7,226 research outputs found

    Glucose management for exercise using continuous glucose monitoring (CGM) and intermittently scanned CGM (isCGM) systems in type 1 diabetes: position statement of the European Association for the Study of Diabetes (EASD) and of the International Society for Pediatric and Adolescent Diabetes (ISPAD) endorsed by JDRF and supported by the American Diabetes Association (ADA)

    Get PDF
    Physical exercise is an important component in the management of type 1 diabetes across the lifespan. Yet, acute exercise increases the risk of dysglycaemia, and the direction of glycaemic excursions depends, to some extent, on the intensity and duration of the type of exercise. Understandably, fear of hypoglycaemia is one of the strongest barriers to incorporating exercise into daily life. Risk of hypoglycaemia during and after exercise can be lowered when insulin‐dose adjustments are made and/or additional carbohydrates are consumed. Glycaemic management during exercise has been made easier with continuous glucose monitoring (CGM) and intermittently scanned continuous glucose monitoring (isCGM) systems; however, because of the complexity of CGM and isCGM systems, both individuals with type 1 diabetes and their healthcare professionals may struggle with the interpretation of given information to maximise the technological potential for effective use around exercise (ie, before, during and after). This position statement highlights the recent advancements in CGM and isCGM technology, with a focus on the evidence base for their efficacy to sense glucose around exercise and adaptations in the use of these emerging tools, and updates the guidance for exercise in adults, children and adolescents with type 1 diabetes

    A systematic review on the impact of commercially available hybrid closed loop systems on psychological outcomes in youths with type 1 diabetes and their parents

    Get PDF
    Aim: To systematically assess the impact of commercially available hybrid closed loop (HCL) systems on psychological outcomes in youths with type 1 diabetes and their parents. Methods: We performed a systematic review including studies published in the last 10 years. PICOS framework was used in the selection process, and evidence was assessed using the GRADE system. Results: A total of 215 studies were identified after duplicate removal, and 31 studies were included in this systematic review: 20 on first-generation HCL and 11 on second-generation HCL systems. According to studies with moderate- to high-level quality of evidence, HCL systems led to better, or in some studies, unchanged psychological outcomes such as distress and burden related to diabetes management, fear of hypoglycemia, quality of life, satisfaction; instead, quality of sleep was perceived as improved, although results were not confirmed in studies using actigraphy. From semi-structured interviews, answers were more homogeneous, and participants reported a positive experience and attitude towards HCL technology, which was felt to be easy to use and apt to achieve glycemic targets. Conclusions: Evidence confirms the importance of evaluating the psychosocial needs of youths with diabetes and their families when starting HCL systems and during follow-up, and to set realistic expectations of what can be achieved along with awareness of the limitations of the systems, and educate and motivate families to overcome barriers

    Open source automated insulin delivery: addressing the challenge

    Get PDF
    Do-it-yourself automated insulin delivery systems for people living with type 1 diabetes use commercially available continuous glucose sensors and insulin pumps linked by unregulated open source software. Uptake of these systems is increasing, with growing evidence suggesting that positive glucose outcomes may be feasible. Increasing interest from people living with, or affected by, type 1 diabetes presents challenges to healthcare professionals, device manufacturers and regulators as the legal, governance and risk frameworks for such devices are not defined. We discuss the data, education, policy, technology and medicolegal obstacles to wider implementation of DIY systems and outline the next steps required for a co-ordinated approach to reducing variation in access to a technology that has potential to enable glucose self-management closer to target

    Newest diabetes related technologies for pediatric type 1 diabetes and its impact on routine care : a narrative synthesis of the literature

    Get PDF
    Purpose of Review This review aims to address the actual state of the most advanced diabetes devices, as follows: continuous subcutaneous insulin infusions (CSII), continuous glucose monitoring systems (CGM), hybrid-closed loop (HCL) systems, and “Do-it-yourself” Artifcial Pancreas Systems (DIYAPS) in children, adolescents, and young adults. This review has also the objective to assess the use of telemedicine for diabetes care across three diferent areas: education, social media, and daily care. Recent Findings Recent advances in diabetes technology after integration of CSII with CGM have increased the popularity of this treatment modality in pediatric age and shifted the standard diabetes management in many countries. We found an impressive transition from the use of CSII and/or CGM only to integrative devices with automated delivery systems. Although much has changed over the past 5 years, including a pandemic period that precipitated a broader use of telemedicine in diabetes care, some advances in technology may still be an additional burden of care for providers, patients, and caregivers. The extent of a higher rate of “auto-mode” use in diabetes devices while using the HCL/DIYAPS is essential to reduce the burden of diabetes treatment. Summary More studies including higher-risk populations are needed, and eforts should be taken to ensure proper access to cost-efective advanced technology on diabetes care

    Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016.

    Get PDF
    OBJECTIVE: To provide an update to "Surviving Sepsis Campaign Guidelines for Management of Sepsis and Septic Shock: 2012." DESIGN: A consensus committee of 55 international experts representing 25 international organizations was convened. Nominal groups were assembled at key international meetings (for those committee members attending the conference). A formal conflict-of-interest (COI) policy was developed at the onset of the process and enforced throughout. A stand-alone meeting was held for all panel members in December 2015. Teleconferences and electronic-based discussion among subgroups and among the entire committee served as an integral part of the development. METHODS: The panel consisted of five sections: hemodynamics, infection, adjunctive therapies, metabolic, and ventilation. Population, intervention, comparison, and outcomes (PICO) questions were reviewed and updated as needed, and evidence profiles were generated. Each subgroup generated a list of questions, searched for best available evidence, and then followed the principles of the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) system to assess the quality of evidence from high to very low, and to formulate recommendations as strong or weak, or best practice statement when applicable. RESULTS: The Surviving Sepsis Guideline panel provided 93 statements on early management and resuscitation of patients with sepsis or septic shock. Overall, 32 were strong recommendations, 39 were weak recommendations, and 18 were best-practice statements. No recommendation was provided for four questions. CONCLUSIONS: Substantial agreement exists among a large cohort of international experts regarding many strong recommendations for the best care of patients with sepsis. Although a significant number of aspects of care have relatively weak support, evidence-based recommendations regarding the acute management of sepsis and septic shock are the foundation of improved outcomes for these critically ill patients with high mortality

    Consensus Recommendations for the Use of Automated Insulin Delivery (AID) Technologies in Clinical Practice

    Get PDF
    International audienceThe significant and growing global prevalence of diabetes continues to challenge people with diabetes (PwD), healthcare providers and payers. While maintaining near-normal glucose levels has been shown to prevent or delay the progression of the long-term complications of diabetes, a significant proportion of PwD are not attaining their glycemic goals. During the past six years, we have seen tremendous advances in automated insulin delivery (AID) technologies. Numerous randomized controlled trials and real-world studies have shown that the use of AID systems is safe and effective in helping PwD achieve their long-term glycemic goals while reducing hypoglycemia risk. Thus, AID systems have recently become an integral part of diabetes management. However, recommendations for using AID systems in clinical settings have been lacking. Such guided recommendations are critical for AID success and acceptance. All clinicians working with PwD need to become familiar with the available systems in order to eliminate disparities in diabetes quality of care. This report provides much-needed guidance for clinicians who are interested in utilizing AIDs and presents a comprehensive listing of the evidence payers should consider when determining eligibility criteria for AID insurance coverage
    • 

    corecore