185 research outputs found

    A Comparison of Different Machine Transliteration Models

    Full text link
    Machine transliteration is a method for automatically converting words in one language into phonetically equivalent ones in another language. Machine transliteration plays an important role in natural language applications such as information retrieval and machine translation, especially for handling proper nouns and technical terms. Four machine transliteration models -- grapheme-based transliteration model, phoneme-based transliteration model, hybrid transliteration model, and correspondence-based transliteration model -- have been proposed by several researchers. To date, however, there has been little research on a framework in which multiple transliteration models can operate simultaneously. Furthermore, there has been no comparison of the four models within the same framework and using the same data. We addressed these problems by 1) modeling the four models within the same framework, 2) comparing them under the same conditions, and 3) developing a way to improve machine transliteration through this comparison. Our comparison showed that the hybrid and correspondence-based models were the most effective and that the four models can be used in a complementary manner to improve machine transliteration performance

    Exploiting Parallel Corpus for Handling Out-of-vocabulary Words

    Get PDF

    Neural Network vs. Rule-Based G2P: A Hybrid Approach to Stress Prediction and Related Vowel Reduction in Bulgarian

    Full text link
    An effective grapheme-to-phoneme (G2P) conversion system is a critical element of speech synthesis. Rule-based systems were an early method for G2P conversion. In recent years, machine learning tools have been shown to outperform rule-based approaches in G2P tasks. We investigate neural network sequence-to-sequence modeling for the prediction of syllable stress and resulting vowel reductions in the Bulgarian language. We then develop a hybrid G2P approach which combines manually written grapheme-to-phoneme mapping rules with neural network-enabled syllable stress predictions by inserting stress markers in the predicted stress position of the transcription produced by the rule-based finite-state transducer. Finally, we apply vowel reduction rules in relation to the position of the stress marker to yield the predicted phonetic transcription of the source Bulgarian word written in Cyrillic graphemes. We compare word error rates between the neural network sequence-to-sequence modeling approach with the hybrid approach and find no significant difference between the two. We conclude that our hybrid approach to syllable stress, vowel reduction, and transcription performs as well as the exclusively machine learning powered approach

    Cross-linguistic transfer in bilinguals reading in two alphabetic orthographies: The grain size accommodation hypothesis

    Get PDF
    Published online: 12 April 2017Reading acquisition is one of the most complex and demanding learning processes faced by children in their first years of schooling. If reading acquisition is challenging in one language, how is it when reading is acquired simultaneously in two languages? What is the impact of bilingualism on the development of literacy? We review behavioral and neuroimaging evidence from alphabetic writing systems suggesting that early bilingualism modulates reading development. Particularly, we show that cross-linguistic variations and cross-linguistic transfer affect bilingual reading strategies as well as their cognitive underpinnings. We stress the fact that the impact of bilingualism on literacy acquisition depends on the specific combination of languages learned and does not manifest itself similarly across bilingual populations. We argue that these differences can be explained by variations due to orthographic depth in the grain sizes used to perform reading and reading-related tasks. Overall, we propose novel hypotheses to shed light on the behavioral and neural variability observed in reading skills among bilinguals.This work was supported by the European commission (BILITERACY- SH4, ERC-2011-ADG) and the Ministry of Economy and Competitiveness, Madrid, Spain (Grant Nos. PSI20153653383P to M.L., PSI20153673533R to M.C., and SEV3201530490 to the Basque Center on Brain and Language Cognition)

    Preprocessing models for speech technologies : the impact of the normalizer and the grapheme-to-phoneme on hybrid systems

    Get PDF
    Um dos usos mais promissores e de crescimento mais rápido da tecnologia de linguagem natural corresponde às Tecnologias de Processamento da Fala. Esses sistemas usam tecnologia de reconhecimento automático de fala e conversão de texto em fala para fornecer uma interface de voz para aplicações de conversão. Com efeito, esta tecnologia está presente em diversas situações do nosso quotidiano, tais como assistentes virtuais em smartphones (como a SIRI ou Alexa), ou sistemas de interação por voz em automóveis. As tecnologias de fala evoluíram progressivamente até ao ponto em que os sistemas podem prestar pouca atenção à sua estrutura linguística. Com efeito, o Conhecimento Linguístico pode ser extremamente importante numa arquitetura de fala, particularmente numa fase de pré-processamento de dados: combinar conhecimento linguístico em modelo de tecnologia de fala permite produzir sistemas mais confiáveis e robustos. Neste sentido, o pré-processamento de dados é uma etapa fundamental na construção de um modelo de Inteligência Artificial (IA). Se os dados forem razoavelmente pré-processados, os resultados serão consistentes e de alta qualidade (García et al., 2016). Por exemplo, os sistemas mais modernos de reconhecimento de fala permitem modelizar entidades linguísticas em vários níveis, frases, palavras, fones e outras unidades, usando várias abordagens estatísticas (Jurafsky & Martin, 2022). Apesar de treinados sobre dados, estes sistemas são tão mais precisos quanto mais eficazes e eficientes a capturarem o conhecimento linguístico. Perante este cenário, este trabalho descreve os métodos de pré-processamento linguístico em sistemas híbridos (de inteligência artificial combinada com conhecimento linguístico) fornecidos por uma empresa internacional de Inteligência Artificial (IA), a Defined.ai. A start-up concentra-se em fornecer dados, modelos e ferramentas de alta qualidade para IA., a partir da sua plataforma de crowdsourcing Neevo. O utilizador da plataforma tem acesso a pequenas tarefas de anotação de dados, tais como: transcrição, gravação e anotação de áudios, validação de pronúncia, tradução de frases, classificação de sentimentos num texto, ou até extração de informação a partir de imagens e vídeos. Até ao momento, a empresa conta com mais de 500,000 utilizadores de 70 países e 50 línguas diferentes. Através duma recolha descentralizada dos dados, a Defined.ai responde à necessidade crescente de dados de treino que sejam justos, i.e., que não reflitam e/ou amplifiquem os padrões de discriminação vigentes na nossa sociedade (e.g., de género, raça, orientação sexual). Como resultado, a Defined.ai pode ser vista como uma comunidade de especialistas em IA, que produz sistemas justos, éticos e de futuro. Assim, o principal objetivo deste trabalho é aprimorar e avançar a qualidade dos modelos de pré-processamento, aplicando-lhes conhecimento linguístico. Assim, focamo-nos em dois modelos linguísticos introdutórios numa arquitetura de fala: Normalizador e Grafema-Fonema. Para abordar o assunto principal deste estudo, vamos delinear duas iniciativas realizadas em colaboração com a equipa de Machine learning da Defined.ai. O primeiro projeto centra-se na expansão e melhoria de um modelo Normalizador pt-PT. O segundo projeto abrange a criação de modelos Grafema-Fonema (do inglês Grapheme-to-phoneme, G2P) para duas línguas diferentes – Sueco e Russo. Os resultados mostram que ter uma abordagem baseada em regras para o Normalizador e G2P aumenta a sua precisão e desempenho, representado uma vantagem significativa na melhoria das ferramentas da Defined.ai e nas arquiteturas de fala. Além disso, com os resultados obtidos no primeiro projeto, melhoramos o normalizador na sua facilidade de uso, aumentando cada regra com o respetivo conhecimento linguístico. Desta forma, a nossa pesquisa demonstra o valor e a importância do conhecimento linguístico em modelos de pré-processamento. O primeiro projeto teve como objetivo fornecer cobertura para diversas regras linguísticas: Números Reais, Símbolos, Abreviaturas, Ordinais, Medidas, Moeda, Datas e Hora. A tarefa consistia em expandir as regras com suas respetivas expressões normalizadas a partir de regras a seguir que teriam uma leitura não marcada inequívoca própria. O objetivo principal é melhorar o normalizador tornando-o mais simples, consistente entre diferentes linguagens e de forma a cobrir entradas não ambíguas. Para preparar um modelo G2P para dois idiomas diferentes - Sueco e Russo - quatro tarefas foram realizadas: 1. Preparar uma análise linguística de cada língua, 2. Desenvolver um inventário fonético-fonológico inicial, 3. Mapear e converter automaticamente o léxico fonético para DC-Arpabet (o alfabeto fonético que a Defined.ai construiu), 4. Rever e corrigir o léxico fonético, e 4. Avaliar o modelo Grafema-Fonema. A revisão dos léxicos fonéticos foi realizada, em consulta com a nossa equipa da Defined.ai, por linguistas nativos que verificaram se os inventários fonéticos-fonológicos seriam adequados para transcrever. Segundo os resultados de cada modelo, nós avaliamos de acordo com 5 métricas padrão na literatura: Word Error Rate (WER), Precision, Recall, F1-score e Accuracy. Adaptamos a métrica WER para Word Error Rate over normalizable tokens (WERnorm) por forma a responder às necessidades dos nossos modelos. A métrica WER (ou taxa de erro por palavra) foi adaptada de forma a contabilizar tokens normalizáveis, em vez de todos os tokens. Deste modo, a avaliação do normalizador, avalia-se usando um conjunto de aproximadamente 1000 frases de referência, normalizadas manualmente e marcadas com a regra de normalização que deveria ser aplicada (por exemplo, números reais, símbolos, entre outros). De acordo com os resultados, na versão 2 do normalizador, obtivemos discrepâncias estatisticamente significativas entre as regras. A regra dos ordinais apresenta a maior percentagem (94%) e as abreviaturas (43%) o menor percentual. Concluímos também um aumento significativo no desempenho de algumas das regras. Por exemplo, as abreviaturas mostram um desempenho de 23 pontos percentuais (pp.) superior. Quando comparamos as duas versões, concluímos que a versão 2 do normalizador apresenta, em média, uma taxa de erro 4 pp. menor sobre os tokens normalizáveis em comparação com a versão 1. Assim, o uso da regra dos ordinais (94% F1-score) e da regra dos números reais (89% F1-score) é a maior fonte de melhoria no normalizador. Além disso, em relação à precisão, a versão 2 apresenta uma melhoria de, em média, 28 pp em relação à versão 1. No geral, os resultados revelam inequivocamente uma melhoria da performance do normalizador em todas as regras aplicadas. De acordo com os resultados do segundo projeto, o léxico fonético sueco alcançou um WER de 10%, enquanto o léxico fonético russo um WER ligeiramente inferior (11%). Os inventários fonético-fonológicos suecos apresentam uma precisão maior (97%) do que os inventários fonético-fonológicos russos (96%). No geral, o modelo sueco G2P apresenta um melhor desempenho (98%), embora a sua diferença ser menor quando comparado ao modelo russo (96%). Em conclusão, os resultados obtidos tiveram um impacto significativo na pipeline de fala da empresa e nas arquiteturas de fala escrita (15% é a arquitetura de fala). Além disso, a versão 2 do normalizador começou a ser usada noutros projetos do Defined.ai, principalmente em coleções de prompts de fala. Observamos que nossa expansão e melhoria na ferramenta abrangeu expressões que compõem uma proporção considerável de expressões normalizáveis, não limitando a utilidade da ferramenta, mas aumentando a diversidade que ela pode oferecer ao entregar prompts, por exemplo. Com base no trabalho desenvolvido, podemos observar que, ao ter uma abordagem baseada em regras para o Normalizador e o G2P, conseguimos aumentar a sua precisão e desempenho, representando não só uma vantagem significativa na melhoria das ferramentas da Defined.ai, como também nas arquiteturas de fala. Além disso, a nossa abordagem também foi aplicada a outras línguas obtendo resultados muito positivos e mostrando a importância da metodologia aplicada nesta tese. Desta forma, o nosso trabalho mostra a relevância e o valor acrescentado de aplicar conhecimento linguístico a modelos de pré-processamento.One of the most fast-growing and highly promising uses of natural language technology is in Speech Technologies. Such systems use automatic speech recognition (ASR) and text-to-speech (TTS) technology to provide a voice interface for conversational applications. Speech technologies have progressively evolved to the point where they pay little attention to their linguistic structure. Indeed, linguistic knowledge can be extremely important in a speech pipeline, particularly in the Data Preprocessing phase: combining linguistic knowledge in a speech technology model allows producing more reliable and robust systems. Given this background, this work describes the linguistic preprocessing methods in hybrid systems provided by an Artificial Intelligence (AI) international company, Defined.ai. The startup focuses on providing high-quality data, models, and AI tools. The main goal of this work is to enhance and advance the quality of preprocessing models by applying linguistic knowledge. Thus, we focus on two introductory linguistic models in a speech pipeline: Normalizer and Grapheme-to-Phoneme (G2P). To do so, two initiatives were conducted in collaboration with the Defined.ai Machine Learning team. The first project focuses on expanding and improving a pt-PT Normalizer model. The second project covers creating G2P models for two different languages – Swedish and Russian. Results show that having a rule-based approach to the Normalizer and G2P increases its accuracy and performance, representing a significant advantage in improving Defined.ai tools and speech pipelines. Also, with the results obtained on the first project, we improved the normalizer in ease of use by increasing each rule with linguistic knowledge. Accordingly, our research demonstrates the added value of linguistic knowledge in preprocessing models

    Rapid Generation of Pronunciation Dictionaries for new Domains and Languages

    Get PDF
    This dissertation presents innovative strategies and methods for the rapid generation of pronunciation dictionaries for new domains and languages. Depending on various conditions, solutions are proposed and developed. Starting from the straightforward scenario in which the target language is present in written form on the Internet and the mapping between speech and written language is close up to the difficult scenario in which no written form for the target language exists
    corecore