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Abstract

Physical exercise is an important component in the management of type 1 diabetes

across the lifespan. Yet, acute exercise increases the risk of dysglycaemia, and the

direction of glycaemic excursions depends, to some extent, on the intensity and dura-

tion of the type of exercise. Understandably, fear of hypoglycaemia is one of the stron-

gest barriers to incorporating exercise into daily life. Risk of hypoglycaemia during and

after exercise can be lowered when insulin-dose adjustments are made and/or addi-

tional carbohydrates are consumed. Glycaemic management during exercise has been

made easier with continuous glucose monitoring (CGM) and intermittently scanned

continuous glucose monitoring (isCGM) systems; however, because of the complexity

of CGM and isCGM systems, both individuals with type 1 diabetes and their healthcare

professionals may struggle with the interpretation of given information to maximise the

technological potential for effective use around exercise (ie, before, during and after).

This position statement highlights the recent advancements in CGM and isCGM tech-

nology, with a focus on the evidence base for their efficacy to sense glucose around

exercise and adaptations in the use of these emerging tools, and updates the guidance

for exercise in adults, children and adolescents with type 1 diabetes.

K E YWORD S
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1 | INTRODUCTION

Most common continuous glucose monitoring (CGM) systems mea-

sure glucose in the interstitial fluid, providing real-time sensor glucose

data, while intermittently scanned CGM (isCGM) systems measure

interstitial glucose levels at the time of scanning via a reader device.

CGM improves the time spent in euglycaemia and reduces (severe)

hypoglycaemia in people with impaired awareness of hypoglycaemia

(IAH), decreases HbA1c levels and ameliorates general measures of

glycaemic control, as shown in different randomised (crossover) stud-

ies [1-4]. isCGM reduces the time spent in hypoglycaemia, as shown

by randomised controlled studies [5,6], and decreases HbA1c levels, as

shown by a meta-analysis [7] of largely observational studies. Interest-

ingly, switching from isCGM to CGM may have a beneficial impact on

hypoglycaemia outcomes in people with a high risk of hypoglycaemia,

perhaps because the latter displays data without the need to scan and

is augmented by alerts for when the sensor glucose approaches

hypoglycaemia, as detailed in a randomised parallel-group study [8].

Nonetheless, CGM technology is also accompanied by limitations,

like skin irritation and pain, as assessed in children and pregnant

women [9-12], sleep disruption due to discomfort associated with the

position of the device [13], a constant reminder of having diabetes,

overload of information and that the device is visible to others

[11,13,14]. Furthermore, it is important to note that if hypo- and

hyperglycaemic symptoms are not in line with the sensor glucose

value, a confirmatory self-monitored blood glucose (SMBG) should be

performed.

A lag time between the glucose value in the vasculature and inter-

stitial fluid does exist and, thus, influences sensor glucose measure-

ment accuracy against blood glucose values [15]. Moreover, other

physiological changes during exercise, such as alterations in blood

flow rate, body temperature and body acidity, can theoretically have

an impact on interstitial glucose-sensing accuracy [15], though the

degree of impact of these factors is unknown on an individual basis.

Thus, when assessing the accuracy of different interstitial glucose

monitoring systems vs reference glucose, which is usually assessed by

a median or mean absolute relative difference (MARD), a part of the

difference should be interpreted as lag time rather than inaccuracy, as

shown in a secondary outcome analysis of an experimental study [16].

Additionally, other factors, like local metabolic rate, sensor site [17],

exercise type [18,19], vasoconstriction [20], potential interference

with medications [21], the direction of glucose rate of change [22,23]

and baseline glucose level may influence lag time [15]. Also, the glu-

cose concentration, per se, might have an impact on the sensor accu-

racy, as seen for isCGM, detailing a lower MARD for hyperglycaemia

and higher MARD for hypoglycaemia, as shown by two experimental

studies [24,25]. At rest, a lag time of �5 min is seen in healthy individ-

uals [26], while, in situations of rapid glucose changes, it can increase

to up to 12-24 min or even longer during exercise, as seen in people

with type 1 diabetes [22,23,27]. Depending on the CGM and isCGM

device, the overall mean of all MARDs during different types of exer-

cise in people with type 1 diabetes is �13.63% (95% CI 11.41%,

15.84%), as detailed in Figure 1 [16-18,22,24,25,27-37]. However,

more recent CGM and isCGM devices, not yet investigated for exer-

cise, might have a lower MARD and enhanced performance.

2 | METHODS USED FOR GROUP
CONSENSUS

Due to the growing popularity of CGM and isCGM technologies, this

writing group produced modified and novel recommendations based

on current evidence, consensus statements and position statements

for people with type 1 diabetes around exercise (ie, before, during and

after). This writing group consists of exercise physiologists, sports sci-

entists, diabetologists, endocrinologists, paediatric diabetologists, bio-

engineers and nutritionists. After performing one-on-one meetings

with all members of the writing group, a first outline was written

based on the members' recommendations, including defined work

packages for the authors. Subsequently, two lead authors (OM and

JKM) produced a manuscript and circulated it within the writing group

for further discussions. A consensus meeting was held during the

Advanced Technologies & Treatments for Diabetes (ATTD) 2020 con-

ference in Madrid, Spain, and consensus was obtained. A final version

of the position statement was then sent to the writing group for addi-

tional discussion, comments and final edits. All authors approved the

final manuscript.

3 | DATA SOURCES, SEARCHES AND
STUDY SELECTION

The consensus group accepted the position statement on physical

activity/exercise and diabetes, of the American Diabetes Association

(ADA) [38], the consensus statement for exercise management in type

1 diabetes [39] and the International Society for Pediatric and Adoles-

cent Diabetes (ISPAD) clinical practice consensus guidelines for exer-

cise in children and adolescents with diabetes [40] as a starting point.

Additionally, a systematic literature search was conducted by three

independent researchers, using PubMed, EMBASE and the Cochrane

Library for publications, on CGM and isCGM systems around exercise

in people with type 1 diabetes between November and December

2019. Details on the keywords and the search strategy are available in

electronic supplementary material (ESM) Tables 1-3. Original data

investigating the performance of CGM and isCGM systems during

exercise were used to produce a forest plot detailing the overall

MARD between sensor glucose and reference glucose. Systematic

reviews and meta-analyses were included as additional information

for the use of CGM and isCGM around exercise. In addition, reference

lists from each relevant publication were screened to identify addi-

tional articles pertinent to the topic. Papers were grouped per theme

and the authors reviewed the evidence. Nevertheless, though

evidence-based, the recommendations presented within this position

statement are the opinions of the authors.

Level of evidence was set according to the Memorandum of

Understanding (MOU) between the European Association for the
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Study of Diabetes (EASD) and the writing group of this position state-

ment. Levels of evidence are, thus, categorised as: (Ia) evidence from

meta-analysis of randomised controlled trials; (Ib) evidence from at

least one randomised controlled trial; (IIa) evidence from at least one

controlled study without randomisation; (IIb) evidence from at least

one other type of quasi-experimental study; (III) evidence from non-

experimental descriptive studies, such as comparative studies, correla-

tion studies and case-control studies; or (IV) evidence from expert

committee reports or opinions or clinical experience of respected

authorities, or both. If recommendations are given within this position

statement, the strength of those are expressed as: (A) directly based

on category I evidence; (B) directly based on category II evidence or

extrapolated recommendation from category I evidence; (C) directly

based on category III evidence or extrapolated recommendation from

category I or II evidence; (D) directly based on category IV evidence

or extrapolated recommendation from category I, II or III.

4 | THERAPY DECISIONS FROM SENSOR
GLUCOSE VALUES AND TREND ARROWS
FOR EXERCISE

Different groups of people with type 1 diabetes may require different

glycaemic ranges in preparation for, during and after performing
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1.64
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0.50

0.52
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0.66
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3.75

2.02

1.36
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1.63

1.00

1.36

0.40

1.00

0.16
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0.46

2.14
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Weight (%)

F IGURE 1 MARD (%) of current CGM and isCGM devices during exercise. MARD data are weighted for the number of participants and SD
of MARD for different manufacturers of all CGM and isCGM devices. The dashed line and the green diamond represent the MARD of all CGM
and isCGM devices. Red diamonds represent the MARD for each specific company. Horizontal bars represent the 95% CIs for the specific
studies. All types of studies using CGM and/or isCGM during exercise in people with type 1 diabetes were included (the studies by Giani et al
[36] and Breton et al [29] were performed in children and adolescents). This figure is available as part of a downloadable slideset
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TABLE 1 Sensor glucose targets in advance of exercise in regard to different groups of people with type 1 diabetes

Note: Sensor glucose targets are detailed for the following groups in type 1 diabetes (T1D): intensively exercising and/or low risk of hypoglycaemia (Ex 2);

moderately exercising and/or moderate risk of hypoglycaemia (Ex 1); minimally exercising and/or high risk of hypoglycaemia (Ex 0).

When reaching the required sensor glucose level to start exercise, only consume carbohydrates again when trend arrow is starting to decrease.

These recommendations are not applicable to hybrid closed-loop systems.

Green shading, no/minimal action required; light-yellow shading, minimal/moderate action required; dark-yellow shading, moderate/intense action

required; red shading, no/delay exercise.

AE, mild-to-moderate intensity aerobic exercise; CHO, carbohydrate; Ex, exercise; HIT, high-intensity training; hypo, hypoglycaemia; RT, resistance

training.
aRecommendation for older adults with coexisting chronic illnesses and intact cognitive and functional status.
bRecommendation for older adults with coexisting chronic illnesses or two or more instrumental ADL impairments or mild-to-moderate cognitive

impairment.
c50% of regular insulin correction factor when sensor glucose is close to the upper threshold.
dDelay exercise until reaching at least 5.0 mmoL/L (90 mg/dL) and , , or
eDelay exercise until reaching at least 3.9-4.9 mmoL/L (70-89 mg/dL) and
fDelay exercise until reaching a sensor glucose of 3.9-4.9 mmoL/L (70-89 mg/dL) with an arrow if an increase in sensor glucose is expected during exer-

cise, or delay exercise until reaching at least 5.0 mmoL/L (90 mg/dL) and , , or if a decrease in sensor glucose during exercise is expected.

MOSER ET AL. 5



exercise when using CGM and isCGM systems, based on different

position and consensus statements [40-43]. As discussed previously,

CGM and isCGM devices may provide a different glucose reading

compared with the actual SMBG, especially during exercise, and, thus,

the sensor glucose value should be interpreted together with the

corresponding trend arrow. Safe glycaemic ranges and specific

TABLE 2 Sensor glucose targets during exercise in regard to different groups of people with type 1 diabetes

Note: Sensor glucose targets are detailed for the following groups in type 1 diabetes (T1D): intensively exercising and/or low risk of hypoglycaemia (Ex 2);

moderately exercising and/or moderate risk of hypoglycaemia (Ex 1); minimally exercising and/or high risk of hypoglycaemia (Ex 0).

When reaching the required sensor glucose level during exercise, only consume carbohydrates again when trend arrow is starting to decrease.

These recommendations are not applicable to hybrid closed-loop systems.

Green shading, no/minimal action required; light-yellow shading, minimal/moderate action required; dark-yellow shading, moderate/intense action

required; red shading, stop exercise.

AE, mild-to-moderate intensity aerobic exercise; CHO, carbohydrate; Ex, exercise; hypo, hypoglycaemia.
aRecommendation for older adults with coexisting chronic illnesses and intact cognitive and functional status.
bRecommendation for older adults with coexisting chronic illnesses or two or more instrumental ADL impairments or mild-to-moderate cognitive

impairment.
c50% of the regular insulin correction factor.
dCheck sensor glucose at least 30 min after carbohydrate consumption and repeat treatment if required.
eRestart exercise when reaching sensor glucose levels of at least 4.4 mmoL/L (80 mg/dL) and , or

6 MOSER ET AL.



TABLE 3 Sensor glucose targets for carbohydrate consumption during the post-exercise phase, including the nocturnal post-exercise phase
if exercise was performed in the late afternoon/evening

Note: Sensor glucose thresholds for treatments are detailed for the following groups in type 1 diabetes(T1D): intensively exercising and/or low risk of

hypoglycaemia (Ex 2); moderately exercising and/or moderate risk of hypoglycaemia (Ex 1); minimally exercising and/or high risk of hypoglycaemia (Ex 0).

If an insulin correction is applied due to high sensor glucose levels, then the regular correction factor might be reduced by up to 50%.

Check sensor glucose at least 30 min after carbohydrate consumption and repeat treatment if required.

These recommendations are not applicable to hybrid closed-loop systems.

The intensity of yellow shading indicates the level of action required: lighter yellow shading indicates that minimal/moderate action is required, while

darker yellow shading indicates that moderate/intense action is required.

CHO, carbohydrate; Ex, exercise; hypo, hypoglycaemia.
aRecommendation for older adults with coexisting chronic illnesses and intact cognitive and functional status.
bRecommendation for older adults with coexisting chronic illnesses or two or more instrumental ADL impairments or mild-to-moderate cognitive

impairment.

Assessment of exercise experience Assessment of risk of hypoglycaemia

Q: How often are you performing Ex per week?
(Ex defined as ≥45 min per session)

Assessment of awareness of hypoglycaemia
(e.g. Gold Score, Clark Score)

None (Ex 0) 1–2 (Ex 1) >2 (Ex 2)

Minimally
exercising

Intensively
exercising

Moderately

exercising 
Low risk of

hypoglycaemia
High risk of

hypoglycaemia
Moderate risk of

hypoglycaemia

Low/moderate risk
of hypoglycaemia

AH IAH
High risk of

hypoglycaemia

AND/OR

AND/OR

SH last 6 months
High risk of

hypoglycaemia

Assessment of TBR
by CGM/isCGM

TBR <4% TBR 4–8% TBR >8%

F IGURE 2 Assessment of exercise experience and risk of hypoglycaemia. Exercise (Ex) represents how often people with type 1 diabetes are
exercising with a duration ≥45 min per session per week. Assessment of risk of hypoglycaemia should be based on scoring systems for being
aware of hypoglycaemia (AH) or showing IAH. In addition, if the scoring system reveals AH, the time below range (TBR; <3.9 mmoL/L, <70
mg/dL) over the last 3 months should be evaluated to detail the degree of awareness. Furthermore, if an episode of severe hypoglycaemia
(SH) occurred within the last 6 months, then there might be a high risk of hypoglycaemia during exercise. This figure is available as part of a
downloadable slideset
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carbohydrate consumption are recommended below, based on previ-

ous position and consensus statements [38](D), [39](D), [40](D), and

modified, based on experimental studies [44](D), [45](D) as well as on

the experience of this writing group. Groups within the population of

type 1 diabetes, based on different characteristics in this position

statement, are defined as children and adolescents (6 to <18 years)

and adults (≥18 years) with type 1 diabetes. Additionally, further

groups were defined based on the risk of hypoglycaemia, exercise

experience and health status (older adults aged ≥65 years). Since

structured exercise training is less common in pre-schoolers, as

observed in healthy individuals [46], the writing group is unable to

provide specific recommendations due to the general lack of scientific

evidence for this age group. Sustained hyperglycaemia (hours) and/or

frequently occurring hypoglycaemia during exercise should be dis-

cussed between the individual and his/her healthcare professional

team to develop individualised strategies that improve glycaemic con-

trol and support ongoing regular participation in exercise. The recom-

mendations below serve as starting points and should be

individualised.

Different glucose responses are evident depending on the type

of exercise, as seen in different experimental studies [47-50]; mild-to-

moderate aerobic exercise decreases glucose levels [51-53], whilst

intense aerobic and anaerobic exercise and exercises with a load-profile

similar to interval exercise stabilise [54] or increase glucose levels, as

seen in various experimental studies [55-57]. Independent of the afore-

mentioned groups (adults and children/adolescents), individuals who do

not routinely exercise may face an increased risk of hypoglycaemia, as

partially shown in a prospective observational study [58](C). Additionally,

IAH [59](C), preceding episodes of hypoglycaemia [60](B) and advanced

age [58](C) potentially increase the risk of hypoglycaemia during and

after exercise. Therefore, the writing group recommends that the follow-

ing groups can be categorised:

• Currently minimally exercising and/or high risk of hypoglycaemia

• Currently moderately exercising and/or moderate risk of

hypoglycaemia

• Currently intensively exercising and/or low risk of hypoglycaemia

Assessment of exercise routine and risk of hypoglycaemia is rec-

ommended to be performed by a decision tree, modified based on a

large-scale observational study [58](C), and a recent consensus state-

ment [41](D) (Figure 2).

TABLE 4 General insulin therapy and carbohydrate recommendations for exercise in children and adolescents with type 1 diabetes

Note: BW, body weight; CHO, carbohydrates; CSII, continuous subcutaneous insulin infusion; IOB, insulin on board; MDI, multiple daily injections.
aBasal insulin dose might be reduced the day prior and on the day of all-day exercise.
bBasal insulin rate might be reduced by 20% before bedtime if late afternoon/evening exercise was performed, depending on the duration and intensity of

exercise.
cRegular IOB, no/little insulin reduction has been performed; less IOB, moderate/high insulin reduction has been performed.
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Older and/or frail adults with type 1 diabetes (aged ≥65 years) may

have a different health status that is reflected by different glycaemic

goals based on HbA1c and time in range (TIR), as discussed by recent

consensus and position statements [41,43]. In general, for this group,

exercise is recommended to be performed 2-3 times per week as dis-

cussed by a position statement [38](D). However, older people with

type 1 diabetes are at an increased risk of severe hypoglycaemia around

physical activity and exercise [58](C). Considering this, higher glycaemic

targets can be recommended for exercise based on patient characteris-

tics and health status, to lower the risk of hypoglycaemia. Therefore,

exercise can also be recommended for older adults with few coexisting

chronic illnesses and intact cognitive and functional status, and for older

adults with coexisting chronic illnesses or two or more instrumental

activities-of-daily-living (ADL) impairments or mild-to-moderate cogni-

tive impairment [61](D). For older adults with very complex and poor

health status, the possibility to perform exercise should be evaluated on

a case-by-case basis [61](D).

Recommendations for exercise based on habitual physical activ-

ity, risk of hypoglycaemia and health status (older and/or frail people

with type 1 diabetes) should follow a more conservative strategy,

TABLE 5 Sensor glucose targets in advance to exercise in regard to different groups of children and adolescents with type 1 diabetes

Note: Sensor glucose targets are detailed for the following groups in type 1 diabetes (T1D): intensively exercising and/or low risk of hypoglycaemia (Ex 2);

moderately exercising and/or moderate risk of hypoglycaemia (Ex 1), minimally exercising and/or high risk of hypoglycaemia (Ex 0).

When reaching the required sensor glucose level to start exercise, only consume carbohydrates again when the trend arrow is starting to decrease.

These recommendations are not applicable to hybrid closed-loop systems.

Green shading, no/minimal action required; light-yellow shading, minimal/moderate action required; dark-yellow shading, moderate/intense action

required; red shading, no/delay exercise.

AE, mild-to-moderate intensity aerobic exercise; CHO, carbohydrates; Ex, exercise; hypo, hypoglycaemia.
a50% of regular insulin correction factor when sensor glucose is close to the upper glycaemic threshold.
bDelay exercise until reaching at least 5.0 mmoL/L (90 mg/dL) and, ideally, from 7.0 mmoL/L to 10.0 mmoL/L (126 mg/dL to 180 mg/dL) or higher in those

with an increased risk of hypoglycaemia accompanied by , , or
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which enables the avoidance of exercise-induced glycaemic excur-

sions. If a person is exercising more routinely and/or has a lower risk

of hypoglycaemia over a period of 3 months, then the glycaemic

upper and lower thresholds for carbohydrate consumption might be

adjusted. Furthermore, in the following sections, generic trend arrows

are given independently of the device used.

TABLE 6 Sensor glucose targets during exercise in regard to different groups of children and adolescents with type 1 diabetes

Note: Sensor glucose targets are detailed for the following groups in type 1 diabetes (T1D): intensively exercising and/or low risk of hypoglycaemia (Ex 2);

moderately exercising and/or moderate risk of hypoglycaemia (Ex 1); minimally exercising and/or high risk of hypoglycaemia (Ex 0).

When reaching the required sensor glucose level during exercise, only consume carbohydrates again when the trend arrow is starting to decrease.

These recommendations are not applicable to hybrid closed-loop systems.

Green shading, no/minimal action required; light-yellow shading, minimal/moderate action required; dark-yellow shading, moderate/intense action

required; red shading, stop exercise.

AE, mild-to-moderate intensity aerobic exercise; CHO, carbohydrates; Ex, exercise; hypo, hypoglycaemia.
aElevated blood ketone levels should lead to repeated controls after exercise to ensure that ketosis (blood ketones >1.5 mmoL/L) or diabetic ketoacidosis

is not developed. If sensor glucose is >15.0 mmoL/L (>270 mg/dL) and blood ketones are ≤1.5 mmoL/L, then only mild aerobic exercise may be

performed.
b50% of regular insulin correction factor when sensor glucose is close to the upper glycaemic threshold.
cRestart exercise when reaching at least sensor glucose levels of 5.0 mmoL/L (90 mg/dL) and or
dCheck sensor glucose at least 30 min after carbohydrate consumption and repeat treatment if required.
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5 | ADULTS WITH TYPE 1 DIABETES

CGM and isCGM systems can be used as effective tools to help indi-

cate when carbohydrate intake should be initiated to prevent or treat

hypoglycaemia during prolonged exercise, as seen in experimental

studies in children and adolescents with type 1 diabetes [44,45].

However, the significant lag time in these technologies should be

taken into consideration when using them to determine when to con-

sume carbohydrates [27]. Furthermore, isCGM requires frequent

scanning since no automatic alerts are available for the first-

generation device, as discussed in a narrative review [62]. For adults

with type 1 diabetes, the following recommendations are given

regarding the glycaemic thresholds below which carbohydrates might

be consumed [38](D), [39](D), [40](D), [44](D), [45](D):

• <7.0 mmoL/L (<126 mg/dL) for adults with type 1 diabetes, inten-

sively exercising and/or with low risk of hypoglycaemia

• <8.0 mmoL/L (<145 mg/dL) for adults with type 1 diabetes, mod-

erately exercising and/or with moderate risk of hypoglycaemia, or

for older adults with coexisting chronic illnesses and intact cogni-

tive and functional status

• <9.0 mmoL/L (<161 mg/dL) for adults with type 1 diabetes, mini-

mally exercising and/or with high risk of hypoglycaemia, or for older

adults with coexisting chronic illnesses or two or more instrumental

ADL impairments or mild-to-moderate cognitive impairment.

To lower the risk of hypoglycaemia during prolonged exercise, exer-

cise should be initiated when mealtime insulin levels are low or about

90 min after the last carbohydrate-rich meal with a reduction in mealtime

insulin [38](D), [39](D). However, to achieve beneficial effects of exercise

on overall glycaemic control, exaggerated bolus insulin dose reductions

should be avoided, as discussed in a meta-analysis [63](D).

5.1 | Preparation in advance to exercise

If a CGM or a second-generation isCGM device is used, hyp-

oglycaemic alerts might be set at the highest possible alarm lower

threshold at the onset of exercise, which is currently 5.6 mmoL/L

(100 mg/dL) [22](D). This elevated hypoglycaemia alert setting is in

line with the expected delay between interstitial glucose and blood

glucose when levels are dropping during prolonged exercise [22].

Importantly, for the second-generation isCGM device, an alert is only

shown once and not repeated. Hyperglycaemic alerts can be set to

10.0 mmoL/L (180 mg/dL) or higher, to avoid alarm fatigue [64](D).

The rate-of-glucose-change alerts (dropping or rising) can be used to

initiate an earlier action, such as a decrease or increase in basal insulin

rate for those on continuous subcutaneous insulin infusion (CSII), or a

change to glucose-rich or glucose-free fluids, depending on the direc-

tion of change. Thirty to 60 min prior to the start of prolonged aerobic

exercise (>30 min), to reduce hypoglycaemia risk, low glycaemic index

carbohydrates can be consumed in those who do not reduce insulin

dose, aiming to achieve pre-exercise sensor glucose targets. A detailed

description of pre-exercise sensor glucose levels, trend arrows and

consumption of carbohydrates is shown in Table 1 based on position

and consensus statements and experimental studies [38](D), [39](D),

[40](D), [44](D), [45](D).

5.2 | During exercise

Independent of the type of exercise, the target sensor glucose ranges

should be between 5.0 mmoL/L and 10.0 mmoL/L (90 mg/dL and180

mg/dL) and, ideally, between 7.0 mmoL/L and 10.0 mmoL/L (126 mg/dL

and 180 mg/dL) for prolonged aerobic exercise for the majority of

adults with type 1 diabetes, and slightly higher for those with an

TABLE 7 Sensor glucose targets for carbohydrates consumption during the post-exercise phase, including the nocturnal post-exercise
phase if exercise was performed in the late afternoon/evening, in children and adolescents with type 1 diabetes

Note: Sensor glucose threshold for treatments is detailed for the following groups with type 1 diabetes (T1D): intensively exercising and/or low risk of

hypoglycaemia (Ex 2); moderately exercising and/or moderate risk of hypoglycaemia (Ex 1); minimally exercising and/or high risk of hypoglycaemia (Ex 0).

If an insulin correction is applied due to high sensor glucose levels, then the regular correction factor might be reduced by up to 50%.

These recommendations are not applicable to hybrid closed-loop systems.

The intensity of yellow shading indicates the level of action required: lighter yellow shading indicates that minimal/moderate action is required, while

darker yellow shading indicates that moderate/intense action is required.

CHO, carbohydrates; Ex, exercise; hypo, hypoglycaemia.
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increased risk of hypoglycaemia (Table 2) [38](D), [39](D). If sensor

glucose is expected to increase, as often seen in people performing

fasted high-intensity interval training [55,56], resistance training

[49,65,66] and, also, in training above the anaerobic threshold [67],

then an insulin correction can be administered at the onset of, as well

as during exercise (50% of typical correction factor) [68](D), [69](D).

For safety reasons, the exercise should be suspended, at least

temporarily, if the sensor glucose level reaches <3.9 mmoL/L

(<70 mg/dL) and oral carbohydrates should be consumed [70](D). Fur-

thermore, at this lower threshold, a confirmatory SMBG might be per-

formed to confirm the sensor glucose level. After reaching a sensor

glucose level close to 4.4 mmoL/L (80 mg/dL), accompanied by a hori-

zontal/upward trend arrow, exercise can be restarted. Many CGM

systems provide a hypoglycaemia prediction alert. If the sensor glu-

cose level is predicted to reach <3.0 mmoL/L (<54 mg/dL), then fast-

acting oral carbohydrates should be consumed immediately. If sensor

glucose drops below 3.0 mmoL/L (54 mg/dL) then exercise should not

be restarted. During exercise, fast-acting liquid carbohydrates should

be consumed consisting primarily of glucose (dextrose) or a mixture of

glucose/fructose, as discussed in narrative reviews [71](D), [72](D). A

read or scan from the CGM or isCGM system might be performed

every 15-30 min, if feasible, during exercise to ensure early and

appropriate treatment against hypo- or hyperglycaemia, and to assess

the appropriateness of strategies to prevent dysglycaemia. With

CGM, alerts could also be activated regarding the rate of change in

glucose, providing the user with valuable information. For the majority

of adults with type 1 diabetes who are at a low risk of hypoglycaemia,

at a glycaemic threshold of 7.0 mmoL/L (126 mg/dL) accompanied by

a horizontal trend arrow, 10-15 g of carbohydrates should be con-

sumed; 15-25 g carbohydrates should be consumed immediately if

accompanied by a (slight) downward trend arrow; 20-35 g of carbo-

hydrates should be consumed if accompanied with a downward

trending arrow (Table 2) [38](D), [39](D), [40](D), [44](D), [45](D). Car-

bohydrates should be consumed regularly (eg, every 15 to 20 min)

when reaching the lower glycaemic threshold, and carbohydrate sup-

plementation should be repeated if sensor glucose is not rising

according to the trend arrows within 30 min. These carbohydrate rec-

ommendations should be used as a guidance and personalised based

on individual glucose responses to exercise. Carbohydrate consump-

tion for endurance performance in individuals with type 1 diabetes is

similar to the carbohydrate needs in healthy individuals (30-80 g car-

bohydrates per h), typically reflecting the physiological and/or perfor-

mance demands of exercise [73](A). A lower carbohydrate intake can

be achieved during prolonged exercise if desired, but aggressive insu-

lin dose adjustments are likely to be needed [51](B), [74](B), [75](D).

5.3 | Post-exercise period

During the first 90 min following exercise, an interstitial glycaemic

range of 4.4 mmoL/L to 10.0 mmoL/L (80 mg/dL to 180 mg/dL) might

be targeted in the majority of people with type 1 diabetes who are at

a low risk of hypoglycaemia, reflecting the clinical targets for CGM

and isCGM [41](D) with a slightly increased lower glycaemic limit, as

recently recommended [76](D). People with an elevated risk of

hypoglycaemia are recommended to increase the lower limit of sensor

glucose to 5.0 mmoL/L (90 mg/dL) or 5.6 mmoL/L (100 mg/dL) during

the post-exercise period [58](D). Sensor glucose may be monitored

regularly via CGM, or every 15-30 min in the case of isCGM, during the

90 min post-exercise period, and the hypoglycaemia alert can be set at

4.4 mmoL/L (80 mg/dL), 5.0 mmoL/L (90 mg/dL) or 5.6 mmoL/L

(100 mg/dL) based on the risk of hypoglycaemia. If sensor glucose is

rapidly increasing in the post-exercise phase (detected by CGM when

using the rate-of-change alert), then an insulin correction can be consid-

ered (50% of typical correction dose) [68](D), [69](D). If exercise was

performed at a moderate-to-high intensity and/or for a long duration,

then glucose may decrease during the acute post-exercise period, as

seen in experimental studies [74,77]. At a glycaemic threshold of

4.4 mmoL/L (80 mg/dL) or slightly higher, based on the risk of

hypoglycaemia [76], accompanied by a horizontal trend arrow, �10 g of

carbohydrates are recommended to be consumed; 15 g of carbohy-

drates should be consumed if accompanied by a (slight) downward

trend arrow; an individual amount of carbohydrates should be con-

sumed if accompanied by rapidly falling downward trend arrows

(Table 3) [38](D), [39](D), [40](D), [44](D), [45](D). Treatment should be

repeated if sensor glucose is not rising within 30 min as reflected by

trend arrows. If an interstitial level <3.0 mmoL/L (<54 mg/dL) is dis-

played, rapidly acting carbohydrates should be given and a confirmatory

SMBG may be performed. Exogenous glucagon is recommended if the

person is unable to self-treat [78](B).

5.4 | Nocturnal post-exercise period

Following an evening or late afternoon exercise session, or an exercise

session of high intensity and long duration, people with type 1 diabe-

tes are at an elevated risk of nocturnal hypoglycaemia, as shown in

experimental and observational studies [79,80]. Hypoglycaemia typi-

cally occurs within 6 to 15 h after exercise, although the risk may

remain longer, as seen in children and adolescents, as well as in adults

[81,82]. People using a CGM system should, therefore, set the

hypoglycaemia alert at 4.4 mmoL/L (80 mg/dL) during the night-time

period, or higher for groups with an elevated risk of hypoglycaemia to

allow for earlier proactive treatments [76](D). When reaching glucose

levels of 4.4 mmoL/L (80 mg/dL), or higher if deemed necessary, the

following carbohydrate guidance can be applied [38](D), [39](D), [40]

(D), [44](D), [45](D): with a horizontal trend arrow, �10 g of carbohy-

drates are recommended to be consumed; 15 g of carbohydrates

should be consumed if accompanied by a (slight) downward trend

arrow; and an individual amount of carbohydrates should be con-

sumed if accompanied by downward trend arrows. These recommen-

dations might also be applied for the second generation of isCGM

systems where a real-time alert is given when reaching hypo- and

hyperglycaemia threshold.

People using an isCGM system should perform at least one

scan during the night-time period, preferably between midnight
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and 03:00 hours, since this is typically the nocturnal nadir after

exercise [83](D). Carbohydrates should be given at a sensor glucose

level of 4.4 mmoL/L (80 mg/dL) or earlier in people with an ele-

vated risk of hypoglycaemia, following the same strategy as given

for CGM [76](D) (Table 3). When carbohydrates were consumed

after reaching this lower threshold, a scan should be performed no

later than 2 h afterwards. If considered necessary, this procedure

should be repeated frequently based on the lower glycaemic

threshold and trend arrow.

6 | CHILDREN AND ADOLESCENTS WITH
TYPE 1 DIABETES

Exercise may improve glycaemic control, blood lipid profiles, physical

fitness and quality of life and can decrease the total daily dose of insu-

lin in children and adolescents with type 1 diabetes, as shown in

randomised controlled trials and in a systematic review [84-87].

Despite the positive effects of exercise, deterioration of diabetes con-

trol, fear of hypoglycaemia and other exercise-related fears similar to

the ones experienced by children without diabetes are major barriers

to an active lifestyle in children and adolescents with type 1 diabetes,

as assessed via questionnaire [88]. Furthermore, parents of children

and adolescents with type 1 diabetes reported a conflict between the

need for planned activity to control glucose levels and the spontane-

ous nature of children's usual activity [89]. Therefore, children and

adolescents, as well as their parents, should actively participate in

consultations with the healthcare professional team, as parental sup-

port appears to be the key to an active lifestyle [88](C).

Hypo- and hyperglycaemic alerts should be set at 5.6 mmoL/L

(100 mg/dL) and 10.0 mmoL/L (180 mg/dL) or individualised if

required [40](D), [44](D), [45](D). The rate-of-glucose-change alerts

should be used to initiate an earlier action [40](D), [44](D), [45](D).

The use of remote monitors (eg, via a mobile phone application to

remotely follow sensor glucose in real-time) should be used to assess

and react to glycaemic excursions during exercise [40](D). Both par-

ents and most caregivers report a decreased overall worry and stress

when using remote monitoring [90,91]. Carbohydrate supplementa-

tion might be performed in relation to the individual body weight or

as an absolute amount [40](D); however, it was shown that weight-

adjusted carbohydrate supplementation is more effective to treat

hypoglycaemia in children with type 1 diabetes in a randomised cross-

over study [92]. The guidelines in Table 4 can be followed for exer-

cise, which are in alignment with the ISPAD Clinical Practice

Consensus Guidelines 2018: exercise in children and adolescents with

diabetes, and other consensus and position statements [38](D), [39]

(D), [40](D).

6.1 | Preparation in advance to exercise

For the immediate pre-exercise phase, the target sensor glucose range

should be between 7.0 mmoL/L and 10.0 mmoL/L (126 mg/dL and

180 mg/dL), or between 8.0 mmoL/L and 11.0 mmoL/L (145 mg/dL

and 198 mg/dL) for children and adolescents moderately exercising

and/or with a moderate risk of hypoglycaemia, and 9.0 mmoL/L and

12.0 mmoL/L (162 mg/dL and 216 mg/dL) for children and adoles-

cents minimally exercising and/or with a high risk of hypoglycaemia

[40](D), [93](D). These glucose targets can be achieved by mealtime

insulin dose reduction ranging from 25% to 75% (Table 4) [38](D), [39]

(D), [40](D). Bolus insulin dose reduction can be based on the individ-

ual glucose response to the type, intensity and duration of exercise

[94](D). If sensor glucose concentration is below these glycaemic tar-

gets, then small amounts of oral carbohydrates should be consumed

(eg, 10-15 g of carbohydrates) [40](D), [44](D), [45](D). Exercise may

be started when reaching 5.0 mmoL/L (90 mg/dL) glucose and, ideally,

from 7.0 mmoL/L to 10.0 mmoL/L (126 mg/dL to 180 mg/dL) or

higher in those with an increased risk of hypoglycaemia (Table 5) [40]

(D). Depending on the trend arrows on the CGM or isCGM, 5 g, 10 g,

15 g or more carbohydrates may be consumed when reaching the

predefined lower glycaemic thresholds [40](D), [44](D), [45](D). At an

upper limit of >15.0 mmoL/L (>270 mg/dL) and blood ketone levels

>1.5 mmoL/L, exercise is contraindicated and blood ketone levels of

0.6-1.4 mmoL/L should be addressed before exercise [40](D), [95](D),

[96](D). In the case of extreme hyperglycaemia, an insulin correction

might be applied (50% of a typical correction dose) [97](D). When

using a CGM or a second-generation isCGM, the hypoglycaemia alert

threshold should be set at 5.6 mmoL/L (100 mg/dL) and the hyper-

glycaemia alert threshold should be set at 10.0 mmoL/L (180 mg/dL)

or higher in those with an elevated risk of hypoglycaemia [40](D), [44]

(D), [45](D). Predictive hypoglycaemia thresholds, as well as rate-of-

change-in-glucose alerts, should be switched on for CGM [40](D), [44]

(D), [45](D). Remote devices can be used by parents and caregivers to

facilitate supportive action during exercise in children and adolescents

with type 1 diabetes [90](D). The strategies given in Table 5 should be

applied to achieve the recommended glycaemic targets [40](D), [44]

(D), [45](D).

6.2 | During exercise

Sensor glucose ranges of 5.0 mmoL/L to 10.0 mmoL/L (90 mg/dL to

180 mg/dL) and, ideally, of 7.0 mmoL/L to 10.0 mmoL/L (126 mg/dL

to 180 mg/dL) should be targeted for exercise [40](D), [44](D), [45]

(D).These ranges should be higher for children and adolescents who

are minimally exercising and/or with a higher risk of hypoglycaemia

(Table 6) [40](D), [44](D), [45](D). Carbohydrate consumption at a

lower threshold of 7.0 mmoL/L (126 mg/dL l), 8.0 mmoL/L (145 mg/

dL) or 9.0 mmoL/L (162 mg/dL), based on the risk of hypoglycaemia,

with respect to trend arrows has been shown to avoid significant

hypoglycaemia in children with type 1 diabetes [40](D), [44](D), [45]

(D). If sensor glucose is >15.0 mmoL/L (>270 mg/dL), blood ketones

should be measured [40](D), [95](D), [96](D). If blood ketones are

>1.5 mmoL/L, exercise should be stopped, the source of hyper-

glycaemia should be assessed and an insulin correction might be

applied (50% of typical correction dose) [97](D). Elevated blood
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ketone levels should lead to repeated glucose and blood ketone mea-

surements after exercise to ensure that ketosis (blood ketones

>1.5 mmoL/L) or diabetic ketoacidosis is not developed. If sensor glu-

cose is >15.0 mmoL/L (>270 mg/dL) and blood ketones are ≤1.5 mmoL/

L, then only mild aerobic exercise may be performed to avoid a further

increase in glucose levels by sympathoadrenal responses to intense (an)

aerobic exercise [98](D). Exercise may be stopped at a sensor glucose

level of <5.0 mmoL/L (<90 mg/dL), SMBG may be performed and carbo-

hydrates should be consumed [40](D), [95](D), [96](D). Exercise may be

restarted when reaching a sensor glucose level of 5.0 mmoL/L (90 mg/

dL) accompanied by horizontal or upward trend arrows. Exercise should

not be commenced when reaching a sensor glucose level of

<3.0 mmoL/L (<54 mg/dL). Sensor glucose may be checked every

15 min during exercise and parents/caregivers are recommended to

observe sensor glucose levels via a remote device [99](D). With respect

to the specific trend arrow, a certain amount of carbohydrates may be

consumed at a lower glycaemic threshold of 7.0 mmoL/L (126 mg/dL) or

higher (Table 6), which should be further personalised in line with individ-

ual characteristics [40](D), [44](D), [45](D).

6.3 | Post-exercise period

Up to 2 h after exercise, children and adolescents may refill the intra-

muscular and hepatic glycogen storages via carbohydrates and protein,

similar to recommendations for children and adolescents without diabe-

tes [100]. After finishing exercise, the sensor glucose target should be

between 4.4 mmoL/L and 10.0 mmoL/L (80 mg/dL and 180 mg/dL) or

higher, based on the risk of hypoglycaemia, in the 90 min post-exercise

period [40](D), [76](D) (Table 7). If sensor glucose levels increase rapidly

post exercise, then an insulin correction can be considered (50% of typi-

cal correction dose), based on the individual’s insulin sensitivity factor

and sensor glucose level [97](D). However, correctional insulin dose

close to bedtime should be avoided since it may increase the risk of

post-exercise nocturnal hypoglycaemia. Importantly, frequently check-

ing sensor glucose values should be stressed to help to reduce the likeli-

hood of developing post-exercise late-onset hypoglycaemia following

bolus insulin correction.

If the sensor glucose level falls below 4.4 mmoL/L (below 80 mg/dL)

for children and adolescents of typical hypoglycaemia risk, then oral
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carbohydrates should be given; carbohydrates should be given at a

higher glycaemic threshold for individuals at higher risk of

hypoglycaemia (Table 7) [38](D), [39](D), [40](D). Oral carbohydrate

consumption should be repeated, as required, to stabilise glucose

levels. There will be a time delay of up to 20 min following oral car-

bohydrate consumption before a change in the trend arrow should

be expected to be observed.

6.4 | Nocturnal post-exercise period

Children and adolescents may set the hypoglycaemia alert threshold

at 4.4 mmoL/L (80 mg/dl), or even higher in those with a higher risk

of hypoglycaemia, to be able to prospectively counteract impending

hypoglycaemia [76](D). When reaching this lower threshold, the guid-

ance as shown in Table 7 can be followed and further individualised, if

required. Children and adolescents using an isCGM should perform a

scan at least twice during the nocturnal period (eg, at 01:00 hours and

04:00 hours) due to the increased risk of nocturnal hypoglycaemia

[101-104](D), especially after exercise [81,104-106](D). Parents or

other care providers can be alerted using the remote monitoring func-

tion within CGMs, which can support parents in their effort to avoid

nocturnal hypoglycaemia in children [91](D). In addition to the intake

of carbohydrates, the insulin strategies mentioned in Table 4 should

also be applied to lower the risk of nocturnal hypoglycaemia [38](D),

[39](D), [40](D).

7 | DISCUSSION

In this position statement, we detailed the use of sensor glucose

values accompanied by trend arrows for CGM and isCGM systems for

different groups of people with type 1 diabetes and for different

sensor glucose responses to exercise. Of note, in this position state-

ment, recommendations for carbohydrate consumption were strati-

fied with respect to the rate of change in glucose for the pre-exercise

phase, during exercise, post-exercise and the nocturnal post-exercise

phase. Taking the lag time of CGM and isCGM systems against SMBG

around exercise into account, safe sensor glucose thresholds are

recommended for people with type 1 diabetes. In general, these rec-

ommendations can be used as an initial guidance tool that also needs

to be tailored individually. The recommendations in this position

statement will need to be updated in future years to provide the best

and most robust evidence-based recommendations for people with

type 1 diabetes using CGM and isCGM for glycaemic control during

exercise.
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