14 research outputs found

    Hybrid Precoder and Combiner Design with Low Resolution Phase Shifters in mmWave MIMO Systems

    Get PDF
    Millimeter wave (mmWave) communications have been considered as a key technology for next generation cellular systems and Wi-Fi networks because of its advances in providing orders-of-magnitude wider bandwidth than current wireless networks. Economical and energy efficient analog/digial hybrid precoding and combining transceivers have been often proposed for mmWave massive multiple-input multiple-output (MIMO) systems to overcome the severe propagation loss of mmWave channels. One major shortcoming of existing solutions lies in the assumption of infinite or high-resolution phase shifters (PSs) to realize the analog beamformers. However, low-resolution PSs are typically adopted in practice to reduce the hardware cost and power consumption. Motivated by this fact, in this paper, we investigate the practical design of hybrid precoders and combiners with low-resolution PSs in mmWave MIMO systems. In particular, we propose an iterative algorithm which successively designs the low-resolution analog precoder and combiner pair for each data stream, aiming at conditionally maximizing the spectral efficiency. Then, the digital precoder and combiner are computed based on the obtained effective baseband channel to further enhance the spectral efficiency. In an effort to achieve an even more hardware-efficient large antenna array, we also investigate the design of hybrid beamformers with one-bit resolution (binary) PSs, and present a novel binary analog precoder and combiner optimization algorithm with quadratic complexity in the number of antennas. The proposed low-resolution hybrid beamforming design is further extended to multiuser MIMO communication systems. Simulation results demonstrate the performance advantages of the proposed algorithms compared to existing low-resolution hybrid beamforming designs, particularly for the one-bit resolution PS scenario

    A Flexible Low-Cost Hybrid Beamforming Structure for Practical Beamforming Applications

    Get PDF
    In this paper, a simplified yet flexible half-duplex hybrid beamforming (HBF) architecture along with the adaptive beam scanning and direction-finding methodology for the 360° HBF system has been proposed. The structure is constructed using up to 4 units of n × 4 antenna arrays with choice of gain and coverage sector, which is powered by only 4 RF beamforming chains. In addition, the flexible beamforming structure is able to enable beamforming function of any legacy transceiver. The proposed architecture exhibits prominent advantages in reducing the hardware complexity and cost of the HBF system by 4 folds and offers the field-friendly feature with the flexible gain and coverage concept that allow only the necessary array to be installed

    Low-complexity switching network design for hybrid precoding in mmWave MIMO systems

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.This paper deals with the design of a hybrid precoder for millimeter-wave MIMO systems. For the sake of concreteness, we consider an analog processing stage composed of a switching network with analog combining. The main contribution of this work consists on the proposal and evaluation of an optimization procedure based on a smart relaxation. The optimal hybrid precoder under a transmit power constraint is derived, after which, the analog precoding matrix is binarized. After an intuitive reasoning, we note that multiple solutions exist. Nevertheless, the (very) reduced computational complexity of the proposed optimization scheme makes it feasible for realistic implementations. Numerical results are reported to assess the performance of proposed hybrid precoder design.Peer ReviewedPostprint (published version

    A wireless precoding technique for millimetre-wave MIMO system based on SIC-MMSE

    Get PDF
    A communication method is proposed using Minimum Mean Square Error (MMSE) precoding and Successive Interference Cancellation (SIC) technique for millimetre-wave multiple-input multiple-output (mm-Wave MIMO) based wireless communication system. The mm-Wave MIMO technology for wireless communication system is the base potential technology for its high data transfer rate followed by data instruction and low power consumption compared to Long-Term Evolution (LTE). The mm-Wave system is already available in indoor hotspot and Wi-Fi backhaul for its high bandwidth availability and potential lead to rate of numerous Gbps/user. But, in mobile wireless communication system this technique is lagging because the channel faces relative orthogonal coordination and multiple node detection problems while rapid movement of nodes (transmitter and receiver) occur. To improve the conventional mm-wave MIMO nodal detection and coordination performance, the system processes data using symbolized error vector technique for linearization. Then the MMSE precoding detection technique improves the link strength by constantly fitting the channel coefficients based on number of independent service antennas (M), Signal to Noise Ratio (SNR), Channel Matrix (CM) and mean square errors (MSE). To maintain sequentially encoded user data connectivity and to overcome data loss, SIC method is used in combination with MMSE. MATLAB was used to validate the proposed system performance

    Low Power Analog Processing for Ultra-High-Speed Receivers with RF Correlation

    Get PDF
    Ultra-high-speed data communication receivers (Rxs) conventionally require analog digital converters (ADC)s with high sampling rates which have design challenges in terms of adequate resolution and power. This leads to ultra-high-speed Rxs utilising expensive and bulky high-speed oscilloscopes which are extremely inefficient for demodulation, in terms of power and size. Designing energy-efficient mixed-signal and baseband units for ultra-high-speed Rxs requires a paradigm approach detailed in this paper that circumvents the use of power-hungry ADCs by employing low-power analog processing. The low-power analog Rx employs direct-demodulation with RF correlation using low-power comparators. The Rx is able to support multiple modulations with highest modulation of 16-QAM reported so far for direct-demodulation with RF correlation. Simulations using Matlab, Simulink R2020a® indicate sufficient symbol-error rate (SER) performance at a symbol rate of 8 GS/s for the 71 GHz Urban Micro Cell and 140 GHz indoor channels. Power analysis undertaken with current analog, hybrid and digital beamforming approaches requiring ADCs indicates considerable power savings. This novel approach can be adopted for ultra-high-speed Rxs envisaged for beyond fifth generation (B5G)/sixth generation (6G)/ terahertz (THz) communication without the power-hungry ADCs, leading to low-power integrated design solutions
    corecore