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Resumo 

Um dos usos mais promissores e de crescimento mais rápido da tecnologia de linguagem 

natural corresponde às Tecnologias de Processamento da Fala. Esses sistemas usam 

tecnologia de reconhecimento automático de fala e conversão de texto em fala para fornecer 

uma interface de voz para aplicações de conversão. Com efeito, esta tecnologia está presente 

em diversas situações do nosso quotidiano, tais como assistentes virtuais em smartphones 

(como a SIRI ou Alexa), ou sistemas de interação por voz em automóveis. 

As tecnologias de fala evoluíram progressivamente até ao ponto em que os sistemas podem 

prestar pouca atenção à sua estrutura linguística. Com efeito, o Conhecimento Linguístico 

pode ser extremamente importante numa arquitetura de fala, particularmente numa fase de 

pré-processamento de dados: combinar conhecimento linguístico em modelo de tecnologia 

de fala permite produzir sistemas mais confiáveis e robustos.  

Neste sentido, o pré-processamento de dados é uma etapa fundamental na construção de um 

modelo de Inteligência Artificial (IA). Se os dados forem razoavelmente pré-processados, 

os resultados serão consistentes e de alta qualidade (García et al., 2016). Por exemplo, os 

sistemas mais modernos de reconhecimento de fala permitem modelizar entidades 

linguísticas em vários níveis, frases, palavras, fones e outras unidades, usando várias 

abordagens estatísticas (Jurafsky & Martin, 2022). Apesar de treinados sobre dados, estes 

sistemas são tão mais precisos quanto mais eficazes e eficientes a capturarem o 

conhecimento linguístico. 

Perante este cenário, este trabalho descreve os métodos de pré-processamento linguístico em 

sistemas híbridos (de inteligência artificial combinada com conhecimento linguístico) 

fornecidos por uma empresa internacional de Inteligência Artificial (IA), a Defined.ai. A 

start-up concentra-se em fornecer dados, modelos e ferramentas de alta qualidade para IA., 

a partir da sua plataforma de crowdsourcing Neevo. O utilizador da plataforma tem acesso a 

pequenas tarefas de anotação de dados, tais como: transcrição, gravação e anotação de 

áudios, validação de pronúncia, tradução de frases, classificação de sentimentos num texto, 
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ou até extração de informação a partir de imagens e vídeos. Até ao momento, a empresa 

conta com mais de 500,000 utilizadores de 70 países e 50 línguas diferentes. 

Através duma recolha descentralizada dos dados, a Defined.ai responde à necessidade 

crescente de dados de treino que sejam justos, i.e., que não reflitam e/ou amplifiquem os 

padrões de discriminação vigentes na nossa sociedade (e.g., de género, raça, orientação 

sexual). Como resultado, a Defined.ai pode ser vista como uma comunidade de especialistas 

em IA, que produz sistemas justos, éticos e de futuro. 

Assim, o principal objetivo deste trabalho é aprimorar e avançar a qualidade dos modelos de 

pré-processamento, aplicando-lhes conhecimento linguístico. Assim, focamo-nos em dois 

modelos linguísticos introdutórios numa arquitetura de fala: Normalizador e Grafema-

Fonema. 

Para abordar o assunto principal deste estudo, vamos delinear duas iniciativas realizadas em 

colaboração com a equipa de Machine learning da Defined.ai. O primeiro projeto centra-se 

na expansão e melhoria de um modelo Normalizador pt-PT. O segundo projeto abrange a 

criação de modelos Grafema-Fonema (do inglês Grapheme-to-phoneme, G2P) para duas 

línguas diferentes – Sueco e Russo.  

Os resultados mostram que ter uma abordagem baseada em regras para o Normalizador e 

G2P aumenta a sua precisão e desempenho, representado uma vantagem significativa na 

melhoria das ferramentas da Defined.ai e nas arquiteturas de fala. Além disso, com os 

resultados obtidos no primeiro projeto, melhoramos o normalizador na sua facilidade de uso, 

aumentando cada regra com o respetivo conhecimento linguístico. Desta forma, a nossa 

pesquisa demonstra o valor e a importância do conhecimento linguístico em modelos de pré-

processamento.  

O primeiro projeto teve como objetivo fornecer cobertura para diversas regras linguísticas: 

Números Reais, Símbolos, Abreviaturas, Ordinais, Medidas, Moeda, Datas e Hora. A tarefa 

consistia em expandir as regras com suas respetivas expressões normalizadas a partir de 

regras 
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a seguir que teriam uma leitura não marcada inequívoca própria. O objetivo principal é 

melhorar o normalizador tornando-o mais simples, consistente entre diferentes linguagens e 

de forma a cobrir entradas não ambíguas. 

Para preparar um modelo G2P para dois idiomas diferentes - Sueco e Russo - quatro tarefas 

foram realizadas: 1. Preparar uma análise linguística de cada língua, 2. Desenvolver um 

inventário fonético-fonológico inicial, 3. Mapear e converter automaticamente o léxico 

fonético para DC-Arpabet (o alfabeto fonético que a Defined.ai construiu), 4. Rever e 

corrigir o léxico fonético, e 4. Avaliar o modelo Grafema-Fonema. A revisão dos léxicos 

fonéticos foi realizada, em consulta com a nossa equipa da Defined.ai, por linguistas nativos 

que verificaram se os inventários fonéticos-fonológicos seriam adequados para transcrever. 

Segundo os resultados de cada modelo, nós avaliamos de acordo com 5 métricas padrão na 

literatura: Word Error Rate (WER), Precision, Recall, F1-score e Accuracy. Adaptamos a 

métrica WER para Word Error Rate over normalizable tokens (WERnorm) por forma a 

responder às necessidades dos nossos modelos. A métrica WER (ou taxa de erro por palavra) 

foi adaptada de forma a contabilizar tokens normalizáveis, em vez de todos os tokens. Deste 

modo, a avaliação do normalizador, avalia-se usando um conjunto de aproximadamente 

1000 frases de referência, normalizadas manualmente e marcadas com a regra de 

normalização que deveria ser aplicada (por exemplo, números reais, símbolos, entre outros).  

De acordo com os resultados, na versão 2 do normalizador, obtivemos discrepâncias 

estatisticamente significativas entre as regras. A regra dos ordinais apresenta a maior 

percentagem (94%) e as abreviaturas (43%) o menor percentual. Concluímos também um 

aumento significativo no desempenho de algumas das regras. Por exemplo, as abreviaturas 

mostram um desempenho de 23 pontos percentuais (pp.) superior. Quando comparamos as 

duas versões, concluímos que a versão 2 do normalizador apresenta, em média, uma taxa de 

erro 4 pp. menor sobre os tokens normalizáveis em comparação com a versão 1. Assim, o 

uso da regra dos ordinais (94% F1-score) e da regra dos números reais (89% F1-score) é a 

maior fonte de 
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melhoria no normalizador. Além disso, em relação à precisão, a versão 2 apresenta uma 

melhoria de, em média, 28 pp em relação à versão 1. No geral, os resultados revelam 

inequivocamente uma melhoria da performance do normalizador em todas as regras 

aplicadas. 

De acordo com os resultados do segundo projeto, o léxico fonético sueco alcançou um WER 

de 10%, enquanto o léxico fonético russo um WER ligeiramente inferior (11%). Os 

inventários fonético-fonológicos suecos apresentam uma precisão maior (97%) do que os 

inventários fonético-fonológicos russos (96%). No geral, o modelo sueco G2P apresenta um 

melhor desempenho (98%), embora a sua diferença ser menor quando comparado ao modelo 

russo (96%). 

Em conclusão, os resultados obtidos tiveram um impacto significativo na pipeline de fala da 

empresa e nas arquiteturas de fala escrita (15% é a arquitetura de fala). Além disso, a versão 

2 do normalizador começou a ser usada noutros projetos do Defined.ai, principalmente em 

coleções de prompts de fala. Observamos que nossa expansão e melhoria na ferramenta 

abrangeu expressões que compõem uma proporção considerável de expressões 

normalizáveis, não limitando a utilidade da ferramenta, mas aumentando a diversidade que 

ela pode oferecer ao entregar prompts, por exemplo. 

Com base no trabalho desenvolvido, podemos observar que, ao ter uma abordagem baseada 

em regras para o Normalizador e o G2P, conseguimos aumentar a sua precisão e 

desempenho, representando não só uma vantagem significativa na melhoria das ferramentas 

da Defined.ai, como também nas arquiteturas de fala. Além disso, a nossa abordagem 

também foi aplicada a outras línguas obtendo resultados muito positivos e mostrando a 

importância da metodologia aplicada nesta tese. Desta forma, o nosso trabalho mostra a 

relevância e o valor acrescentado de aplicar conhecimento linguístico a modelos de pré-

processamento. 

Palavras-chave: Tecnologias de Fala; Normalizador; Grafema-Fonema; Conhecimento 

Linguístico; modelos 
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Abstract 

One of the most fast-growing and highly promising uses of natural language technology is 

in Speech Technologies. Such systems use automatic speech recognition (ASR) and text-to-

speech (TTS) technology to provide a voice interface for conversational applications.  

Speech technologies have progressively evolved to the point where they pay little attention 

to their linguistic structure. Indeed, linguistic knowledge can be extremely important in a 

speech pipeline, particularly in the Data Preprocessing phase: combining linguistic 

knowledge in a speech technology model allows producing more reliable and robust systems.  

Given this background, this work describes the linguistic preprocessing methods in hybrid 

systems provided by an Artificial Intelligence (AI) international company, Defined.ai. The 

startup focuses on providing high-quality data, models, and AI tools. The main goal of this 

work is to enhance and advance the quality of preprocessing models by applying linguistic 

knowledge. Thus, we focus on two introductory linguistic models in a speech pipeline: 

Normalizer and Grapheme-to-Phoneme (G2P). To do so, two initiatives were conducted in 

collaboration with the Defined.ai Machine Learning team. The first project focuses on 

expanding and improving a pt-PT Normalizer model. The second project covers creating 

G2P models for two different languages – Swedish and Russian.  

Results show that having a rule-based approach to the Normalizer and G2P increases its 

accuracy and performance, representing a significant advantage in improving Defined.ai 

tools and speech pipelines. Also, with the results obtained on the first project, we improved 

the normalizer in ease of use by increasing each rule with linguistic knowledge. Accordingly, 

our research demonstrates the added value of linguistic knowledge in preprocessing models. 

Keywords: Speech Technologies; Normalizer; Grapheme-to-Phoneme; Linguistic 

knowledge; models 
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Chapter 1 

Introduction 

Data preprocessing is a crucial step in building a machine learning model. If data is fairly 

preprocessed, the results are consistent and of high quality (García et al., 2016). For example, 

modern speech recognition systems model linguistic entities at multiple levels, sentences, 

words, phones, and other units, using various statistical approaches (Jurafsky & Martin, 

2022). The parameters of these models are usually trained on data, but their accuracy 

attempts to capture linguistic knowledge.  

This work aims at evaluating how linguistic knowledge can influence speech technologies – 

Automatic Speech Recognition (ASR) and Text-to-Speech (TTS) – performance, as well as 

describe the linguistic preprocessing methods provided by an AI international company, 

Defined.ai. The Linguistic Processing Module treats raw text as input and structures it to 

make it usable for speech technologies that require linguistic knowledge. This module 

includes the Normalizer and the Grapheme-to-Phoneme (G2P) pipelines. These introductory 

linguistic models are essential to ensure the quality of data processing and to measure its 

quality before any other step in the pipeline is taken. A crucial step, though, since it ensures 

high-quality data processing through the pipelines. Therefore, this study's primary focus is 

speech preprocessing, a sub-field of Natural Language Processing (NLP) that studies speech 

signals and the processing methods of signals. The secondary focus of this work relies on 

text preprocessing, an NLP task that involves cleaning text data and preparing it for model 

building. The primary purpose is to clean and prepare text data for NLP-specific tasks. In 

short, we accomplish this by applying various techniques in a data-driven approach, with the 

primary goal of creating better and more efficient NLP models.  

This work describes three main projects that were conducted along with our work with the 

Machine Learning Team within Defined.ai:  

1. Normalizer expansion for European Portuguese.  
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2.  Grapheme-to-phone model creation for Swedish and Russian.  

Also, building and deploying speech processing systems is becoming more challenging with 

the increasing need to support multiple input and output languages (Meyer, 2021a). 

Therefore, this study sought to: 

1. Get insight into how linguistic knowledge can impact speech technologies, 

2. Understand how linguistic knowledge impacts Normalizer and G2P models in different 

languages, and 

3. Understand how to upgrade and validate the Normalizer and G2P models in different 

languages.  

This document is structured around six different sections. Chapter 2 contains a host 

contextualization presenting the company and its platform, products, and customers. We also 

discuss the importance of crowdsourcing and describe which job types the company uses. 

Chapter 3 contains a literature review that describes relevant work on phonetic and 

phonology concepts of two languages, speech recognition systems, and linguistic 

processing. Chapter 4 explains the proposed methodology. Chapter 5 details the obtained 

results for each of our models and discusses the obtained results regarding our initial 

research. Finally, Chapter 7 presents our study's conclusions and remarks on future work. 
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Chapter 2 

Host contextualization 

This thesis was conducted within the scope of an internship with Defined.ai, a technology 

company, a leading provider of data, models, and tools for Artificial Intelligence, impacting 

companies in all sectors, from healthcare and retail to finance and consumer goods. It was 

founded in 2015 by Daniela Braga and is currently spread to Seattle, Lisbon, Porto, and 

Tokyo. The startup is working with more than 50 languages, focusing on the fields of Natural 

Language Processing (NLP), Translation, and Computer Vision. Defined.ai works with 

many companies, such as Voci, MasterCard, and Canon. Further details on what the 

company is and its accomplishments throughout the years will be explained in Section 2.1. 

Afterward, a description of the company's crowdsourcing platform, its products and regular 

customers will be presented in Section 2.2. Furthermore, Section 2.3. will focus on the 

Machine Learning (ML) team as well as the tasks performed during the Internship. A 

description of the pipeline models used in the company's products will be introduced in 

Section 2.4. To conclude this chapter, an explanation of some of the company’s projects and 

research lines can be found in Section 2.5.  

2.1 Defined.ai presentation 

We live in a world where software is being replaced by Artificial Intelligence. In a world 

where software is programmed and static, Artificial Intelligence (AI) is trained and evolves 

dynamically. For AI to be applied, a combination of large amounts of data with fast, iterative 

processing and intelligent algorithms is needed. AI is based on big data to be properly 

trained, and high-quality structured data is expensive and hard to obtain in a reasonable 

timeframe. This is where Defined.ai steps in and provides solutions for distinct products 

based on high-quality data. 

Defined.ai is a trusted AI data partner, following ISO 27001, that hosts (Timberlake, 2014) 

online marketplaces for buying and selling AI tools, data, and models. The company offers 
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qualified services that contribute to the success of complex machine learning projects in 

distinct domains. Aligned with these goals, AI experts are focused on practicing and 

promoting an ethical data ecosystem that relies on factual dimensions for collection and 

validation, as well as promoting fair features, algorithms, and data. As a result, Defined.ai 

can be described as a community of AI experts building fair, accessible, and ethical AI 

systems of the future, while creating a natural interaction between people and machines. 

From the company’s foundation in 2015 until the present time, Defined.ai has faced 

challenges and has obtained several accomplishments. In the early years, in 2015, the CEO 

Daniela Braga founded the company in Seattle, Washington, and opened a research and 

development center in Lisbon. Only one year later, the company presented a smart data 

platform and received a seed round from investors that included Amazon Alexa Fund, Sony, 

Portugal Ventures, and Busy Angels. In 2017, Neevo, a crowdsourcing platform, was 

launched, and the company opened its third office in Porto. That same year, an alpha version 

of the Software-as-a-Service (SaaS) platform was released. Right after this, in 2018, 

Defined.ai closed an 11.8 million dollars Series A funding, led by Evolution Equity Partners, 

which led to the opening of their fourth office in Tokyo, an announcement of an Amazon 

Alexa Skills partnership, and product integration with IBM Watson Studio. In the first half 

of 2019, the company doubled its team to over 100 employees, now 36 different nationalities 

worldwide. They were named one of CB insights’ “100 most promising AI startups”. 

Achieved the coveted ISO 27001 certification and revealed the launch of the brand new 

Neevo app. At the end of that year, Defined.ai reached a new milestone – standing in Forbes 

AI 50 Most Promising Artificial Intelligence Companies. Afterward, in 2020, the company 

raised a 50.5 million dollars Series B round of funding, a highlighted achievement since it 

was the highest Series B round to be submitted by a female-founded AI company in the US. 

They also participated in the Forbes Top 50 Best Startup Employers, and in 2021, the 

company evolved from DefinedCrowd to Defined.ai. It currently hosts an online marketplace 

where AI professionals can buy or sell AI training data, tools, and models. 
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2.2 Defined.ai platform, products, and customers 

The Defined.ai platform allows clients to obtain and reach high-quality structured training 

and validated data. Understanding how to effectively collect, prepare and test data helps 

unlock the total value of AI. Consequently, training data can feed AI models or train machine 

learning algorithms on better decisions based on high-quality data.  

Defined.ai project parameters can include training data to the client's needs, ranging from 

managing unstructured data to letting AI professionals source it. This allows the company 

to offer quality guarantees along with delivering them on a global scale. Therefore, the 

company is the choice data partner for some of the biggest companies in the world.  

As the industry expands to more natural forms of interaction with everyday devices and 

services, the need for data to train such applications increased the recent years. To answer 

these needs, crowdsourcing emerged as an attractive solution for extensive data collection 

efforts, allowing Defined.ai to expand in this field. As was said earlier, Neevo is a popular 

platform for crowdsourcing language services. It allows users to have access to jobs in which 

they provide answers and judgments on several tasks: transcribing and annotating audios, 

identifying named entities, recording audios, validating the pronunciation, translating 

sentences, classifying the sentiment(s) of a text, or extract information from images or 

videos. So far, the company has more than 500,000 contributors from over 70 countries who 

speak over 50 languages and have logged positive completion of over 200 million tasks.  

Defined.ai crowdsourcing is characterized by five main factors: 1. allows individuals to 

contribute instantly, without having to go through the recruiting process; 2. grants security; 

3. offers skills and certification; 4. provides quality and ethical training sets; and 5. recruits 

a skilled, local workforce based on demographic and skillset criteria. Overall, the Defined.ai 

workforce can help create and develop AI models with high-quality training data obtained 

at a fast pace, securely, and ethically aligned. 

The company focuses on Speech, Natural Language Processing (NLP), Computer Vision, 

and Translation. These areas are available in various delivery options, including off-the-shelf 

data and customized collection, in over 50 languages. Clients' requirements can go from the 
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immediate use of off-the-shelf data, customized datasets for specific use cases, or even 

access to a global crowd that the clients can connect to their tools. With the help of a range 

of four products – DefinedData, DefinedWorkflows, DefinedSolutions, and DefinedCrew – 

Defined.ai helps clients speed up their time to market, obtain customized training data, 

optimize AI models, and simplify crowdsourcing. 

The clients of Defined.ai are customers from big technology companies, such as Sony or 

Toshiba, banks, call centers, smaller companies, or any other company needing high-quality 

AI data.  

2.3 Crowdsourcing  

The industry has expanded to more natural forms of interaction with everyday devices and 

services, such as communication via natural language. As a result, the need for data to train 

such applications increases. One of AI's biggest challenges is replicating human reasoning 

and language. Furthermore, the wide range of new diverse, and heterogeneous users 

demands robust and unbiased solutions that perform successfully regardless of their 

characteristics or demographics. 

It is important to include human interaction when creating high-quality AI datasets to train 

a machine learning model to answer these needs. Crowdsourcing emerged as an attractive 

solution for extensive data collection efforts, allowing it to reach a diverse crowd in an 

expeditiously and scalable manner. The concept of crowdsourcing involves obtaining goods 

and services, including ideas, voting, micro-tasking, and finances, from a large, relatively 

open, and often rapidly evolving group of participants (Charvát & Kepka, 2021). These 

participants henceforth referred to as the crowd, can perform micro-tasks, Human-

Intelligence Tasks (HITs), that are available via Defined.ai's online platform, and distributes 

jobs across large numbers of people in exchange for a reward. By the micro-tasking data 

collection and annotation jobs to the crowd, datasets are likely to be completed much faster 

and with more accuracy and diversity. Everyday tasks approached with crowdsourcing are 

labeling images, translating or transcribing the text, and recording speech. 
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2.3.1 Job types 

Clients can use Defined.ai platform to construct projects online using templates with flexible 

options. A project is a collection of one or more jobs as part of a single workflow. An 

example of a project would be speech collection, which has multiple steps, including 

collecting and validating the audio. Jobs are a collection of HITs to be completed by the 

crowd, and each one is considered a job type.  

NLP and Speech Technologies are two areas in which the templates can be classified. These 

fit into three different types of processes: 1. Generation, which was created for when the 

company is building a new type of data that doesn’t fit into any existing class; 2. 

Classification, which involves attributing a class to specific data as a whole (e. g. this whole 

text is “positive”); and 3. Segmentation, which requires attributing a class to a segment of 

data (e. g. within this text, this sentence is “positive”). 

Job Types 

Natural Language Processing (NLP) Speech Technologies 

Generation Classification Segmentation Generation Classification Segmentation 

Write a Back-

and-forth 

Named Entity 

Tagging 

Disambiguation 

Document 

Sentiment 

Analysis 

Broadband 

Audio 

Sentiment 

Analysis 

Speech 

Dialogue 

Transcription 

Text Variant 

Elicitation 
NIF Mapping 

Named Entity 

Tagging 

Orthographic 

Transcription 

Mean Opinion 

Score Test 

Speech 

Dialogue 

Transcription & 

Correction 

Text Variant 

Correction 

Semantic 

Annotation 

Tag the 

Overlapping 

Entities 

Narrowband 
Text-Audio 

Validation 
 

Validate & 

Correct the 

Back-and-Forth 

Text Sentiment 

Analysis 
 

Rich 

Transcription & 

Annotation 

Validate the 

Pronunciation 
 

 
Text Variant 

Validation 
 

Scripted Speech 

Recording 
  

 
Validate the 

Back-and-Forth 
 

Text-Audio 

Correction 
  

Table 1. Job Types 

Table 1 shows 25 main job types distributed in the areas of NLP and Speech Technologies. 

The most common jobs are the following: 
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1. Text Variant Elicitation - opinion on a given text, based on elicitation techniques. 

2. Text Variant Correction - confirm the text variants and align with the given text. If 

it does not align, correct the variants to match. 

3. Named Entity Tagging Disambiguation - choose the correct entity tag with limited 

context. The list of entities that tag the text must be disambiguated.  

4. Scripted speech recording - record audio by reading the given text. 

5. Validating the Pronunciation - determining whether all words in phrases are 

spoken correctly. 

6. Speech Dialogue Transcription - accurately transcribe audio conversation. 

7. Rich Transcription and Annotation - transcribe and annotate any given audio 

using highly customizable tags. 

2.4 Defined.ai pipelines 

In this chapter, we present the Linguistic Processing Module used at Defined.ai. Its goal is 

to treat raw text as input and structure it to make it usable for speech technologies that require 

linguistic knowledge, specifically targeting speech recognition and speech synthesis. In this 

module are included the Grapheme-to-Phoneme (G2P) and the Normalizer pipelines. These 

are introductory linguistic models which are essential to ensure the quality of data processing 

and to measure its quality. A crucial step since it ensures high-quality data processing 

throughout the pipelines. By describing these models, we explain the process of converting 

written text into its spoken form and how we transform graphemes into phonetic 

transcription, in a stepwise perspective.  

Such linguistic models are frequently used as pre-requirements for the preparation of any 

corpus for ASR systems. At Defined.ai these pre-requirements are one of the company’s 

initiatives that support ASR systems and DefinedData (one of Defined.ai products). The 

Machine Learning (ML) team ensures the creation and assistance of in-house solutions for 

G2P conversion and Normalization. Consequently, the outcome of this initiative is to create 

a more robust data collection pipeline and to develop pre-requirements for training data.  



 

   

 

9 

Therefore, the G2P is a fundamental part of many pipelines, including the STT (Speech to 

Text), TTS (Text to Speech), and AST pipelines.  

The AST (Automatic Segmentation & Transcription) pipeline supports the delivery of 

thousands of hours of high-quality spontaneous speech data of different languages. This is 

done by providing preliminary segmentation and transcriptions. Furthermore, the 

information generated by the AST is also used for two crowd jobs, segmentation validation, 

and transcription correction. 

2.4.1 Normalizer pipeline  

 

Figure 1. Normalizer Pipeline. 

Figure 1 represents Defined.ai Normalizer pipeline, the process that is applied to convert 

written text into its spoken form that can be used by ASR systems as training data.   

From left to right, we have the raw input, which is a list of sentences. The result is the 

normalized output, which is a list of normalized sentences, meaning in the concrete example 

the written form of the numbers and symbols. 
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Before any actual preprocessing occurs, a basic preprocessing of the input is required. This 

first step is text preprocessing, which is meant to minimize variability and ambiguities, 

which might otherwise cause downstream issues. Text cleaning turns text into a format that 

machine models can understand, by removing unwanted characters, abbreviations, 

contractions, etc. Firstly, it removes meta-tags (e. g., hmtl, xml), non-printable characters, 

and long words or lines. Secondly, it normalizes punctuation by reconstituting words split 

with a hyphen at the end of a line; and unifying all quotation mark characters into single 

quotation mark characters. Finally, it normalizes whitespaces and Unicode1 characters. 

Before Normalization, there is a particularly crucial step that will affect the rest of the 

pipeline - Tokenization. The tokenizer receives raw input and separates it into tokens by 

considering non-printable characters and spaces (e. g., line breaks, tabs, control characters) 

as well as logical semantic breaks, which are meant to facilitate preprocessing in the 

subsequent models. The tokenization is performed in two steps - Sentence parsing, and Word 

parsing. The following table shows an example of the tokenization process: 

Input  78.99% avg. Grade: is not bad! 

Token index 0 1 2 3 4 5 6 7 8 9 10 11 

Token  78 . 99 % avg . grade : is not bad ! 

Table 2. Tokenization process. 

This tokenization process immediately turns an unstructured string into a numerical data 

structure suitable for machine learning.  

After the Tokenization process is done, the second step is Normalization. To normalize a 

sentence, the normalizer attempts to apply each rule, one at a time, to each word of the 

sentence. When the normalizer finds a rule that can be used at a particular location, the 

 

1 Unicode is a character encoding system that provides a code to every character and symbol 

in any language. 
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normalizer follows the directions of that rule to produce the spoken form output and then 

moves on to the next word. 

A rule-based normalization makes it possible to predict the output of the Normalizer since 

the patterns are very constant and can be accurately picked by rules. However, a new rule 

can be written if any current rule does not cover a particular construction.  

The Normalizer now supports 12 natural languages, including English, Portuguese, German, 

and French. In the last year, linguists in the team have been working on other languages such 

as Japanese, Indi, Czech, and Korean.  

Also, it provides normalized forms for numbers, dates, measurements, time, durations, and 

symbols. The following table illustrates the procedure to reach the final normalized output: 

Token index 0 1 2 3 4 5 6 7 8 9 10 11 

Token  78 . 99 % avg . grade : is not bad ! 

Rule #1 

Abbreviations 
    YES YES       

Rule #2 

Real Numbers 
YES YES YES          

Rule #3 

Symbols 
   YES         

Normalization seventy-eight point nine percent average grade : is not bad ! 

Output seventy-eight point nine percent average       

Table 3. Normalization process 
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2.4.2 G2P pipeline 

 

Figure 2. Grapheme-to-phoneme Pipeline. 

Figure 2 shows Defined.ai G2P (Grapheme-to-Phoneme) pipeline and the steps involved in 

developing phonetic transcription that can be used to create and improve ASR systems. 

The Defined.ai G2P predicts the phonetic transcription of any given written word. This tool 

takes raw, orthographic text as input and provides its phonetic transcription as the output. 

From top to bottom, we have the input text. Similarly, as with the Normalizer pipeline, 

Tokenization is a necessary aspect before any other step. To obtain tokens, tokenization is 

performed on the Corpus (text data). Following that, the tokens are used to check vocabulary. 

We can extract the pronunciation of each word from the lexicon using this method. The next 

stage is generating phones from the classifier, which means that when a word is not 

recognized, the Classifier can predict the pronunciation of that specific word. The following 

figure shows how the input is processed: 
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Figure 3.Pronunciation prediction process. 

In the first line, we can see the orthographic text as the input, which is tokenized. After that, 

we will get the corresponding phonetic transcription of each word that was taken from the 

pronunciation lexicon. If a word is not recognized by the lexicon (e. g., ambiguous) the 

Classifier will then predict the phonetic transcription of that given word.  

The G2P now supports 18 languages, including English, Portuguese, Japanese, among 

others. During the internship, we have been upgrading it with two more languages, Swedish 

and Russian as will be described in the Section 2.5.  

2.5 Focus of the internship: ML team and tasks done 

During the internship, the main work was conducted within the ML team, composed of 

speech engineers, computational linguists, and data scientists. The ML team's mission at 

Defined.ai is to supply ML solutions that enable the development of scalable, available, and 

high-quality data products for AI. Also, they are continuously expanding the company's 

transdisciplinary ability in innovative AI technologies. As a result, the team is the company's 

point of reference for Speech, Natural Language Processing (NLP), Computer Vision, Data 

Science, and AI insights, benchmarks, and baselines. 
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The primary focus of the internship was on Speech Processing, which studies speech signals 

and the signal processing methods. It is, thus, a process by which speech signals are 

interpreted and understood.  

The secondary focus of the internship was on Text Preprocessing, an NLP task that involves 

cleaning text data and preparing it for model creation and training. The main purpose was to 

clean and prepare text data for NLP-specific tasks, by applying a variety of techniques on a 

corpus of text with the goal of creating better and more efficient preprocessing NLP models.  

Along with the internship, several tasks were performed, but for the context of this thesis I 

will focus on three main projects: 

1. Normalizer expansion and improvement for pt-PT 

2. Grapheme-to-Phoneme (G2P) models for sv-SE and ru-RU 

Apart from the focus on linguistic preprocessing tasks, the internship created an opportunity 

to broaden our understanding of the ML industry, including the procedures involved, the 

linguistic challenges that keep cropping up, and how team members cooperate to overcome 

them. 

In Section 4.1 and 4.2, the two main projects mentioned above will be described in detail 

considering the impact they had on the company. 

2.6 Summary 

This chapter addressed our host entity, Defined.ai, regarding its platform, products, and 

customers. In addition, we discuss the importance of using crowdsourcing as a service while 

explaining which job types the company includes on its platform.  
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Chapter 3 

Literature Review 

This chapter focuses on a range of three main subjects: Phonetics and Phonology, Speech 

Technologies, and Linguistic Processing.  For this purpose, this chapter is structured as 

follows: Section 3.1 describes phonetic and phonology concepts of Swedish and Russian 

Section 3.2 reviews state of the art of speech technologies focusing on automated speech 

recognition, text-to-speech, and dialogue systems or, more recently, conversational agents 

or personal assistants; Section 3.3 introduces terminology and background on the linguistic 

preprocessing for Multilingual Grapheme-to-phoneme and Text normalization.  

3.1 Phonetic and phonology concepts 

In this chapter, we introduce the main phonetic and phonological aspects of two distinct 

languages – Swedish and Russian. For the context of this thesis, we focus mainly on phonetic 

aspects of such languages, since we aim to describe and identify speakers' real 

pronunciations, based on data-driven approaches, in order to implement this knowledge on 

the G2P model. Thus, this chapter will mostly cover phonetic transcription and phonological 

processes that were strictly chosen regarding their relevance to the G2P.  

We begin with a key element of both speech recognition and text-to-speech systems: how 

words are pronounced in terms of individual speech units called phones. Following (Jurafsky 

& Martin, 2022) a speech recognition system needs to have a pronunciation for every word 

it can recognize, and a text-to-speech system needs to have a pronunciation for every word 

it can say. We model the pronunciation of a word as a string of symbols that stand for phones 

or segments. A phone is a speech sound and phones are represented with phonetic symbols 

that bear some resemblance to a letter in an alphabetic language, like English or Portuguese. 

In the context of this thesis, we use three different alphabets for describing phones: the 
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International Phonetic Alphabet (IPA)2, the Extended Speech Assessment Methods Phonetic 

Alphabet (X-SAMPA)3 and the DC-Arpabet (phonetic alphabet created by Defined.ai). IPA 

was created in the late 19th century to describe the sounds of all human languages while using 

a set of transcription principles and its phones. X-SAMPA (a variant of SAMPA) is a 

phonetic writing system created in 1995 with the intention to encode the 1993 IPA chart in 

ASCII. On the other hand, the DC-Arpabet was specifically designed by Defined.ai for US 

English, while using ASCII symbols. Throughout the years, linguists at Defined.ai have been 

expanding the DC-Arpabet to more languages, such as Portuguese, German, French, Hindi, 

among others. Table 4 shows some examples of an American English phone set using DC-

Arpabet symbols for transcribing its consonants, semivowels, vowels, and diphthongs 

together with their IPA and X-SAMPA equivalents.  

Table 4. Examples of the American English phone set using, IPA, DC-Arpabet, and X-SAMPA symbols. 

The DC-Arpabet currently contains 239 indexed unique symbols, each composed of at least 

2 alphanumerical characters, plus an optional 1 to 3 alphanumerical characters. The symbols 

 

2 (Armstrong & Meier, 2005) 
3 (Wells, 1995) 

No 
Phonetic Alphabet Symbols 

Classification 
IPA DC-Arpabet X-SAMPA 

1 [b] [bb] [b] consonant 

2 [ð] [dh] [D] consonant 

3 [s] [ss] [s] consonant 

4 [ʃ] [sh] [S] consonant 

5 [ʒ] [zh] [Z] consonant 

6 [h] [hh] [h] consonant 

7 [j] [yy] [j] semi-vowel 

8 [w] [ww] [w] semi-vowel 

9 [ə] [ax] [@] vowel 

10 [ɚ] [er] [@`] vowel 

11 [ɑ] [ah] [A] vowel 

12 [ɛə] [ex] [E@] diphthong 

13 [ɔɪ] [oi] [Oi] diphthong 

14 [ʊə] [ux] [U@] diphthong 
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are represented by ‘##’ and ‘_’, and whenever an audio includes a silence, short pause, 

unintelligible sounds, vocal noise or music we represent it using the respective abbreviation 

shown in Table 5. Building the G2P model for a language also requires a list of characters 

used to spell that language, that is, its graphemes.  

No 
Phonetic Alphabet Symbols 

Classification 
IPA DC-Arpabet X-SAMPA 

1 ## ## ## sentence break 

2  _  skipped phoneme 

3  sil  silence 

4  sp  short pause 

5  zun  unintelligible 

6  zvn  vocal noise 

7  zmu  music 

Table 5. Symbols and non-phonetic sounds representations. 

3.1.1 Swedish  

This section deals with the phonetics and phonology of Standard Swedish from a 

synchronistic perspective. As was said at the beginning of this chapter, we want to focus on 

describing the authentic pronunciation of speakers. First, we decided to choose one single 

variant among all existing ones in the Swedish language – Standard Swedish. This variant 

evolved from the Central Swedish dialects, and most Swedes speak it. Herewith we can 

predict how most speakers pronounce Swedish. Thus, in this section, we start by briefly 

describing the Swedish vowel and consonant inventory, where we discuss phenomena 

crucial to measuring the impact on the G2P. Following, we introduce two frequent features 

of this language – quantity and retroflexion – which were important in the decisions we had 

to make for the Swedish G2P model.  

The Swedish orthographic alphabet consists of nine vowels: <a, e, i, o, u, y, å, ä, ö>. (Riad, 

2014) considers nine distinct vowel phones. Each vowel occurs with long and short variants. 

The author finds these variants allophones of the same phoneme. The long vowels are [i:, y:, 

e:, ɛ:, ø:, ʉ:, u:, o:, ɑ:] and the short vowels [ɪ, ʏ, ɛ, ø, ɵ, ʊ, ɔ, a], respectively. 
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In Standard Swedish, several vowel qualities are distinguished in unstressed syllables. The 

phones /e/ and /ɛ/ neutralize in the short variant, as [ɛ].  The alternations between long and 

short vowels provide important cues to the phonemic system shown in Section 4.3. Thus, 

the author defends that the lowering of /ø/, and /ɛ/ before a retroflex motivates the height 

separation between /a/, which is [low], and /ø/ and /ɛ/ which are [mid]. The two main short 

allophones of /e/ and / ɛ/ are neutralized as [ɛ]. This results in eight short vowel allophones 

to match the nine long vowel allophones. However, many dialects have nine long vowels 

and nine short vowels (Riad, 2014). In some varieties of Standard Swedish, a similar 

neutralization occurs for short /ø/ and short /ʉ/, where some young speakers have 

neutralization as [ɵ].  

Also, in many cases <e> and <ä> as in sett and sätt coincide and are both pronounced /e/. 

This can lead to the mistaken belief that there are only eight short vowels and that [e] and 

[ɛ] are allophones. Yet, in Standard Swedish, /e/ and /ɛ/ are treated as phones in Standard 

Swedish. 

The consonant inventory contains 18 different phones. Sixteen of these occur with both a 

short and a long variant, and that distinction is phonological (represented in Table 6 with a 

raised mora - /ᶣ/). In contrast to vowels, the opposition length of consonants does not carry 

any meaning. The consonant system has a double specification of aspiration and voicing in 

the obstruents. (Riad, 2014) focuses on the qualitative contrasts of the Swedish consonant 

system, arranged according to the place of articulation and manner of articulation: 

 
labial, dental, alveolar,   

labiodental alveolar palatal velar glottal 

oral stop 
p pᶣ t tᶣ  k kᶣ  

b bᶣ d dᶣ  g gᶣ  

fricative. f fᶣ s sᶣ ç  h 

fricative/retroflex   ʂ ʂᶣ   

fricative/approximant v vᶣ     

nasal stop m mᶣ n nᶣ  ŋ ŋᶣ  

lateral  l lᶣ    

apical trill  r rᶣ    

Table 6. Standard Swedish consonants inventory mofified and extracted from (Riad, 2014): 49.  
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Standard Swedish has palatal and velar voiceless fricatives: /s/, /ʂ/, /ɕ/. The phones [ɧ] and 

[ɕ] are very similar, although the most prominent phonetic difference lies in its place of 

articulation. While /ɕ/ has a stable place of articulation, /ʂ/ is subject to contextual 

conditioned allophony in Standard Swedish, as well as a wide-ranging sociolinguistic 

variation. In onset position, /ʂ/ can have four different variation - [ɧ], [ɧʷ], [x], [ʂ] – while in 

postvocalic position the realization of /ʂ/ is mostly [ʂ] or [ʂː]. Thus, the most common 

prevocalic realization is [ɧ]. /ʃ/ is also used in some Swedish dictionaries (e. g., Svensk 

Ordbok4).  

One of the most salient features of North Germanic standard varieties is the quantity system. 

Stressed syllables are invariably heavy, due to a prosodic condition. This condition is met in 

either the vowel alone, or in a combination of the vowel and the following consonant. In a 

stressed syllable one segment must be long, either the vowel or the consonant, but not at the 

same time. Vowels and consonants thus occur in long and short variants, and it is primarily 

in terms of quantity that these segmental distinctions are made and described.  

There are qualitative differences within vowel pairs. Each long vowel has a short 

counterpart. The long and short consonants in a pair are naturally much more similar in 

quality. Most consonants have long and short pairs, but there are a few that exhibit a 

defective quantitative distribution. Two phones never occur directly after a stressed vowel, 

namely /h/ and /ɕ/, and hence lack long variants altogether. The segments /ʝ/ and / ŋ/, on the 

other hand, are always long in a postvocalic coda position, provided that the syllable is 

stressed. The phoneme /ŋ/ never occurs word-initially, but may occur intervocalically and as 

onset in unstressed positions.  

Syllable weight in stressed syllables is phonetically and phonologically clear. Any stressed 

syllable is bimoraic, where a long vowel is bimoraic, and a short vowel monomoraic. A long 

consonant is (mono)moraic, and a short consonant is non-moraic. If the vowel is long, then 

 

4
 https://svenska.se  

https://svenska.se/
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all is fine. If the vowel is short, then the following consonants must be long. In accordance 

with (Riad, 2014) most of the other Germanic languages lost consonant quantities early on 

and this has led to rather different quantitative phonologies. In this section, we shall assume 

that quantity is distinctive in consonants, but some consonants have lexical length, while 

others become grammatically lengthened or shortened by syllabification. For the vowels, 

quantity is predictable from prosodic context, when a syllable is stressed or when there is 

quantitative information (e. g., lexical or positional) in the following consonant. 

Another striking feature of Standard Swedish is retroflexion. The retroflexion rule creates 

retroflex sound when two contiguous segments (/s, t, d, n, l/ with a preceding /r/) converge 

into one element. The output /ʂ, ʈ, ɖ, ɳ, ɭ/ is phonologically distinct from the input segments. 

Thus, retroflex consonants can appear in most simple words (e. g., framfart, rampaging), but 

can also occur in other articulatory patterns – word boundaries, inflections, compounds, 

derivations. In word boundaries, a retroflex consonant emerges if the final letter of a word 

is an <r> and the initial letter of the following word is <t, d, s, l, n>. 

Swedish form Phonetic transcription English translation 

vår triumf /vo:ʈriɵmf/ our victory 

hur mår du /hʉ:rmo:ɖɵ/ how are you 

under sängen /ɵndeʂɛŋen/ under the bed 

eller nej /ɛleɳɛj/ or not 

hur ledsam /hʉ:lesam/ how sad 

Table 7. Standard Swedish retroflexion rule. 

As for flections, when the genitive <s> is attached to a word ending with <r>, the retroflex 

/ʂ/ is used (e.g, Peters hus, /peteʂhʉ:s/, Peter’s house). When a verb ends with a final <r> 

the retroflex consonants /ɖ/, /ʈ/ occur (e. g., stör-de, /stø:ɖ /; stör-t, /stø:ʈ/). Furthermore, this 

rule also applies to past participles and nouns. Thus, retroflex consonants also occur in 

compound words (e. g., vårdag, /vo:ɖɑ:g /, spring day) and derived words (varsam, /vɑ:ʂam/, 

careful). 
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3.1.2 Russian 

This section deals with the phonetics of Standard Russian from a synchronistic perspective. 

We start by briefly outlining the Russian vowel inventory and consonant inventory. 

Following, we describe a frequent characteristic feature of Russian – palatalization. Finally, 

we describe and discuss the value of two special signs in Russian phonetic and phonological 

system.  Therefore, in order to make a plan for training a Russian G2P model, we also need 

to discuss which phonetic representations are best represented of Russian graphemes, how 

to treat iotated vowels and if we should make a contrast between palatalized consonants and 

non-palatalized consonants. 

The modern Russian alphabet consists of 33 letters: 20 consonants (<б, в, г, д, ж, з, к, л, м, 

н, п, р, с, т, ф, х, ц, ч, ш, щ>), ten vowels (<а, е, ё, и, о, у, ы, э, ю, я), a semivowel (<й>), 

and two modifier letters or signs (<ь, ъ>) that alter pronunciation of a preceding consonants 

or a following vowel. 

In most analyses, the Russian vowel inventory contains five vowel phones: <i, e, a, o, u>. 

However, studies on Modern Russian (Yanushevskaya & Bunčić (2015), and (Timberlake 

(2014)) claim a sixth vowel <ɨ>. Each one of these vowels is realized as a rich set of 

allophones ruled by stress and phonological environment. In most cases, these vowels merge 

into two or four vowels when stressed: /i, u, a/ after hard consonants and /i, u/ after soft 

consonants.  

In orthography, each vowel is represented by two letters. This happens so we can distinguish 

the not-iotated vowels and the iotated vowels. Vowels in Russian do not have a phonemic 

distinction of quantity; there are no words distinguished by, for example, a long [aː] as 

opposed to a short [a]. 

Russian has 33 different phones. Most of the consonants occur with both a palatalized and a 

non-palatalized version. The remaining consonants have a single version – the velars are 

palatalized before front vowels; palatals are either invariably palatalized (e. g., j) or 

invariably not. The consonant inventory for Russian is given in Table 8. 
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 labial dental 
alveolo-

palatal 
palatal retroflex velar 

stop 
voiceless p pʲ t tʲ       k 

voiced b bʲ d dʲ       g 

fricative 
voiceless f fʲ s sʲ ɕɕ   ʂ x 

voiced v vʲ z zʲ     ʐ   

affricate   t͡ s t͡ ɕ       

nasal m mʲ   n nʲ       

lateral   l lʲ         

rhotic                               r rʲ  

glide       j     

Table 8. Russian consonants inventory modified and extracted from Timberlake (2014): 53. 

Thus, ш and щ share a very similar way of pronouncing their sounds. The letter ш has the 

phonetic value of [ʃtʃ] (a “palatalized /ʃ/” followed by a sound similar to [tʃ], in which the 

stop element, represented by t, is weak) or [ʃʃ] (a long “palatalized /ʃ/”). Either of these 

pronunciations of ш is regarded as correct, but it is common for any speaker to use only one 

of them. The letter щ has a phonetic value that can switch between [tʃ] (a weak t followed 

by a “palatalized /ʃ/”) and [tɕ] (a weak t followed by a [ɕ]). Either of these is correct but it is 

pronounced differently depending on the region of Russia (Timberlake, 2014). 

One of the most characteristic features of Russian consonantal phonology is that most sounds 

have both a palatalized and a non-palatalized phonological segment. In accordance with 

(Bondarko, 2005), palatalized consonants are referred to as soft and non-palatalized 

consonants as hard. Palatalization is an articulation of a consonant in which the blade of the 

tongue moves toward the hard palate. For example, when a non-palatalized consonant is 

pronounced, the tip of the tongue is touches near the teeth, while the middle of the tongue 

lies low in the mouth. In contrast, when the palatalized consonants are pronounced, the tip 

of the tongue touches behind the upper teeth, and the blade and the middle of the tongue are 

raised towards the hard palate. Most consonant articulations in Russian have two forms, with 

or without palatalization. Thus, palatalization in Russian is indicated by adding a diacritic to 

the phone. According to IPA, we use a palatalized diacritic (/ʲ/) when referring to palatalized 

consonants (e. g., /bʲ, dʲ, gʲ/). Palatalization is contrastive in word-final and in heterogenic 

medial coda positions. 
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Some examples illustrating the palatalization contrast extracted from (Padgett, 2001) are 

given in (1). Contrasts (1)a-b are prevalent in the language, while (1)c is more limited due 

to assimilations and neutralizations in that context. 

1. a) before back vowels  

mat foul language mat' crumpled 

rat glad r'at row 

vol ox v’ol he led 

nos nose n'os       he carried 

suda court of law s'uda here, this way 

 

   b) word-finally 

mat foul language mat' mother 

krof shelter krof' blood 

ugol corner ugol' (char)coal 

v'es weight. v'es' entire 

 

     c) before another consonant 

polka      shelf pol'ka      polka      

tanka      tank   

v'etka branch   

gorka hill   

 

Russian has two modifier signs with no phonemic value. The soft sign Ь signals the presence 

of a soft consonant, and the hard sign Ъ signals the presence of a hard consonant. Therefore, 

they can be used between a consonant or a vowel (Ь) and between a consonant and a vowel, 

between two consonants, or at the end of a word after a consonant (Ъ) 

In Russian Ь has much wider usage than Ъ; Ь can be used at the end of words or in between 

two consonants, and it indicates that the preceding consonants are soft. Neither Ь, or Ъ can 

be a stand-alone letter or the first letter in a word.  
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At the same time, there are some letters in Russian that are always hard or always soft and 

will sound the same way, whether there is a soft sign (Ь), or not. The consonants < ж, ш, ц 

> are always hard (if these consonants are followed by a soft sign, the sign cannot soften the 

consonant and serves a purely grammatical purpose. The consonants < ч, щ, й > are always 

soft. A soft sign following these consonants, once again, serves only a grammatical purpose.  

3.2 Speech Technologies 

3.2.1 ASR 

As stated by Alasadi & Deshmukh (2018), speech recognition is an important field that is 

constantly being developed as an interdisciplinary subfield of computational linguistics. 

Speech recognition creates technology and methods that empower the acknowledgment and 

understanding of natural language into a computer understandable language. This is most 

generally known as Automatic Speech Recognition (ASR).  

Accordingly, in this section, we start by presenting a brief historical overview of automatic 

speech recognition, from the early days until the present. Then, we introduce a traditional 

and a more modern approach to ASR, followed by the main challenges it faces today. Finally, 

we introduce an evaluation metric used for speech recognition systems.  

3.2.1.1 ASR: Historical overview 

Throughout the years, ASR has become more reliable and easier to handle as a result of 

significant advancements in computer technology and informatic techniques. Thus, the 

number of applications has increased significantly.  

Speech recognition has its origins in early 1950s research at Bell Labs. Early systems were 

limited to a single speaker and only had a few dozen words in their lexicon, numbers for 

telecommunication purposes mostly. Modern speech recognition systems, on the other hand, 

have come a long way from their predecessors, which had large vocabularies in many 

languages and could recognize connected speech from a variety of speakers. 
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The first speech recognition systems were focused on numbers. In 1952, The "Audrey" 

system, developed by Bell Laboratories, could find a single voice speaking digits clearly. 

Ten years later, IBM introduced “Shoebox,” which understood and responded to 16 words 

in English. Other nations developed hardware to recognize sound and speech, and by the end 

of the 1960s, technology had advanced to the point where it could support words with four 

vowels and nine consonants.  

In 1966, a statistical method known as the "Hidden Markov Models (HMM)" became one 

of the breakthroughs in the ASR field and has endured as the state of the art for some time. 

One of the first applications of HMMs was speech recognition, starting in the mid-1970s. 

HMM was the most successful approach, and hence the most used method for the 

classification stage of an ASR system (Hennebert et al., 1994). It is based on the modeling 

of the temporal sequence of spectrums in terms of Markov chains, to describe how one sound 

transits to another (Juang & Rabiner, 1991) The HMM calculates the probability of unknown 

sounds becoming words rather than using words and searching for sound patterns. 

Speech recognition vocabulary grew from a few hundred to several thousand words in the 

1980s. In 1997, The world's first "continuous speech recognizer" was released, in the shape 

of Nuance’s Dragon Naturally Speaking software. It is still in use today, capable of 

understanding 100 words per minute. The Voice Portal (VAL), an interactive voice 

recognition system that could be accessed by dialing in, was also accessible through 

BellSouth. 

By 2001, the accuracy rate of speech recognition technology had reached approximately 

80%. Google Voice Search was a step forward that resulted in substantial changes. As it is 

an application, millions of individuals were able to use speech recognition. It was also 

significant since Google could collect data from billions of searchers, which could help 

predict what a person is saying. 

Indeed, speech recognition became highly popular, especially when Siri was introduced by 

Apple in 2011. Today, several speech-based commercial applications exist, ranging from 
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home automation systems, virtual smartphones assistants, or voice interaction systems in 

automobiles. This will be further discussed in section 3.2.3. 

3.2.1.2 Approaches to ASR 

Classical machine learning models can be classified into two different approaches: 

Generative5 and Discriminative6 approaches. For the past decades, speech recognition has 

mostly used a Generative approach. Two popular methods that are based on this approach 

are the HMMs (Hidden Markov Models) and the Gaussian mixture models (GMMs). Thus, 

the basic framework of a speech recognizer system consists of three major stages: capture, 

transducing, and decoding. The acoustic model, lexicon model, and language model are 

combined during the transducing step. Connecting these pieces, we obtained an ASR 

framework that includes the components described in Figure 7. 

 

Figure 7. Basic framework of a speech recognizer system. 

1. Speech signal - extract information on the properties of the speech signal. 

2. Pre-processing - transforms the speech signal before any information is extracted 

by the feature extraction stage. In fact, the functions to be implemented by the pre-

processing stage are also dependent on the approach that will be employed at the 

feature extraction stage.  

 

5 Generative approach: used to learn each language and determine which language the speech belongs to. 
6 Discriminative approach: used to determine the linguistic differences without learning any language. 
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3. Feature extraction - extracts a set of predetermined attributes from the processed 

speech input. In other words, it transforms the input waveform into a sequence of 

acoustic feature vectors. Each vector represents the information in a small-

time/frames window of the signal. 

4. Acoustic Model - used to recognize phones rom obtained acoustic features. It 

computes the likelihood of the observed spectral feature vectors given linguistic units 

(words, phones, subparts of phones). 

5. Lexicon Model - used to identify the most probable sequence of phones. Typically, 

an HMM lexicon, which is a list of word pronunciations, each one represented by a 

string of phones. 

6. Language Model - consists of various kinds of knowledge related to a language, 

such as syntax and semantics. This model is required when it is necessary to 

recognize the phones that make up the input speech signal and to move it to either 

trigram, or sentences.  

7. Decoder - takes the information provided by the acoustic model (AM), plus an HMM 

lexicon of word pronunciations, and combines it with the language model (LM). The 

decoder outputs the most likely sequence of words. 

At the present time, the so-called classical approaches gave rise to two main approaches to 

ASR: a traditional hybrid approach and an end-to-end Deep Learning approach. The 

traditional hybrid approach has dominated the field for the past ten years. Because of the 

extensive research and training data available, there is more understanding of how to build 

a robust model(Vielzeuf & Antipov, 2019). 

On the other hand, in accordance with (Kurata et al., 2019) an end-to-end Deep Learning 

approach is a new paradigm in neural network-based speech recognition that has several 

advantages. Traditional “hybrid” ASR systems, which consist of an acoustic model, a 

language model, and a lexicon model, each of which might be sophisticated, require 

independent training of these components. In contrast, E2E ASR is a unified method with a 

much simpler training pipeline and models that perform at low audio frame rates. This 

reduces the amount of time spent on training and decoding. Thus, the same author revealed 

that across a variety of speech recognition tasks, E2E ASR systems have matched the 



 

   

 

28 

accuracy of hybrid ASR systems. This is due to the use of sophisticated neural network 

architectures.  

A common end-to-end Deep Learning architecture is the encoder-decoder, which is 

implemented with RNNs (Recurrent Neural Network). The next figure illustrates the 

standard encoder-decoder architecture, also known as the attention-based encoder-decoder 

(AED) or listen attend and spell (LAS) (Jurafsky & Martin, 2022). 

  

Figure 4. Encoder-Decoder Architecture extracted from (Jurafsky & Martin, 2022): 26:9. 

The first component of this architecture is an encoder. Its function is to accept a single data 

element of the input sequence at each step, process it, collect information for that element, 

and transfer it forward. The second component is a decoder, it gives the entire sentence 

predicting an output at each step. 

Several other approaches have also appeared , such as Connectionist Temporal Classification 

(CTC) and the Recurrent Neural Network Transducer (RNN-T). Jurafsky & Martin (2022) 

concluded that attention-based models offer higher accuracies, while CTC models are more 

adaptable to streaming, allowing them to generate graphemes online rather than waiting for 

the audio input to finish.  
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Errattahi & el Hannani (2017) concluded that the benchmarks have shown that the Deep 

Neural Networks (DNN) and Convolutional Neural Networks (CNN) have proven their 

efficiency on several Large Vocabulary Continuous Speech Recognition (LVCSR) tasks by 

outperforming the traditional Hidden Markov Models. LVCSR is characterized by the 

authors as being the most challenging task in ASR. Recently, Rajadnya (2020) developed an 

application for continuous speech recognition based on DNN-HMM and Deep Belief 

Network (DBN) algorithms. This proved that using DNN-HMM with DBN supplies better 

accuracy than using typical GMM-HMM systems. Deep learning is quickly becoming a 

standard approach for speech recognition, having effectively replaced all the classical 

approaches. 

3.2.1.3 ASR challenges 

One of the main challenges of ASR is the persistent quest for human accuracy levels. Both 

ASR approaches, traditional hybrid and end-to-end Deep Learning, have become 

significantly become more accurate, however, neither can claim human accuracy. The main 

characteristics in speech recognition systems that can influence recognition systems are 

speaker-dependent or speaker-independent models, acoustic models, vocabulary, and 

language models.7 Thus, system failures are caused by issues such as a noisy environment, 

distinct pronunciation of one word by two different speakers, and distinct pronunciations of 

one word by two different speakers. Each of these issues must be resolved to get perfect 

recognition.  

Recently, bias and gender issues in data have also deserved attention from the community. 

Gender and racial bias are a concept where models and algorithms do not provide optimal 

services to people of a specific gender or dialect. The disparity of accessible data for both 

genders and dialects has been proven in recent studies to be its main cause. Brasoveanu et 

al., (2020) found bias against women in the performance of speech recognition systems by 

analyzing the gender representation in different corpora. Bias was also identified against 

 

7(He, 2021) 



 

   

 

30 

dialect groups; dialect speakers have lower ASR performance than speakers of standard 

pronunciations (Wassink et al., 2022). 

3.2.1.4 Evaluation metrics: Word Error Rate, Accuracy, Precision, Recall and F1 score 

The industry standard evaluation metric for speech recognition systems is the word error rate 

(WER) (Jurafsky & Martin, 2022). Concerning the ASR models – Normalizer and G2P– 

these are performed by using WER and the following standard performance metrics - 

Accuracy, Precision, Recall, and F1 score (Makhoul et al., 1999). 

In accordance with Jurafsky & Martin (2022), the word error rate is based on how much the 

word string returned by the recognizer (the hypothesized word string) differs from a 

reference transcription. Thus, WER is the proportion of transcription errors that the ASR 

system makes relative to the number of words that were said. The lower the WER, the more 

accurate the system.  

𝑊𝑜𝑟𝑑 𝐸𝑟𝑟𝑜𝑟 𝑅𝑎𝑡𝑒 = 100 × 
𝐼𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛𝑠 + 𝑆𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑜𝑛𝑠+𝐷𝑒𝑙𝑒𝑡𝑖𝑜𝑛𝑠 

𝑇𝑜𝑡𝑎𝑙 𝑊𝑜𝑟𝑑𝑠 𝑖𝑛 𝑡ℎ𝑒 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑇𝑟𝑎𝑛𝑠𝑐𝑟𝑖𝑝𝑡
    

Equation 1. Word Error Rate formula. 

Accuracy is also metric for evaluating classification models. It answers the question: 

“Overall, how often is our model correct?”. Thus, Accuracy can tell us immediately whether 

a model is being trained correctly and how it may perform generally, where 1 represents total 

accuracy.  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
   

Equation 2. Accuracy metric formula. 

Precision is defined as the number of true positives divided by the number of true positives 

plus false positives. This formula is used to understand the model’s accuracy.  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
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Equation 3. Precision metric formula. 

Recall is described as the number of true positives divided by the number of true positives 

plus false negatives. That is, it calculates the true positives by anything that should have been 

predicted as positive.  

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
  

Equation 4. Recall formula 

F1 score, also known as F1, is a measure of a model’s accuracy on a dataset. F1 score is a 

way of combining the precision and recall of the model, and it is defined as the harmonic 

mean of the model’s precision and recall. A perfect model has an F1 score of 1. 

𝐹1 =
2(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

Equation 5. F1 score metric formula. 
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3.2.2 TTS 

For centuries, the thought of machines speaking has caught the interest of researchers and 

creative thinkers. One of the earliest fields of speech and language processing is speech 

synthesis. Text-to-speech (TTS) was initially used in reading systems for the blind, where a 

machine would read some text from a book and convert it into speech. These early systems 

had a rather mechanical sound. Today sophisticated systems exist that help human computer 

interaction. The main uses of TTS today are in call-center automation, reading text as in 

SMS, weather reports, travel directions and a wide variety of other applications.  

Accordingly, in this section we start by presenting a brief historical overview of TTS. Then, 

we introduce its main approaches, followed by the main challenges it faces today. 

3.2.2.1 TTS: Historical overview 

TTS has its origins in the early 1950s with the development of three paradigms of waveform 

synthesis: formant, articulatory, and concatenative synthesis. Formant synthesizers were      

originally created to simulate human speech by generating artificial spectrograms. The most 

well-known formant synthesizer was the Klatt formant synthesizer and its successor systems, 

the MITalk system and the Klattalk software. The second paradigm, articulatory synthesis, 

models the natural speech production process, creating a synthetic model of human 

articulators – lips, tongue, velum, pharynx, vocal cords, etc. – and making it speak (Palo, 

2006) The third paradigm, concatenative synthesis, was first proposed at Bell Laboratories. 

It produces artificial speech by concatenating prerecorded units of speech such as phones, 

diphones, syllables, words, and sentences (Khan et al., 2016). 

Afterward, a theoretical model based on diphones was proposed, although such diphone 

synthesis models were not implemented until the 1960s and 1970s (Lenzo & Black, 2000). 

Diphone synthesis creates machine speech by blending diphones, single-unit combinations 

of phones and the transitions from one phoneme to the next (e. g., the /c/ and /ae/ sound in 

the word cat).  
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In the 1980s and 1990s, the unit selection synthesis, also referred to as corpus-based 

synthesis, was developed. Whereas diphone synthesis was using a second processing method 

to add length and pitch, unit selection synthesis skips that step and uses a large database. It 

segments each recorded utterance into individual phones, syllables, morphemes, words, 

phrases, and sentences that already have the duration and pitch information (Mundada et al., 

2015) 

While most early TTS systems used phones as input; development of text analysis 

components of TTS came later, drawing on NLP. At the present time, TTS uses Deep 

Learning techniques to generate speech. 

The rise of voice computing has led to a growing range of applications for TTS devices. 

Today, we have independent virtual assistants such as Apple’s Siri, voice guidance and 

navigations tools, conversational interactive voice response (IVR) systems (customer service 

call centers), among others. Even though there are a variety of signal processing technologies 

that are being used to create the synthetic voice, the best AI-created TTS voices still start 

with a human speaker. Therefore, recent studies are leading to TTS voices that speak with 

emotional expression (Rui et al., 2009), singles voices in multiple languages, and higher 

audio quality. 

3.2.2.2 Approaches to TTS  

The goal of text-to-speech (TTS) systems is to map from strings of letters to wave forms. In 

contrast with ASR, basic TTS systems are speaker dependent. They are trained to have a 

consistent voice, on much less data, but all from one single speaker. In this section we will 

present and briefly describe some of the most popular and innovative techniques used in 

TTS systems. 

Earlier text-to-speech systems are classified into four categories: Concatenative systems, 

Diphone systems, Formant systems, and Articulatory systems. Later, with the advancement 

of statistical modelling, the statistical approach gave rise to Parametric synthesis (Delić et 

al., 2017). Modern systems use Deep Learning techniques. 



 

   

 

34 

The concatenative speech synthesis method was the most popular method. It involves the 

production of artificial human-like speech from pre-recorded units of speech by phones, 

diphones, syllables, words or sentences. However, developing robust concatenative systems 

require large corpora to collect all forms of spoken words with different combinations of 

emotions, prosody, stress, etc.8 The architecture of a concatenative system consists of two 

main stages: Text analysis and Waveform Synthesis. The text normalization, phonetic 

analysis, and prosodic analysis are combined during the text analysis. Figure 5 shows an 

architecture for concatenative synthesis (Taylor, 2007). 

 

Figure 5. TTS architecture for concatenative speech synthesis. 

1. Text normalization - breaks the input text into sentences, and deals with      

abbreviations, numbers, time, dates, etc.  

2. Phonetic analysis – produces a pronunciation for each word in the normalized word 

strings from text analysis. It creates a large pronunciation lexicon. 

3. Prosodic analysis – computes an abstract representation of the prosodic structure, 

prominence, and tune of the text.  

 

8 https://medium.com/@saxenauts/speech-synthesis-techniques-using-deep-neural-networks-38699e943861 
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In contrast, more modern TTS systems consist of two different components: an encoder-

decoder model and a vocoder. The encoder-decoder model is used for spectrogram 

prediction, mapping from strings of letters to spectrograms, to a waveform and finally to an 

audio signal. The following figure illustrates the process of mapping a string to an audio 

signal: 

Figure 6. The stages of converting a string into an audio signal extracted from (Meyer, 2021b). 

The first component of a modern TTS system uses the same architecture shown for ASR – 

the encoder-decoder. Hence, one of the most modern architectures used for TTS is the usage 

of Tacotron29 architecture, extended to the earlier Tacotron (Wang et al., 2017)  and the 

Wavenet vocoder (van den Oord et al., 2016). The following figure displays the components 

of a machine learning architecture used to generate speech:  

 

9 https://pytorch.org/hub/nvidia_deeplearningexamples_tacotron2/  

https://pytorch.org/hub/nvidia_deeplearningexamples_tacotron2/
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Figure 7. Machine learning architecture of speech synthesis systems extracted from (Meyer, 2021b). 

3.2.2.3 TTS challenges 

Text-to-speech has improved over the years; however, it still lacks the dynamic variation 

and adaptability of human speech. Two of the main challenges TTS systems deal with today 

are prosody and out-of-vocabulary words.  

In recent years, end-to-end text-to-speech systems have seen remarkable success, increasing 

naturalness and intelligibility. Nevertheless, end-to-end models do not supply an explicit 

way to control and incorporate the necessary prosody – the rhythm, emphasis, melody, 

duration and vocal stress in speech – while synthesizing the signal. Hence, unnatural prosody 

is one of the most pressing issues TTS faces today.  

In recent studies, TTS systems are showing improvement by achieving more dynamic and 

natural intonation in synthesized speech. Tyagi et al. (2020) describes a model that uses 
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syntactic and semantic properties of the utterance to decide prosodic features. Similarly, 

Latif et al. (2021) provides a control mechanism for E2E systems to manipulate prosodic 

features.  

Given the unlimited context for text-to-speech synthesis and the current multilingual 

environment, TTS is often affected by the presence of out-of-vocabulary (OOV) words. 

OOV words are caused by a variety of factors, including the use of technical terminology, 

proper nouns, unusual words not covered by the vocabulary, and foreign words. This is an 

even greater problem for non-English TTS systems. Hence, most of the TTS systems are 

currently made just for English, leaving other languages with less resources. 

The issue of homographic heterophones (HH) in languages such as Portuguese or English, 

is still a question that hasn’t been yet very explored in TTS systems. The automatic 

classification of HH – pairs of words with the same spelling but different pronunciations – 

has been studied for Brazilian Portuguese (Shulby et al., 2013). The automatic 

disambiguation of HH word pairs belong to different grammatical classes and are 

distinguished by openness of a mid-vowel in stressed syllables (e. g., [o]lho (noun), [O]lho 

(verb)).  

3.2.3 Conversational agents 

Artificial intelligence technologies have become more widely used in recent years, 

particularly in apps developed for organizations to manage their user requests automatically. 

A conversational agent, also referred to in state of the art as dialogue systems or dialogue 

agents, is applied to interact with users using natural language. Indeed, conversational agents 

are gradually being used in a variety of fields, such as healthcare, education, marketing and 

customer service. The following section provides an overview of the progress of 

conversational agents, followed by a description of a frame-based architecture from a simple 

model to a complex intelligent system.  
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3.2.3.1 Conversational agents: Overview 

A conversational agent is any dialogue system that not only conducts natural language 

processing but also responds automatically using human language. These agents represent 

the practical implementation of computational linguistics (Jurafsky & Martin, 2022) The 

author divides conversational agents in two types: chatbots and (task-based) dialogue agents. 

Chatbots mimic informal human chatting and are generally used for entertainment, while 

task-based dialogue systems interface to personal assistants that can perform sophisticated 

tasks, such as booking a flight, buying a product or answering questions about weather or 

sports. In the context of this thesis, we will focus on the task-based dialogue agents (or 

conversational agents).  

In the 1950s, Alan Turing created the first chatbot software – ELIZA. It is a computer 

program that uses natural language processing to simulate a psychotherapist’s language. This 

was the first time a chatbot has been able to have a human-like conversation. A downside of 

ELIZA is that its knowledge is limited to a range of topics. Thus, it is unable to support long 

dialogues and to learn context. In 1972, a more advanced chatbot was created – PARRY. 

Although it showed few advancements in having “emotional responses” it still showed low 

capabilities concerning language understanding and the ability to express emotions.  

3.2.3.2 Dialogue Systems architectures 

For a task-based dialogue architecture, we present a frame-based architecture with two 

different versions: the GUS architecture, and the dialogue-state (or belief-state) architecture. 

GUS (Genial Understander System) is a simpler architecture. It was first introduced in 1977 

but it is still in use in most modern commercial digital assistants. On the other hand, the 

dialogue-state architecture is a more sophisticated and modern version of a conversational 

system. Jurafsky & Martin (2022) ensures most commercial systems are architectural 

hybrids, based on GUS architecture expanded with some dialogue-state components. 

However, there are a wide range of dialogue-state systems being developed in research labs. 

According to Bobrow et al. (1977), GUS was constructed with the intent to engage a 

sympathetic and highly cooperative human in an English dialog, directed towards a specific 
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goal within a restricted domain of discourse. It has its limitations making this system a more-

or-less realistic dialog. However, the author notes that GUS is indeed interesting because of 

the natural dialog phenomena, which tries to model rather than offering services or provide 

information that is difficult to obtain. Thus, the following figure shows a conversation with 

the original GUS system. The figure illustrates some of the language understanding problems 

faced by GUS, including understanding indirect answers to questions, resolving anaphora, 

understanding fragments of sentences offered as answers to questions, and interpreting the 

discourse, taking into account known conversational patterns. 

 

Figure 8. A transcription of a dialogue using the GUS system of  Bobrow et al. (1977). Image extrated from (Jurafsky & 

Martin, 2022:24,14). 

Frames are the basis of all current task-based dialogue systems, whether the simple GUS 

architecture or more sophisticated dialogue-state architectures. A frame is a type of 

knowledge structure that contains a collection of slots, each of which can take a set of 

possible values and represents the types of intentions the system can extract from human 

sentences. This collection of frames is commonly referred to as a domain ontology. A task-

based dialogue frame’    s collection of slots describes what the system needs to know, and 

the filler of each slot is limited to values of a specific semantic kind. If we look at Figure 8, 
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a dialogue in travel domain, a slot could be of type city, date, airline, time, or values such as 

San Diego, May 28, Air California, 9.15 am, respectively.  

A more advanced version of the frame-based architecture is the dialogue-state (or belief-

state) architecture, which is used in modern research systems for task-based dialogue. The 

architecture of a typical dialogue-state system is demonstrated in Figure 10.   

 

 

Figure 9. Dialogue-state system architecture extracted from Williams et al. (2016:5) 

After describing and giving an overview of ASR and TTS, in Section 3.2.1 and 3.2.2, 

respectively, conversation agents combine both architectures. ASR and TTS systems make 

the first and final component of a dialogue-state architecture, which are combined with other 

major elements:  

1. Automatic Speech Recognition (ASR) - converts audio that was previously 

produced by a user into words in text form. ASR and Spoken Language 

Understanding (SLU), make one single system. SLU, or also known as Natural 
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Language Understanding (NLU) maps a given utterance into a meaning 

representation (semantic slots).   

2. Dialog State Tracker (DST) - updates its estimate of the dialogue state. 

3. Dialog Policy - learns what the system should do next given the current dialogue 

state. 

4. Natural Language Generation (NLG) - converts an abstract dialogue action into 

natural language surface utterances/responses. 

5. Text to Speech (TTS) - converts text to an acoustic wave. 

3.3 Linguistic Processing 

With 7,151 languages10 in the world and the increasing need to support multiple input and 

output languages, building and deploying speech processing systems is becoming more 

challenging. One of the most urgent concerns facing the speech and language field is 

unsupported languages.  

Defined.ai uses a Linguistic Processing Module (LPM) to treat raw text as input and structure 

it to make it usable for speech technologies that require linguistic knowledge. The LPM is 

used in all technologies previously mentioned. Therefore, LPM includes the development of 

qualified pronunciation lexicons that will provide a mapping between a word's orthographic 

form and pronunciation. Pronunciation lexicons are mainly used to build G2P models, for 

the purpose of providing pronunciation of OOV words. 

3.3.1 Multilingual G2P 

A Grapheme-to-phoneme (G2P) model maps a written text into a string of symbols which 

represent the speech sounds exactly and unambiguously. This model is an essential 

component in the general architecture of automatic speech recognition (ASR) and text-to-

 

10 https://www.ethnologue.com/guides/how-many-languages 
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speech (TTS) systems. Thus, a G2P model is part of the preprocessing module of the TTS 

system explained in Section 3.2.2.2.  

The G2P conversion has been addressed by a number of frameworks, including statistical 

techniques based on conditional probability, such as joint n-gram models (Sar & Tan, 2019) 

and rule-based models that map each grapheme into its corresponding phoneme(s) 

(Kłosowski, 2022). A rule-based approach requires hand-crafted rules written by linguists 

with knowledge of the target language. Therefore, a rule-based system should provide good 

coverage of the correspondence between letters and sounds, especially in languages where 

orthography is generally phonologically based, like Portuguese, Spanish or French. 

However, it is unlikely that any actual human language perfectly conforms to this 

assumption. The most frequent irregularity is when the relationship between a grapheme and 

a phoneme is more than a one-to-one correspondence and it might be highly dependent on 

the context of the following words. Typically, in an ASR system, the G2P generates the 

pronunciation for out-of-vocabulary (OOV) words based on their written forms. In G2P 

conversion, sequences of graphemes are mapped to corresponding phones (usually, symbols 

of the International Phonetic Alphabet). Building a pronunciation lexicon for a new language 

is both time-consuming and expensive, because it requires ability in both the language and 

a notation system, such as IPA, applied to thousands of word-pronunciation pairs. Not so 

long ago, resources have only been distributed to the most heavily researched languages. 

GlobalPhone is one of the most extensive multilingual text and speech databases, with 

pronunciation dictionaries that cover 20 languages. Despite covering few languages, this 

multilingual database supplies a basis for research in the areas of multilingual speech 

recognition, rapid deployment of speech processing systems to yet unsupported languages, 

as well as monolingual speech recognition in a large variety of languages (Schultz & 

Schlippe, 2014). Indeed, research in unsupported languages is one of the main challenges 

the G2P faces presently. In accordance with Deri & Knight (2016), there is a clear absence 

of data for most of the worlds' languages, as well as many unavailable technologies permitted 

by G2P models. Likewise, because of the lack of multilingual pronunciation lexicons and 

G2P models, different methods for faster resource generation have been proposed.  
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Traditionally, grapheme-to-phoneme systems were monolingual and often restricted to 

English due to data availability. These early systems were created to use rule-based transition 

systems to solve the issue of intra-language inconsistencies. As described by Yu et al. (2020) 

multilingual G2P for languages with different writing systems, such as European and Asian 

languages, remains an understudied area.  

An alphabetic writing system is the writing system for a language in which a symbol is given 

for each consonant and vowel. The phonetic representation is a conventional representation 

of a words' pronunciation. A one-to-one correspondence between graphemes (letters) and 

phones (sounds) is, to the best of our knowledge, possible only for Swedish.  

3.3.1.1 G2P approaches 

In earlier studies, G2P conversion for many languages used various approaches. Typically, 

a G2P model is created using a lexicon-based approach, a rule-based approach (knowledge-

based approach) or a data-driven approach, such as statistical methods including decision 

trees, neural networks and Hidden Markov Models. A lexicon-based approach uses a large 

pronunciation lexicon, while a rule-based approach maps grapheme-to-phoneme using 

manual rules based on expert knowledge. In contrast, a data-driven approach learns from 

data.  

A lexicon-based approach is commonly applied to languages whose orthography is roughly 

phonetically based, such as English or French (Braga, 2006). However, this technique fails 

when OOV words come up. While simple and effective, it has limitations, including making 

a pronunciation lexicon of significant size (with over 100,000 entries) by hand. More 

importantly, a limited lexicon will always have restricted coverage, while TTS systems are 

often expected to handle arbitrary words. To overcome these limitations, rule-based 

conversion systems were developed. A rule-based approach uses rules as the knowledge 

representation. It captures the knowledge of a linguist and embodies it within a computer 

system. Lexicons can often be used as an exception list in rule-based G2P systems. These 

systems provide complete coverage for languages with regular grapheme-to-phoneme 

mapping (Kłosowski, 2022) However, a rule-based approach is not suitable for languages 
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with complex grapheme-to-phoneme mapping, for example, English, where their 

pronunciation system is irregular. This can be explained through many heterophone (or 

heteronyms) examples in English. Heterophones are words that have the same spelling but 

a different meaning (e. g., record, direct, present, accord, etc). For example, the word 

“present” – “I want to give you this present.”, or “At the present moment I am very happy.” 

– should not be pronounced the same way in each of the sentences. To know how to 

pronounce a word correctly, we first must understand its context.  

In opposition to the rule-based approach, the data-driven approach to G2P requires data to 

learn the rules. It is based on the idea that with enough examples it is possible to predict the 

pronunciation of new words by analogy. ML sequence-to-sequence systems learn from 

examples of word and pronunciation pairs to build a learning system (Sar & Tan, 2019). 

Although the learning process of these systems are deterministic (including statistical and 

probabilistic methods), they can’t be interpreted, explained, and understood well enough by 

humans. 

3.3.2 Text normalization 

Text normalization is a stage of pre-processing for a variety of speech and language 

processing applications. According to Zhang et al. (2019) text normalization refers to the 

process of verbalizing semiotic class [1] instances, for example, converting 28/08/2022 into 

its verbalized form August twenty-eighth, twenty twenty-two. Thus, text normalization is part 

of TTS and ASR systems, as explained, respectively, in Section 3.2.1.2 and Section 3.2.2.2. 

Therefore, TTS and ASR systems require comprehensive language-specific text 

normalization processing pipelines to handle token such as abbreviations (abbrev.), currency 

($300), among many others.  

When normalizing text for TTS systems, the written numeric value must be mapped to its 

spoken form (e. g., one thousand nine hundred ninety-nine or nineteen ninety-nine). Writing 

long numbers out as they are spoken is not something speakers tend to do, so modifying to 

an accurate form is necessary. Also, when reading a written address (e. g., 134 Pine Av.), if 
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the numeric value is not preserved in the normalization (thirteen hundred four Pine Avenue), 

then a driver following spoken directions in a map application may be misled. 

The main challenge in text normalization is the variety of semiotic classes. Sproat et al. 

(2001) provided the first systematic overview of the so-called Non-Standard Words (NSWs). 

 

 

Figure 10. Overview of the Non-Standard Words extracted from Sproat et al., (2001):13 

Several other types of NSWs have been encountered over the years when developing a 

general-purpose speech system. Hence, these systems aim to be robust to various domains 

and registers. A recent update of this taxonomy is presented by van Esch & Sproat (2017). 

The authors expanded semiotic classes to twelve more original categories (e. g., measures, 

mathematical formulae, telephone numbers). This taxonomy is considered to cover most 

languages. 
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3.3.2.1 Text normalization approaches 

A text normalization system can cover a wide range of approaches. The simplest method for 

text normalization is known in the state of the art as lexical substitution, lexicon lookup, 

wordlist mapping, or memorization (Bollmann, 2019). It looks up each variant in a list that 

maps it to its desired normalization. On the other hand, it can also use a rule-based approach, 

a distance-based approach, a spelling correction method, as well as neural models. One of 

the earliest approaches to text normalization is rule-based. Typically, rules are created 

manually for one specific language. This method attempts to encode regularities in spelling 

variants as replacement rules, which includes context information to distinguish between 

different usages of a character. A distance-based approach uses distance measures to find 

the nearest correct possible word from a lexicon to produce the output. The spelling 

correction method uses HMM to analyze word morphology and determine the correct 

spelling.  On the other hand, neural models use neural networks such as encoder-decoder 

model with LSTM.  

With the complexity of text normalization, as well as the fact that deep learning in ASR and 

TTS systems is innovative, there are still areas that require a careful application of linguistic 

knowledge. The text normalization development can be done specifically for each language 

and/or task, but this work is complex and time-consuming. However, there is still a lack of 

effort on text normalization for many less-resourced languages. 

3.4 Summary 

This chapter addressed relevant work on linguistic topics such as phonetic and phonology 

concepts regarding two different languages – Swedish and Russian. We also covered speech 

recognition systems, such as ASR, TTS, and Conversational agents. Finally, we discussed 

Defined.ai Linguistic processing module focusing on Multilingual G2P models and text 

normalization.  
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Chapter 4 

Methodology  

This chapter addresses our third goal: How to upgrade and validate the Normalizer and G2P 

models in different languages? In order to improve version 2 of the normalizer, we first 

analyze how version 1 of the normalizer performed in comparison to how we want version 

2 to work. 

Second, we outline how to build two new G2P models for different languages. Briefly, the 

following two transitional questions served as the basis for our research: 

1. How to upgrade a Normalizer into one that covers most of the normalizable tokens? 

2. How to create and validate new G2P models in two different languages? 

For this purpose, this chapter is structured as follows: Section 4.1 describes how the 

Normalizer rules work, the process of expanding the rules to a better version of the 

normalizer (version 2 of the normalizer), and what implementations we made to upgrade it; 

Section 4.2 describes how we prepared a new G2P model for Swedish (see Section 4.2.1) 

and for Russian (see Section 4.2.2). Finally, Section 4.2.3, explains how we revised and 

validated the phonetic lexicons created to train the G2P models.  

4.1 Normalizer Expansion 

This section deals with the process of expanding and upgrading version 1 of the normalizer. 

Briefly, these will further answer the following two questions: 

1. How well does the normalizer do its job of converting symbolic or reduced language to 

a spoken form? 

2. What can improvements within the normalizer's scope be made to improve performance? 

The Normalizer Linguistic Expansion (NLE) project aimed to provide coverage for several 

rules: Real numbers, Symbols, Abbreviations, Ordinals, Measurements, Currency, Dates, 
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and Time. The task consisted of expanding the rules Replacement Maps (RMs) with 

numbers, symbols, abbreviations, ordinals, measurements, currency, dates, and time, 

respectively, from following rules that would have an unambiguous unmarked reading of 

their own. The main goal was to modify the Normalizer to be simpler, more consistent 

between different languages, and have more coverage of unambiguous inputs. Ideally, these 

expanded forms match a speaker's words when reading the text. We generally take the most 

conservative approach, where in possible error cases, a graceful failure is the likely outcome.  

Version 1 of the normalizer – the first version before the NLE project – converted currency 

symbols or measurement abbreviations to a spoken form only when they were adjacent to a 

real number. Table 9 illustrates the normalization process. 

Input Normalized Output 

não mais cm2 de território inacessível para a 

polícia eles somaram um buraco de 1577 cm2 

na parede 

não mais cm2 de território inacessível para 

a polícia eles somaram um buraco de mil e 

quinhentos e quarenta e sete centímetros 

quadrados na parede   

Table 9. Normalization process - input and output example 

The NLE implied the decision on which symbols or abbreviations are unambiguous enough 

to be expanded deterministically without a real number as context. New symbols and 

abbreviations were added to the RMs for Portuguese and testing samples to the respective 

Unit Tests (UTs)11. The goal of this expansion is to have a deterministic reading of spoken 

forms (Table 10). 

 

11  A Unit Test (UT) is a set of one or more examples to ensure that a unit of code behaves as expected. More 

specifically, Unit Tests are sets of examples of inputs and expected outputs that test whether the normalizer 

produces the correct - or expected - output given the input. 
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Input  Normalized Output Expected Output  

não mais cm2 de 

território  

não mais cm2 de 

território  

não mais centímetros quadrados de 

território  

inacessível para a polícia inacessível para a polícia inacessível para a polícia 

o valor da ₹ aumentou o valor da ₹ aumentou o valor da rupia aumentou 

desde o ano passado desde o ano passado desde o ano passado 

Table 10. Normalization process - currency and symbols input and expected output 

The Symbols rule converts a prescribed set of non-alphanumeric symbols into their spoken 

forms. This rule is, however, a backup rule. In most instances the symbols will be handled 

by other rules before they are even read by the Symbols rule (e. g., the input 24$ would be 

handled by a separate, previous currency rule.). Though, we still need this rule to prevent 

miscellaneous instances where symbols do not appear in their regular context, and to avoid 

unambiguous symbols that appear in isolation and do not require a more restrictive rule. We 

were interested in adding only symbols that correspond to an actual unit of speech in an 

equivalent spoken sentence (Table 11). 

Input  Normalized output  

76 - 10 setenta e seis menos dez 

Tenho 13 % de bateria Tenho treze por cento de bateria 

O número de latas ÷ caixas o número de latas dividido por caixas 

A temperatura está abaixo de 1 ℃ a temperatura está abaixo de um grau Celcius 

O π não é um número racional o pi não é um número racional 

O valor da hipotenusa é = 20 o valor da hipotenusa é igual a vinte 

Table 11. Normalization process – symbols input and output 

Version 1 could only access the default spoken form for any given symbol (e. g., symbol can 

only be normalized to the singular degree, rather than either degree or degrees). 

The Abbreviations rule is a backup rule for converting miscellaneous alphabetic or mixed 

alphabetic-symbolic sequences to their spoken form (Table 12). When one of the 

abbreviation lexicon terms is found in the input text, it will be replaced by its expanded form. 

The following requirements were needed for this rule: 
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• could consist of both abbreviations12, acronyms13, initialism14 or blended acronyms15 

• an abbreviation consists of only one word 

• an abbreviation can end with a period or not. 

• in cases where the text contains a period at the end of a sentence, it is kept 

when the abbreviation is expanded. (e. g., the phrase “A minha casa fica longe 

do teu ap.” would be expanded to “A minha casa fica longe do teu 

apartamento.” with the dot after the “apartamento” kept.  

• When the period after the abbreviation was not kept in the expanded text, the 

period was included in the abbreviation definition (e. g., “Av.” would be 

expanded to “Avenida” and “Av” would be considered a separate entry. 

Input Normalized output  

Wi-Fi  uaifai 

r/c  rés do chão  

O ap. fica longe o apartamento fica longe 

O D.r Duarte trabaha no Hospital Santa 

Maria 

o doutor Duarte trabaha no Hospital Santa 

Maria 

Ela é vegetariana, i. e., ela não come carne e 

peixe 

ela é vegetariana, isto é, ela não come carne e 

peixe 

O núm. de erros é alto o número de erros é alto 

Table 12.  Normalization process - abbreviations input and output. 

 

12 Any shortened form of a written word or phrase used in place of the whole word or phrase that does not 

include acronyms, initialisms, and blended acronyms (see footnotes 15, 16, 17). 

13 A kind of abbreviation in which the initial letters of other words are pronounced as a word, for example, 

NASA stands for the National Aeronautics and Space Administration but is pronounced as the word nasa 

following the standard rules of English phonology. 

14 A kind of abbreviation composed of the initial letters of other words but pronounced by their individual 

letters. For example, CIA stands for the Central Intelligence Agency, and it is pronounced as three individual 

letters, C I A. 

15 A kind of abbreviation which involves both pronouncing letters as words and spelling individual letters. For 

example, the standardized entrance exam for medical school is called MCAT, and it is pronounced as a spelled 

letters followed by a word, M cat. 
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Version 1 did not consider context for this rule, it could only access a single expanded form 

for any given entry in a lexicon. In version 2 of the normalizer, all abbreviated forms were 

added in order to have multiple possible expansions due to lexical or inflectional reasons.  

The Real Numbers rule converts numeric values of integers and/or decimal values into their 

spoken forms (Table 13).  

Input  Normalized output  

5 cinco  

4,44 quatro vírgula quatro quatro 

0,6541 zero vírgula seis cinco quatro um 

85 631,11 oitenta e cinco mil seiscentos e trinta e um vírgula um um 

3612367 três milhões seiscentos e doze mil trezentos e sessenta e sete 

O total de seres vivos é de 

4,983,201 

o total de seres vivos é de quatro milhões novecentos e oitenta 

e três mil duzentos e um 

Table 13. Normalization process - real numbers input and output. 

Version 1 provided coverage for 6 patterns, composed of up to 7 tokens. Version 2 takes 

now grammatical features (e. g., gender) into account for normalization. Therefore, real 

numbers will no longer be normalized using only a default spoken form, instead various real 

numbers’ forms. We also implemented whole numbers starting with 0 (e. g., 02, or 002), 

constituting now an acceptable pattern. 

The Ordinals rule converts a sequence of a real number and an ordinal marker into their 

expanded spoken forms (Table 14). This rule is activated when it encounters a construction 

made up of two consecutive components: 1. A real number; and 2. An ordinal marker. Thus, 

the ordinal was normalized into its appropriate number, gender, and case spoken forms, as 

necessary. 
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Input  Normalized output  

5.° quinto 

4 907.° quarto milésimo nongentésimo sétimo 

1.as primeiras 

567 890 123.º 
quingentésimo sexagésimo sétimo milionésimo octigentésimo 

nonagésimo milésimo centésimo vigésimo terceiro 

Esta é a 1 000.ª parte esta é a milésima parte 

As 1.ᵃˢ temporadas são 

as melhores 
as primeiras temporadas são as melhores 

Table 14. Normalization process - ordinals input and output. 

The measurement rule converts a sequence of a real number and a measurement unit into 

their expanded spoken forms (Table 15). This rule is activated when it encounters a 

construction made up of two components, optionally separated by whitespace: 1. A real 

number; and 2. A measurement unit symbol. The measurement unit was normalized into its 

singular or plural spoken form, based on the preceding number. Also, the rule provided 

coverage for gender agreement between the number and the measurement unit.  

Input  Normalized output  

a régua tem 100 cm A régua tem cem centímetros  

23,2 km2 vinte e três vírgula dois quilómetros quadrados 

2,000 Pa dois mil pascais 

O disco tem 1GB o disco tem um gigabyte  

0,4 MHz  zero ponto quatro megahertz 

2,8 μSv dois ponto oito microsieverts  

Table 15. Normalization process - measurement input and output. 

The currency rule covers currency expressions in their expanded forms (Table 16). this rule 

is activated when it encounters a construction made up of two components, optionally 

separated by whitespace: 1. A real number; and 2. A currency symbol code. The real number 

component and the currency component could be in either order. Thus, the currency symbol 

was normalized into its singular and plural form, also, the rule provided coverage for gender 

agreement. 
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Input  Normalized output  

178 ¥ cento e setenta e oito ienes 

$23,2 vinte e três dólares e dois cêntimos  

2,000 NZD  dois mil dólares neozelandeses 

CNY 8 milhões oito milhões de iuanes chineses 

0,99 R$  noventa e nove centavos de real 

1 ¢  um centavo 

Table 16. Normalization process - currency input and output 

In version 2 of the normalizer, the measurements and currency rules had to introduce several 

new abbreviations (e. g., cm, km2, mSv, Pa) and symbols (e. g., rupee-sign, won-sign, ruble-

sign). Still, under the current rules, these would only be expanded to their spoken form if 

adjacent to an actual number. 

The dates rule converts data expressions into expanded spoken forms (Table 17). Date 

expressions were composed in three predominant orders (1. Year-Month-Day, 2. Day-

Month-Year, and 3. Year-Month-Day). In addition, we accepted reduced date expressions 

(e. g., Day-Month and Month-Year.) 

Input  Normalized output  

No dia 13/9/2018, comecei a 

trabalhar. 

no dia treze de setembro de dois mil e dezoito, comecei 

a trabalhar. 

No dia 21 de out. de 2004 comprei 

o meu carro. 

no dia vinte e um de outubro de dois mil e quatro 

comprei o meu carro. 

1994.11.09 
nove de novembro de mil novecentos e noventa e 

quatro 

28 Fev 2017 vinte e oito de fevereiro de dois mil e dezassete 

15.03.2012 quinze de março de dois mil e doze 

1º-4-2007  primeiro de abril de dois mil e sete 

Table 17. Normalization process - dates input and output. 

The two main types of date expressions that we covered with the dates rule were: 1. Digital 

format with three different date separators (e. g., 12/12/2012, 12.12.2012, or 12-12-2012); 

and 2. Calendar date format is composed of a numbered day, a word-from month and a 

digital year (e. g., 28 de novembro de 2021). Days use one or two cardinal numbers, months 

are represented as full or abbreviated word form (e. g., novembro, or nov.), and years are 
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made up of four digits or by the last two digits from the complete year (e. g., 2/02/1999, 

2/2/99; 1999-02-02, 99-2-2). 

The time rule converts a numeric time expression into a spoken form (We cover two main 

types with this rule: 1. Digital clock time; and 2. Hour-minute-second time. The digit 

components are separated by a time separator or followed by a letter corresponding to a time 

unit (e. g., 14:10, 14h10). 

Input  Normalized output  

São 10h22, horário local são dez horas e vinte e dois minutos, horário local 

Trabalha até as 16h trabalha até ás dezasseis horas 

O terremoto começou às 

10h35min22s  

o terramoto começou ás dez horas, trinta e cinco 

minutos e vinte e dois segundos 

12:00 meio dia 

O dia começa à 00h o dia começa à meia noite 

São 9:00h agora são nove horas agora 

Table 18. Normalization process - time input and output. 

Throughout the NLE project, we expanded several normalizable tokens (symbols, 

abbreviations, etc.), implemented rules on the various rules, and fixed issues related to 

varieties confusion between pt-PT and pt-BR. We ensured that pt-PT rules and pt-BR rules 

were always separate in version 2. The main problem was that several PN rules and assets 

were shared between different regions of the same language. This had been done in pt-PT 

and pt-BR for several rules, but mainly due to some orthographic differences between pt-PT 

and pt-BR. 

Indeed, we made the necessary changes to have a more refined and robust pt-PT model. A 

few of the adjustments we made are shown in Table 19. In the first column are pt-BR 

orthographic forms used in the pt-PT PN, and in the second column are the new orthographic 

forms in pt-PT. 
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Version 1 of the normalizer  Version 2 of the normalizer 

kilómetros  quilómetros  

bilhões mil milhões 

dezesete dezassete 

dezenove dezanove 

centavos cêntimos 

Table 19. Improvements on the version 2 of the normalizer 

4.2 G2P models  

To prepare a G2P model for two different languages - Swedish and Russian – the following 

four tasks were performed: 

1. Prepare a language overview 

2. Develop initial phone set  

3. Map and automatically convert the initial phonetic lexicon to DC-Arpabet 

4. Revision and correction of phonetic lexicon 

5. Evaluate G2P model 

Firstly, it is necessary to understand both languages concerning orthography, phonology, 

and grapheme-to-phoneme relationships. The language overview step was made regarding a 

review of the typology of the language; a study of the phonemic graphemes and phones; a 

fundamental analysis of grapheme-to-phoneme correspondences in the language and its 

tokenization scheme (e. g., space-separated words); an overview of available 

phonological/phonetic corpora and lexica, and suggestions on how to proceed with data 

preparation. Therefore, by comprehending and considering the phonology and orthography 

of the specific language, we could begin developing a plan for training a G2P model.  

4.2.1 Swedish G2P 

Following the language overview, a phone set was created, which was used as the basis for 

a training lexicon. This phone set was developed based on the insights from the language 

overview step, which also involved a discussion with native speakers.  
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Defined.ai assigned two native Linguists to revise and discuss our work in the Swedish 

language. At this stage, the following topics were discussed regarding the Swedish phone 

set – 1. Choice of the most accurate/suitable DC-Arpabet phones for the equivalent Swedish 

graphemes; 2. The distinction between long and short vowels; 3. Application of a retroflex 

rule. 

Firstly, choosing a suitable and accurate phone for a grapheme was our priority when 

developing a phone set. The following table shows Swedish graphemes <e, i, o> and their 

DC-Arpabet and IPA equivalents with two different phones [ex, ax, ih, ii, oo, ob], 

respectively. During the phone set development process, we had a few doubts about choosing 

the language's most representative phone. The Linguist helped us choose the most canonical 

way of pronunciation for the Standard Swedish graphemes 

Grapheme 
Phonetic Alphabet Symbols 

Example 
IPA DC-Arpabet 

<e> [ɘ] [ex] ledaren 

<e> [ə] [ax] ledaren 

<i> [ɪ] [ih] enligt 

<i> [i] [ii] enligt 

<o> [o] [oo] inkomsttaxor 

<o> [ɒ] [ob] inkomsttaxor 

Table 20. Standard Swedish vowels pronunciation. 

Secondly, we initially observed that the Swedish language distinguishes 9 long vowels [aː, 

ɛː, æː, eː, oː, øː, œː, uː, yː] from the corresponding 9 short vowels [a, ɛ, æ, e, o, ø, œ:, u, y]. 

In accordance with the native Linguist, vowel length is not essential to get a transcription 

that reflects a canonical and accurate pronunciation. So, we decided to merge these vowels 

and only keep the short version of the vowel. Consequently, we reduced and got a more 

straightforward phone set, which meets our initial necessities on an excellent quality G2P 

model. On the other hand, the Swedish vowel inventory has vowels that are consistently long 

[ɑː, iː] and vowels that are constantly short [ɘ, ɪ, ɔ, ɵ, ʉ]. For the always long vowels, we also 

adopted the equivalent short DC-Arpabet phones [ah, ii]. The short vowels have the 

respective DC-Arpabet phones [ex, ih, oh, uo, uc]. 
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Thirdly, the Swedish consonant inventory includes 5 retroflex consonants [ʈ , ɖ, ʂ ɭ, ɳ]. To 

make a simpler phone set, we decided not to add these retroflex consonants but rather to 

apply a rule – r + base consonant. Retroflex consonants merge when an <r> is followed by 

<t, d, s, l, n>, for example in lärt, saaborder, länders, medborgerliga, läkarna. When this 

pattern is found, the retroflex rule is applied.  

We used a GlobalPhone (GP) lexicon for both languages as an initial phonetic lexicon. After 

developing the phone set, we needed to convert the GP lexicon to a form usable for G2P 

training. At Defined.ai, the phonetic lexicons used to train the G2P model use the DC-

Arpabet and follow a simple and straightforward format. Accordingly, the final phonetic 

lexicon for Swedish had to respect the following requirements: 

● only words (no words with numbers and/or symbols) 

● all words in lowercase 

● all words and their respective transcriptions separated by a vertical bar character 

● all words should follow a phonetic transcription using the DC-Arpabet 

● all words written using the Swedish script (diacritics, letters, additional characters) 

Therefore, we, firstly, created a phone set mapping from the original phone set used in the 

GP lexicon to the DC-Arpabet phone set. A reusable script was then converted from the 

original phonetic lexicon to the G2P-ready lexicon. In that way, we would be able to convert 

all transcriptions automatically. The following figure shows the GlobalPhone phonetic 

lexicon. 

{AOberg} {{M_ol WB} M_b M_ale M_r {M_j WB}} 

{AObrink} {{M_ol WB} M_b M_r M_il M_ng {M_k WB}} 

{AOhle+n} {{M_ol WB} M_h M_l M_el {M_n WB}} 

{AOrja^ng} {{M_ol WB} M_r M_j M_ae {M_ng WB}} 

Figure 11. Examples of entries in the Swedish GlobalPhone phonetic lexicon. 

The Initial GlobalPhone lexicon used a highly complex format, in which phonetic 

transcriptions were hard to read, following a complicated original phone set. The lexicon 
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included several loanwords, words with numbers, symbols, acronyms, and abbreviations. 

Swedish words did not use the correct Swedish diacritics characters, as seen in Table 21. We 

created a script to automatically change the diacritics used in GP to ones used in Swedish 

GlobalPhone words 
GP | Swedish diacritics 

Swedish words 
Before After 

A0berg Aa + 0 å Åberg 

flo^g Oo + ^ ö flög 

Allma^nna Aa + ^  ä Allmänna 

arme+er Ee + + é arméer 

Table 21. GlobalPhone Swedish diacritics and Swedish diacritics. 

To have a more concise lexicon, the script respected the following rules:  

● Skip entries with: Abbreviations, Initialisms (that cannot be read as a word/acronym), 

Symbols (or words that contain symbols), words that have numbers, Non-words, 

Loanwords that would strain the usual orthography-pronunciation system of the 

language too much, Nouns that are not common in Swedish culture. 

● Remove curly brackets around the word 

● Convert diacritic characters to the correct form 

● Extract all the GP phones from within the transcription (e. g. M_abl) 

● Convert all the GP phones to DC-Arpabet using the mapping lexicon 

4.2.2 Russian G2P 

Developing a Russian G2P model shares the same steps as the Swedish model.  Therefore, 

a phone set was created after doing the language overview, which would also be used as the 

basis for the training lexicon. The phone set was developed and discussed with a native 

speaker regarding the following topics – 1. Phonetic representations of ш and щ; 2. Soft sign, 

hard sign, and glottal stop values; and 3. Palatalized consonants. 

As mentioned in Section 3.1.2, the Russian consonant graphemes ш and щ share similar 

phonetic values. Also, both ш and щ have two different ways of pronunciation depending 

on the speaker or the region within Russia. In agreement with a native Linguist, we decided 
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to give the simplest and most representative of the Standard Russian pronunciation phonetic 

symbols. The grapheme щ is represented by the IPA symbol [t͡ ɕ] (a plain voiceless alveolo-

palatal affricate), and the grapheme ш is represented by the IPA symbol [ʂ] (a voiceless 

retroflex fricative). 

As also mentioned in Section 3.1.2, the soft sign and hard sign have no phonetic value. Thus, 

when present between a consonant and a vowel, it indicates that the following consonant is 

hard (Ъ), and when it occurs between a consonant and a vowel, between two consonants, or 

at the end of a word after a consonant, it indicates that the following consonant is soft (Ь). 

In that matter, we will not give a phonetic symbol to graphemes Ъ and Ь. We added Ь to 

hard consonants (e. g., <ть, cь, pь>) to distinguish hard consonants from soft consonants. 

Conversely, the soft sign often uses the Russian glottal stop (/ʔ/). We concluded that /ʔ/ is 

redundant. Therefore, we do not want to include it in our phone set. 

Palatalization is contrastive in word-final and heterogenic medial coda positions. Likewise, 

we contrast non-palatalized (hard) consonants with palatalized (soft) consonants. We 

decided on merging soft consonants (/fʲ, gʲ, kʲ, xʲ/) with their hard version (/f, g, k, x/) because 

these consonants rarely occur on the GlobalPhone database we used to create the phonetic 

lexicon. 

{Андреевич} {{M_a WB} M_n M_d M_r M_jE M_jE M_v M_i {M_tS WB}} 

{Анкаре} {{M_a WB} M_n M_k M_a M_r {M_jE WB}} 

{Аннабы} {{M_a WB} M_n M_n M_a M_b {M_i2 WB}} 

{Анпилов} {{M_a WB} M_n M_p M_i M_l M_o {M_v WB}} 

Figure 12. Examples of entries in the Russian GlobalPhone phonetic lexicon. 

The next few steps were followed: 1. Map and automatically convert the initial phonetic 

lexicon (Figure 12) to DC-Arpabet, 2. Human lexicon revision and correction 3. Evaluate 

the G2P model). Steps 2 and 3 will be described in Section 4.2.3 and Section 4.3, 

respectively.  
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4.2.3 Phonetic lexica revision 

Neevo is a crowdsourcing language service platform, as mentioned and described in Section 

2.3 that provides users with jobs. Jobs provide answers and judgments on several hits: 

language tasks such as checking and correcting transcriptions. Thus, to assess and improve 

the results of the G2P, the lexicon used to train the model for each language was revised by 

native and highly proficient linguists. This revision took several steps, developed within a 

Text Variant Correction job on the Neevo platform.  

Firstly, in consultation with our team at Defined.ai, Linguists checked that the DC-Arpabet 

phone set for their language was suitable for transcribing words and making phonemic 

distinctions. Linguists corrected and revised the phone set as necessary. 

After the phone set revision, the lexicon was ready to be revised. Linguists worked 

throughout three steps: 

1. The revision of each entry in the G2P lexicon does not match the transcription given by 

the G2P classifier.  

2. Establishment, for each entry, the type of words there are – loanwords, words with a 

canonical pronunciation, and words with a non-canonical pronunciation. Loanwords 

needed to be removed.  

3. If the phonetic transcription was incorrect, provide a correct transcription following the 

DC-Arpabet phone set for the language.  

In conclusion, the Swedish and Russian Linguists accessed each entry in the lexicon through 

the platform and a) validated the spelling of the word and corrected it if invalid, b) validated 

the transcription of the word and corrected it as invalid. Below are listed the steps enclosed 

in the Text Variant Correction job16: 

1. Read and validate the word: 

 

16 Images of each of the referred steps are made available in the Appendix section – Figure 15, Figure 16 and 

Figure 17. 
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1.1. If the word is correctly spelled, choose thick. 

1.2. If the word is misspelled, choose cross. 

1.3. Correct the spelling of the incorrect word. 

2. Read and validate the transcription: 

2.1. If the transcription correctly represents the standard pronunciation of the word 

above, choose thick. 

2.2. If the transcription is incorrect, choose the cross. 

2.3. Correct the transcription using the DC-Arpabet. 

2.4. Click next to submit the task and move on to the next entry. 

4.3 Summary 

This chapter addressed our proposed methodology for the two main projects – Normalizer 

expansion and improvement (pt-PT) and G2P models (sv-SE and ru-RU). This chapter was 

a crucial step for the subsequent phonetic lexica analysis. 
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Chapter 5 

Results and Discussion 

The following chapter centers on the results of the two main projects carried out under the 

Normalizer and Grapheme-to-phoneme scope. 

Firstly, Section 5.1 discusses how we evaluated the Normalizer and G2P models according 

to well-known metrics and how we adapted the metrics to our models' needs. WER was 

adapted to account for normalizable tokens, instead of all the tokens. Section 5.1.2 describes 

the evaluation set we used to evaluate the new version of the normalizer. Thirdly, in Section 

5.2, we focus on the evaluation results concerning the project that aimed to create a unique 

and better version of the pt-PT Normalizer tool, displaying the new model's evaluation 

results regarding each rule and its overall performance. Thus, we briefly compare version 1 

of the normalizer with version 2.  

Fourthly, in Section 5.3, we focus on the evaluation results regarding creating the G2P 

models for Swedish (Section 5.2.1) and Russian (Section 5.2.2). We discuss the phonetic 

lexicon performance results, per phone performance results, and the general G2P model 

performance results. Additionally, we compare the overall performance of the two different 

G2P models. 

5.1 Normalizer and G2P evaluation 

5.1.1 Evaluation metrics 

When evaluating the Normalizer and the G2P, we used the following metrics, mentioned in 

Section 3.2.1.4 – Accuracy, WER, Precision, Recall, and F1 score. Therefore, as for the 

Normalizer, accuracy would tell if the normalizer output exactly matched the reference 

output. WER calculated the edit distance over the total number of tokens in the reference 

tokens. Precision, Recall, and F1 score calculate the proportion of correctly predicted 

normalized tokens, identifying a rule that should fire to certain instances and sentences. As 
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for the G2P, Precision, Recall, and F1 score would outline the proportion of correctly 

predicted grapheme to phone correspondences, where 1 represents total accuracy. 

When evaluating the Normalizer tool, a problem related to using WER as a metric for 

assessing the normalizer is that in any given sentence – even if we filter only for sentences 

containing some normalizable expression – most of the tokens are likely to be irrelevant to 

the normalizer. Thus, WER divides edit distance over all tokens in the reference; however, 

most tokens we would not expect to be normalized anyway, so applying WER to the 

Normalizer distorts the results. Instead, using the WERnorm (Word Error Rate over 

Normalizable tokens) metric, we divide by the number of normalized reference tokens. 

  𝑊𝐸𝑅𝑛𝑜𝑟𝑚 =  
∑ 𝑒𝑑𝑖𝑡 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑥,𝑦 𝒙,𝒚 𝝐 𝑿,𝒀 

∑ max (1, 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑏𝑙𝑒 𝑡𝑜𝑘𝑒𝑛𝑠𝑥,𝑦 )𝒚 𝝐 𝒀 
   

Equation 6. Word Error Rate over Normalizable Tokens formula. 

In Table 23, the sentence expects only the 40 sq. mi. to be of interest. Very few of the tokens 

need to be normalized. Taking that into account, the WERnorm metric only divides over 

those tokens in the reference.  

Original  The estate covers 40 sq . mi . of space 

Reference The  estate covers forty square miles of space     

Hypothesis The estate covers  four zero square mile of space  

Table 22. Word Error Rate (WER) and Word Error Rate over Normalizable Token17. 

In Equation 6, we see WER calculating edit distance over the total number of tokens in the 

reference tokens. On the other hand, when using the WERnorm metric Equation 6. Word 

Error Rate over Normalizable Tokens formula. We calculate the edit distance over the 

number of normalized reference tokens, transforming the total number of 0.375 (3/8) into 1 

(3/3) WER. 

 

17 Orange shading = Normalizable reference tokens; Green shading = Substitutions, insertions, deletions 
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5.1.2 Evaluation set Normalizer  

After expanding and improving the normalizer for pt-PT, we evaluated its performance 

quantitively on a standard evaluation set for each rule. Regarding the normalizer's overall 

performance, we wanted to know:  

1. What is the percentage difference between the canonical normalization of a sentence and 

the normalizer's prediction? 

2. How well does each normalizer rule detect normalizable expressions of distinct types? 

Therefore, we evaluated the normalizer using a set of approximately 1000 reference 

sentences, manually normalized and tagged with the normalization rule which should be 

applied (e. g., real numbers, symbols, among others). Then, we ran the normalizer on these 

sentences and compared its output with the reference. 

The evaluation set was created in PyCharm18 and had the following distribution: 

− ID number 

− Original sentence 

− Reference sentence 

− Tokens 

− Originals tokens 

− Reference tokens 

− Number of reference tokens 

− Number of normalizable reference tokens  

− Tags  

− Type (rules) 

− Extent (normalizable token) 

− Start (count of tokens) 

− End (count of token) 

  

 

18 https://www.jetbrains.com/pycharm/ 

https://www.jetbrains.com/pycharm/


 

   

 

65 

Thus, we present an example taken from the test set referred to above: 

ID: 1 

Original: XI Seminário Nacional de Sustentabilidade do Sistema Sustentabilidade: 

Reference: décimo primeiro Seminário Nacional de Sustentabilidade do Sistema 

Sustentabilidade: 

Tokens: 

original_tokens: XI,   Seminário,  Nacional,  de, Sustentabilidade,  do,    Sistema,  

Sustentabilidade,  :, 

reference_token:  décimo,  primeiro,  Seminário,  Nacional,  de,  Sustentabilidade,  do,  

Sistema,  Sustentabilidade,  :, 

number_reference_tokens: 10 

number_normalizable_reference_tokens: 2 

Tags: 

type: ordinals rule 

extent: XI 

start: 0 

end: 2 

Table 23. Test set example. 

The overview of the evaluation set used to evaluate version 2 of the normalizer is shown in 

Table 24. It gives the number of sentences we used, the number of normalizable reference 

tokens, and the number of reference tokens. Therefore, out of 23 428 reference tokens given 

in the 1000 sentences, only 31,2 % are normalizable tokens.  

 Count % 

Sentences 1 000 - 

Normalizable Reference Tokens 7 312 31,2% 

Reference Tokens 23 428 - 

Table 24. Evaluation set Overview for the version 2 of the normalizer. 

All 1000 sentences present various normalizable tokens and for each a rule was applied. 

However, there is a lack of ordinals, for example, in the sentences which gives a lower 

(1,4%) number of normalizable ordinals when comparing with real numbers (49,9%). 

Consequently, this could have an impact on the further results that we will present in the 

next chapter. 
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Rules Count % 

Abbreviations rule 474 24,7% 

Ordinals rule 26 1,4% 

Real Numbers rule 957 49,9% 

Currency rule 215 11,3% 

Symbols rule 147 7,7% 

Measurements rule 50 2,6% 

Dates rule 21 11,1% 

Time rule 25 1,3% 

Table 25. Rules applied to the normalizable tokens and their weight. 

5.2 Normalizer results 

In this section, we compare how each rule performed on each version of the normalizer 

(focusing on version 2) while discussing rules' behavior regarding the number of 

normalizable reference tokens and its final evaluation. Next, we present results on 

normalizers' performance regarding WER, WERnorm, and Accuracy metrics. Briefly, we 

wanted to know: How well did version 2 of the normalizer perform compared to version 1? 

In order to compare normalizers' version 1 results with normalizers' version 2, we executed 

the evaluation using an evaluation set mentioned in Section 4.3.2. In the following tables, 

we present both versions of the normalizers' performance using the three metrics –F1-score 

(Table 26), Precision (Table 27), and Recall (Table 28) – for all rules applied in the 

evaluation set. Therefore, all tables present both versions of normalizers' performance on the 

following rules: real numbers, abbreviation, ordinals, measurements, currency, dates, and 

time. 

Table 26 represents both versions of the normalizers' performance regarding the F1-score 

metric. As for version 1, we find statistically significant differences between the rules. The 

ordinals rule exhibits the highest percentage (92%), on the one hand, and abbreviations the 

lowest percentage (20%), on the other hand. Real numbers (82%), measurements (68%), 

currency (65%), time (65%), and dates and symbols (43%) exhibit a considerable variation. 

As for version 2, we notice statistically significant discrepancies among the rules. The 

ordinals rule exhibits the highest percentage (94%), and abbreviations (43%) are the lowest 
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percentage. Real numbers (89%), measurements (75%), currency (68%) time (67%), 

symbols (58%), and dates (47%) exhibit noteworthy variations. Considering the evaluation 

set, in detail in Section 4.3.2, in all 1000 sentences, the number of normalizable abbreviations 

is higher (24,7%) when compared to the number of normalizable ordinals (1,4%), which 

could explain the better performance of the ordinals rule and the worst performance of the 

abbreviations rule. Continuously, measurements and time also may have satisfactory 

performance (75%, and 67%, respectively) if we consider the small number of normalizable 

measurements (2,6%) and time (1,3%) on the evaluation set. However, the same behavior 

does not happen with the real numbers rule and currency rule, which presents a higher 

performance overall (89%, and 68%, respectively), even though the number of normalizable 

real numbers (49,9%) and currency (11,3%) is high. We conclude that when presenting a 

satisfactory performance, even if the number of normalizable tokens is high, the real 

numbers and currency rule perform well in every normalizable real number and normalizable 

currency it finds.  

Thus, if we consider the recall metric (Table 28), the low F1 score for abbreviations and time 

can be explained by abbreviations' low recall (44%) and times' low recall (58%). A low recall 

indicates that when tokens are not correctly identified, the F1-score decreases. 

 

Table 26. Normalizers’ performance (version 1 and 2) regarding F1-score metric. 

real
numbers

symbols
abbrevia

tions
ordinals

measure
ments

currency dates time

Normalizer version 1 82.00% 43.00% 20.00% 92.00% 68.00% 47.00% 43.00% 65.00%

Normalizer version 2 89.00% 58.00% 43.00% 94.00% 75.00% 68.00% 47.00% 67.00%
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After analyzing the F1-score results on each rule, we conclude a significant performance 

increase in some of the rules. For example, abbreviations show a 23-percentage point (pp.) 

higher performance in comparison to symbols (2 pp.) and ordinals (2 pp.). Currency has the 

second higher performance with a 21 pp. difference, following symbols (15 pp.), real number 

and measurements (7 pp.), dates (4 pp.), and ordinals (2 pp.), respectively.  

Indeed, we added more abbreviations, currency symbols, and symbols to the RMs than new 

real numbers, new data formats, or new ordinals. These last rules had a lower improvement 

because they were not subject to more additions of new tokens. Instead, we were more 

interested in upgrading the rule itself. 

 

 

Table 27. Normalizers’ performance (version 1 and 2) regarding Precision metric. 
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ordinals

measure
ments

currency dates time

Normalizer version 1 82.00% 43.00% 20.00% 92.00% 68.00% 47.00% 43.00% 65.00%

Normalizer version 2 89.00% 58.00% 43.00% 94.00% 75.00% 68.00% 47.00% 67.00%
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Table 28. Normalizers’ performance (version 1 and 2) regarding Recall metric. 

Next, Table 29 evaluates the normalizer regarding WER as a performance metric. Since this 

metric will consider all reference tokens (68,8%) rather than just the normalizable tokens 

(31,2%) in the evaluation set, as detailed in Section 4.3.1, it should guarantee a WER of 

around 35%.  Section 4.3.1 explains in detail why we considered a formulation of the WER 

metric formula. Therefore, the following performance metric we use is Word Error Rate over 

Normalizable tokens (WERnorm). Considering that this formula will ponder only the 

normalizable tokens, it should guarantee a better WERnorm of around 11%. Given the 

possible misleading information the WER metric gives us and the 24 pp. difference between 

WER and WERnorm, we will only compare the results considering WERnorm. 

Normalizer pt-PT WER WERnorm Accuracy 

Normalizer version 1 35,29% 10,58% 74,09% 

Normalizer version 2 40,13% 12,47% 46,96% 

Table 29. Normalizers version 1 and version 2 performance regarding WER, WERnorm, and Accuracy metrics. 

Therefore, the normalizer version 2 shows, on average, a 4 pp. lower error rate over 

normalizable tokens compared to version 1. We also concluded the use of the ordinals rule 

(94% F1-score) and real numbers rule (89% F1-score) is the largest source of improvement 

on normalizer WER. 
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numbers

symbols
abbrevia

tions
ordinals

measure
ments

currency dates time

Normalizer version 1 89.00% 70.00% 11.00% 90.00% 70.00% 57.00% 21.00% 56.00%

Normalizer version 2 91.00% 80.00% 44.00% 92.00% 80.00% 66.00% 30.00% 58.00%
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Furthermore, regarding accuracy, version 2 shows an improvement of, on average, 28 pp in 

compared to version 1. Overall, this clearly shows a significant improvement in the 

normalizer in all the rules. 

5.3 G2P results 

In this section, we present Swedish and Russian G2P results regarding its phonetic lexicon 

and the final G2P model. As for the phonetic lexicon we describe and analyze the final phone 

set, which includes graphemes, phonetic symbols, phone classification, and examples. Next, 

we give an overview of the final phonetic lexicon, including the number of total entries, 

correct and incorrect words, and correct and incorrect transcriptions. As for the final G2P 

model, we describe and discuss phone performance results regarding F1-score, Precision, 

Recall, and Accuracy metrics. Finally, we compare G2P models (Swedish and Russian) 

overall performance regarding F1-score and Accuracy metrics.  

5.3.1 Swedish 

To create a new G2P model for Swedish we first need a phonetic lexicon. The first task to 

make a phonetic lexicon is defining a phone set that covers all language sounds. Hence, for 

Standard Swedish, we defined 36 phones, though the number of phones is fewer than this. 

The G2P model developed was used with speech recognition applications; therefore, 

acoustic variability is to be considered while transcribing orthographic words. The phone set 

was designed to cover the entire acoustic space of Standard Swedish19. The final phone set 

includes Swedish graphemes, its equivalent phonetic alphabet symbols (IPA, and DC-

Arpabet symbols), phone classification, and examples (orthographic words and phonetic 

transcription). For example, grapheme <a> has two equivalent phonetic symbols: a low front 

unrounded vowel [a]/[aa] (IPA and DC-Arpabet, respectively), and a low back unrounded 

vowel [ɑ:]/[ah]. For phone [a], the orthographic word calén should have the following 

 

19 Table of the referred Swedish phone set is available in the Appendix section –Table 33. 
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phonetic transcription: [kk aa ll ee nn]. On the other side, for phone [ah], the orthographic 

word avsnitt should have the following phonetic transcription: [ah vv ss nn ih tt].  

After creating and validating the Swedish phone set, we prepared a phonetic lexicon 

(detailed in Section 4.2.1.). Thus, the phonetic lexicon trails the following structure: In 

alphabetic order, firstly it presents a Swedish word, followed by its phonetic transcription 

using the DC-Arpabet phones. A straight bar separates the orthographic word from the 

phonetic transcription word. The output looks like the following: 

åsbrink | ob ss bb rr ii ng kk 

åström | ob ss tt rr eu mm 

åtta | ob tt ah 

Figure 13. Examples from the Swedish phonetic lexicon. 

After the phonetic lexicon was revised and corrected by a native linguist (see Section 4.2.3.), 

the final output was given (Table 29): 

Swedish Phonetic Lexicon Overview 

  # % 

Lexicon entries 25248 100 

Corrected word 25067 99 

Incorrect word  181 1 

Correct transcription  22339 88 

Incorrect transcription  2909 11 

WER   10 

Table 30. Normalizers version 1 and version 2 performance regarding WER, WERnorm, and Accuracy metrics. 

When analyzing the lexicon’s revision (Table 30), we find statistically reliable results. 99% 

of the orthographic words are correct, leaving only 1% of incorrect words. The most 

common errors regarding orthographic words are in 1. Double letters (e. g., uttlardet – 

utlardet); 2. Diacritics (e. g., genéve – genève). Thus, due to errors in the transcribed audio 

used to create the initial lexicon, we can observe 1. Segment position alteration - Metathesis 

(e. g., vädning – vending), and 2. Segment suppression in the middle of the word - Syncope 

(e. g., lövstedt – löv_tedt). Consequently, errors in the orthographic words will be followed 

in the phonetic transcriptions as well.  
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Regarding phonetic transcriptions, we find 88% of transcriptions are correct and 11% 

incorrect. The most common errors of incorrect transcription are in the following vowels:  

1. Mapping of graphemes <ä, o> - these graphemes have different equivalent phones; 

however, their occurrence does not always depend on phonological rules (e. g., [eh gg 

oo] – [ae gg ug]). /o/ was mostly transcribed as [oo], and /ä/ as [eh] instead of [ae].  

2. Vowel reduction in /i/ - weakening of a vowel in an unstressed position (e. g., [hh ih ll 

ih ng shx eu] – [hh ii ll ii ng ss eu]). The generated transcription reduced the vowel /i/ 

whereas the correct transcription should be [ih] instead of [ii]. 

Regarding the phonetic lexicon performance, we achieved a WER of 10%. We consider this 

lexicon to be of very good quality and ready to use for the G2P model.  

Regarding per phone evaluation, we tested each phone in terms of Precision, recall, and F1-

score (Table 31). We conclude that the best performed phones are consonants [bb, dd, ff, hh, 

kk, ll, mm, nn, rr, ss, tt, vv]. Phones with a perfect F1 score are the following two: [ff, rr]. 

Therefore, consonants are performing better than vowels. The phone [ug] has the worst 

performance with an F1-score of 81%, following [ii] (83%), [uu] (85%), [ah] (86%), and 

[oo] (87%). The average Precision, Recall, and F1-score present a good result of 96% per 

phone. Thus, in total, all phones present 97% of accuracy. 

Phones Precision    Recall F1-score    

aa 95% 96% 96% 

ae 93% 93% 93% 

ah 87% 84% 86% 

bb 98% 99% 99% 

cc 87% 88% 88% 

dd 99% 99% 99% 

ee 89% 88% 89% 

eh 97% 97% 97% 

eu 90% 89% 90% 

ff 100% 98% 100% 

gg 97% 98% 98% 

hh 98% 100% 99% 

ih 95% 96% 96% 

ii 83% 82% 83% 

iu 92% 90% 91% 
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iy 88% 88% 88% 

kk 99% 99% 99% 

ll 99% 98% 99% 

mm 100% 99% 99% 

ng 97% 96% 97% 

nn 99% 99% 99% 

oe 87% 89% 88% 

oh 89% 90% 89% 

oo 87% 86% 87% 

pp 98% 97% 98% 

rr 100% 100% 100% 

shx 94% 94% 94% 

ss 98% 99% 99% 

tt 99% 98% 99% 

tt_ss 95% 95% 94% 

uc 93% 92% 95% 

ug 80% 82% 81% 

uo 95% 96% 95% 

uu 87% 84% 85% 

vv 99% 99% 99% 

yy 91% 90% 91% 

Average 96% 99% 96% 

Accuracy     97% 

Table 31. Per phone results on the Swedish G2P. 

5.3.2 Russian 

To create a new Russian G2P model we preceded with the same steps as on the Swedish 

G2P model creation. For the phonetic lexicon, we defined a phone set that covers all 

language sounds. Hence, for Standard Swedish, we defined 43 phones, though the number 

of phones is fewer than this. The phone set was designed to cover the entire acoustic space 

of Standard Russian 20. 

The final phone set includes Russian graphemes, its equivalent phonetic alphabet symbols 

(IPA, and DC-Arpabet symbols), phone classification, and examples (orthographic words 

 

20 Table of the referred Russian phone set is available in the Appendix section –Table 34. 
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and phonetic transcription). For example, according to palatalization in Russian21, non-

palatalized <б> has the equivalent phonetic symbol: voiced bilabial plosive [b]/[bb] (IPA 

and DC-Arpabet, respectively). Palatalized <бь> has the equivalent phone [bʲ]/[bbj] 

classified as palatalized voiced bilabial plosive. On the other side, iotated vowels <е, ё, ю, 

я> can have the equivalent phones [ja, je, jo, ju] (IPA), [yya, yye, yyo, yyu] (DC-Arpabet).  

After creating and validating the Russian phone set, we prepared the phonetic lexicon 

(detailed in Section 4.2.2.). The phonetic lexicon trails the same structure as the Swedish 

phonetic lexicon (see Section 5.3.1). The output looks like the following: 

aвторов | aa vv tt oo rr oo vv 

авторы | aa vv tt oo rr ie 

агитка | aa gg ii tt kk aa 

Figure 14. Examples from the Russian phonetic lexicon. 

After the phonetic lexicon was revised and corrected by a native Linguist the final output 

was given (Table 32): 

Russian Phonetic Lexicon Overview 

  # % 

Entries 27340 100 

Corrected words 26286  96 

Incorrect words 1054  4 

Correct transcriptions 23989  88 

Incorrect transcriptions 3351  12 

WER   11 

Table 32. Russian phonetic lexicon overview. 

Table 33 contains the results of our analysis of the lexicon revision, which are statistically 

meaningful. There are just 4% incorrect words and 96% of correct words. We observed the 

following errors in orthographic Russian words: 1. Segment suppression in the middle of the 

word- Syncope (e. g., а_нализа – азнализа), and 3. Diacritics suppression (e. g., взлеты – 

 

21 Palatalization is explained in Section 3.1.2. 
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взлёты). Consequently, errors in the orthographic words will be followed in the phonetic 

transcriptions as well.  

Regarding phonetic transcriptions, we find 88% of transcriptions are correct and 12% 

incorrect. The most common errors of incorrect transcriptions are due to:  

1. Sonorization –sound change where a voiceless consonant becomes voiced (e. g., [ss oo 

zz dd aa nn ii yye] – [zz oo zz dd aa nn ii yye]).  

2. Distinction between vowels and iotated vowels – vowels before <ж, ш, н> are not 

iotated (e. g., [aa vv aa nn ss ts yye nn uu] – [aa vv aa nn ss ts ee nn uu]) 

3. Mapping of vowel <и> – its regular equivalent phone is [ii], however it can also be [ie] 

(e. g., [mm oo ss kk vv ii] – [mm oo ss kk vv ie]).  

We got a reasonable WER of 11% for the phonetic lexicon performance. This lexicon is of 

very good quality and ideal for the G2P model. 

Regarding per phone evaluation, we tested each phone regarding Precision, Recall, and F1-

score (Table 33). We conclude that the best performed phones are mainly consonants [gg, 

zx zx, ll, mm, nn, rrj, ts, txj]. Phones with a perfect F1 score are predominantly palatalized 

consonants [zj, llj, mmj, nnj]. Indedd, consonants are performing better than vowels. The 

phone [ii] has the worst performance with an F1-score of 83%, following [ie] (85%), iotated 

vowels [yya, yye, yyo, yyu] (86%), and consonant [zz] (87%). The average Precision, Recall, 

and F1-score present a good result of 95% per phone. Thus, in total, all phones present 96% 

of accuracy. 

Phones Precision    Recall F1-score    

aa 97% 97% 97% 

bb 91% 89% 93% 

bbj 96% 97% 97% 

vv 90% 89% 92% 

vvj 89% 88% 89% 

gg 99% 99% 99% 

dd 91% 90% 91% 

ddj 98% 96% 98% 

ee 85% 86% 86% 

zj 100% 100% 100% 
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zx zx  99% 98% 99% 

zz 87% 87% 87% 

zzj 97% 96% 97% 

ii 83% 82% 83% 

yy 96% 95% 96% 

kk 88% 88% 90% 

ll 99% 99% 99% 

llj 100% 100% 100% 

mm 100% 99% 99% 

mmj 97% 96% 100% 

nn 99% 99% 99% 

nnj 100% 100% 100% 

oo 97% 96% 97% 

pp 88% 87% 88% 

ppj 96% 97% 96% 

rr 98% 98% 98% 

rrj 99% 99% 99% 

ss 98% 97% 98% 

ssj 95% 96% 96% 

tt 96% 95% 96% 

ttj 97% 97% 97% 

uu 95% 96% 96% 

ff 95% 96% 95% 

xx 96% 95% 96% 

ts 99% 99% 99% 

tx 97% 96% 97% 

sj 98% 98% 98% 

ie 85% 84% 85% 

yya 85% 84% 86% 

yye 85% 84% 86% 

yyo 85% 84% 86% 

yyu 85% 84% 86% 

txj 99% 99% 99% 

Average 95% 94% 95% 

Accuracy     96% 

Table 33. Per phone results on the Russian G2P. 
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After testing phones' performance, we evaluated the Swedish and Russian G2P models 

regarding the F1-score metric. The Swedish G2P model shows a better performance (98%), 

than the Russian model (96%). This indicates that Swedish orthography is more phonetically 

based than Russian. In our opinion, the Swedish language also has a more regular grapheme-

to-phoneme mapping. Russian presents a complex and wide phone set (43 phones), whereas 

Swedish phone set is much simpler (36 phones). 

5.4 Summary 

This chapter focused on the steps towards expanded and improved Normalizer and G2P 

models for two languages. We started by showing how we evaluated the Normalizer, 

pointing out very promising results on version 2 of the tool. Regarding accuracy, version 2 

improved by 28 pp., and regarding WERnorm, it improved by 4 pp. when compared with 

version 1. Following, we show the G2P model results. Regarding the phonetic lexicons, 

Swedish offers a WER of 10%, whereas Russian presents a minor difference (11%). 

Regarding the general G2P model performance, the Swedish model has an average of 98% 

F1-score, and the Russian model presents a lower difference (22 pp.) with 96%.  
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Chapter 6 

Conclusions and Future work 

In our present work, we focused on giving a general overview of the importance that 

linguistic knowledge has in preprocessing models used in Speech Technologies, focusing on 

the Normalizer and Grapheme-to-Phoneme models. Considering the work we did on the 

Normalizer, together with the ML team, we were able to: 

1. Test version 1 and version 2 of the pt-PT Normalizer while using an extensive 

evaluation set.  

2. Apply statistics and qualitative evaluations of the normalizer performance which 

was crucial to our results and improvements. 

Normalizer version 2 presents, on average, a 10% WERnorm. Compared to version 1, a 2 

pp. lower error rate. Regarding accuracy, it has an improvement of 28 pp. higher accuracy 

(74%) than version 1. Overall, ordinals and real numbers rule performed best. 

Considering our work on the G2P models, together with Defined.ai and the help of external 

native linguists, we were able to obtain:  

1. Initial phonetic lexicon for Swedish and Russian to use as a basis of our final 

phonetic lexica. 

2. Accurate revision and correction of our phone sets and phonetic lexicons. 

3. Statistics and qualitative evaluations of G2P models’ performance and quality 

regarding linguistic knowledge we implemented. 

 

The Swedish phonetic lexicon achieved a 10% WER, whereas the Russian phonetic lexicon 

a minor slightly lower WER (11%). Swedish phones present a higher accuracy (97%) than 

Russian phones (96%). Overall, the Swedish G2P model presents a better performance 

(98%), even though its difference is minor when compared to the Russian G2P model (96%). 
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With the results obtained, we managed to expand the pt-PT Normalizer tool with linguistic 

assets covering more text that require normalization. Hence, we improved the normalizer in 

ease of use by increasing each rule on the normalizer. On the other side, we also provided 

coverage for two more languages (Swedish and Russian) adding two new models, and 

phonetic lexicons to the G2P tool, which supports now 14 languages. Hence, we succeeded 

in preparing text data for scripted speech tasks. Consequently, these will have a significant 

impact on the company’s speech framework and scripted speech pipelines (15% is speech 

pipeline). Also, version 2 of the normalizer has begun to be used in other Defined.ai projects, 

mainly in speech prompt collections. We observed that our expansion and improvement on 

the tool covered expressions that make up a sizable proportion of normalizable expressions, 

not limiting the utility of the tool but increasing the diversity it can give when delivering 

prompts, for example.  

Based on the work developed, we can observe that having a rule-based approach to the 

Normalizer and G2P increases its accuracy and performance, representing a significant 

advantage in improving Defined.ai tools and speech pipelines. Moreover, our approach was 

also applied to other languages gaining very positive results and showing the relevance of 

the methodology applied in this thesis. Therefore, our work shows the relevance and 

meaningfulness of having linguistic knowledge on preprocessing tools. 

Also, the work that we developed on the normalizer contributed to discussions on specific 

vs language-generic rules. In this sense, we see future possibilities of expanding the coverage 

of the current normalizer by implementing the real numbers and ordinals rule (best-

performed rules) to a module that can be used for various languages. Languages in which 

real numbers and ordinals are represented similarly (e. g., magnitude/decimal separators, 

number base). The same could be done with other rules, although this still needs thorough 

research. 
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Appendix 
 

Phonetic lexicon revision 

 

Figure 15. Text Variant Correction job in Neevo platform – Validation step for word. 
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Figure 16. Text Variant Correction job in Neevo platform – Correction step for word. 

 

Figure 17. Text Variant Correction job in Neevo platform – Correction step for transcription. 
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No Graphemes 

Phonetic 

Alphabet 

Symbols 

Classification Examples 

IPA 

DC-

Arpa

bet 

 
Ortographic 

Words 

Phonetic 

Transcriptio

n 

1 <a> [a] [aa] 
low front unrounded 

vowel 
calén kk aa ll ee nn 

2 <a> [ɑ:] [ah] 
low back unrounded 

vowel 
avsnitt 

ah vv ss nn ih 

tt 

3 <e, ä> [ɛ] [eh] 
low-mid front 

unrounded vowel 
banker 

bb aa ng kk eh 

rr 

4 <ä> [æ:] [ae] 
near-low front 

unrounded vowel 
bilvägar 

ll vv ae gg aa 

rr 

5 <e> [e:] [ee] 
high-mid front 

unrounded vowel 
blekt bb ll ee kk tt 

6 <i> [ɪ] [ih] 
near-high front 

unrounded vowel 
civila ss ih vv ii ll aa 

7 <i> [i:] [ii] 
high front unrounded 

vowel 
deltid dd ee ll tt ii dd 

8 <o, ö, å> [ɔ] [oh] 
low-mid back rounded 

vowel 
egon ee gg oh nn 

9 <ä, o, å> [o:] [oo] 
high-mid back rounded 

vowel 
ekbåge bb oo gg eh 

10 <ö, o> [œ] [oe] 
low-mid front rounded 

vowel 
följet ff oe ll yy eh tt 

11 <ö> [ø:] [eu] 
high-mid front rounded 

vowel 
hörsammat 

hh eu rr ss aa 

mm mm aa tt  

12 <o, u> [ʊ] [ug] 
near-high near-back 

rounded vowel 
johnsson 

yy ug nn ss oh 

nn 

13 <u, o> [u:] [uu] 
high back rounded 

vowel 
kronkurs 

kk uu nn kk uo 

rr ss 

14 <y> [ʏ] [iu] 
near-high front rounded 

vowel 
klyfta kk ll iu ff tt aa 

15 <u> [y:] [iy] 
high front rounded 

vowel 
kylrum 

cc iy ll rr uo 

mm 

16 <u> [ɵ] [uo] 
high-mid central 

rounded vowel 
ludvig 

ll uo dd vv ih 

gg 

17 <u> [ʉ] [uc] 
high central rounded 

vowel 
minuten 

mm ih nn uc tt 

eh nn 

18 <i> [j] [yy] 

voiced palatal 

approximant 

(semivowel) 

ogiltigt 
oo gg yy ih ll tt 

ih kk tt 

19 <p> [p] [pp] 
voiceless bilabial 

plosive 
öppen oe pp pp eh nn 
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20 <b> [b] [bb] voiced bilabial plosive befogad 
bb ee ff uu gg 

aa dd 

21 <t> [t] [tt] 
voiceless alveolar 

plosive 
tände tt eh nn dd eh 

22 <d> [d] [dd] voiced alveolar plosive deltog 
dd ee ll tt uu 

gg 

23 <f> [f] [ff] 
voiceless labiodental 

fricative 
familj 

ff aa mm ih ll 

yy 

24 <v> [v] [vv] 
voiced labiodental 

fricative 
värld vv ae rr dd 

25 <s> [s] [ss] 
voiceless alveolar 

sibilant 
svår ss vv oo rr 

26 <rs> [ʂ] [rr ss] 
voiceless retroflex 

fricative 
bärsebäck 

bb aa rr ss eh 

bb eh kk 

27 <k> [ç] [cc] 
voiceless palatal 

fricative 
bekänner 

bb eh cc eh nn 

eh rr 

28 <h> [h] [hh] 
voiceless glottal 

fricative 
hotell hh ug tt eh ll 

29 <l> [l] [ll] 
voiced alveolar lateral 

approximant 
lindrig 

ll ii nn dd rr ih 

gg 

30 <m> [m] [mm] voiced bilabial nasal många mm oh ng aa 

31 <n> [n] [nn] voiced alveolar nasal nära nn ae rr aa 

32 <ng> [ŋ] [ng] voiced velar nasal ringnér rr ii ng nn ee rr 

33 <sch> [ɧ] [shx] 
voiceless postalveolar 

fricative 
ägarschism 

aa gg aa rr shx 

ih ss mm 

34 <r> [r] [rr] voiced alveolar trill rök rr eu kk 

35 <k> [k] [kk] voiceless velar plosive svek ss vv ee kk 

36 <g> [g] [gg] voiced velar plosive grönt gg rr oe nn tt 

 

Table 34. Standard Swedish phone set. 
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No Graphemes 

Phonetic 

Alphabet 

Symbols Classification 

Examples 

IPA 
DC-

Arpabet 

Ortographic 

Words 

Phonetic 

Transcription 

1 <a> [a] [aa] 

low front 

unrounded 

vowel 

банку  bb aa nn kk uu 

2 <б> [b] [bb] 
voiced bilabial 

plosive 
газбанка  

gg aa zz bb aa nn 

kk aa 

3 <бь> [bʲ] [bbj] 

palatalized 

voiced bilabial 

plosive 

турбьерн  
tt uu rr bbj yye rr 

nn 

4 <в> [v] [vv] 

voiced 

labiodental 

fricative 

тутакова  
tt uu tt aa kk oo 

vv aa 

5 <вь> [vʲ] [vvj] 

palatalized 

voiced 

labiodental 

fricative 

шевьев  sj yye vvj yye vv 

6 <г> [g] [gg] 
voiced velar 

plosive 
шпигель  sj pp ii gg yye llj 

7 <д> [d] [dd] 
voiced alveolar 

plosive 
эдгар ee dd gg aa rr 

8 <дь> [dʲ] [ddj] 

palatalized 

voiced alveolar 

plosive 

будьте  bb uu ddj tt yye 

9 <e, э> [e] [ee] 

high-mid front 

unrounded 

vowel 

встрезэ  
vv ss tt rr yye zz 

ee 

10 <ж> [ʐ] [zj] 
voiced retroflex 

fricative 
вражнай  

vv rr aa zj nn aa 

yy  

11 <жь> [ʑʑ] [zx zx] 

voiced alveolo-

palatal sibilant 

fricative (long 

variant) 

побережью  
pp oo bb yye rr 

yye zx zx yyu 

12 <з> [z] [zz]   безаль  bb yye zz aa llj  

13 <зь> [zʲ] [zzj] 

palatalized 

voiced alveolar 

sibilant fricative 

возьмется  
vv oo zzj mm 

yyo ts yya 

14 <и> [i] [ii] 

high front 

unrounded 

vowel 

вечерних  
vv yye txj yye rr 

nn ii xx 

15 <й> [j] [yy] 

voiced palatal 

approximant 

(semivowel) 

взаимной  
vv zz aa ii mm nn 

oo yy 

16 <к> [k] [kk] 
voiceless velar 

plosive 
грузовиков  

gg rr uu zz oo vv 

ii kk oo vv 
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17 <л> [l] [ll] 

voiced alveolar 

lateral 

approximant 

грянул  gg rr yya nn uu ll 

18 <ль> [lʲ] [llj] 

palatalized 

voiced alveolar 

lateral 

approximant 

губительно  
gg uu bb ii tt yye 

llj nn oo 

19 <м> [m] [mm] 
voiced bilabial 

nasal 
делами  

dd yye ll aa mm 

ii 

20 <мь> [mʲ] [mmj] 

palatalized 

voiced bilabial 

nasal 

вицепремьер  
vv ii ts yye pp rr 

yye mmj yye rr 

21 <н> [n] [nn] 
voiced alveolar 

trill 
именно  

ii mm yye nn nn 

oo 

22 <нь> [nʲ] [nnj] 

palatalized 

voiced alveolar 

nasal 

деньгам  
dd yye nnj gg aa 

mm 

23 <o> [o] [oo] 
high-mid back 

rounded vowel 
миновать  

mm ii nn oo vv aa 

ttj 

24 <п> [p] [pp] 
voiceless 

bilabial plosive 
митрополит  

mm ii tt rr oo pp 

oo ll ii tt 

25 <пь> [pʲ] [ppj] 

palatalized 

voiceless 

bilabial plosive 

пьремьером  
ppj rr yye mmj 

yye rr oo mm 

26 <p> [r] [rr] 
voiced alveolar 

trill 
резал  pp rr yye zz aa ll 

27 <pь> [rʲ] [rrj] 

palatalized 

voiced alveolar 

trill 

рьодителям  
rrj aa dd ii tt yye 

ll yya mm 

28 <c> [s] [ss] 

voiceless 

alveolar sibilant 

fricative 

светят  ss vv yye tt yya tt 

29 <cь> [sʲ] [ssj] 

palatalized 

voiceless 

alveolar sibilant 

fricative  

связалось  
ss vv yya zz aa ll 

oo ssj 

30 <т> [t] [tt] 
voiceless 

alveolar plosive 
смету  ss mm yye tt uu 

31 <ть> [tʲ] [ttj] 

palatalized 

voiceless 

alveolar plosive 

смотреть  
ss mm oo tt rr yye 

ttj 

32 <y> [u] [uu] 
high back 

rounded vowel 
сообщу  

ss oo oo bb cx tx 

uu 

33 <ф> [f] [ff] 

voiceless 

labiodental 

fricative 

специфика  
ss pp yye ts ii ff ii 

kk aa 

34 <х> [x] [xx] 
voiceless velar 

fricative 
сроках  ss rr oo kk aa xx 
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35 <ц> [t͡ s] [ts] 
voiceless 

alveolar affricate 
демоппозиции  

dd yye mm oo pp 

pp oo zz ii ts ii ii 

36 <щ> [t͡ ɕ] [tx] 

voiceless 

alveolo-palatal 

affricate 

текущих  
tt yye kk uu tx ii 

xx 

37 <ш> [ʂ] [sj] 

voiceless 

retroflex 

fricative  

тишина  

tt ii sj ii nn aa 

38 <ы> [ɨ] [ie] 

high central 

unrounded 

vowel 

тысяче  

tt ie ss yya txj yye 

39 <е, ё, ю, я> [ja] [yya] 

voiced palatal 

approximant to 

low back 

unrounded 

diphthong  

уважения  

uu vv aa zj ee nn 

ii yya 

40 <е, ё, ю, я> [je] [yye] 

voiced palatal 

approximant to 

high-mid front 

unrounded 

diphthong 

истец  

ii ss tt yye ts 

41 <е, ё, ю, я> [jo] [yyo] 

voiced palatal 

approximant to 

high-mid back 

rounded 

dipthong 

легкого  

ll yyo xx kk aa vv 

aa 

42 <е, ё, ю, я> [ju] [yyu] 

voiced palatal 

approximant to 

high back 

rounded 

dipthong 

лучшую  

ll uu txj sj uu yyu 

43 <ч> [tʂ] [txj]   нынче  nn ii nn txj yye 

 

Table 35. Standard Russian phone set. 


