9,529 research outputs found

    Stable Feature Selection for Biomarker Discovery

    Full text link
    Feature selection techniques have been used as the workhorse in biomarker discovery applications for a long time. Surprisingly, the stability of feature selection with respect to sampling variations has long been under-considered. It is only until recently that this issue has received more and more attention. In this article, we review existing stable feature selection methods for biomarker discovery using a generic hierarchal framework. We have two objectives: (1) providing an overview on this new yet fast growing topic for a convenient reference; (2) categorizing existing methods under an expandable framework for future research and development

    Elephant Search with Deep Learning for Microarray Data Analysis

    Full text link
    Even though there is a plethora of research in Microarray gene expression data analysis, still, it poses challenges for researchers to effectively and efficiently analyze the large yet complex expression of genes. The feature (gene) selection method is of paramount importance for understanding the differences in biological and non-biological variation between samples. In order to address this problem, a novel elephant search (ES) based optimization is proposed to select best gene expressions from the large volume of microarray data. Further, a promising machine learning method is envisioned to leverage such high dimensional and complex microarray dataset for extracting hidden patterns inside to make a meaningful prediction and most accurate classification. In particular, stochastic gradient descent based Deep learning (DL) with softmax activation function is then used on the reduced features (genes) for better classification of different samples according to their gene expression levels. The experiments are carried out on nine most popular Cancer microarray gene selection datasets, obtained from UCI machine learning repository. The empirical results obtained by the proposed elephant search based deep learning (ESDL) approach are compared with most recent published article for its suitability in future Bioinformatics research.Comment: 12 pages, 5 Tabl

    Techniques for clustering gene expression data

    Get PDF
    Many clustering techniques have been proposed for the analysis of gene expression data obtained from microarray experiments. However, choice of suitable method(s) for a given experimental dataset is not straightforward. Common approaches do not translate well and fail to take account of the data profile. This review paper surveys state of the art applications which recognises these limitations and implements procedures to overcome them. It provides a framework for the evaluation of clustering in gene expression analyses. The nature of microarray data is discussed briefly. Selected examples are presented for the clustering methods considered

    Machine Learning and Integrative Analysis of Biomedical Big Data.

    Get PDF
    Recent developments in high-throughput technologies have accelerated the accumulation of massive amounts of omics data from multiple sources: genome, epigenome, transcriptome, proteome, metabolome, etc. Traditionally, data from each source (e.g., genome) is analyzed in isolation using statistical and machine learning (ML) methods. Integrative analysis of multi-omics and clinical data is key to new biomedical discoveries and advancements in precision medicine. However, data integration poses new computational challenges as well as exacerbates the ones associated with single-omics studies. Specialized computational approaches are required to effectively and efficiently perform integrative analysis of biomedical data acquired from diverse modalities. In this review, we discuss state-of-the-art ML-based approaches for tackling five specific computational challenges associated with integrative analysis: curse of dimensionality, data heterogeneity, missing data, class imbalance and scalability issues

    The importance of data classification using machine learning methods in microarray data

    Get PDF
    The detection of genetic mutations has attracted global attention. several methods have proposed to detect diseases such as cancers and tumours. One of them is microarrays, which is a type of representation for gene expression that is helpful in diagnosis. To unleash the full potential of microarrays, machine-learning algorithms and gene selection methods can be implemented to facilitate processing on microarrays and to overcome other potential challenges. One of these challenges involves high dimensional data that are redundant, irrelevant, and noisy. To alleviate this problem, this representation should be simplified. For example, the feature selection process can be implemented by reducing the number of features adopted in clustering and classification. A subset of genes can be selected from a pool of gene expression data recorded on DNA micro-arrays. This paper reviews existing classification techniques and gene selection methods. The effectiveness of emerging techniques, such as the swarm intelligence technique in feature selection and classification in microarrays, are reported as well. These emerging techniques can be used in detecting cancer. The swarm intelligence technique can be combined with other statistical methods for attaining better results

    A data mining framework based on boundary-points for gene selection from DNA-microarrays: Pancreatic Ductal Adenocarcinoma as a case study

    Get PDF
    [EN] Gene selection (or feature selection) from DNA-microarray data can be focused on different techniques, which generally involve statistical tests, data mining and machine learning. In recent years there has been an increasing interest in using hybrid-technique sets to face the problem of meaningful gene selection; nevertheless, this issue remains a challenge. In an effort to address the situation, this paper proposes a novel hybrid framework based on data mining techniques and tuned to select gene subsets, which are meaningfully related to the target disease conducted in DNA-microarray experiments. For this purpose, the framework above deals with approaches such as statistical significance tests, cluster analysis, evolutionary computation, visual analytics and boundary points. The latter is the core technique of our proposal, allowing the framework to define two methods of gene selection. Another novelty of this work is the inclusion of the age of patients as an additional factor in our analysis, which can leading to gaining more insight into the disease. In fact, the results reached in this research have been very promising and have shown their biological validity. Hence, our proposal has resulted in a methodology that can be followed in the gene selection process from DNA-microarray data

    EapGAFS: Microarray Dataset for Ensemble Classification for Diseases Prediction

    Get PDF
    Microarray data stores the measured expression levels of thousands of genes simultaneously which helps the researchers to get insight into the biological and prognostic information. Cancer is a deadly disease that develops over time and involves the uncontrolled division of body cells. In cancer, many genes are responsible for cell growth and division. But different kinds of cancer are caused by a different set of genes. So to be able to better understand, diagnose and treat cancer, it is essential to know which of the genes in the cancer cells are working abnormally. The advances in data mining, machine learning, soft computing, and pattern recognition have addressed the challenges posed by the researchers to develop computationally effective models to identify the new class of disease and develop diagnostic or therapeutic targets. This paper proposed an Ensemble Aprior Gentic Algorithm Feature Selection (EapGAFS) for microarray dataset classification. The proposed algorithm comprises of the genetic algorithm implemented with aprior learning for the microarray attributes classification. The proposed EapGAFS uses the rule set mining in the genetic algorithm for the microarray dataset processing. Through framed rule set the proposed model extract the attribute features in the dataset. Finally, with the ensemble classifier model the microarray dataset were classified for the processing. The performance of the proposed EapGAFS is conventional classifiers for the collected microarray dataset of the breast cancer, Hepatities, diabeties, and bupa. The comparative analysis of the proposed EapGAFS with the conventional classifier expressed that the proposed EapGAFS exhibits improved performance in the microarray dataset classification. The performance of the proposed EapGAFS is improved ~4 – 6% than the conventional classifiers such as Adaboost and ensemble
    corecore