applied Mathematics and Computation, vol. 212, no. 2, pp.
505–518, 2009.



26 Mathematical Problems in Engineering

[16] K. M. Lee, J. T. Tsai, T. K. Liu, and J. H. Chou, “Improved genetic algorithm for mixed-discrete-
continuous design optimization problems,” Engineering Optimization, vol. 42, no. 10, pp. 927–941,
2010.

[17] W. H. Ho and C. S. Chang, “Genetic-algorithm-based artificial neural network modeling for platelet
transfusion requirements on acute myeloblastic leukemia patients,” Expert Systems with Applications,
vol. 38, no. 5, pp. 6319–6323, 2011.

[18] W. H. Ho, J. X. Chen, I. N. Lee, and H. C. Su, “An ANFIS-based model for predicting adequacy of
vancomycin regimen using improved genetic algorithm,” Expert Systems with Applications, vol. 38, no.
10, pp. 13050–13056, 2011.

[19] C. Zhang and H. P. Wang, “Mixed-discrete nonlinear optimization with simulated annealing,”
Engineering Optimization, vol. 21, pp. 277–291, 1993.

[20] W.-H. Ho, J.-H. Chou, and C.-Y. Guo, “Parameter identification of chaotic systems using improved
differential evolution algorithm,” Nonlinear Dynamics, vol. 61, no. 1-2, pp. 29–41, 2010.

[21] W.-H. Ho and A. L.-F. Chan, “Hybrid Taguchi-differential evolution algorithm for parameter
estimation of differential equation models with application to HIV dynamics,”Mathematical Problems
in Engineering, vol. 2011, Article ID 514756, 14 pages, 2011.

[22] Y. J. Cao, L. Jiang, and Q. H. Wu, “An evolutionary programming approach to mixed-variable
optimization problems,” Applied Mathematical Modelling, vol. 24, no. 12, pp. 931–942, 2000.

[23] P. W. Shor, “Algorithms for quantum computation: discrete logarithms and factoring,” in Proceedings
of the 35th Annual Symposium on Foundations of Computer Science, pp. 124–134, Santa Fe, NM, USA,
1994.

[24] L. K. Grover, “Fast quantum mechanical algorithm for database search,” in Proceedings of the 28th
Annual ACM Symposium on the Theory of Computing, pp. 212–219, New York, NY, USA, May 1996.

[25] L. K. Grover, “Quantum mechanics helps in searching for a needle in a haystack,” Physical Review
Letters, vol. 79, no. 2, pp. 325–328, 1997.

[26] K. H. Han, K. H. Park, C. H. Lee, and J. H. Kim, “Parallel quantum-inspired genetic algorithm for
combinatorial optimization problem,” in Proceedings of IEEE Conference on Evolutionary Computation,
pp. 1422–1429, Seoul, Korea, May 2001.

[27] K. H. Han and J. H. Kim, “Genetic quantum algorithm and its application to combinatorial
optimization problem,” in Proceedings of the Congress on Evolutionary Computation, pp. 1354–1360, San
Diego, Calif, USA, July 2000.

[28] K. H. Han and J. H. Kim, “Quantum-inspired evolutionary algorithm for a class of combinatorial
optimization,” IEEE Transactions on Evolutionary Computation, vol. 6, no. 6, pp. 580–593, 2002.

[29] K. H. Han and J. H. Kim, “Quantum-inspired evolutionary algorithms with a new termination
criterion, Hε gate, and two-phase scheme,” IEEE Transactions on Evolutionary Computation, vol. 8, no.
2, pp. 156–169, 2004.

[30] A. Malossini, E. Blanzieri, and T. Calarco, “Quantum genetic optimization,” IEEE Transactions on
Evolutionary Computation, vol. 12, no. 2, pp. 231–241, 2008.

[31] I. Grigorenko and M. E. Garcia, “Calculation of the partition function using quantum genetic
algorithms,” Physica A, vol. 291, pp. 463–470, 2001.

[32] J. A. Yang, B. Li, and Z. Zhuang, “Multi-universe parallel quantum genetic algorithm and its
application to blind source separation,” in Proceedings of the International Conference on Neural Networks
and Signal Processing (ICNNSP ’03), pp. 393–398, Nanjing, China, December 2003.

[33] G. Zhang, W. Jin, and L. Hu, “A novel parallel quantum genetic algorithm,” in Proceedings of the 4th
International Conference on Parallel and Distributed Computing, Applications and Technologies, pp. 693–697,
Chengdu, China, August 2003.

[34] C. Hui, Z. Jiashu, and Z. Chao, “Chaos updating rotated gates quantum-inspired genetic algorithm,”
in Proceedings of the International Conference on Communications, Circuits and Systems, pp. 1108–1112,
Chengdu, China, June 2004.

[35] L. Wang, F. Tang, and H. Wu, “Hybrid genetic algorithm based on quantum computing for numerical
optimization and parameter estimation,” Applied Mathematics and Computation, vol. 171, no. 2, pp.
1141–1156, 2005.

[36] Q. Yang and S. Ding, “Methodology and case study of hybrid quantum-inspired evolutionary
algorithm for numerical optimization,” in Proceedings of the 3rd International Conference on Natural
Computation (ICNC ’07), pp. 608–612, Haikou, China, August 2007.

[37] N. Li, P. Du, and H. Zhao, “Independent component analysis based on improved quantum genetic
algorithm: application in hyperspectral images,” in Proceedings of IEEE International Geoscience and
Remote Sensing Symposium (IGARSS ’05), pp. 4323–4326, Seoul, Korea, July 2005.



Mathematical Problems in Engineering 27

[38] L. Abdesslem, M. Soham, and B. Mohamed, “Multiple sequence alignment by quantum genetic
algorithm,” in Proceedings of the 20th International Parallel and Distributed Processing Symposium, pp.
8–15, Rhodes Island, Greece, 2006.

[39] Z. Dong, Y. Huang, and P. Han, “Thermal process identification with radial basis function network
based on quantum genetic algorithm,” Proceedings of the Chinese Society of Electrical Engineering, vol.
28, no. 17, pp. 99–104, 2008.

[40] J. Gao and J. Wang, “A hybrid quantum-inspired immune algorithm for multiobjective optimization,”
Applied Mathematics and Computation, vol. 217, no. 9, pp. 4754–4770, 2011.

[41] M. S. Phadke, Quality Engineering Using Robust Design, Prentice-Hall, Upper Saddle River, NJ, USA,
1989.

[42] D. C. Montgomery, Design and Analysis of Experiments, John Wiley & Sons, New York, NY, USA, 1991.
[43] S. H. Park, Robust Design and Analysis for Quality Engineering, Chapman and Hall, London, UK, 1996.
[44] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley,

Boston, Mass, USA, 1989.
[45] M. Gen and R. Cheng, Genetic Algorithms and Engineering Design, JohnWiley and Sons, New York, NY,

USA, 1997.
[46] J. T. Tsai, T. K. Liu, and J. H. Chou, “Hybrid Taguchi-genetic algorithm for global numerical

optimization,” IEEE Transactions on Evolutionary Computation, vol. 8, no. 4, pp. 365–377, 2004.
[47] J. T. Tsai, J. H. Chou, and T. K. Liu, “Tuning the structure and parameters of a neural network by

using hybrid Taguchi-genetic algorithm,” IEEE Transactions on Neural Networks, vol. 17, no. 1, pp. 69–
80, 2006.

[48] W. Hock and K. Schittkowski, Test Examples for Nonlinear Programming Codes, vol. 187 of Lecture Notes
in Economics and Mathematical Systems, Springer, Berlin, Germany, 1981.

[49] C. A. Floudas and P. M. Pardalos, Recent Advances in Global Optimization, Princeton University Press,
Princeton, NJ, USA, 1992.

[50] Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution Programs, Springer, Berlin, Germany,
1994.

[51] J. J. Grefenstette, “Optimization of control parameters for genetic algorithms,” IEEE Transactions on
Systems, Man and Cybernetics, vol. 16, no. 1, pp. 122–128, 1986.

[52] L. Davis, “Adapting operator probabilities in genetic algorithms,” in Proceedings of the International
Conference on Genetic Algorithms (ICGA ’89), pp. 61–69, San Mateo, Calif, USA, 1989.

[53] J. H. Chou, W. H. Liao, and J. J. Li, “Application of Taguchi-genetic method to design optimal grey-
fuzzy controller of a constant turning force system,” in Proceedings of the 15th CSMEAnnual Conference,
pp. 31–38, Taiwan, 1998.

[54] S. Garcı́a, A. Fernández, J. Luengo, and F. Herrera, “A study of statistical techniques and performance
measures for genetics-based machine learning: accuracy and interpretability,” Soft Computing, vol. 13,
no. 10, pp. 959–977, 2009.

[55] S. Garcı́a, D. Molina, M. Lozano, and F. Herrera, “A study on the use of non-parametric tests for
analyzing the evolutionary algorithms’ behaviour: a case study on the CEC’2005 Special Session on
Real Parameter Optimization,” Journal of Heuristics, vol. 15, no. 6, pp. 617–644, 2009.

[56] F. Wilcoxon, “Individual comparisons by ranking method,” Biometrics, vol. 1, pp. 80–83, 1945.
[57] A. Field, Discovering Statistics Using SPSS, SAGE Publications, London, UK, 2006.
[58] J. Kennedy, R. C. Eberhart, and Y. Shi, Swarm Intelligence, Morgan Kaufmann, San Francisco, Calif,

USA, 2001.
[59] L. N. de Castro and J. Timmis, Artificial Immune Systems: A New Computational Intelligence Approach,

Springer, London, UK, 2002.
[60] C. J. Shih and T. K. Lai, “Mixed-discrete fuzzy programming for nonlinear engineering optimization,”

Engineering Optimization, vol. 23, pp. 187–199, 1995.
[61] K. M. Ragsdell and D. T. Phillips, “Optimal design of a class of welded structure using geometric

programming,” ASME Journal of Engineering for Industry-Transactions, vol. 98, no. 3, pp. 1021–1025,
1976.

[62] ANSYS, APDL Programmer’s Guide: ANSYS Release 10.0, ANSYS, Canonsburg, Pa, USA, 2005.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


