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Abstract—This paper deals with the design of a hybrid precoder
for millimeter-wave MIMO systems. For the sake of concreteness,
we consider an analog processing stage composed of a switching
network with analog combining. The main contribution of this
work consists on the proposal and evaluation of an optimization
procedure based on a smart relaxation. The optimal hybrid
precoder under a transmit power constraint is derived, after
which, the analog precoding matrix is binarized. After an intuitive
reasoning, we note that multiple solutions exist. Nevertheless,
the (very) reduced computational complexity of the proposed
optimization scheme makes it feasible for realistic implementa-
tions. Numerical results are reported to assess the performance
of proposed hybrid precoder design.

Index Terms—Hybrid MIMO, switching network with analog
combiner, precoder design, mmWave MIMO.

I. INTRODUCTION

Spectrum shortage is one of the challenging issues for next-
era wireless communications in view of the demanding user-
requirements, e.g. high data-rates and low energy consumption,
and the expected large amount of wireless interfaces [1], [2]. In
this sense, millimeter-wave (mmWave) communications have
arisen as a promising candidate for permitting the simultaneous
transmission to these massive number of devices [3]. Moreover,
to achieve high spectral efficiency communication [4], the use
of large-scale multiple-input multiple-output (MIMO) systems
[5], [6] is essential. Nevertheless, the implementation of clas-
sical baseband (BB) digital combiners in large-scale MIMO
poses the challenging problem of energy consumption [7].

Hybrid processing is a promising technology to overcome
this problem. The underlying principle of hybrid MIMO tech-
nology relies on the use of less radio-frequency (RF) chains
than antennas [7–9]. Specifically, the precoder is divided into
two stages: the first one consists in a BB digital processor able
to support multi-stream transmission; and the second stage is
based on purely analog RF processing, which combines the
outputs of the RF chains with the transmit antennas. Notice
that the decoder works equivalently, first applying the analog
processing stage and finally the BB digital processing.

In the recent literature, we may find several works tackling
the design of precoders, or decoders, under hybrid MIMO
technology [10–16]. Therein, the analog processing stage was
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initially thought to be implemented using phase shifters. There-
fore, the analog combiner was optimized under (un)quantized
phase values. A new analog combining approach based on the
use of switches, instead of phase shifters, was introduced in
[17], In that respect, the analog RF combiner consists in an
antenna subset selector carried at less hardware complexity,
which yields a reduced power consumption [17], [18]. Ad-
ditionally, as analyzed in [19], the channel estimation per-
formance of switches-based architectures is equal or better
compared to that achieved when using only phase shifters.

It is worth noting that precoding matrices of switches-based
hybrid architectures are selection (binary) matrices. Therefore,
the optimal analog RF precoder design may be numerically
intractable since it involves a combinatorial search due to
Boolean constraints. A simple precoder can be implemented
under a pure switching architecture, i.e., every RF chain
connected to a single antenna. In this case, each column of
the analog precoding matrix has a single non-zero element. As
addressed in [20], the latter permits exploiting the sparse nature
of mmWave channels. However, their inherent performance
loss makes it only feasible for small-size antenna arrays.

In this work, we address the last issue. We first consider
that hardware complexity and energy consumption are relevant
to system design. We adopt a switching network with analog
combiner architecture, an extension of pure switching networks
where the RF chains are connected to a subset of antennas [19].
For this architecture, the analog precoding matrix constitutes
binary columns with an arbitrary number of non-zero elements.
As aforementioned, the optimal design may burden computa-
tional inefficient, making it unfeasible in practice.

Our contribution is to face the computational complexity
considering a hitherto unexplored system optimization based
on three stages. We first relax the Boolean feasible set of the
analog precoder matrix. We constrain its structure under the
definition of an activation function lying in the interval (0, 1).
Secondly, we address a constrained minimization problem to
obtain, from the optimum unconstrained linear precoder, the
stationary point equations that optimal hybrid architecture must
fulfill, when subject to no power loss. Thirdly, a binarization
threshold is applied. This approach differs from cited literature
papers in which, for the sake of simplicity, unconstrained
optimization is tackled, which incurs into performance penalty.
Even though matrix-factorization error increases when the
constrained optimization is considered, we show the benefit
of incorporating such constraint to increase spectral efficiency.
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Fig. 1: Hybrid transmitter architecture with Lt antennas and NRF analog chains, with N ≤ NRF ≤ Lt.

The rest of this paper is organized as follows. The system
model and the problem statement are presented in Section
II. In Section III, we tacle the low-complexity switching
network design. Finally, simulation results and conclusions are
respectively shown in Sections IV and V.

II. SYSTEM MODEL

Let us consider the hybrid MIMO transmitter depicted in
Fig. 1. We deal with the transmission of N data streams
through a point-to-point narrowband1 multi-antenna channel
H ∈ CLr×Lt , with Lt and Lr being the number of transmit
and receive antennas, respectively. For a given precoder matrix
F ∈ CLt×N , the received signal y ∈ CLr is given by

y(n) =
√
ρ ·HFx(n) + υ(n), (1)

with x(n) ∈ CN standing for the transmitted signal at time n
with power ρ, and υ(n) ∼ CN (0;σ2

υILr
) is an additive com-

plex white Gaussian noise. Moreover, the mutual information
between the transmitter and the receiver can be written as:

I(x;y) = log2
(
det
[
ILr

+ γ ·HFCxFHHH
])
, (2)

with Cx , E{x(n)xH(n)} = N−1ILt
, and γ , ρ ·σ−2υ . Then,

when perfect knowledge of H is available at the transmitter,
the optimal unconstrained Fopt that maximizes the data rate is

Fopt = argmax
F

I(x;y). (3)

The solution is shown to be the first N columns of matrix
V associated to the highest singular values of H = UΣVH.
Nevertheless, given the relevance of energy consumption in
our design, we consider a hybrid architecture characterized by
a BB precoder FBB ∈ CNRF×N , and an RF precoder FRF ∈
CLt×NRF . Thus, y(n) is, when F is substituted by FRFFBB,

y(n) =
√
ρ ·HFRFFBBx(n) + υ(n). (4)

Based on the mutual information (2), the precoder design
problem becomes the joint optimization under FRF and FBB:

max
{FRF.FBB}

log2
(
det
[
ILr + γ ·HFRFFBBFH

BBFH
RFHH

])
(5)

1The extension to wideband scenarios is straightforward by considering the
MIMO-OFDM model presented in [21].

Notwithstanding, as shown in [22], the objective function in
(5) can be approximated, under certain conditions, by

min
{FRF.FBB}

||Fopt − FRFFBB||2F , (6)

i.e., minimize the difference (in terms of Frobenius norm)
between the optimal unconstrained precoder in (3) and the
compound hyrbid precoder, given by the product of BB and RF
precoding matrices FRFFBB. Intuitively, zero error is achieved
as long as the factorization Fopt = FRFFBB is permitted,
which is, in general, not possible. In this work, we consider
that FRF has the specific structure to characterize a switching
network with an analog combiner [19]. Thus, we address the
joint design of FRF and FBB in agreement with hardware
constraints imposed by the adopted hybrid architecture.

III. HYBRID PRECODER DESIGN

Given the unconstrained precoder Fopt, we design the
precoding matrices: (i) FRF ∈ BLt×NRF under the Boolean
alphabet B = {0, 1}; and (ii) FBB ∈ CNRF×N subject to
constraint (8) where ||Fopt||2F = Q. Hence, the following
pseudoboolean minimization problem is stated:

min
{FRF,FBB}

||Fopt − FRFFBB||2F (7)

s.t. ||FRFFBB||2F = Q (8)
s.t. [FRF]i,j ∈ B, 1 ≤ i ≤ Lt, 1 ≤ j ≤ NRF (9)

s.t. [FBB]k,l ∈ C, 1 ≤ k ≤ NRF, 1 ≤ l ≤ N (10)

It is easy to see that a combinatory problem brought to light
w.r.t. FRF, unfeasible to tackle at large Lt. For that reason, we
may relax [FRF]i,j in (9) to lie in the interval (0, 1), instead
of {0, 1}, by imposing certain structure over FRF. To that end,
we consider a continuously differentiable increasing function

f : R −→ (0, 1), (11)

such that FRF can be expressed as FRF , f(Ω). Thus, the
previous problem (7)–(10) turns out to

min
{Ω,FBB}

||Fopt − f(Ω)FBB||2F s.t. ||f(Ω)FBB||2F = Q (12)



where [Ω]i,j ∈ R and [FBB]k,l ∈ C. For easy readability, we
devote the rest of this Section to highlighting the results we
obtained from the optimization we undertake. The explicit
mathematical analysis has been moved to the Appendix.

A. Problem Solution

The solution of our problem is cast in terms of FRF and
FBB that fulfill the following equations:

(i) For a given FRF, the optimum FBB can be obtained as

FBB = %−1 · F#
RFFopt, (13)

where F#
RF is the Moore-Penrose pseudoinverse, and % is

a scalar to be determined. Naturally, the structure of the
optimum FBB coincides with the least squares solution
except for the scaling factor

% = Q−
1
2 · ||FRFF#

RFFopt||F . (14)

(ii) For a given FBB, the optimum FRF = f(Ω) is such that

f ′(Ω)� Re
[
(Fopt − % · f(Ω)FBB)F

H
BB)
]
= 0. (15)

where � denotes the Shur-Hadamard product operator,
and Re[·] the real part of the argument.

B. Combining Solutions

It is clear that the optimum precoder matrices FRF = f(Ω)
and FBB must satisfy, simultaneously, (13) and (15) for the
same %. Hence, we substitute (13) into (15) to finally get

f ′(Ω)�
[
(I− FRFF#

RF)Re
[
FoptF

H
opt

]
(F#

RF)
T
]
= 0, (16)

which only depends on FRF and not on %,FBB, which high-
lights that the optimum FRF is independent of Q. Notice that
this fact can be interpreted as follows. According to (13)–(14),
Q can be seen as a scaling factor on the BB precoder. Hence,
it is independent of the architecture design. From the strict
mathematical point of view, the solution does not depend on
the specific f . In fact, only depends on the optimum f(Ω)
lying in [0, 1]. Nonetheless, from the simulations’ perspective,
different local optima can be found depending on f given the
non-convexity of the optimization problem. In particular, if we
choose f(x) to be the Sigmoid f(x) = [1 + e−ax]−1 with
a > 0, we have that f ′(x) = f(x)(1− f(x)). Consequently,

f ′(Ω) = f(Ω)� (1− f(Ω)). (17)

It is worth noting that FRF fulfills (16) in the following cases:
(i) Consider, first of all, that all elements of f(Ω) in (16)

achieve the boundary values 0 or 1. In these particular
cases, taking (17) into account, the first element of (16),
f ′(Ω), will result the all-zeros matrix.

(ii) We focus now on the second term in (16), that is
(I−FRFF#

RF)Re
[
FoptF

H
opt

]
(F#

RF)
T . It is worth pointing

out that the square matrix I− FRFF#
RF is an orthogonal

projection onto the kernel of FRF. Therefore, whenever all
columns of matrix Re

[
FoptF

H
opt

]
(F#

RF)
T can be written

as a linear combination of columns in FRF, viz:

Re
[
FoptF

H
opt

]
(F#

RF)
T = FRFA (18)
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Fig. 2: Power consumption vs. number of RF chains NRF, for different
transmitting array’s size Lt. Proposed hybrid precoder (red) is compared with
a phase-shifting hybrid precoder (blue) and conventional MIMO (black).

the product (I−FRFF#
RF)Re

[
FoptF

H
opt

]
(F#

RF)
T will be

the all-zeros matrix due to orthogonality. Hence, a large
number linear combinations A ∈ CNRF×NRF exist, and
their performances need to be individually evaluated.

As a conclusion, we observe the following. Albeit the BB
precoder can be exactly computed given the RF precoding
matrix, we may obtain several local optima for the RF precoder.
Mathematically speaking, as also discussed in [14], the solution
relies on a saddlepoint. What it is very interesting to highlight
is that, as sustained by simulations, local optima present
a similar performance in terms of power consumption and
spectral efficiency after binarization. Although we have skipped
a more sophisticated discussion about the latter due to space
limitations, this can be immediately seen from the behavior of
non-averaged simulations in Figs. 2 and 3.

IV. NUMERICAL RESULTS

In this Section, we report a simulation analysis to assess
the performance of proposed switching network design. As
presented in [22], a very accurate channel model for mmWave
MIMO consists in an extension of the Saleh-Valenzuela model.
Therefore, we consider the clustered mmWave channel model

H =

√
LtLr
NclNray

Ncl∑
m=1

Nray∑
n=1

αm,nsR(θm,n)s
H
T (φm,n), (19)

where αm,n stand for the pathloss coefficient, and φm,n, θm,n
for the direction-of-departure (DoD) and direction-of-arrival
(DoA) angles, respectively. For the sake of simplicity, and
accounting for the poor scattering of the mmWave band, we
consider Ncl = 3 clusters and Nray = 7 rays per cluster, where
φm,n and θm,n are uniformly distributed in [−π/2, π/2]. For
ease of discussion, we adopt, for both the transmitter and the
receiver, half-wavelength spaced uniform linear arrays.

The obtained solution (13) and (16) allows decoupling the
optimization problem of precoder matrices. We remember local
optimum FRF = f(Ω) can be found from (16), from which,
the optimum FBB is computed using (13). As stated before,
the Sigmoid parameter a > 0 may be relevant in simulations
for local optima. We set a = 10 for all cases.



20 40 60 80 100 120

20

40

60

80

100

Lr = 8

Lr = 16

Number of transmit antennas Lt

Sp
ec

tr
al

E
ffi

ci
en

cy
[b

its
pe

r
ch

an
ne

l
us

e]

NRF = 4

NRF = 8

Constrained
Unconstrained

Fig. 3: Spectral efficiency vs. number of transmit antennas Lt for different
number or RF chains and receiving antennas. Proposed system is compared
when using constrained (solid) or unconstrained (dashed) optimization.

20 40 60 80 100 120
−5

0

5

10

Number of transmit antennas Lt

A
ve

ra
ge

d
Sq

ua
re

d
E

rr
or

[d
B

]

NRF = 4

NRF = 8

Constrained
Unconstrained

Fig. 4: Squared error (dB scale) of the optimization problem, defined as
‖Fopt − FRFFBB‖2F, as a function of the transmitting antenna array size
for Lr = {8, 16} and different number of RF chains.

A. Power Consumption

Energy efficiency is one of the main issues of mmWave
MIMO. Hence, we analyze the power consumption of proposed
switching network-based hybrid precoder. For the sake of
simplicity, we consider the power consumption model pre-
sented in [19]. Recalling that transmitter is composed of power
amplifiers (PA), switches (SW), RF chains (RFC), digital-to-
analog converters (DAC), and the BB combiner, the power
consumed by the proposed hybrid architecture is

Pproposed = (Lt +Nswitch) · PPA +Nswitch · PSW

+ NRF · (PDAC + PRFC) + PBB,
(20)

where the Nswitch is the number of active switches. Notice that
it depends on the solution of the stated optimization problem,
i.e the number of non-zero elements of the binarized solution.

In Fig. 2, we show the power consumed by the proposed
hybrid precoder as a function of the number of RF chains,
and for different number of antennas at transmitter Lt, when
the array’s size of receiver is fixed to Lr = 8. For the
sake of comparison, we compare it with the power consumed
by a phase shifting network and conventional MIMO, whose
power consumption equation can be found in [19]. We first
focus on the switching-based design (red markers). We show
that consumed power, although increasing, is always smaller
than the power consumed by a shifting network-based hybrid
MIMO (for the same number of transmitting antennas). Its
great advantage w.r.t. conventional MIMO is appreciated when
large transmitting arrays are adopted.

B. Performance Assessment: Error and Spectral Efficiency

We depict in Fig. 3 the system spectral efficiency as a func-
tion of the number of transmit antennas Lt for different cases:
(i) when using unconstrained and constrained optimization,
introduced through variable Q in (12); and (ii) under different
RF chains. Similarly as other works, the number of streams
is set to N = NRF. The averaged squared error associated
to the spectral efficiency values in Fig. 3 is illustrated in Fig.
4. Notice that the number of receiving antennas does not have
impact on the squared error. For the sake of simplicity, we have
considered a high-SNR regime with uniform power allocation.

Naturally, the solution that minimizes the square error is
given by the unconstrained optimization, i.e. setting % = 1. As
shown, constrained optimization leads to significantly incre-
ment of system rate in exchange of penalizing the square error.
This effect has more impact when Lt, Lr are low. In particular,
at Lt = {32, 64} the system rate is increased by {21.6, 17.2}%
at Lr = 8 and by {17.7, 15.7}% at Lr = 16 when NRF = 4.
Notice that, since NRF = N , the number of RF chains entails,
generally speaking, an increment of system rate and squared
error. Yet, we note that, for a small number of transmitting
antennas, when NRF = N = Lt, the squared error is glaringly
reduced. Regarding to the system rate, since the number of
streams increases, spectral efficiency is also increased

V. CONCLUSIONS

In this work, the design problem of hybrid precoder for
millimeter-wave MIMO systems is addressed. Based on the rel-
evance of implementation complexity and energy consumption,
we adopt an analog processing stage composed of a switching
network with analog combining. To overcome combinatorial
optimization, we tackle an optimization problem in which the
Boolean alphabet constraints are relaxed to lie in a compact
interval. We then derive the stationary point equations of
optimal hybrid precoder under a transmit power constraint,
after which the optimized analog matrix has to be binarized.
We show the relevance of the incorporated power constraint to
increase system rate. Numerical results evidence that system
rate is further increased when the number of RF chains is low
and the number of transmitting and received is moderate.

APPENDIX

In this Appendix, we tackle the minimization problem (7)–
(10). For ease of notation, we define ε , ||Fopt−FRFFBB||2F ,
which we develop as follows:

ε = Tr
[
FH

optFopt

]
+Tr

[
FH

BBFH
RFFRFFBB

]
− Tr

[
FH

optFRFFBB

]
− Tr

[
FoptF

H
BBFH

RF

]
.

(21)

The Lagrangian associated with (7)–(8) is

J = Tr
[
FH

optFopt

]
−Tr

[
FH

optFRFFBB

]
−Tr

[
FoptF

H
BBFH

RF

]
+ (1 + λ) · Tr

[
FH

BBFH
RFFRFFBB

]
− λQ. (22)



Hence, the joint optimization under FBB and Ω is addressed
in the following sections by deriving, in each of them and for
the same λ, the stationary point equations that each precoder
matrix may fulfill when the other remains fixed.

A. Stationary point equation over FBB

We take the derivative of J w.r.t. each element in FH
BB

∂

∂FH
BB

= −(FH
RFFopt)

T+(1+λ)(FH
RFFRFFBB)

T = 0. (23)

Isolating FBB, we get

FBB = %−1 · (FH
RFFRF)

−1FH
RFFopt = ρ−1 · F#

RFFopt, (24)

with F#
RF the Moore-Penrose pseudoinverse of FRF, and % ,

(1 + λ) = ||FRFF#
RFFopt||FQ−

1
2 chosen to satisfy (8).

B. Stationary point equation over Ω

Recall that we have relaxed the Boolean constraint in (9)
by letting FRF = f(Ω), where f(·) stands for the a generic
increasing function in [0, 1]. We take the derivative of J (22)
w.r.t. Ω taking as reference the following derivatives in terms
of the general matrices A and B

∂

∂Ω
Tr[Af(Ω)] = f ′(Ω)�AT , (25)

∂

∂Ω
Tr[Bf(ΩT )] = f ′(Ω)�B, (26)

where f ′(·) is the derivative of f(·). Notice that (25)–(26) can
be easily checked using the chain differentiation rule, with �
denoting the Shur-Hadamard (element-wise) product operator.

We first differentiate the upper line of (22) in two steps:
1) Firstly, using the invariance of the trace to cyclic permu-

tations, Tr
[
FH

optf(Ω)FBB

]
= Tr

[
FBBFH

optf(Ω)
]
,

∂

∂Ω
Tr
[
FBBFH

optf(Ω)
]
= f ′(Ω)� (F∗optF

T
BB). (27)

2) Secondly, Tr
[
FoptF

H
BBf(Ω

T )
]
=Tr

[
(FoptF

H
BB)

T f(Ω)
]
,

∂

∂Ω
Tr
[
(FoptF

H
BB)

T f(Ω)
]
= f ′(Ω)�(FoptF

H
BB). (28)

It is worth noting that both are complex conjugate numbers,
and thus, the addition of both terms is equivalent to

2 · f ′(Ω)� Re
[
FoptF

H
BB

]
, (29)

where Re[·] stands for the real part of the argument.
Finally, the derivative of the lower part of (22) is, using the

product differentiation rule

∂

∂Ω
Tr
[
FH

BBf(Ω
T )f(Ω)FBB

]
=

f ′(Ω)� (f(Ω)F∗BBFT
BB)−

f ′(Ω)� (f(Ω)FBBFH
BB),

(30)

which results equivalent to

2 · f ′(ΩT )� Re
[
f(Ω)FBBFH

BB

]
. (31)

Therefore, the derivative of J (22) is computed taking into
account both (29) and (31). Thus, we get

f ′(Ω)� Re
[
(Fopt − % · f(Ω)FBB)F

H
BB)
]
= 0. (32)
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