1,129 research outputs found

    Toward enhancement of deep learning techniques using fuzzy logic: a survey

    Get PDF
    Deep learning has emerged recently as a type of artificial intelligence (AI) and machine learning (ML), it usually imitates the human way in gaining a particular knowledge type. Deep learning is considered an essential data science element, which comprises predictive modeling and statistics. Deep learning makes the processes of collecting, interpreting, and analyzing big data easier and faster. Deep neural networks are kind of ML models, where the non-linear processing units are layered for the purpose of extracting particular features from the inputs. Actually, the training process of similar networks is very expensive and it also depends on the used optimization method, hence optimal results may not be provided. The techniques of deep learning are also vulnerable to data noise. For these reasons, fuzzy systems are used to improve the performance of deep learning algorithms, especially in combination with neural networks. Fuzzy systems are used to improve the representation accuracy of deep learning models. This survey paper reviews some of the deep learning based fuzzy logic models and techniques that were presented and proposed in the previous studies, where fuzzy logic is used to improve deep learning performance. The approaches are divided into two categories based on how both of the samples are combined. Furthermore, the models' practicality in the actual world is revealed

    Machine Learning Aided Static Malware Analysis: A Survey and Tutorial

    Full text link
    Malware analysis and detection techniques have been evolving during the last decade as a reflection to development of different malware techniques to evade network-based and host-based security protections. The fast growth in variety and number of malware species made it very difficult for forensics investigators to provide an on time response. Therefore, Machine Learning (ML) aided malware analysis became a necessity to automate different aspects of static and dynamic malware investigation. We believe that machine learning aided static analysis can be used as a methodological approach in technical Cyber Threats Intelligence (CTI) rather than resource-consuming dynamic malware analysis that has been thoroughly studied before. In this paper, we address this research gap by conducting an in-depth survey of different machine learning methods for classification of static characteristics of 32-bit malicious Portable Executable (PE32) Windows files and develop taxonomy for better understanding of these techniques. Afterwards, we offer a tutorial on how different machine learning techniques can be utilized in extraction and analysis of a variety of static characteristic of PE binaries and evaluate accuracy and practical generalization of these techniques. Finally, the results of experimental study of all the method using common data was given to demonstrate the accuracy and complexity. This paper may serve as a stepping stone for future researchers in cross-disciplinary field of machine learning aided malware forensics.Comment: 37 Page

    AI and OR in management of operations: history and trends

    Get PDF
    The last decade has seen a considerable growth in the use of Artificial Intelligence (AI) for operations management with the aim of finding solutions to problems that are increasing in complexity and scale. This paper begins by setting the context for the survey through a historical perspective of OR and AI. An extensive survey of applications of AI techniques for operations management, covering a total of over 1200 papers published from 1995 to 2004 is then presented. The survey utilizes Elsevier's ScienceDirect database as a source. Hence, the survey may not cover all the relevant journals but includes a sufficiently wide range of publications to make it representative of the research in the field. The papers are categorized into four areas of operations management: (a) design, (b) scheduling, (c) process planning and control and (d) quality, maintenance and fault diagnosis. Each of the four areas is categorized in terms of the AI techniques used: genetic algorithms, case-based reasoning, knowledge-based systems, fuzzy logic and hybrid techniques. The trends over the last decade are identified, discussed with respect to expected trends and directions for future work suggested

    Computational Intelligence in Highway Management: A Review

    Get PDF
    Highway management systems are used to improve safety and driving comfort on highways by using control strategies and providing information and warnings to drivers. They use several strategies starting from speed and lane management, through incident detection and warning systems, ramp metering, weather information up to, for example, informing drivers about alternative roads. This paper provides a review of the existing approaches to highway management systems, particularly speed harmonization and ramp metering. It is focused only on modern and advanced approaches, such as soft computing, multi-agent methods and their interconnection. Its objective is to provide guidance in the wide field of highway management and to point out the most relevant recent activities which demonstrate that development in the field of highway management is still important and that the existing research exhibits potential for further enhancement

    A WANFIS Model for Use in System Identification and Structural Control of Civil Engineering Structures

    Get PDF
    With the increased deterioration of infrastructure in this country, it has become important to find ways to maintain the strength and integrity of a structure over its design life. Being able to control the amount a structure displaces or vibrates during a seismic event, as well as being able to model this nonlinear behavior, provides a new challenge for structural engineers. This research proposes a wavelet-based adaptive neuro- fuzzy inference system for use in system identification and structural control of civil engineering structures. This algorithm combines aspects of fuzzy logic theory, neural networks, and wavelet transforms to create a new system that effectively reduces the number of sensors needed in a structure to capture its seismic response and the amount of computation time needed to model its nonlinear behavior. The algorithm has been tested for structural control using a three-story building equipped with a magnetorheological damper for system identification, an eight-story building, and a benchmark highway bridge. Each of these examples has been tested using a variety of earthquakes, including the El-Centro, Kobe, Hachinohe, Northridge, and other seismic events

    From Intrusion Detection to Attacker Attribution: A Comprehensive Survey of Unsupervised Methods

    Get PDF
    Over the last five years there has been an increase in the frequency and diversity of network attacks. This holds true, as more and more organisations admit compromises on a daily basis. Many misuse and anomaly based Intrusion Detection Systems (IDSs) that rely on either signatures, supervised or statistical methods have been proposed in the literature, but their trustworthiness is debatable. Moreover, as this work uncovers, the current IDSs are based on obsolete attack classes that do not reflect the current attack trends. For these reasons, this paper provides a comprehensive overview of unsupervised and hybrid methods for intrusion detection, discussing their potential in the domain. We also present and highlight the importance of feature engineering techniques that have been proposed for intrusion detection. Furthermore, we discuss that current IDSs should evolve from simple detection to correlation and attribution. We descant how IDS data could be used to reconstruct and correlate attacks to identify attackers, with the use of advanced data analytics techniques. Finally, we argue how the present IDS attack classes can be extended to match the modern attacks and propose three new classes regarding the outgoing network communicatio

    Utilizing an Adaptive Neuro-Fuzzy Inference System (ANFIS) for overcrowding level risk assessment in railway stations

    Get PDF
    The railway network plays a significant role (both economically and socially) in assisting the reduction of urban traffic congestion. It also accelerates the decarbonization in cities, societies and built environments. To ensure the safe and secure operation of stations and capture the real-time risk status, it is imperative to consider a dynamic and smart method for managing risk factors in stations. In this research, a framework to develop an intelligent system for managing risk is suggested. The adaptive neuro-fuzzy inference system (ANFIS) is proposed as a powerful, intelligently selected model to improve risk management and manage uncertainties in risk variables. The objective of this study is twofold. First, we review current methods applied to predict the risk level in the flow. Second, we develop smart risk assessment and management measures (or indicators) to improve our understanding of the safety of railway stations in real-time. Two parameters are selected as input for the risk level relating to overcrowding: the transfer efficiency and retention rate of the platform. This study is the world’s first to establish the hybrid artificial intelligence (AI) model, which has the potency to manage risk uncertainties and learns through artificial neural networks (ANNs) by integrated training processes. The prediction result shows very high accuracy in predicting the risk level performance, and proves the AI model capabilities to learn, to make predictions, and to capture risk level values in real time. Such risk information is extremely critical for decision making processes in managing safety and risks, especially when uncertain disruptions incur (e.g., COVID-19, disasters, etc.). The novel insights stemmed from this study will lead to more effective and efficient risk management for single and clustered railway station facilities towards safer, smarter, and more resilient transportation systems

    An overview of a leader journal in the field of transport: a bibliometric analysis of “Computer-Aided Civil and Infrastructure Engineering” from 2000 to 2019

    Get PDF
    Computer-Aided Civil And Infrastructure Engineering (CACAIE) is an international journal, and the first documents was published from 1980. This article is to make an overview based on bibliometric analysis to celebrate the 35th anniversary of CACAIE till 2019. At present, 1045 publications can be indexed in the Clarivate Analytics Web of Science (WoS) from 2000 to 2019, and we explore the characteristics of these publications by bibliometric methods and tools (VOSviewer and CiteSpace). First, the fundamental information of publications is given with the help of some bibliometric indicators, such as the number of citations and h-index. According to high-citing and high-cited publications, we analyse that who pays closer attention to the journal and what the journal most focuses on considering sources, countries/regions, institutions and authors. After that, the influential countries/regions and references are presented, and collaboration networks are given to show the relationship among countries/regions, institutions and authors. In order to understand the development trends and hot topics, co-occurrence analysis and timeline view of keywords are made to be visual. In addition, publications in four fields – Construction & Building Technology; Engineering, Civil; Transportation Science & Technology; Computer Science, Interdisciplinary Applications – that CACAIE refers are summarized, and further discussions are made for the journal and scholars. Finally, some main findings are concluded according to all analysis. This article provides a certain reference for scholars and journals to further research and promote the scientific-technological progress. First published online 6 January 202

    Decision Support Elements and Enabling Techniques to Achieve a Cyber Defence Situational Awareness Capability

    Full text link
    [ES] La presente tesis doctoral realiza un análisis en detalle de los elementos de decisión necesarios para mejorar la comprensión de la situación en ciberdefensa con especial énfasis en la percepción y comprensión del analista de un centro de operaciones de ciberseguridad (SOC). Se proponen dos arquitecturas diferentes basadas en el análisis forense de flujos de datos (NF3). La primera arquitectura emplea técnicas de Ensemble Machine Learning mientras que la segunda es una variante de Machine Learning de mayor complejidad algorítmica (lambda-NF3) que ofrece un marco de defensa de mayor robustez frente a ataques adversarios. Ambas propuestas buscan automatizar de forma efectiva la detección de malware y su posterior gestión de incidentes mostrando unos resultados satisfactorios en aproximar lo que se ha denominado un SOC de próxima generación y de computación cognitiva (NGC2SOC). La supervisión y monitorización de eventos para la protección de las redes informáticas de una organización debe ir acompañada de técnicas de visualización. En este caso, la tesis aborda la generación de representaciones tridimensionales basadas en métricas orientadas a la misión y procedimientos que usan un sistema experto basado en lógica difusa. Precisamente, el estado del arte muestra serias deficiencias a la hora de implementar soluciones de ciberdefensa que reflejen la relevancia de la misión, los recursos y cometidos de una organización para una decisión mejor informada. El trabajo de investigación proporciona finalmente dos áreas claves para mejorar la toma de decisiones en ciberdefensa: un marco sólido y completo de verificación y validación para evaluar parámetros de soluciones y la elaboración de un conjunto de datos sintéticos que referencian unívocamente las fases de un ciberataque con los estándares Cyber Kill Chain y MITRE ATT & CK.[CA] La present tesi doctoral realitza una anàlisi detalladament dels elements de decisió necessaris per a millorar la comprensió de la situació en ciberdefensa amb especial èmfasi en la percepció i comprensió de l'analista d'un centre d'operacions de ciberseguretat (SOC). Es proposen dues arquitectures diferents basades en l'anàlisi forense de fluxos de dades (NF3). La primera arquitectura empra tècniques de Ensemble Machine Learning mentre que la segona és una variant de Machine Learning de major complexitat algorítmica (lambda-NF3) que ofereix un marc de defensa de major robustesa enfront d'atacs adversaris. Totes dues propostes busquen automatitzar de manera efectiva la detecció de malware i la seua posterior gestió d'incidents mostrant uns resultats satisfactoris a aproximar el que s'ha denominat un SOC de pròxima generació i de computació cognitiva (NGC2SOC). La supervisió i monitoratge d'esdeveniments per a la protecció de les xarxes informàtiques d'una organització ha d'anar acompanyada de tècniques de visualització. En aquest cas, la tesi aborda la generació de representacions tridimensionals basades en mètriques orientades a la missió i procediments que usen un sistema expert basat en lògica difusa. Precisament, l'estat de l'art mostra serioses deficiències a l'hora d'implementar solucions de ciberdefensa que reflectisquen la rellevància de la missió, els recursos i comeses d'una organització per a una decisió més ben informada. El treball de recerca proporciona finalment dues àrees claus per a millorar la presa de decisions en ciberdefensa: un marc sòlid i complet de verificació i validació per a avaluar paràmetres de solucions i l'elaboració d'un conjunt de dades sintètiques que referencien unívocament les fases d'un ciberatac amb els estàndards Cyber Kill Chain i MITRE ATT & CK.[EN] This doctoral thesis performs a detailed analysis of the decision elements necessary to improve the cyber defence situation awareness with a special emphasis on the perception and understanding of the analyst of a cybersecurity operations center (SOC). Two different architectures based on the network flow forensics of data streams (NF3) are proposed. The first architecture uses Ensemble Machine Learning techniques while the second is a variant of Machine Learning with greater algorithmic complexity (lambda-NF3) that offers a more robust defense framework against adversarial attacks. Both proposals seek to effectively automate the detection of malware and its subsequent incident management, showing satisfactory results in approximating what has been called a next generation cognitive computing SOC (NGC2SOC). The supervision and monitoring of events for the protection of an organisation's computer networks must be accompanied by visualisation techniques. In this case, the thesis addresses the representation of three-dimensional pictures based on mission oriented metrics and procedures that use an expert system based on fuzzy logic. Precisely, the state-of-the-art evidences serious deficiencies when it comes to implementing cyber defence solutions that consider the relevance of the mission, resources and tasks of an organisation for a better-informed decision. The research work finally provides two key areas to improve decision-making in cyber defence: a solid and complete verification and validation framework to evaluate solution parameters and the development of a synthetic dataset that univocally references the phases of a cyber-attack with the Cyber Kill Chain and MITRE ATT & CK standards.Llopis Sánchez, S. (2023). Decision Support Elements and Enabling Techniques to Achieve a Cyber Defence Situational Awareness Capability [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/19424
    corecore