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The selection of the most appropriate traffic control actions to solve non-recurrent traffic 

congestion is a complex task which requires significant expert knowledge and experience. 

In this thesis we develop and investigate the application of an intelligent traffic control 

decision support system for road traffic management to assist the human operator to 

identify the most suitable control actions in order to deal with non-recurrent and non-

predictable traffic congestion in a real-time situation. Our intelligent system employs a 

Fuzzy Neural Networks (FNN) Tool that combines the capabilities of fuzzy reasoning in 

measuring imprecise and dynamic factors and the capabilities of neural networks in terms 

of learning processes. In this work we present an effective learning approach with regard 

to the FNN-Tool, which consists of three stages: initializing the membership functions of 

both input and output variables by determining their centres and widths using self-

organizing algorithms; employing an evolutionary Genetic Algorithm (GA) based learning 

method to identify the fuzzy rules; tune the derived structure and parameters using the 

back-propagation learning algorithm. We evaluate experimentally the performance and the 

prediction capability of this three-stage learning approach using well-known benchmark 

examples. Experimental results demonstrate the ability of the learning approach to identify 

all relevant fuzzy rules from the training data. A comparative analysis shows that the 

proposed learning approach has a higher degree of predictive capability than existing 

models. We also address the scalability issue of our intelligent traffic control decision 

support system by using a multi-agent based approach. The large network is divided into 

sub-networks, each of which has its own associated agent. Finally, our intelligent traffic 

control decision support system is applied to a number of road traffic case studies using 

the traffic network in Riyadh, in Saudi Arabia. The results obtained are promising and 

show that our intelligent traffic control decision support system can provide an effective 

support for real-time traffic control.  
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Chapter  1     

 

 

Introduction 

 

1.1 Background and Motivation  

The traffic congestion problem has become serious as the number of vehicles on 

our roads and the need for transportation grows. Traffic congestion not only causes 

considerable costs due to unproductive time losses, it also increases the probability 

of accidents as well as having a negative impact on the environment (e.g. air pollu-

tion, lost fuel) and on the quality of life (e.g. health problems, noise, stress) [12]. 

Therefore, traffic management and control have become a major problem in devel-

oping as well as developed countries. Governments have been spending hefty 

amounts to develop traffic control centres using different methodologies, by incorpo-

rating the benefits of advanced information technology.  

Modern traffic control centres are connected to monitoring devices such as de-

tectors, weather sensors, and cameras, to record data related to the traffic state on-

line, e.g. speed (km/h), flow (vehicle/h), occupancy (percentage of time the sensor is 
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occupied by a vehicle), environmental conditions (such as air and ground tempera-

ture, amount of precipitation, wind velocity and direction, etc.). Moreover, the con-

trol centres use advanced dynamic control devices such as traffic signals at intersec-

tions, traffic signals at on-ramps, variable message signs (VMSs) that can present 

different messages to motorists (e.g., warning about an existing congestion, alterna-

tive path, or weather warning), radio advisory systems to broadcast messages to mo-

torists, etc. Figure 1 shows a typical infrastructure for real-time traffic control that 

can be found in different cities [12]. 

 

 

Figure 1.1: Typical information infrastructure for real-time traffic control [12]. 

When non-recurrent congestion happens, the operator at the traffic control cen-

tre has to assess the severity of the situation, predict the most probable evolution of 
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the state of the network, and select the most appropriate control actions quickly [57]. 

There are a large number of factors related to the state of traffic and a large number 

of possible control actions that need to be considered during the decision making 

process. Also the operator should consider the interrelations between traffic situa-

tions at different locations in the network and the interrelations between the traffic 

control actions at different locations in the network. The identification of suitable 

control actions for a given non-recurrent traffic congestion situation can be tough, 

even for experienced operators. Therefore, an advanced traffic control system that 

integrates the traffic state data with traffic monitoring and control software to help 

operators in decisions making, is needed. Road traffic simulation models are used in 

many cases. However, simulating different traffic scenarios for a number of control 

measures in a complicated situation can be very time-consuming [30]. 

The concept “intelligent” is very popular among road traffic management and 

control applications. In these cases the intelligence refers to the capability of a sys-

tem to adapt when surrounding conditions change and its capability to learn from 

data to provide assistance to decision makers in road traffic management. The intel-

ligent techniques including (knowledge-based, case-based reasoning, fuzzy logic, 

artificial neural networks, genetic algorithms and intelligent agents) have been 

widely applied to traffic management applications in the last decade [12]. Also the 

increase in performance of computers has improved the applicability of these intelli-

gent techniques.  

There are several reasons behind the wide use of intelligent techniques in inte-

grated road traffic management applications. Kirschfink et al. [91] offered three 

main reasons for this.  Firstly, the current traffic management and control systems in 
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most large-sized urban networks show limitations when it comes to facing critical 

traffic problems. Secondly, in most traffic management centres, even though ad-

vanced traffic control technologies are used, human operators still play a critical role 

in day-to-day operations. Thirdly, the recent significant development of traffic moni-

toring, incident detection and management facilities has increased the need for intel-

ligent on-line tools to help traffic management operators to cope with the complexity 

of both the information managed and of the resulting, integrated traffic management 

schemes. In this context, the development of intelligent systems that are capable of 

managing traffic behaviour and evolution in similar ways to that of an expert traffic 

operator is required.  

Another motivation for the investigation of intelligent traffic control systems 

comes from the fact that the PhD researcher worked in the Riyadh Region Traffic 

Department, which controls the very complex road network serving the capital of 

Saudi Arabia. He has had various experiences and responsibilities concerning road 

traffic management. He has seen how an effective and safe control of the road net-

work helps to prevent traffic congestion and traffic accidents, and how negligence 

can cause loss of life.  He decided to pursue this topic because, he hoped, it could 

help improve road traffic management and promote better safety for drivers and pe-

destrians. 

1.2 Aim and Objectives of the Research 

The overall aim of this research is to investigate the development of a real-time 

intelligent traffic control decision support system for traffic control centres. This in-

telligent decision support system should help the human traffic operator to identify 
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the most suitable control actions to deal with non-recurrent, non-predictable traffic 

congestion. The system is not designed to replace the human traffic operator but it 

should act as intelligent tool that assists the operator to react in a uniform and struc-

tured way to unusual situations. 

The intelligent traffic control decision support system should have the following 

elements: 

 Prediction: it should be able to accurately predict the performance of several 

control actions for a given traffic state. 

 Performance evaluation: it should be able to evaluate the performance of 

the control actions based on user-specified objectives.  

 Optimization: it should be able to find the control action that optimizes the 

user‟s objectives.  

 Processing speed: it should run in real time. 

The main objectives with regard to achieving the aim of this research are as fol-

lows: 

 To explore the literature on road traffic management concepts (including 

road traffic variables, traffic sensor technologies, traffic control actions and 

road traffic flow modelling) and intelligent road traffic control systems. 

  To explore the merits of artificial intelligent techniques. This includes fuzzy 

logic, neural networks, multi-agent, and generic algorithms.   

 To develop an effective real-time traffic control decision support system us-

ing intelligent techniques for identifying the most suitable control action in 

real-time.  
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 To develop an effective learning algorithm for the developed control decision 

support system. 

 To develop an effective method/framework to scale-up the developed real-

time traffic control decision support system to be used in a large traffic net-

work. 

 To demonstrate the effectiveness of the developed system by applying it to 

several case studies.     

1.3 Contribution of the Thesis 

The research contributions presented in this thesis can by summarized as fol-

lows:    

 

1.   Extensive literature review on road traffic management, controls, and 

systems. 

2.   Intelligent traffic control decision support system (ITC-DSS): The proposed 

intelligent system has the potential to be used for assisting the human 

operator to manage the current traffic state in real-time. The developed 

system should allow the operator to quickly evaluate a set of traffic control 

actions in one process, unlike the process of evaluating these actions one by 

one, as in the simulation model. The novelty of the developed traffic control 

decision support system primarily lies in employing an adaptive fuzzy neural 

network which combines the capability of fuzzy reasoning in handling 

uncertain information and the capability of neural networks in learning from 

processes. 
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3.   GA based fuzzy rules identification method for fuzzy neural networks: The 

main contribution of the developed GA based method is the direct encoding 

of the fuzzy rules in GA chromosomes using integer representation rather 

than the conventional encoding of the weights of the fuzzy rules. This 

reduces the length of the chromosome as well as making the size of the GA 

search space small. 

4.   Intelligent three stage-based learning approach for fuzzy neural networks: 

The main distinction of the developed learning approach is that the process 

of determining the relevant fuzzy rules and the process of fine tuning rule 

weights are implemented in two separate learning stages.  

5.   Development of a multi-agent framework for controlling a large traffic 

network. A new method for predicting the global performance of traffic 

control actions has been employed in the developed multi-agent framework. 

The simplicity and manageability represent the novelty of the developed 

multi-agent framework.  

1.4 Deliverables  

In addition to the material presented in this thesis, the findings of this research 

have been disseminated through a book chapter, journals, conferences, workshops 

and colloquiums.   

 

Submitted to Journals 

1.   K. Almejalli, K. Dahal, and A. Hossain, " An Intelligent Multi-Agent Traffic  
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Control System," Submitted to IEEE Transactions on Intelligent 

Transportation Systems. 

2.   K. Almejalli, K. Dahal, and A. Hossain, " Evolutionary Approach for 

Training Fuzzy Neural Networks in Absence of Expert Knowledge” 

Submitted to IEEE Transactions on Fuzzy Systems. 

Chapter in Books 

1.   K. Almejalli, K. Dahal, and A. Hossain, "Real Time Identification of Road 

Traffic Control Measures," in Advances in Computational Intelligence in 

Transport, Logistics, and Supply Chain Management, A. Fink and F. 

Rothlauf, Eds. Springer, 2008, ch. 4, pp. 63-80. 

Refereed Conferences 

1.   K. Almejalli, K. Dahal, and A. Hossain, "An Intelligent Multi-agent 

Approach for Road Traffic Management Systems," in Proceedings of the 

18th IEEE International Conference on Control Applications (CCA), Saint 

Petersburg, RUSSIA, 2009. 

2.   K. Almejalli, K. Dahal, and A. Hossain, "Intelligent Traffic Control 

Decision Support System," in Proceedings of European Workshop on 

Evolutionary Computation in Transportation and Logistics, EvoTransLog 

2007, LNCS Springer-Verlag, vol. 4448, pp. 688-701, 2007. 

3.   K. Almejalli, K. Dahal, and A. Hossain, "GA-Based Learning Algorithms to 

Identify Fuzzy Rules for Fuzzy Neural Networks," in Proceedings of The 

7th International Conference on Intelligent Systems Design and 
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Applications, IEEE Computer Science, ISDA2007, Rio de Janeiro, Brazil, 

2007, pp. 289-296. 

4.   K. Almejalli, K. Dahal, and A. Hossain, "Road Traffic Decision Support 

System," in Proceedings of International Conference on Software 

Knowledge Information Management and Applications (SKIMA), Chiang 

Mai, Thailand, 2006, pp. 85-89. 

Workshop and Colloquium Papers 

1.   K. Almejalli, K. Dahal, and A. Hossain, "Intelligent Predictive Decision 

Support System," in Proceedings of the Saudi Innovation Conference (SiC), 

Leeds, 2008. 

2.   K. Almejalli, K. Dahal, and A. Hossain, "A Multi-agent Framework for 

Intelligent Traffic Management Systems," in Proceedings of the 9th 

Informatics Research Workshop, University of Bradford, Bradford, 2008, 

pp. 60-63. 

3.   K. Almejalli, K. Dahal, and A. Hossain, "Identifying Fuzzy Rules for Fuzzy 

Neural Networks Using GA-Based Learning Algorithms," in Proceedings of 

the 8th Informatics Research Workshop, University of Bradford, Bradford, 

2007, pp. 62-65. 

4.   K. Almejalli, K. Dahal, and A. Hossain, "Road Traffic Decision Support 

System," in Proceedings of the 7th Informatics Research Workshop, 

University of Bradford, Bradford, 2006. 
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1.5 Thesis Outline 

The rest of the thesis is organized as follows: 

 

Chapter 2 presents a general review of the main topics related to road traffic 

management, including a brief introduction of METANET, the road traffic simula-

tion model which has been used in this study.   

 

Chapter 3 provides a brief survey of the existing work in the field of road traf-

fic management and control. This survey contains the related work for modern and 

intelligent road traffic management techniques. 

 

Chapter 4 introduces an Intelligent Traffic Control Decision Support System 

(ITC-DSS) which have been developed for road traffic control centres to assist the 

human operator to manage the current traffic state in real-time. The developed ITC-

DSS employs a pre-trained Fuzzy Neural Network tool (FNN-Tool) to produce a 

ranked list of suitable control actions based on the current traffic state. The frame-

work and process of the ITC-DSS, including the structure and the function of the 

FNN-Tool, is described in this chapter. 

 

Chapter 5 presents a GA-based method for identifying fuzzy rules from nu-

merical data, using previously defined and fixed fuzzy sets. This chapter also gives a 

brief review of the rule identification methods in the fuzzy neural network frame-

work. 
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Chapter 6 introduces a three-stage learning approach for fuzzy neural networks. 

This learning approach has been developed in order to train the proposed FNN-Tool. 

This chapter firstly reviews the existing learning methods of fuzzy neural networks 

and then highlights the three stages of the proposed learning approach. Next, it vali-

dates the performance of the FNN-Tool using a well-known benchmark example and 

shows the strength of the FNN-Tool by comparing it with other existing models. Fi-

nally, it discusses the application of the proposed learning approach to a traffic case 

study. 

 

Chapter 7 presents a multi-agent based approach for road traffic control sys-

tems. The system proposed in this chapter is a major extension of ITC-DSS pre-

sented in Chapter 4. The chapter initially discusses the need for global network-

oriented traffic control, then gives a brief description of the intelligent multi-agent 

and its architecture in the field of road traffic management. Subsequently, the pro-

posed multi-agent approach is introduced. Finally, the application of the proposed 

system in a case study is used to demonstrate the capabilities of the proposed system. 

 

Chapter 8 summarizes the main contributions of the thesis, and then proposes 

further research directions.   
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Chapter  2     

 

 

Overview of Road Traffic  

Management and Control  

 

2.1 Chapter Overview 

The main purpose of this study is to investigate the development of an intelli-

gent decision support system for road traffic management. In this chapter a general 

review of the main related topics of the road traffic management is presented. The 

aim of this chapter is to give the reader an understanding of the basic concepts asso-

ciated with road traffic management. The chapter is organized as follows. A brief 

background on road traffic variables, traffic sensor technologies, and traffic control 

actions is described in Section 2.2.  This is followed by a discussion of different road 

traffic flow modelling in Section 2.3. Finally, the road traffic simulation model 

METANET, which will be used in this study, is introduced in Section 2.4.    
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2.2 Traffic Measurements, Sensors and Control 

Recently, road traffic management has developed a significant demand for ad-

vanced information technology. Modern traffic control centres are connected with 

advanced dynamic control devices such as detectors, sensors, and cameras to record 

data related to the traffic state on-line, e.g. speed (km/h), traffic flow (vehicle/h), oc-

cupancy (percentage of time the sensor is occupied by a vehicle), etc. All this infor-

mation arrives periodically at the control centre (e.g., every minute). Moreover, the 

control centre also receives information about the current state of the control devices. 

Control devices include traffic signals at intersections, traffic signals at on-ramps, 

and/or variable message signs (VMSs) that can present different messages to motor-

ists (e.g., warning about an existing congestion, alternative path, or weather warn-

ings), radio advisory systems to broadcast messages to motorists, and reversible 

lanes (i.e., freeway lanes whose direction can be selected according to the current 

and expected traffic demand). This section provides a general description of the most 

important road traffic variables, traffic sensor technologies, and traffic control ac-

tions. 

2.2.1 Traffic Variables  

When a traffic state on the highway is represented based on traffic measure-

ments, several traffic variables are used for describing such a traffic state. This sec-

tion gives a brief description of the most important traffic variables.  

Traffic Flow (or Volume) 

Traffic flow is one of the easiest traffic variables used to quantify traffic inten-
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sity on the highway. It is defined as the number of vehicles that pass a fixed location 

on the highway during a certain time period. Traffic flow is defined as vehicles per 

time unit. It can be recorded for a given section of a highway daily, hourly or sub-

hourly. For example, traffic flow = 100 vehicles/hour means that 100 vehicles pass a 

given section in one hour. A short period interval such as 15min is recommended to 

ensure that any short-term peak flow which may occur at sub-hourly interval is re-

corded. Traffic flow is very useful for highway planning[133]. 

Mean Speed 

The mean speed of vehicles is another important measure to assess the traffic 

situation on the highway. The mean speed of vehicles is defined as the average 

speeds of all vehicles passing a certain point (the sensor) on the highway over a 

specified time period expressed in kilometres per hour (km/h) [72]. Mean speed can 

be measured (e.g. using radar guns or speed camera) for each lane separately or for 

all the lanes together.  

Traffic Density 

Traffic density is defined as the number of vehicles on a given length of high-

way at a certain time instant. It is expressed in vehicles per kilometres per lane 

(veh/km/lane). The sum of the lane traffic densities represents the total traffic density 

on the highway. The traffic density is very commonly used as a traffic measure be-

cause it gives a better indication of traffic flow quality than traffic flow and mean 

speed [133]. 

There are some others traffic variables which are less important than the previ-

ous three variables, such as occupancy, time headway, and distance headway. The 
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occupancy of a highway or a lane is quantified as the part of the time in which the 

detector detects a vehicle. The time headway (h) between two vehicles is measured 

as the time between the arrival of the front of a vehicle and the arrival of the front of 

the next vehicle at a certain point, while the distance headway (km) between two ve-

hicles is measured as the distance between the front of a vehicle and the front of the 

next vehicle. That means the length of the first vehicle is included in the distance.  

2.2.2  Sensor Systems  

The traffic variables described in the previous section are measured using a wide 

variety of technologies [92] such as pneumatic detection systems, inductive loops, 

cameras, ultrasonic sensors, microwave sensors, active and passive infrared sensors, 

passive acoustic arrays, magnetometers, etc. In this section, the three most widely 

used technologies (i.e. inductive loops, traffic cameras and pneumatic tube detection 

systems) are briefly discussed. A more detailed description of traffic sensor tech-

nologies and a comparison of their performance can be found in [92] and [93]. 

Inductive Loops 

The inductive loop, which was introduced around 1960, is the most widespread 

traffic detection system [115]. It is simply a coil of wire that is put in or on the high-

way‟s surface (See Figure 2.1). This wire loop is connected to an electrical circuit 

which produces an oscillation frequency through the loop. When a vehicle passes 

over the wire loop (or is stopped within the area enclosed by the loop), the metal 

parts of the vehicle shifts the oscillation frequency of the electrical circuit. This fre-

quency shift is registered and interpreted as vehicle detection by the controller. The 
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main disadvantage of this type of traffic detection systems is the poor sensitivity of 

the loop during highway maintenance works.  

 

 

Figure 2.1: Inductive Loop Detector System[92]. 

Traffic Cameras 

Traffic cameras were first used as a traffic detection system around 1980 then 

became increasingly popular [115]. A fixed camera is mounted above the highway to 

transmit images to a video processing unit that uses image recognition algorithms to 

extract the desired parameters. Figure 2.2 shows an example of the image a traffic 

camera produces. The video images sent by traffic cameras can also be used by the 

traffic centre as a visual inspection tool. The main advantage of using traffic camera 

as a traffic detection system beside the visual inspection possibilities, is the higher 

average accuracy of the measurements. However, the high cost of its installation and 

the weakened accuracy during low visibility weather conditions are the main disad-

vantage of a traffic camera detection system [93]. 
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Figure 2.2: An example of a video image of a highway taken by a traffic detector 

camera [9]. 

Pneumatic Traffic Detection Systems 

Pneumatic traffic detection systems [88] consist of a tube that is installed on the 

surface of the highway as shown in Figure 2.3. When a vehicle passes over the tube, 

it makes pneumatic shock waves in the tube which are detected and processed. The 

detected pneumatic shock waves and the delays between sequential shocks are used 

to predict the traffic flow and its speed.  In addition, it can be used to classify the ve-

hicles. The ease of installing pneumatic tube detectors makes the mobility of the in-

stallation the main advantage of this traffic detection technology. One disadvantage 

however, is their limited accuracy. Moreover, the pneumatic sensors are not suitable 

for long term operation because the pneumatic tubes are laid on the highway‟s sur-

face which makes them susceptible to wear and tear due to frequent use. 
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Figure 2.3: The installation of a mobile pneumatic tube traffic detector. The tube is 

fixed on the highway surface and connected to a registration unit at the roadside [9]. 

2.2.3 Traffic Control Actions  

Traffic control actions (or measures) are the strategies that are applied, or could 

be applied, in order to improve traffic performance. In this section we give a brief 

description of some control actions. The control actions listed below are not all the 

possible traffic control actions, but they are the most widely used. 

Ramp Metering:  

Ramp metering uses a traffic device, usually a basic traffic light (red, amber, 

green) or a two-phase light (red and green) to control the flow of traffic entering 
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highways according to current traffic conditions by determining the flow rate at 

which vehicles can enter the highway (See Figure 2.4). It is one of the most fre-

quently investigated and applied highway traffic control actions. Usually, the main 

goal of the ramp metering system is to avoid congestion and to reduce the vehicle‟s 

total travel time. A traffic light is used to control the flow at the on-ramp by deter-

mined the flow rate using appropriate red, green and amber light timings. For exam-

ple, sensors detect how many vehicles are travelling on the highway. When they de-

tect that the traffic is reaching capacity, the ramp metering system is turned on. The 

implementation and effects of the ramp metering control action are studied in detail 

in [126] and [82]. 

 

 

Figure 2.4: An example of ramp metering system (freeway-to-freeway metering) 

[92]. 

Variable Speed Limits 

Most advanced highways are provided with variable speed limits (VSL) (See 
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Figure 2.5). A road speed limit means the maximum allowed speed for road vehicles. 

VSL is used as a control action to increase safety by reducing the speed limits up-

stream of congested areas [174] and [143].  

 

 

Figure 2.5: An example of variable speed limits sign setup on a highway [185].  

Route Guidance 

 When more than one alternative route is available to the same destination, route 

guidance systems are applied to help (or direct) travellers to choose their optimal 

route. Route guidance systems use Variable Messages Signs (VMSs) to display traf-

fic information such as vehicles queue length and delay on alternative routes, or to 

ask vehicles to take alternative routes [125]. (See Figure 2.6). 
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Figure 2.6: An example of variable messages signs setup on a highway [9]. 

Hard Shoulder Opening (or Peak Lanes) 

The hard shoulder lane of a highway, which is usually used by emergency vehi-

cles, can be opened for all vehicles as an additional lane during rush hours. VMSs 

show a green arrow when the lane is opened or a red cross when it is closed (See 

Figure 2.7). Sometimes, the hard shoulder lane is opened for only dedicated vehicles, 

such as freight transport and public transport in order to decrease the impediment 

that congestion causes to these vehicles. Hard shoulder opening is useful as a control 

action when the additional capacity is needed on a specific section of the highway to 

reduce congestion and when the downstream highway infrastructure can accommo-

date this. However, using the emergency lane as a normal lane reduces the safety 

level [114].  
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Figure 2.7: Green arrows and red crosses on VSL show which lanes are open and 

which are closed [178]. 

Bi-Directional Lanes 

A bi-directional lane is a highway lane that can be used in both directions. The 

direction is determined using VMS (showing a red cross or a green arrow) based on 

the direction of the highest traffic demand. This traffic control action is applicable 

when the traffic demand in the highway is high in just one direction [114]. 

The “Keep Your Lane” Directive 

When a reduction of disturbances in the highway traffic flow is required in order 

to prevent congestion, the “keep your lane” directive is displayed on VMSs to direct 

the drivers not to change lanes. This control action is appropriate when the traffic 

flow is most unstable [114]. 
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2.3 Traffic Flow Modelling 

The modelling of traffic flows on highway networks is a useful tool for several 

traffic management tasks, including: 

 The development and evaluation of traffic control actions. 

 The prediction and observation of traffic conditions in complex traffic 

networks. 

 The assessment of the impact of new transportation facilities, compari-

son of alternatives, etc. 

 The assessment of the impact of capacity reducing events (e.g. road 

maintenance) or increased demand, etc. 

 The training of new operators. 

 

Traffic flow can be described as consisting of many moving particles that inter-

act with one another, as well as with the environment. Traffic flow modelling can be 

performed using either microscopic or macroscopic parameters. Since we will use 

traffic modelling later on in this study, this section briefly describes the fundamental 

characteristics of both microscopic and macroscopic traffic flow models. A detailed 

overview of traffic flow models can be found in [67], [68] and [191]. 

Microscopic  

Microscopic traffic flow models describe the behaviour of vehicles individually, 

which allows their users to assign different characteristics to each vehicle. The char-

acteristics of a vehicle include type (e.g. truck, car), destination, and chosen route. 

Also, the driving style of the driver (e.g. patient, aggressive) can be assigned as a 
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vehicle‟s characteristics. A microscopic traffic flow model is useful for moderate-

sized systems, where the number of vehicles is not very large, and the analysis of the 

individual behaviour of vehicle is required. Examples of microscopic simulation 

packages are AIMSUN2 [6], Vissim [39], and Paramics [132]. 

Macroscopic  

 Macroscopic traffic flow models describe the traffic flow as a whole, without 

distinguishing between individual vehicle behaviours such as vehicle type or chosen 

route. The aggregate terms such as average flow, average density, and average speed 

are used in macroscopic traffic flow models for describing the traffic. A macroscopic 

model may be selected for a large scale system with higher density, and when the 

analysis of the global behaviour of groups of vehicles is required. METANET [113] 

and MASTER [60] are examples of macroscopic simulation packages. MASTER is a 

macroscopic model which is based on a gas-kinetic traffic equation [58]. Its equa-

tions were derived from a “microscopic” description of driver–vehicle behaviour 

[59]. The main characteristic of MASTER is its non-local interaction term that takes 

into account the space requirements of vehicles and the correlations of successive 

vehicle velocities.  

Since, in this study, modelling traffic flow as a whole without any concern for 

the individual behaviour of vehicles is sufficient to generate the required experimen-

tal data, a macroscopic traffic flow model (i.e. METANET) has been selected and 

used in the experiments described in Chapters 4, 6, and 7. The main reasons for the 

selection of METANET are its simplicity and the good trade-off between simulation 

speed and accuracy [122]. The following section briefly discusses the main charac-

teristics of the METANET traffic simulation model.  
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2.4 METANET  

The METANET model, which was developed by Messmer and Papageorgiou 

[113], is a program for a highway network simulation based on a macroscopic mod-

elling approach. The macroscopic modelling approach allows for the simulation of 

all kinds of traffic conditions (free, dense, and congested) and of capacity-reducing 

events (incidents) with prescribed characteristics (location, intensity, and duration). 

METANET may be applied to existing or hypothetical, multi-origin, multi-

destination, multi-route highway networks with arbitrary topology and geometric 

characteristics, including bifurcations, junctions, on-ramps and off-ramps. By use of 

a special modelling option (store-and-forward links), METANET also provides the 

possibility of considering non-highway links in a simplified way. METANET con-

siders the application of traffic control actions, such as collective and/or individual 

route guidance, as well as ramp metering and highway-to-highway control, at arbi-

trary network locations. Several options are offered for describing or prescribing the 

average route choice behaviour of drivers groups with particular destinations. Route 

guidance and dynamic traffic assignment considerations in METANET are based on 

the notion of splitting rates at bifurcation nodes rather than on path assignment. 

Among other advantages, this approach enables the consideration of route guidance 

or traffic assignment for a part of the network (rather than the whole network) if so 

desired by the user. 

A highway network is represented by a directed graph with the links corre-

sponding to highway stretches. The simulation of traffic behaviour in the highway 

links is based on a macroscopic modelling approach with traffic variable density 

(veh/km/lane), mean speed (km/h), and traffic volume (or flow) (veh/h). Each high-
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way stretch has uniform characteristics, e.g. no on-ramps or off-ramps and no major 

changes in geometry. Where major changes occur in the characteristics of the high-

way stretch or in the road geometry (on/off-ramps), a node is defined. Each link is 

divided into several segments as presented in Figure 2.8. 

 

Figure 2.8: A section of a highway modelled by METANET.  

Essentially the simulation is fed with demands at its boundaries (inflows) plus 

origin-destination information (if necessary). These data, together with other values, 

act as the network boundaries (speeds at main inflows and traffic densities at main 

outflows), and are called boundary data (or input traffic data in the following net-

work). The origin of the data may be from measurements (if real traffic situations are 

reconstructed), or the data may be hypothetical (if certain types of traffic situations 

are studied). Each origin-destination couple may be connected by one or more 

routes. Based on the network topology, METANET automatically finds all possible 

loop-free routes. The route choice behaviour inside the network is described by the 

use of splitting rates which express the portion of drivers deciding at a bifurcation 

node to use a certain alternative output link towards their destination. Splitting rates 

can be looked upon as turning rates (the ratio of the traffic volume in each output 

link of a node) by destination.  

METANET (off-line) offers the option to model incidents and a number of dif-

Highway link m

segment 2 ……… segment isegment 1
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ferent types of control actions such as Variable Message Signs (VMS), Lane Clo-

sures, Shoulder Lane Opening, Variable Speed Limitations, Ramp Metering and 

Traffic Lights at on- and off-ramps. 

Simulation results are provided in terms of macroscopic traffic variables such as 

traffic density, traffic volume, and mean speed at all network locations, as well as in 

terms of travel times on selected routes. This is done on a configurable output time 

interval that is usually chosen to be significantly longer (typically several minutes) 

than the simulation time step (typically 5 to 20s). The display of results is provided 

both by the time trajectories of selected variables and by graphical representation of 

the whole network. Global evaluation indexes such as total travel time, total distance 

travelled, total fuel consumption, total waiting time at network origins, total vehicles 

driven out network, etc. are also calculated. 

2.5 Summary 

In this chapter a general discussion and background of the main related topics of 

road traffic management has been given. We also presented the main features of the 

traffic simulation model METANET that will be used in the experiments described 

in Chapters 4, 6, and 7. It is important to note that the choice of the specific traffic 

simulation model (METANET) presented in this chapter was not imposed by our 

proposed Intelligent Traffic Control Decision Support System (ITC-DSS). So, any 

traffic simulation models like METANET could also have been used in this study.   

The next chapter will present a survey of the existing work in the field of intelli-

gent road traffic management.  
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Chapter  3  

 

 

Literature Review  

 

3.1 Chapter Overview 

In recent years, there have been many attempts made to improve road traffic 

management and control systems as this is one of the major transportation manage-

ment problems. Artificial Intelligence (AI) based methods are very popular among 

road traffic management and control applications. This chapter presents a review of 

the literature related to intelligent road traffic management and control.  

We start with a brief background of related intelligent techniques including 

fuzzy logic, neural networks, genetic algorithms and intelligent multi-agents. Then 

an overview of the research that has been done so far with regard to intelligent road 

traffic management systems and control areas including traffic simulation and pre-

diction systems, traffic problem detection systems and traffic control systems will be 

provided in Section 3.3.  
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3.2 Background to AI Techniques  

This section gives a brief description of some AI techniques used in the road 

traffic management and control field, including fuzzy logic, artificial neural net-

works, genetic algorithms, and intelligent multi-agents. The AI techniques described 

in the following section are not all the AI techniques used in road traffic manage-

ment and control, but they are the most popular and have been employed in this 

study. 

3.2.1 Fuzzy Logic 

Fuzzy logic, which was introduced in the mid-1960s by Dr. Lotfi Zadeh [188], 

is a problem-solving control system methodology which allows us to measure im-

precise and dynamic factors in order to achieve a reasonable judgment based upon 

vague, ambiguous, imprecise, noisy, or missing input information. Fuzzy Logic con-

siders more than binary, either-or choices. It analyses analog input values in terms of 

logical variables over the range 0.0-1.0, with an infinite set of values. For example, 

when we say that it is hot at 32◦C. Does that mean it is not "hot" at 31.99◦C? There 

is a range over which we can say it is hot. Fuzzy logic recognizes that range and 

takes into account any related factors such as humidity, in order to generate an opti-

mal temperature output. Although fuzzy logic theory was introduced in the mid-

1960s, the theory was not applied commercially until 1987 when the Matsushita In-

dustrial Electric Co. in Japan used it to control water temperature in a shower head 

[41]. Now, fuzzy logic is widely used in machine control applications. It is used to 

automatically optimize the wash cycle of a washing machine by sensing the load 
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size, fabric mix, and quantity of detergent and has applications in the control of pas-

senger elevators, household appliances, cameras, automobile subsystems, and smart 

weapons [41].  

Fuzzy inference is the process of using fuzzy logic techniques to create an out-

put value from a given input. A fuzzy inference system (also referred to as fuzzy if-

then rules) consists of three stages. The first stage, which is called fuzzification, 

transforms crisp inputs (numerical values) into membership degrees to the different 

fuzzy sets of the partition. The second stage is the application of fuzzy if-then rules. 

The system invokes each appropriate rule and generates a result for each, then com-

bines the results of the rules. Finally, the third stage, which is called defuzzification, 

converts the combined result back into the crisp or actual results. Structure identifi-

cation and parameter adjustment are the two main tasks involved in building a fuzzy 

system. The structure identification task creates the initial structure of the fuzzy sys-

tem, including the determination of input–output space partitions, antecedent and 

consequent variables of IF–THEN rules, the number of such rules, and initial posi-

tions of membership functions. The parameter adjustment task identifies a feasible 

set of parameters under the given structure. The readers are referred to [187], [40], 

[183], [96] for more information about the fuzzy logic technique. 

3.2.2 Artificial Neural Network 

An Artificial Neural Network (ANN), which was developed in the 1950s aimed 

at imitating the biological brain architecture. It was a flexible mathematical para-

digm that is capable of identifying complex relationships between input and output 

data sets. ANN is a parallel distributed system composed of many highly intercon-
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nected parts and is organized into different layers of non-linear processing elements, 

called neurons [56]. When ANN is operating, each neuron receives many input sig-

nals. Then, based on an internal weighting system, it produces a single output that is 

typically sent as an input to another neuron. The input layer receives the input, and 

the output layer produces the final output. Generally, one or more hidden layers are 

involved in between the input and the output layers. The structure of ANNs makes it 

impossible for the user to predict or know the exact output.  This makes ANN to be 

widely regarded as a „black box‟.  

ANNs are more useful and efficient, particularly with regard to problems for 

which the characteristics of the processes are hard to describe using physical equa-

tions. Many ANN-based models have been developed successfully for very different 

environmental purposes, such as regression analysis, time series predictions, pattern 

recognition, sequential decision making, clustering, filtering, etc. [36], [73] [35], 

[85].  

An important characteristic of artificial neural networks is their ability to learn 

without a need to be reprogrammed. ANNs learn by example, just as humans do. An 

ANN is firstly created with randomized weights for all neurons, which means that 

the ANN must learn to solve the particular problem for which it is intended. Gener-

ally, there are three major methods for learning: 1) Supervised learning (Associative 

learning) [95] in which an ANN is trained by providing it with input and matching 

output pairs. These input-output pairs are provided by an external supervisor, or by 

the system which contains the ANN (self-supervised). A very common and well-

known example of this type is the back-propagation ANN; 2) Unsupervised learning 

(or Self-organization) [7] in which an (output) unit learns to respond to clusters of 
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pattern within the input. In this type of learning, the system should discover statisti-

cally salient features of the input population. Different to supervised learning, there 

is no a priori set of categories into which the patterns are to be classified; rather the 

system must develop its own representation of the input stimuli. Unsupervised learn-

ing is exposed to large amounts of data and tends to discover patterns and relation-

ships within that data. Researchers often use this type to analyze experimental data; 

3) Reinforcement learning [156], in which the input data is usually not given but the 

learning machine performs some actions on the environment and receives a feedback 

response from the environment. The learning system parameters are adjusted during 

the learning process, based on the environmental response until an equilibrium state 

occurs.  

3.2.3 Genetic Algorithms 

A genetic algorithm (GA), which was first introduced by John Holland in the 

early 1970s [65], is a parallel and global computing search technique that is inspired 

by the natural evolution process [44]. Due to the fact that GA simultaneously evalu-

ates many points in the search space, it is more likely to converge toward the global 

solution. GA is a particular class of evolutionary algorithms which applies operators, 

inspired by the mechanics of natural selection, to a population of the parameter space 

at each generation; it explores different areas of the parameter space, and then directs 

the search to regions where there is a high probability of finding improved perform-

ance.  

Over the last decade, GAs have been widely used as search and optimization 

tools in various problem domains, including science, commerce, and engineering. As 



 
CHAPTER 3: LITERATURE REVIEW                                                                              33 

 

 

a general purpose optimization tool, GAs are moving out of academia and finding 

significant applications in many other venues. Their popularity can be attributed to 

their freedom from dependence on functional derivatives and their incorporation of 

these characteristics [31], [166]: 

 GAs are parallel search procedures and can be implemented on parallel proc-

essing machines. 

 GAs are applicable to any optimization problem. 

 GAs are stochastic and are less likely to get trapped in local minima as op-

posed to, for example, gradient descent techniques. 

 GAs are flexible for both structure and parameter identification.  

 

The GAs evolution can be summarized as follows: create a population of indi-

viduals, evaluate their fitness, generate a new population by applying genetic opera-

tors, and repeat this process a number of times [118]. To start the optimization proc-

ess, GAs generate randomly, or by other means, a population of, say, N individuals. 

Generally, each individual in the population consists of encoded strings representing 

a solution. Each solution has a fitness value evaluated by the same objective function 

and constraint satisfaction. The individuals with higher fitness values are usually se-

lected and sent to a mating pool. Different selection methods, such as roulette wheel 

selection and stochastic universal sampling, can be used for this operation. Solutions 

having higher fitness values are most likely to survive for the next generation. A 

crossover operator is used on these strings to obtain the new solutions that inherit the 

good and bad properties of their parent solutions. The crossover operator works on 

randomly selected pairs of selected solutions from the mating pool, with a certain 

crossover rate. The crossover rate is defined as the probability of applying crossover 
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to a pair of selected solutions. There are many ways of defining this operator such as 

single point, double point, multipoint and uniform crossover. These traditional 

crossover operators are discussed in [116], [25]. More information about the GA 

technique and its applications can be found in [44], [51], [20], [84]. 

3.2.4 Intelligent Multi-Agent 

Agent technology is a fast growing area of research in AI. The agent is defined 

as “a computer system that is situated in some environment, and that is capable of 

autonomous action in this environment in order to meet its design objectives”[176]. 

Two main attributes should be available in an agent. The first one is being autono-

mous. This means that an agent makes its own decision in order to achieve its goals 

as an independent unit. The second one is being situated in a challenging environ-

ment with dynamic, unpredictable and unreliable characteristics [190]. An intelligent 

agent should have, besides AI, the following additional capabilities [177]: 

 

Reactivity: Intelligent agents are able to perceive their environment, and respond 

in a timely fashion to changes that occur in it in order to satisfy their design objec-

tives. 

 

Pro-activeness: Intelligent agents are able to exhibit goal-directed behaviour by 

taking the initiative in order to satisfy their design objectives. 

 

Social ability: Intelligent agents are capable of interacting with other agents 

(and possibly humans) in order to satisfy their design objectives. 

 

When a group of agents are put to use in the same environment to solve a vari-
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ety of problems, they are usually referred to as multi-agents. Multi-agent Systems 

(MAS) is a subfield of AI (Artificial Intelligence) that aims to provide both princi-

ples for the construction of complex systems involving multiple agents, and mecha-

nisms for the coordination of independent agents‟ behaviours [151]. Thus, in multi-

agent systems, agents are forced to coordinate their activities so as to avoid negative 

interactions with their acquaintances, and to exploit synergic potentials. The readers 

are referred to [176], [177], and [94] for more information about the multi-agent 

technique and its applications in traffic and transportation. 

3.3 A Survey of Intelligent Traffic Management 

Systems 

Here we review the different intelligent systems used for road traffic manage-

ment. In order to present a consistent review of the literature related to intelligent 

traffic management, we have classified the existing intelligent road traffic manage-

ment applications into three groups: (1) traffic problem detection systems; (2) traffic 

simulation and prediction systems; (3) traffic control systems. Based on this classifi-

cation, the following sections present a brief survey of intelligent traffic management 

systems. 

3.3.1 Traffic Problem Detection Systems 

Traffic problems such as congestion, accidents, broken down vehicles, spilled 

loads, construction activities and temporary maintenance and other unusual events 

are defined as being events that reduce the capacity of network links to carry traffic. 
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Early and accurate detection of traffic problems is necessary for the restoration of a 

smooth traffic flow [149], [71], [159]. Therefore, recently there has been a consider-

able research effort on the development of intelligent applications to assist the traffic 

control centres in the task of detecting traffic problems. Various AI techniques have 

been used for developing traffic problem detection applications. ANN is among the 

most promising technique. The application of ANNs for incident detection was first 

investigated in [23] when ANN was used for the automated detection of non-

recurring congestion on urban freeways.  

Khan et al. [89] have used ANN to develop a classifier system to assist in the 

detection of different types of traffic operational problems based on detector data 

from system loops collected on a cyclic basis. The proposed classifier has been de-

veloped to be able to detect three types of operational traffic problems including 

lane-blocking incidents, special event conditions (e.g. sports events, conventions, 

conferences, or activities that attract a large number of people) and detector malfunc-

tions. The inputs of the classifier model were traffic volume and occupancy over a 

cycle and over several previous cycles, the difference in occupancy between adjacent 

lanes, and the differences in upstream link and downstream link occupancy. 

Traffic incidents are a major cause of traffic congestion, so incident detection 

has become an important issue in freeway traffic management systems. Using ANN, 

Yu et al. [186] have developed a traffic incident detection model based on a fusion 

of loop detector and probe vehicle data. In the incident detection model they devel-

oped, the cumulative sum (CUSUM) approach [53] was used to develop incident de-

tection algorithms using loop detector data and probe vehicle data respectively, 

while the Back-Propagation neural network was employed to combine the outputs 
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from both incident detection algorithms.  

Wen et al. [173] considered incident detection as a kind of pattern recognition 

problem when they developed their probabilistic neural network (PNN)[146] based 

on an incident detection model. The PNN based model they developed has been 

trained and evaluated using different patterns under a variety of flow conditions and 

traffic periods generated by a traffic simulation model. Another use of PNN for the 

incident detection problem has been investigated in [80]. The main limitation of us-

ing PNN for solving incident detection problems is that a large memory and compu-

tation time is required due to the large size of the PNN pattern layer [148]. 

Srinivasan et al. [149] have evaluated the performance and the adaptability of 

three promising NN-based incident detection models: a multilayer feed-forward NN 

(MLFNN), a basic probabilistic NN (BPNN) [146] and a constructive probabilistic 

NN (CPNN) [11]. These three models were developed on an original freeway site in 

Singapore and then adapted to a new freeway site in California. The result showed 

that the MLFNN model had the best incident detection performance at the develop-

ment site, while the best performance after model adaptation at the new site was re-

corded for CPNN. Also, the results showed that the adaptation method for the CPNN 

model is less laborious. Overall, the result of the evaluation showed that the CPNN 

model is the most portable model for freeway incident detection. 

 Fuzzy logic has also been used in the development of incident detection appli-

cations[100], [171], [147]. For example, Lee et al. [100]  have proposed a fuzzy 

logic based incident detection algorithm for signalized urban diamond interchanges. 

The fuzzy logic has been employed to detect the incident by evaluating the past five-

minute average of the traffic measures (including lane-by-lane volumes, queue 
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length, speed, and occupancy) and the percentage change from the past five-minute 

average during the most recent minute. The outcome was an incident report includ-

ing the time, location, and severity of the incident.  

 

In summary, AI based techniques, such as neural networks and fuzzy logic, have 

shown great potential in the development of automated incident detection algorithm 

with the promise to give high incident detection rates. However, the existing AI 

based incidents detection algorithms still have many drawbacks. First, in the neural 

network based algorithm such as [23], [89], [186] and [173], it is difficult to under-

stand the meanings of neural-network operations, since it is a black-box approach. 

Also, the implementation of neural networks requires large traffic historical data sets 

and the state range covered by those data must be wide and large enough. Second, 

the fuzzy logic based algorithm (such as [100], [171], [147]), as its name implies, 

does not give a clear “incident” or no incident” signal, rather it gives the likelihood 

for an incident. The fuzzy logic also requires extensive calibrating to define the logic 

boundaries.  

In general, despite the considerable research effort on the development of auto-

mated incident detection algorithms, several studies show that in many traffic man-

agement centres, the automatic incident detections have been disabled, because their 

operational performance has generally been poor in large-scale deployments [128]. 

For example, a very recent survey [175], which has been designed to evaluate the 

current status of the incident detection algorithms in the U.S., shows that 90% of 

survey respondents (i.e. professionals who are involved in freeway and congestion 

management) felt that the current methods of incident detection are still insufficient.  
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3.3.2 Traffic Simulation and Prediction Systems  

The prediction of traffic condition (e.g. traffic flows, traffic speed, travel times, 

etc.) is currently one of the fundamental tasks of traffic management and control 

[119]. The results of traffic condition predictions can be used for different purposes 

such as for managing traffic congestion, influencing travel behaviour, and generally 

improving the performance of the traffic management system. Most of the existing 

traffic simulation and prediction applications are statistically-based models, which 

use a mathematical formula for predicting the traffic state such as are shown in 

[142], [167], [164], [43]. However, these statistically-based models can only fit traf-

fic flow well under ideal physical environments but may not work satisfactorily in 

certain complex situation because of their strict mathematical assumptions [131]. In 

consequence, a considerable research effort has been done recently that has focused 

on the use of AI techniques in the development of traffic prediction applications, e.g.  

[131], [32], [79], [184].   

ANNs have been widely used for predicting and simulating traffic flow.  Qiao et 

al. [131] have proposed an auto-adaptive model for simulating and forecasting the 

dispersion of traffic flow on road segments using neural network-based system iden-

tification approaches. Their proposed neural network-based model can adapt itself to 

a wide variety of traffic situations by adjusting the structure and linking the weights 

of the neural network-based model on-line. Data simulation and field-testing showed 

a reliable performance of the proposed neural network model compared with classic 

mathematical methods. 

Dia [32] has proposed an object-oriented neural network model for short-term 

traffic condition forecasting. The proposed object-oriented neural network model 
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was developed using speed and flow data collected from four inductive loop detector 

stations installed on a 1.5-km section of the Pacific Highway in Queensland in order 

to predict speed up to 15 minutes into the future. The results showed a high degree of 

accuracy (90 – 94 %) when predicting speed data up to 5 minutes into the future. 

Then the accuracy of the models was decreased to 88% and 84% for prediction hori-

zons of 10 and 15 minutes, respectively. 

Jiang et al. [79] have also used ANN to develop a traffic prediction model based 

on the relationship of segment traffic volume and average travel time. The model has 

been developed for the urban traffic network installed self-adapted traffic control 

system. The outputs of ANN were traffic volume and average speed. The average 

speed was then used to calculate the average travel time. The approach was tested 

using the data from an arterial road in Changchun, China and results showed the reli-

ability of the proposed ANN-based model in terms of speed in computation and 

economy.  

Recently, the Fuzzy Neural Networks (FNN) technique has been applied suc-

cessfully to the prediction of traffic conditions. Yin et al. [184] have developed a 

fuzzy-neural model to predict traffic flows in an urban street network. The proposed 

system consists of two modules: a Gate Network (GN) and an Expert Network (EN). 

The GN classifies the input data into a number of clusters using fuzzy logic, and the 

EN is used for specifying the input-output relationship as in a conventional neural 

network approach. The parameters of the model are adaptively adjustable in re-

sponse to the real-time traffic conditions. The results showed that the Fuzzy-Neuro 

Model (FNM) outperforms the conventional Neural Network Model (NNM). FNM 

also showed better performance in computing time than did NNM. The developed 
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system was tested both by simulation and with real observation data. 

Quek et al. [133] have developed a novel approach for modelling traffic behav-

iour using a specific class of self-organizing fuzzy rule-based system known as the 

Pseudo Outer-Product Fuzzy-Neural Network using the Truth-Value-Restriction 

method (POPFNN-TVR). POPFNN-TVR was used to predict the speed and density 

of a particular lane in a three-lane highway, given the speed and density of the other 

two lanes. The prediction capability of POPFNN-TVR was validated against a back-

propagation NN and the results were promising. Other FNN-based traffic prediction 

models have been presented in [184], [134], [127] and [49]. 

Multi-agent system technology has also been adopted in constructing simulation 

models for road traffic management. For example, Donieca et al. [34] have devel-

oped a multi-agent behavioural traffic simulation model based on the opportunistic 

individual behaviours that describe the norm violations, and the anticipatory individ-

ual abilities of simulated drivers that allow critical situations to be detected. The 

proposed model has been validated for different traffic scenarios by simulating the 

traffic in a real intersection and then comparing the simulated traffic flow with the 

real flow. Another multi-agent-based road traffic simulation model has been pro-

posed by Meignan et al..[112]. They have developed a bus-network simulation tool 

using a multi-agent approach, to analyze and evaluate a bus-network at diverse space 

and time scales. The proposed tool describes the global system operation as behav-

iours of numerous autonomous entities such as buses and travellers.  

 

In summary, the use of artificial neural networks in the development of traffic 

prediction application is very promising and has several advantages over classic 
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mathematical models. Since neural network based models rely on the self-evolved 

parameters and recurrent calculation under the teacher signal more than the compli-

cated mathematical analysis, it is easier to process and also shows better robustness 

under the noisy environment (e.g. [79]). Furthermore, neural network based traffic 

prediction models have a good adaptive ability since the parameters can be adjusted 

automatically as the OD (original and destination) changes in the environment such 

as in [131]. However, the lack of traffic information provided by neural network 

based traffic prediction models comparing with mathematical models (especially mi-

croscopic models) is the main disadvantage of neural network based models.  

3.3.3 Traffic Control Systems 

Traffic control is one of the fast growing areas related to traffic management 

problems. For example, when traffic problems are detected, an efficient control 

method is needed to assist traffic control operators in their assessment of the severity 

of that problem, and also to help them to make the best decisions with regard to solv-

ing that problem. Traffic control involves different types of applications such as traf-

fic signal and lights control systems, traffic control decision support systems, inter-

section management systems, ramp metering control systems, and so on.  

The feasibility of using AI-based systems has been proven for traffic control ap-

plications for over 15 years, during which some operational knowledge-based expert 

systems were developed [37],[192]. Based on Ritchie‟s investigation [140], the Santa 

Monica Freeway Smart Corridor project [37] was one of the very first times that a 

real-time knowledge-based expert system was employed for traffic control purposes. 

In 1994, Zhang and Ritchie [192] proposed a knowledge-based decision support sys-
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tem called FRED (Freeway Real-Time Expert System Demonstration) for assisting 

traffic operations centres in detecting, verifying, responding to, and monitoring, non-

recurring congestion on urban freeways in Orange County, California.  

TRYS is another well-known knowledge based traffic control application which 

has been described in [29] and [28]. TRYS is an agent-based environment for build-

ing intelligent traffic management systems applications for urban, interurban and 

mixed traffic areas. It provides a generic and modular knowledge model supporting 

an intelligent reasoning layer that can complement conventional traffic management 

application capabilities. In the TRYS systems, the traffic network is divided into 

overlapping regions, called problem areas, and each problem area is supervised by 

an agent. Each agent has to detect and diagnose its traffic problems and subsequently 

propose possible control measures to a higher level agent, whose aim is to produce 

global proposals for the whole traffic network. InTRYS [27] and TRYS2 [124] are 

examples of TRYS-based applications.  

In the later stages, with the arrival of advanced technology, fast computers and 

the significant research effort in the traffic control domain, several AI approaches 

have been used for traffic control applications. Hegyi et al. [57] have presented a 

fuzzy logic-based decision support system (FDSS) for helping operators to manage 

non-recurrent congestion. Their proposed FDSS was part of a larger traffic support 

system, which uses a case-base and fuzzy logic to suggest to the operators of the 

traffic control system whether or not a particular control measure should be acti-

vated. In FDSS, the case-base is constructed off-line using a traffic simulated model 

and fuzzy logic is employed in retrieving cases from the case-base. Since the pro-

posed FDSS does not use any knowledge from experts, or heuristic rules, and it is 
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only based on a case-based reasoning system, the quality of its results depends basi-

cally on the quality of the case-base. FDSS has been extended by De Schutter et al. 

[30] using a multi-agent framework, where the network was divided into sub-

networks and each sub-network has its own case-base and evaluation agent.  

Katwijk et al.[165] have proposed a software environment for the rapid devel-

opment of multiagent control systems in road traffic management. The proposed tool 

consists of an interaction model, intelligent models, and a world model. The interac-

tion model was used to model the interactions between the agents. The intelligence 

models were used to model the intelligence of the agents that collectively give shape 

to the traffic control process. The world model was used to represent the outside 

world, i.e. the traffic process. 

Developing real-time freeway traffic routing strategies that suggest routes to 

drivers to optimize the utilization of network capacity, is a very challenging task. 

Sadek et al. [141] have examined the potential for using case-based reasoning (CBR) 

to overcome this task. In their study, a prototype CBR routing system for interstate 

network in Hampton Roads, Virginia, was developed. The case-base of the proposed 

CBR system, which consists of routing scenarios that have actually been imple-

mented in the real world and their outcome assessed, was created. The results 

showed that the prototype system is capable of running in real-time, and of produc-

ing high quality solutions using case-bases of reasonable size. 

Traffic signal control, which is usually implemented to reduce (or eliminate) 

traffic conflicts at intersections, is a control problem with a number of complex vari-

ables and objects. Intelligent strategies for traffic signal controls that detect and re-

spond to traffic in real time, can provide significant decreases in terms of flexibility, 
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adaptability and possibility with regard to handling uncertain information and deal-

ing with conflicting situations [109]. Consequently, several AI-based approaches 

have been developed for traffic signal control applications. Fuzzy logic is among the 

most popular techniques.  

Trabia et al. [161] have developed a fuzzy logic-based adaptive traffic signal 

controller for an isolated four-approach intersection with through and left-turning 

movements. Using vehicle loop detectors placed upstream of the intersection on each 

approach, the fuzzy controller measures approach flows and estimates queues at 

regular time intervals. The information with regard to these measurements is used in 

two-stage fuzzy logic procedures to decide, at any given time, whether to extend or 

terminate the current signal phase. The traffic intensity on each approach, which is 

estimated by the controller in the first stage, is used in the second stage to determine 

whether to extend or terminate the current phase. The performance of the two-stage 

fuzzy controller was compared to that of the traffic-actuated controller for different 

traffic conditions on a simulated four-approach intersection. The results showed that 

the two-stage fuzzy logic controller in particular produced a better performance un-

der non-recurring traffic conditions. 

Beauchamp-Baez et al. [8] have proposed an intelligent approach for traffic sig-

nal control. The proposed approach is a fuzzy logic based phase sequencer (PS) for 

signalized intersection control. The phase sequencer operates in conjunction with the 

Fuzzy Logic Controller for Traffic Systems (FLC-TS). The FLC-TS was employed 

to determine the desirability of change of phase, based on traffic demand and the 

time elapsed since the last time manoeuvre was attempted., The PS then decides 

when to finish a phase and also selects the next phase among the various possibili-
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ties.  The results of the comparison did not illustrate a significant difference between 

the PS + FLC-TS and the FLC-TS. The adaptive tuning of the rule base and the 

membership functions of the PS might result in a better performance.  

Wei et al. [172] have presented a fuzzy logic adaptive traffic signal controller 

for an isolated four-approaches intersection with through and left-turning move-

ments. The controller has the ability to make adjustments to signal timing in re-

sponse to observed changes. Also the “urgency degree” term, which can describe the 

different user‟s demands for green time, is involved in the fuzzy decision making 

algorithm. The three level model of fuzzy control was used to determine whether to 

extend or terminate the current signal phase and select the sequences of the phases. 

Results showed a better performance for the fuzzy controller than for the traffic-

actuated controller.  

Fuzzy Neural Networks (FNN) have also been employed for developing a num-

ber of traffic signal controllers [83], [189], [106]. For example, Kaedi et al. [83] have 

proposed a neuro-fuzzy based two-stage method for intersection signal timing con-

trol. The first stage uses a neuro-fuzzy network called Adaptive Neuro-Fuzzy Infer-

ence System (ANFIS) to predict traffic volume, while the second stage uses a com-

bination of self-organizing and Hopfield neural networks to estimate appropriate 

signal cycles and optimized timing of each phase of the signal.  

The formulation of the fuzzy rules is the most popular problem facing the de-

velopment of fuzzy logic-based traffic signal controllers. Evolutionary algorithms 

seem to have achieved some degree of success as a fuzzy rule generator of different 

kinds of fuzzy signal controls. Hu et al. [70] have employed a genetic algorithm to 

generate the fuzzy rules base for their proposed fuzzy controller, using real statistical 
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traffic data for the intersection. They have proposed a fuzzy logic traffic controller to 

adjust the time parameters and phases of traffic signals at a single real intersection, 

which consists of multiple lanes with turns. The lanes are organized into a number of 

groups controlled by individual traffic lights. These lights are further arranged into 

several light phases. A fuzzy controller was developed to control the length of time 

of each light phase. Other uses of GA for generating fuzzy rules for road junction 

traffic control systems are presented in [21] and [63].  

Ramp metering or ramp controlling, which is a technique to limit the number of 

vehicles entering a freeway, represents another main issue in terms of traffic control. 

Usually, the main goal of the ramp metering system is to avoid congestion and re-

duce a vehicle‟s total travel time. Several authors have proposed different intelligent 

models for ramp control [15], [14], [193]. For example, Bogenberger et al. [15] have 

applied a self-adaptive fuzzy logic system for ramp controlling problems. The adap-

tive fuzzy logic algorithm has been used to determine the traffic responsive metering 

rate. The fuzzy parameters were periodically adapted by an evolutionary algorithm 

every 15 minutes to guarantee the quick on-line calibration of the existing parame-

ters in a new environment. The developed system was tested with the simulated 

model on 25 km of the A9 Autobahn (highway) in Munich, Germany. The results of 

the simulation were satisfying. 

Zhang et al. [193] presented another application for ramp control. They ex-

tended the Linear Quadratic Regulator (LQR) method [74] by proposing a new traf-

fic-responsive, coordinated ramp control strategy. This control strategy was non-

linear, and realized by a series of neural networks. The parameters of the neural net-

works were obtained by off-line optimization procedure. The algorithm they have 
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developed showed promising results in reducing total travel time, especially in situa-

tion where drastic change in traffic demand and road capacity occur.  

 

In summary, much attention has been paid in recent years to the study and de-

velopment of intelligent road traffic control systems. The application of intelligent 

methods for traffic signal control and ramp metering has proven to be worth re-

searching. According to the research reviewed in this subsection, the main research 

gap in the area of road traffic control is the limitation of the researches that directly 

investigates the application of intelligent decision support systems for helping hu-

man operators to identify the most suitable control action to manage the current traf-

fic state. The identification of a suitable control action for a given non-recurrent traf-

fic congestion situation is a very complex task, which requires expert knowledge, 

much experience and fast reaction. 

There are some researches that offer decision support system for road traffic 

control [192], [140], [29], [57],[30]. In some of them, (for example, [192], [140], 

[29]) traffic control decision support systems are part of large knowledge-based traf-

fic management applications. These knowledge-based applications have been devel-

oped using only knowledge from experts. This knowledge may vary from person to 

person, and from time to time. Consequently, the quality of their results depends ba-

sically on the quality of the knowledge bases. Moreover, these systems will not be 

able to generate decisions in cases that are not explicitly covered by such knowledge 

bases.  

On the other hand, traffic decision support systems presented in [57] and [30] do 

not use any knowledge from experts or heuristic rules and they are only based on a 
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case-based reasoning systems. Thus, the quality of the case-base mainly determines 

their performance. The disadvantage of these case-based systems is that expert 

knowledge (if available) is not utilised. 

On-line simulation applications are used in some cases for evaluating the per-

formance of traffic control actions. However, simulating different traffic control ac-

tions for a number of control measures in a complicated situation is very time-

consuming. Using the capability of fuzzy reasoning in handling uncertain informa-

tion and the capability of neural networks in learning from data, in this thesis we 

propose an intelligent fuzzy neural network-based traffic control decision support 

system for road traffic management to assist the human operator to manage the cur-

rent traffic state in real-time. The main advantages of the proposed system are that it 

can be developed using numerical data in the absence of expert knowledge, as well 

as its capability to take advantage of the expert knowledge and heuristic rules when 

become available. 

3.4 Summary 

In this chapter we have surveyed a range of the existing works in the field of in-

telligent road traffic management and control and have discussed common tech-

niques used in these works. The chapter started with a brief background of the main 

related intelligent techniques, followed by a survey of the related work for traffic 

simulation and prediction systems, traffic problem detection systems and traffic con-

trol systems.  

The following concluding remarks can be based on the information presented 

here: 1) there has been a considerable research effort on the development of incident 
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detection algorithms. However, there are still insufficient applications of incident 

detection at the present time; 2) ANNs have been widely and successfully used for 

predicting and simulating traffic flow as an alternative to statistically-based models; 

3)  most of the most exciting traffic control decision support systems are knowledge-

based systems. The quality of the results depends mainly on the quality of linguistic 

(and other) information provided by experts. 4)  the application of intelligent meth-

ods for traffic signal control has proven to be worth researching. Of particular inter-

est is fuzzy logic when combined with other techniques, because using FL can help 

to reduce the required traffic historical data sets  
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Chapter  4     

 

 

An Intelligent Traffic Control  

Decision Support System  

 

4.1 Chapter Overview  

In this chapter we introduce an Intelligent Traffic Control Decision Support Sys-

tem (ITC-DSS) which we have developed for road traffic control centres to assist the 

human operator to manage the current traffic state in real-time. The proposed ITC-

DSS receives a large number of possible control actions and uses a pre-trained Fuzzy 

Neural Network Tool (FNN-Tool) to produce a ranked list of appropriate control ac-

tions based on the current traffic state.  

Since the proposed ITC-DSS employs a fuzzy neural network, Section 4.2 pro-

vides a brief summary of this hybrid intelligent technique. The framework and proc-

ess of the proposed ITC-DSS is described in Section 4.3, including the structure and 

the function of the FNN-Tool. The technical feasibility of the proposed ITC-DSS is 
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tested using a case study of a section of the ring-road around Riyadh, Saudi Arabia 

and the results are presented and discussed in Section 4.4. 

4.2 Overview Fuzzy Neural Networks 

Fuzzy Neural Network system (FNN) is a hybrid intelligent system which 

combines the capability of fuzzy reasoning in handling uncertain information and the 

capability of neural networks in learning from data from the processes. FNN is a 

fuzzy system that uses the learning ability of the neural networks to determine its 

parameters (fuzzy sets, fuzzy memberships and fuzzy rules) by processing data. It is 

suggested by Hayashi and Buckley [54] that any rule-based fuzzy system may be 

approximated by a neural network, and any neural network (feedforward, multilay-

ered) may be approximated by a rule-based fuzzy system. This type of relation be-

tween neural networks and fuzzy rule-based systems is also investigated in [17], 

[18], [10]. Both fuzzy systems and neural networks are soft computing techniques to 

model expert behaviour. They are dynamic, parallel processing systems that estimate 

input-output functions by learning from experience with sample data and without 

any mathematical models. [117] . 

Various fuzzy neural network control schemes have been reported earlier in the 

literature. These can be classified into two major categories based on the types of 

fuzzy reasoning and the if-then rules employed; (i) Mamdani type [110], where both 

the antecedents and consequent parts of the if-then rules are defined in terms of 

fuzzy sets and membership functions. The knowledge in this type is represented as: 

 

𝑅𝑖 ∶ 𝐼𝑓 𝑥 𝑖𝑠 𝐴 𝑎𝑛𝑑 𝑦 𝑖𝑠 𝐵  𝑡𝑒𝑛 𝑧 𝑖𝑠 𝐶 
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where R𝑖  (i=1,2,….,l) is the ith fuzzy rule, A, B and C are fuzzy memberships associ-

ated with linguistic values, x and y are the inputs, and z is the output. Examples of 

this type are POPFNN [137] and HyFIS [90]; (ii) Takagi-Sugeno type [158], where 

the consequent part of the if-then rules is a “crisply” defined function, which can be 

constant or linear with respect to the crisp values of the input variables. This can be 

viewed as the expansion of a piecewise linear partition represented as:  

𝑅𝑖 ∶ 𝐼𝑓 𝑥 𝑖𝑠 𝐴 𝑎𝑛𝑑 𝑦 𝑖𝑠 𝐵  𝑡𝑒𝑛 𝑧 = 𝑎 + 𝑏𝑥 + 𝑐𝑦. 

ANFIS [78] is a very well known example of the Takagi-Sugeno fuzzy neural 

network type. Mamdani fuzzy inference systems are usually used when the linguistic 

interpretability of a solution is more important for the user, while Sugeno-type sys-

tems are more suitable when the user is concerned about obtaining a more accurate 

solution and the user is not very worried about its linguistic interpretability. [117] 

Fuzzy neural network systems have been successfully applied to a wide range of 

knowledge engineering and scientific applications such as classification, identifica-

tion, control systems, decision–making, pattern recognition, and image processes, 

etc. ( see e.g.[42],[108],[69],[111] ). A Fuzzy Neural Network has been also em-

ployed in the traffic management field as described in several papers. Henry et al. 

[61] have developed a neuro-fuzzy control method for controlling traffic lights at an 

intersection. The system offered good results for simple and medium-complex inter-

sections, but poor performance at a complex intersection. Another fuzzy neuron net-

work system has been proposed by Quek et al. in [134] with regard to the analysis 

and prediction of traffic flow. The system has been fully trained and subsequently 

used for short-term traffic flow predictions. The prediction results are shown to be 

promising. Another use of fuzzy neural networks in the field of road traffic man-
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agement systems are discussed in [184], [13] and[83] (see the previous chapter for 

more detail). 

In this chapter an intelligent decision support system has been developed using a 

Mamdani type based fuzzy neural network.  

4.3 The Proposed Decision Support System 

4.3.1 Overall System Framework 

As mentioned earlier, a large number of factors which determine the current 

traffic state need to be considered by the operator as part of the decision making 

process. These input factors are usually measured by on-line monitoring systems us-

ing sensors, detectors and cameras (alternatively, the traffic state can be forecast by a 

traffic flow simulation model). These input factors include time/day, traffic densities, 

flows, speeds, inflow demands, outflow restrictions, incidents status, etc. Similarly, 

there are many possible control actions that can be employed to control the road 

network, depending upon the nature of traffic problems and the available road con-

trol facilities.  

The proposed ITC-DSS receives the current values of the input factors (e.g. 

from a monitoring system) and possible control actions (e.g. from the human opera-

tor). ITC-DSS then outputs a ranked list of those control actions based on their per-

formance, to assist the human operator of the traffic control centre to manage the 

traffic network in real-time. The overall structure of the proposed ITC-DSS is de-

picted in Figure 4.1. The proposed intelligent system works as follows. Let 𝑆 be a set 

of the possible control actions which can be used to control the road network under 
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consideration. 𝑆 is created for a given road network off-line using the available road 

control facilities, the traffic operator‟s experience, and historical data. This also takes 

into consideration the interrelations between the traffic control actions at different 

locations in the network. Control action (𝑐𝑎𝑖  𝜖 𝑆) can be one control action such as 

lane closure, ramp metering, shoulder opening, changing speed limits by Variable 

Speed Limitations (VSL), controlling traffic using Variable Message Signs (VMS), 

etc, or a combination of control actions.  

 

 

Figure 4.1: Structure of Intelligent Traffic Control Decision Support System (ITC-

DSS). 

The current traffic state is characterized for each section of the network by: the 

average traffic state (including, e.g., densities, flow, speeds), the average boundary 

conditions (including demands at the origin links and the output restrictions at the 

destination links), and the incident status (including capacity reduction caused by the 

incident and the duration of the incident). Given the current traffic state and a set of 
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possible control actions 𝑆 for the given road network, the ITC-DSS employs a pre-

trained Fuzzy Neural Network Tool (FNN-Tool) (see the next section for details) to 

predict the performance of each 𝑐𝑎𝑖  for the current traffic state. The inputs of the 

FNN-Tool are the values of the current traffic state and control action 𝑐𝑎𝑖  and the 

output of the FNN-Tool is the performance of 𝑐𝑎𝑖  . Once the performance of all con-

trol actions in 𝑆 are evaluated using the FNN-Tool, 𝑆 is ranked based on the control 

actions aggregated performance and provided to the operator in real-time. The 

pseudo-code shown in Figure 4.2 summarizes the main process of the proposed ITC-

DSS: 

 

 

Create 𝑆 = {𝑐𝑎1 , 𝑐𝑎2 , 𝑐𝑎3 ,… , 𝑐𝑎𝑛}; 

Set Traffic_State_Input = the current traffic state; 

For ( i =1; i ≤ n; i++) do 

 { 

   Control_Input =  𝑐𝑎𝑖; 

   𝑐𝑎𝑖_Performance =  

       Execute FNN-Tool (Traffic_State_Input, Control_Input); 

   𝑐𝑎𝑖_Agg_Pefromance = Cal_Agg_Performance(𝑐𝑎𝑖_Performance); 

 } 

Output_Ranked_List= Rank(𝑆, 𝑐𝑎𝑖_Agg_Pefromance) ; 

 
 

Figure 4.2: The main process of the proposed ITC-DSS 

4.3.2 Aggregated Performance   

There are a range of traffic performance criteria such as queue lengths at the 

origins of the network, total travel times, total distances travelled, number of vehi-

cles entering the network, the number of vehicles leaving the network, etc [57]. 
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These can be considered to assess the performance of a control action. The aggre-

gated performance of each control action 𝑐𝑎𝑖  can be calculated by considering one or 

more of the performance criteria, or by using a weighted sum approach as shown by 

the following equation: 

 

𝑃𝑖 =
 𝑤𝐶𝑑   𝐸𝐶𝑑

𝑖𝑁
𝑑=1

 𝑤𝐶𝑑
𝑁
𝑑=1

 (4.1) 

 

where 0 ≤ 𝑃𝑖 ≤ 1 represents the aggregated performance of control action 𝑐𝑎𝑖  for 

the given traffic state; 𝑤𝐶𝑑  is the weight of the performance criterion 𝐶𝑑 ; and N is the 

number of performance criteria considered. These weights (𝑤𝐶𝑑 ) are usually selected 

by the operators based on current traffic management policies and other considera-

tions; 𝐸𝐶𝑑
𝑖  is the evaluation of control action 𝑐𝑎𝑖  over the performance criterion 𝐶𝑑  

for the given traffic state (𝐸𝐶𝑑
𝑖  is in the range [0,1], where a low value of 𝐸𝐶𝑑

𝑖  indi-

cates a low performance of 𝑐𝑎𝑖  over the performance criterion 𝐶𝑑). 𝐸𝐶𝑑
𝑖  is calculated 

for control action 𝑐𝑎𝑖  as follow: 

 

𝐸𝐶𝑑
𝑖 = 1 −  

𝐶𝑑 −  𝐶𝑑
𝑚𝑖𝑛

𝐶𝑑
𝑚𝑎𝑥 − 𝐶𝑑

𝑚𝑖𝑛
  (4.2) 

 

where 𝐶𝑑
𝑚𝑖𝑛  and 𝐶𝑑

𝑚𝑎𝑥 are the minimum and the maximum values of 𝐶𝑑 .  

 

To clarify exactly how the aggregated performance of control action 𝑐𝑎𝑖  is cal-

culated, consider the following example.  

Assuming that the control action 𝑐𝑎𝑖  has the following performance (as obtained 
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from the FNN-Tool – detailed in the next section): 

 Total Travel Time (TTT) = 4484.64    [veh*h] 

 Total Distance Travelled (TDT) = 173100.2 [km] 

Now calculating 𝐸𝐶𝑑
𝑖   for each performance criterion 𝐶𝑑  using Equation 4.2: 

 

𝐸𝑇𝑇𝑇 = 1 −
4484.64 − 3000

10000 − 3000
= 0.79 

 

𝐸𝑇𝐷𝑇 = 1 −
173100.2 − 80000

250000 − 80000
= 0.45 

 

Let, 𝑤𝑇𝑇𝑇  and 𝑤𝑇𝐷𝑇   be 1.5 and 0.5 respectively. 

 

Thus: 

𝑃𝑖 =
 0.79 ∗ 1.5 +  0.45 ∗ 0.5 

1.5 + 0.5
=  0.70 

 

In this example, TTT is assigned a larger weight (𝑤𝑇𝑇𝑇 = 1.25) than TDT 

(𝑤𝑇𝐷𝑇 = 0.25), indicating the importance of that performance criteria at that time. 

𝑤𝐶𝑑  , 𝐶𝑑
𝑚𝑖𝑛  and 𝐶𝑑

𝑚𝑎𝑥   are adjustable factors and can be changed on-line by the user 

(i.e. the operator in the traffic control centre) depending on the current situation (e.g. 

𝐶𝑑
𝑚𝑖𝑛  and 𝐶𝑑

𝑚𝑎𝑥  can be the desired and the worst values of 𝐶𝑑 , respectively, at that 

period).  This gives the proposed system ITC-DSS more flexibility to deal with dif-

ferent traffic situations and different traffic management policies. Furthermore, this 

increases the reaction between the system and the operator which increases the ac-

ceptance of the proposed system by the traffic operators. 
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4.3.3 Fuzzy Neural Network Tool (FNN-Tool) Structure 

In this section, we describe the structure and the function of the proposed FNN-

Tool. The learning process and the performance analysis of the FNN-Tool will be 

discussed in detail in Chapters 5 and 6. The FNN-Tool used in the study is of the 

Mamdani type and its structure is similar to the structure considered in [90] and 

[134]. It is a multilayer neural network-based fuzzy system - the topology is shown 

in Figure 4.3. The FNN-Tool has a total of five layers: the input layer; the condition 

layer; the fuzzy-rules layer; the consequence layer; the output layer. Each layer per-

forms an operation for building the fuzzy system. The input and the output layers are 

represented as vectors 𝑋𝑛 = [𝑥1, 𝑥2 ,… , 𝑥𝑛1] and 𝑌𝑛 = [𝑦1,𝑦2,… ,𝑦𝑛2], where  

𝑛1 and 𝑛2 represent the number of the input and output non-fuzzy variables. The 

process of each layer is as described below:  

 

 

Figure 4.3: Structure of the Fuzzy Neural Network-Tool (FNN-Tool). 
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Layer 1(Input Layer): nodes at this layer are input nodes which represent input 

linguistic variables such as “age”, “weight”, and “speed” and directly transmit non-

fuzzy input values to the next layer. Each node in this layer is connected to only 

those nodes of Layer 2, which represent the linguistic values of corresponding lin-

guistic variables. In our case, the input linguistic variables are the components of the 

current traffic state (e.g. traffic densities, flows, speeds, inflow demands, outflow 

restrictions, incidents status, etc.) and control action 𝑐𝑎𝑖 .The link weights, 𝑊𝑛 ,𝑚 , be-

tween this layer and the next layer is unity. The output 𝑜𝑛
(1)

 of this layer is given as 

follows:  

 

𝑜𝑛
(1)

= 𝑥𝑛1 (4.3) 

  

where  𝑥𝑛1  is the input of the input neuron 𝐿𝑛  in layer 1. 

 

Layer 2 (Condition Layer): this layer defines the fuzzy sets and membership 

functions for each of the input factors. Nodes in this layer act as a membership func-

tion and represent the terms of the respective linguistic variable, such as “low”, “me-

dium”, or “high”. The input values are fed to this layer that calculates the member-

ship degree. In our model this is implemented using the Gaussian membership func-

tion (see Figure 4.4). The main reason behind the use of the Gaussian membership 

function instead of triangular or trapezoidal functions is to ensure differentiability, as 

required by the back-propagation algorithm employed in the last stage of the learn-

ing process [134]. The connection weights in this layer are unity. The output 𝑜𝑛 ,𝑚
 2  of 
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input-label node 𝐼𝐿𝑛 ,𝑚
 2 

 is given as follows: 

 

𝑜𝑛 ,𝑚
 2 = 𝑒

− 
(𝑜𝑛

(1)
−𝑐𝑛 ,𝑚

(2)
)2

(𝜎𝑛 ,𝑚
(2)

)2
 

(4.4) 

  

where 𝑐𝑛 ,𝑚
(2)

 and 𝜎𝑛 ,𝑚
(2)

 are the centres (or means) and the widths (or variances) of the 

membership function for the input-label node 𝐼𝐿𝑛 ,𝑚
 2 

  respectively, where 𝐼𝐿𝑛 ,𝑚  de-

notes the mth input label of the linguistic node n. 

 

 

Figure 4.4: Gaussian membership function. 
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Time is Medium and the Total Distance Travelled is Low”. The nodes in this layer 

perform the AND operation. The output 𝑜𝑢
(3)

 of a rule node 𝑅𝐿𝑢  at the layer 3 is 

given as follows: 

 

𝑜𝑢
(3)

= min
𝑖𝜖𝑈

 (𝑜𝑖
 2 ) (4.5) 

 

where 𝑈  is the set of indices of the nodes in layer 2 that are connected to node 𝑅𝐿𝑢  

in layer 3. 

 

Layer 4 (Consequence Layer): each node in the consequence layer represents a 

possible consequent part of a fuzzy rule (such as “low” and “high”). The connection 

weights 𝑊𝑢 ,𝑛𝑚  of the links connecting nodes 𝑅𝐿𝑢  in Layer 3 to 𝑂𝐿𝑛 ,𝑚  in layer 4 rep-

resent certainty factors (CFs) of the corresponding fuzzy rules when inferring fuzzy 

output values. Each node of this layer performs the fuzzy OR operation to integrate 

the field rules leading to the same output linguistic variables. The initial values 

𝑊𝑢 ,𝑛𝑚  are set to unity. The output 𝑜𝑛 ,𝑚
 4 

 of a consequence node 𝑂𝐿𝑛 ,𝑚  in Layer 4 is 

given as follows: 

 

𝑜𝑛 ,𝑚
 4 =  max

𝑢𝜖𝐺
 (𝑜𝑢

(3)
 𝑊𝑢 ,𝑛𝑚 ) (4.6) 

 

where  𝐺  is the set of indices of the nodes 𝑅𝐿𝑢  in Layer 3 that are connected to node  

𝑂𝐿𝑛 ,𝑚  in Layer 4. 
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Layer 5 (Output Layer): this layer is the defuzzification layer, where each node 

at this layer represents a single output variable. In our case, the output variables are 

the performance criteria (e.g. the queue lengths at the origins of the network, total 

travel times, total distance travelled, number of vehicles entering the network, num-

ber of vehicles leaving the network, etc.). In this layer, either the Centre of Gravity 

(COG) or Centre of Area (COA) method can be used to compute a crisp output sig-

nal for each node. In the ITC-DSS, we use COG; the output 𝑦𝑛
(5)

 of an output node 

𝐷𝑛  in Layer 5 is given as follows:  

 

𝑦𝑛
(5)

=
  𝑜𝑢 ,𝑛𝑚

 4 × 𝑐𝑢 ,𝑛𝑚
(4)

× 𝜎𝑢 ,𝑛𝑚
(4)

  𝑘𝜖𝐻

  𝑜𝑢 ,𝑛𝑚
 4 × 𝜎𝑢 ,𝑛𝑚

(4)
 𝑢𝜖𝐻

 (4.7) 

 

where H is the set of indices of the nodes 𝑂𝐿𝑛 ,𝑚  in Layer 4 which are connected to 

node 𝐷𝑛  in Layer 5 and 𝑐𝑢 ,𝑛𝑚
 4  and 𝜎𝑢 ,𝑛𝑚

 4 
 are respectively, the centre and width of the 

membership function of the output linguistic value represented by 𝑂𝐿𝑛 ,𝑚  in Layer 4. 

The weights of links from the nodes in Layer 4 to the nodes in Layer 5 are unity. 

Therefore, only the learnable weights in the FNN-Tool network are  𝑊𝑢 ,𝑛𝑚  between 

Layers 3 and 4. 

4.4 Application of ITC-DSS 

In this section the technical feasibility of ITC-DSS is assessed using a road traf-

fic case-study of a part of the traffic network of the city of Riyadh in Saudi Arabia. 



 
CHAPTER 4: AN INTELLIGENT TRAFFIC CONTROL DECISION SUPPORT SYSTEM           64 

 

 

4.4.1 Riyadh Traffic Case Study 

The selected sub-network, which is shown in Figure 4.5, is one of the busiest 

parts of the Riyadh network, because it is used mostly for traffic approaching the city 

centre. This sub-network includes 10-km of King Fahad highway with four lanes 

each way. Two main roads (R1 and R2) separate from King Fahad highway and run 

parallel to it and then join it again. Traffic enters the section from two origins (O1 

and O2) and leaves it through two destinations (D1 and D2). In this case study, we 

only consider traffic going from south to north (i.e. towards the city centre). 

 

 

Figure 4.5: The sub-network considered in the traffic case study. 

O1

O2

D1

D2

A
VMS &VSL

R1

R2

S1

S2

X

Ramp Metering
B



 
CHAPTER 4: AN INTELLIGENT TRAFFIC CONTROL DECISION SUPPORT SYSTEM           65 

 

 

4.4.2 Case Study Design and Testing  

The aim of this section is to illustrate how the proposed ITC-DSS works. Only a 

limited number of inputs, control actions, and training data have been considered at 

this stage. However, an increase in the number of inputs, possible control actions, 

and training data should not affect the validity of the proposed system. We have con-

sidered the following variables in our case study: 

Three traffic factors to represent the traf fic state: 

 Average traffic demand (TDm):  the average traffic inflows at the origin 

links of the sub-network (O1 & O2). 

 Average traffic density (TDn):  the average number of vehicles per km per 

lane on the King Fahad highway. 

 Incidents status (IS):  only the severity of incidents is considered in this 

case study.  

We assume that the traffic flow in R1 and R2 is very smooth. 

Five traffic control actions: 

 𝑐𝑎1: Using VMS at point A to direct traffic that goes to D2 to use road R1. 

 𝑐𝑎2: Using VMS at point A to direct traffic that goes to D1 to use road R1. 

 𝑐𝑎3: Using VMS at point A to direct traffic that goes to D1 and traffic that 

goes to D2 to use road R1. 

 𝑐𝑎4: Using VMS at point A to direct traffic that goes to D2 to use road R2. 

 𝑐𝑎5: Using VMS at point A to direct traffic that goes to D1 to use road R1 

and on Ramp Metering at point B. 
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Two evaluation criteria for calculating the aggregated performance 

of the control actions are as follows: 

 Total Travel Time (TTT):    

                 (𝑤𝑇𝑇𝑇  = 1.5 ;     𝑇𝑇𝑇𝑚𝑖𝑛  = 3000 ;        𝑇𝑇𝑇𝑚𝑎𝑥 =   10000). 

 Total Distance Travelled (TDT):    

                  (𝑤𝑇𝐷𝑇  =  0.5 ;    𝑇𝐷𝑇𝑚𝑖𝑛  =80000;      𝑇𝐷𝑇𝑚𝑎𝑥 = 250000). 

 

Thus, the inputs of FNN-Tool will be 𝑋4= [TDm, TDn, IS, 𝑐𝑎𝑖], where 𝑖 ∈

{1, 2, 3,4,5}, and the outputs will be 𝑌2=[ 𝑇𝑇𝑇𝑖 , 𝑇𝐷𝑇𝑖]. The data needed for the train-

ing of the FNN-Tool has been generated using the traffic simulation model META-

NET. The learning process of the FNN-Tool as well as the process of generating 

traffic data by METANET, are described in Chapter 6.  

For the purpose of using METANET, we assume the following traffic splitting 

rates: 

Traffic entering King Fahad highway is divided as follows: 

 29% goes to destination D1 (97% use King Fahad highway, and 3% use 

road R1) 

 71% goes to destination D2 (90% use King Fahad highway, 6% road R2, 

and 4% use road R1) 

In order to apply the proposed ITC-DSS, it has been employed to rank the five 

control actions (𝑐𝑎1, 𝑐𝑎2, 𝑐𝑎3, 𝑐𝑎4, and 𝑐𝑎5) based on their aggregated performance 

𝑃𝑖  on the following traffic state: 
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 TDm =  5500.  

 TDn  =  32.  

 IS   = 75%. 

Table 4.1 illustrates the final results of this case study. The predicted TTT and 

TDT of the five control actions on the traffic state under consideration obtained by 

ITC-DSS, are summarized in columns 2 and 4. For each control action, 𝐸𝑇𝑇𝑇   and 

𝐸𝑇𝐷𝑇   have been calculated using Equation 4.2 and summarized in columns 3 and 5. 

The aggregated performance 𝑃𝑖  of each control action has been calculated using 

Equation 4.1 and summarized in column 6. As can be seen, the ITC-DSS recom-

mends 𝑐𝑎3 as the most suitable solution to control the traffic state under considera-

tion with aggregated performance (0.81), while it does not recommend 𝑐𝑎2 with ag-

gregated performance (0.52). In order to evaluate the performance of the proposed 

ITC-DSS, we have also make a comparison between the results of the ITC-DSS and 

the results obtained by the traffic simulation model METANET.  

 

Control Actions 

(ranked) 
TTT 𝐸𝑇𝑇𝑇  TDT 𝐸𝑇𝐷𝑇  𝑃𝑖  

𝑐𝑎3 3101.56 0.99 201913.5 0.28 0.81 

𝑐𝑎1 4484.64 0.79 173100.2 0.45 0.70 

𝑐𝑎4 5483.23 0.65 166845.7 0.49 0.61 

𝑐𝑎5 7007.4 0.43 111118.8 0.82 0.53 

𝑐𝑎2 7013.02 0.43 111606.7 0.81 0.52 

 

Table 4.1: The performance evaluation of the control actions 𝑐𝑎1, 𝑐𝑎2, 𝑐𝑎3, 𝑐𝑎4, and 

𝑐𝑎5 on the selected traffic state. 
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Generally, the results obtained from this case study show that the proposed ITC-

DSS can be effectively used to quickly and roughly rank several control actions ac-

cording to their aggregated performance. Moreover, the comparison between ITC-

DSS and METANET illustrates that ITC-DSS indicates the same trend as the simu-

lation model, which confirms the validity of ITC-DSS in predicting the control ac-

tion performance. However, the time ITC-DSS needed to calculate the performance 

of a given control action is much less than the time needed by the simulation model. 

For example, METANET needs about 1 minute to evaluate one control action, while 

our proposed system can evaluate and rank five different traffic control actions in 

under 1 second.  

Since the proposed system has been developed using a trained FNN-Tool, the 

main advantage of the proposed system is its speed of execution. Also, the proposed 

system allows the user to evaluate a set of control actions in one process, unlike their 

being evaluated one by one as in the simulation model.   

4.5 Summary 

Identifying the most promising control action among a large number of possible 

control actions to manage traffic congestion is a recurrent problem facing traffic con-

trol centres. This chapter has described an Intelligent Traffic Control Decision Sup-

port System (ITC-DSS) for traffic control centres to help the operator to identify the 

most suitable control action. The ITC-DSS uses a pre-trained fuzzy neural network 

(FNN-Tool) to predict the performance of several control actions. This gives a 

ranked list of control actions, of which the best-scoring control actions can be ap-

plied directly or, for more investigation, they can be assessed in more detail via, e.g. 
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microscopic or macroscopic traffic simulations.  

In order to evaluate and test the proposed ITC-DSS, a case study of a section of 

the ring-road around Riyadh has been presented and discussed. The results obtained 

from the ITC-DSS clearly demonstrate its suitability in terms of processing speed, 

accuracy and flexibility. The essential results of this chapter have been reported in 

[3]. 

In this chapter we have demonstrated the technical feasibility of the proposed 

ITC-DSS with a small-size network and for a limited number of traffic situations and 

control actions. In Chapter 7 we will present a major extension and improvement of 

ITC-DSS in order to obtain a scalable control system.  

In the next chapter, a GA-based fuzzy rules identification method will be pre-

sented to be used later (in Chapter 6) for generating fuzzy rules in the learning proc-

ess of the FNN-Tool.   
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Chapter  5  

 

 

GA-Based Fuzzy Rules Identification 

Method for Fuzzy Neural Networks 

 

5.1 Chapter Overview 

In this chapter we present a GA-based fuzzy rules identification method for 

fuzzy neural networks. Using the known membership functions, the GA based 

method initially considers all possible rules then uses the training data and the fitness 

function to perform rule-selection. In the previous chapter we introduced the struc-

ture and the functions of the FNN-Tool. The GA-based method presented in this 

chapter represents the second stage of the proposed three stage-based learning ap-

proach of the FNN-Tool. The first and third stages are initializing the membership 

functions of both input and output variables by determining their centres and widths 

using a self-organizing algorithm, and fine tuning the derived structure and parame-

ters using the back-propagation learning algorithm. Detailed descriptions of the three 
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stage-based learning approach of the FNN-Tool including the first and third stages, 

is given in the next chapter. This chapter concentrates on the application of the pro-

posed GA-based method for fuzzy rules identification. The next section of this chap-

ter reviews rule identification in the fuzzy neural network framework. Section 5.3 

discusses the proposed GA-based fuzzy rules identification method. The validation 

of the proposed GA-based method is tested in Section 5.4.  

5.2 Fuzzy-Rule Identification 

5.2.1 Rule-identification Methods 

An important topic in designing a fuzzy neural network is the identification of 

fuzzy rules. However, there is limited research reported for systematic design proce-

dures [134]. The main research aim in the identification of the fuzzy rules in fuzzy 

neural networks is to learn and modify the rules from past experience. Various 

methods have been used for the identification of the fuzzy rules in fuzzy neural net-

works. Quek and Zhou [136] have classified the rule identification methods into the 

following three categories: 

 

First category:  This category includes methods that use linguistic information 

from experts to identify fuzzy rules in the fuzzy neural networks prior to the applica-

tion of neural network techniques to adjust the rules [24], [182], [22], [98], [101], 

[150], [194]. For example, the knowledge provided by pilot studies has been used to 

design a fuzzy-logic based multi-input/multi-output roll controller for the advanced 

technology wing in [24], operational instructions provided by experienced operators 
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of plants have been used to build a neuro-fuzzy adaptive control strategy for refuse 

incineration plants in [98]. Students‟ characteristics elicited from their teachers have 

been used to design a neuro-fuzzy model to diagnose student behaviour for the pur-

pose of adapting pedagogical decisions to the individual student in [150]. Although 

this type of approach converges faster during training and performs better, it is rather 

subjective since linguistic information from experts may vary from person to person, 

and from time to time. This type of approaches has been widely used in first genera-

tion expert systems. 

 

Second category: This category includes methods that use numerical informa-

tion to identify fuzzy rules in fuzzy neural networks prior to the application of neural 

network techniques to adjust the rules [104], [55], [50], [135], [4], [138]. In this type 

of approach, unsupervised learning algorithms such as self-organizing [95] and com-

petitive learning algorithms [97] are widely used to identify fuzzy rules from the 

numerical training data. For example, in [104], a self-organized learning algorithm 

has been employed to automatically construct a neural-network-based fuzzy logic 

control and decision system by learning the training example itself. Ang and Quek 

[4] have employed an unsupervised learning algorithm (i.e. discrete incremental 

clustering) to compute the input fuzzy sets and the output fuzzy sets needed to create 

a rules structure for their proposed fuzzy neural network. In [135] Fuzzy Kohonen 

Partitioning (FKP) and the Pseudo Fuzzy Kohonen Partitioning clustering algorithms 

have been employed to structure the fuzzy neural networks technique. Initially, a 

cluster analysis is used on the numerical training data and then the fuzzy rules are 

generated through the proper connections of these computed clusters.  

Since the numerical data is the only source of information in this type of ap-
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proach, it must be representative. Otherwise, the derived fuzzy rules will be ill-

defined. The GA-based approach presented in this chapter to identify fuzzy rules 

falls into this category. 

 

Third category:  This category of approaches is using for supervised learning al-

gorithms (particularly the backpropagation technique) to identify the fuzzy rules in 

the fuzzy neural networks[145], [75], [107], [184], [144]. These fuzzy neural net-

works are basically multilayered, with the inputs and outputs as fuzzy membership 

values that satisfy certain constraints. The backpropagation learning algorithm is of-

ten utilized in such fuzzy neural networks to produce the mapping from inputs to 

outputs. In this approach the fuzzy neural network appears as a black box at the end 

of the training process. Shann and Fu [145] have proposed a two phase learning pro-

cedure for the FNN. The first phase is an errorbackprop (EBP) training phase, and 

the second phase is a rule-pruning phase. The EBP learning algorithm is based on a 

gradient descent search in the network, in which some of the node functions are for-

mulated with competitive operations such as min and max operators. The winners of 

these competitive operators are determined in the forward pass of the learning algo-

rithm. Ishibuchi et al. [75] used interval vectors to represent fuzzy inputs and outputs 

in a fuzzy multilayer perceptron (MLP). The backpropagation algorithm was applied 

to generate different fuzzy IF–THEN rules from a few sample rules (used during 

training). Yin et al. [184] have developed a fuzzy neural model to predict traffic flow 

in an urban street network. They used a fuzzy approach to classify the input vectors 

data into a number of clusters, then employed a single layer neural network to spec-

ify the input-output relationship (rules) between the vectors.  
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5.2.2 Genetic Fuzzy System  

Recently, the use of GA in the design of fuzzy systems (including rules identifi-

cation, membership function adjustment, and training fuzzy rule-based models to 

represent specific data) has seen a considerable research effort compared with other 

approaches. This initiative has led to the coining of the term Genetic Fuzzy System 

(GFS), which is, essentially, a fuzzy system with a learning process based on GA 

[26]. The strong searching capacity of GA has been utilized in GFS for: (i) determin-

ing (or adjusting) membership functions with a fixed number of fuzzy rules [86], 

[123]; (ii) finding fuzzy rules with a known membership [19], [64], [46]; (iii) finding 

both membership functions and fuzzy rules simultaneously [66], [179], [76],; (iv) 

adjusting (or optimizing) fuzzy system parameters [155], [168], [169].  

Karr [86], who has employed GA to train membership functions, was the pio-

neer. Nomura et al.[123] have determined the number of fuzzy sets and the member-

ship function of each fuzzy set using GAs. On the other hand, Hoffmann [64] has 

proposed a learning method for fuzzy rule-based systems using the iterative rule 

learning approach. The fuzzy rule base is constructed in an incremental fashion, 

where GA optimizes one fuzzy classifier rule at a time. Another use of GA with the 

iterative rule learning approach has been reported in [46]. 

Using GA for finding both membership functions and fuzzy rules simultane-

ously, is a very common approach. Wu and Liu [179] have proposed a GA-based 

approach for the simultaneous design of membership functions and fuzzy control 

rules. In their proposed approach, the triangular membership function variables (the 

left and right widths and the locations of their peaks) and all possible fuzzy rules 

have been transformed into real-coded chromosomes to be optimized by GA. Ishibu-



 
CHAPTER 5: GA-BASED FUZZY RULES IDENTIFICATION METHOD FOR FNNS              75 

 

 

chi and Yamamoto [76] have proposed a genetic algorithm-based approach for pat-

tern classification problems consisting of two phases: candidate rule generation by 

rule evaluation measures in data mining, and rule selection by multi-objective evolu-

tionary algorithms. In the rule selection phase, they have used three objective func-

tions simultaneously:  the maximization of the classification accuracy, the minimiza-

tion of the number of selected rules, and the minimization of the total rule length. 

GA has not only been employed to tune membership functions, but it has also 

been used to optimize the architecture of a fuzzy neural network. Wang et al. [168] 

proposed a GA-based approach for a feedback direct adaptive fuzzy-neural control-

ler to tune the online weighting factors. In particular, they have used a reduced-form 

genetic algorithm to adjust the weightings of the fuzzy-neural network. Su et al. 

[155] have developed a fuzzy neural network controller to create suitable conditions 

for crop growth. GA has been used to train the architecture of their proposed fuzzy 

neural network controller. Wang et al. [169] have proposed a simplified GA to adjust 

both control points of B-spline membership functions and the weights of fuzzy-

neural networks.  

Starting with all possible fuzzy rules then using the GA to identify the relevant 

rules is a very promising approach. This approach was adopted by Castro & Cama-

gro [19] who proposed a three stage-based approach for identifying fuzzy rules from 

numerical data. The three stages are: a feature selection process, a GA for deriving 

fuzzy rules and, finally, another GA for optimizing the rule base. The main disad-

vantage of this approach is that, depending on the number of input-output variables 

and the number of their fuzzy sets, the total number of possible rules can be ex-

tremely large, making it difficult to encode and generate the chromosomes.  Conse-
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quently, the learning process can become overloaded. However, starting the GA 

process with all possible rules (if possible) is still preferred because it decreases the 

chance of missing any relevant rule which, in turn, minimizes the final error.  

In this chapter we present a GA-based method for identifying fuzzy rules from 

numerical data using previously defined and fixed fuzzy sets. The main advantage of 

our GA-based method is that GA is used only for identifying fuzzy rules. Using GA 

to optimize fuzzy membership functions and fuzzy rules simultaneously (such as in 

[66] and [76]), which is avoided in our proposed method, makes the GA suffer from 

the curse of dimensionality, because every fuzzy rule represents a different subspace 

of the input variables. Another advantage of the proposed GA-based method is that 

the fine tuning of the fuzzy rules weight is done in a separate learning stage (stage 

three). Consequently, integer representation (encoding) of the problem is used which 

reduces the length of the chromosome as well as making the size of the GA search 

space very small compared with other approaches (such as [64] and [179]) where the 

floating point numbers representation is implemented.  

5.3 The Proposed GA-based Fuzzy Rule Generating 

Algorithm  

5.3.1 GA-based Method 

The proposed GA-based method is performed in the second stage to identify the 

fuzzy rules that are supported by a set of training data. A simple example of FNN 

with two input linguistic variables 𝑥1 and 𝑥2 and one output linguistic variable y is 
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considered here to explain the design process of the presented GA-based learning 

approach. The self-organization learning algorithm in the first stage assigns each lin-

guistic variable a number of fuzzy sets. Let us assume that we have three fuzzy sets 

{low (L), medium (M), high (H)}. Then the proposed GA-based method considers 

all possible rules for given fuzzy sets, as shown in the top part of Figure 5.1 (a). In 

this simple example, there will be a total of twenty seven possible rules. In fact these 

rules are made up of nine possible antecedents (preconditions) of fuzzy rules repre-

sented by nodes RL1 … RL9 in the Fuzzy-Rules Layer. Each antecedent has links 

with three possible decision fuzzy sets (nodes in Consequence Layer: L, M and H). 

For example, the three possible fuzzy rules associated with node RL1 are: 

If x1 is L and x2 is L, then y is L. 

If x1 is L and x2 is L, then y is M. 

If x1 is L and x2 is L, then y is H. 

In this way the total number of rules includes all possible fuzzy rules associated 

with all nodes. However, at most, only one of these three fuzzy rules can be used for 

making decisions. We used a GA-based learning approach to identify only the ap-

propriate and relevant fuzzy rules by filtering out all other redundant rules. 

A number of decisions must be made in order to implement the GA for generat-

ing appropriate fuzzy rules. In general there are five components that must be taken 

into account before using GA to solve a problem [20]: 

 

 A genetic representation of solutions to the problem. 

 A way to create an initial population of solutions. 
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 An evolution function which gives the fitness of each chromosome. 

 Genetic operators that alter the genetic composition of offspring during re-

production (e.g. replacement, selection, crossover, mutation, etc) 

 Values for the parameters that the GA uses (e.g. population size, probabili-

ties of applying genetic operators, stopping criterion, etc)  

 

 

Figure 5.1: (a) All possible rules with two inputs and one output; (b) an example of 

encoding a chromosome. 
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5.3.2 GA Design 

The following steps are employed for designing our method to identify appro-

priate fuzzy rules using the GA.  

 

Encoding: the first step in the implementation of the GA technique is the encod-

ing of the problem using an appropriate representation. The encoding is used to rep-

resent chromosomes (solutions), and to define the size and the structure of the search 

space. Here we propose integer strings as chromosomes to represent candidate solu-

tions of the problem. The string is given by (𝑔1,𝑔2,… ,𝑔𝑖 ,… ,𝑔𝑛 ), where 𝑔𝑖  is an in-

teger (0 ≤ 𝑔𝑖 ≤ 𝑚) which indicates the link of the fuzzy nodes 𝑅𝐿𝑖  (i.e. nodes in the 

Fuzzy-Rules Layer) with the output nodes (i.e. nodes in the Consequence Layer); n 

is the number of nodes in the Fuzzy-Rules Layer; and m is the number of neurons in 

the Consequence Layer. In our example, the chromosome 𝐶𝑖  has nine integers rep-

resenting 𝑔𝑖 , and 0 ≤ 𝑔𝑖 ≤ 3. The situation with 𝑔𝑖 = 0 indicates there is no link be-

tween 𝑅𝐿𝑖  and nodes in Consequence Layer; 𝑔𝑖 = 1 indicates that there is a link with 

„L‟ node in Consequence Layer and so on. An example of encoding/decoding a 

chromosome is shown in Figure 5.1 (b). 

 

Fitness function: in this step the goodness of every chromosome is evaluated by 

using a fitness function. The GA only needs a fitness value assigned to each chromo-

some. In this paper, we use a set of training data to calculate the fitness of each 

chromosome based on the following error function: 

𝐹𝐼𝑇 = 1 −  
1

𝑛𝑑
  𝑦𝑖 − 𝑦 𝑖 

2

𝑛𝑑

𝑖=1

  (5.1) 
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where 𝑛𝑑   is the number of data, 𝑦𝑖  is the ith actual output, and 𝑦 𝑖  is the ith model 

output. Equation 5.1 represents the sum of Root Mean Squares (RMS) of errors, be-

tween actual outputs and model outputs. The GA aims to maximize this fitness func-

tion in order to minimize the error value. This error value is dependent on the se-

lected fuzzy rules.  

 

GA operators: Figure 5.2 shows a pseudo-code which represents the working 

principle of a simple GA. Based on a number of experiments, we have selected GA 

operators and their parameters to be used for this application. The results of those 

experiments will be given in the next chapter. The GA operators used are the tour-

nament selection [45], the elitist generation replacement, standard two-point cross-

over and a random mutation. The tournament selection method picks a subset of so-

lutions at random from the population to form a tournament selection pool from 

which two solutions are selected with probability based upon the fitness values of the 

solutions. The elitist approach ensures that the best solution in the population pool is 

always retained.  

The two-point crossover operator splits the selected solutions at two randomly 

chosen positions and exchanges the centre sections with a crossover probability. An 

example is illustrated in Figure 5.3 (a). The mutation operator changes the integer at 

each position in the solution 𝐶𝑖  within the allowed range (i.e. 0 ≤ 𝑔𝑖 ≤ 𝑚) with a 

defined mutation probability. An example is illustrated in Figure 5.3 (b). The initial 

population of chromosomes is created randomly. The stopping criterion for a GA run 

is to achieve the pre-specified error level.  
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Genetic_Algorithm () 

{ 

  formulate initial population; 

  randomly initialize population; 

  repeat 

   evaluate objective function; 

   find fitness function; 

   apply genetic operators 

         selection; 

         crossover; 

         mutation; 

   apply replacement approach; 

until stopping criteria 

} 
 

Figure 5.2: The working principle of a simple genetic algorithm. 

When the GA learning process is completed (e.g. when a pre-specified error 

level is achieved), we choose the best GA chromosome. This best chromosome is 

decoded to get the structure of the FNN-Tool by keeping only the rules that are indi-

cated by the chromosome. A gene in a GA string with 𝑔𝑖 ≠ 0 represents a fuzzy rule 

to be considered and with 𝑔𝑖 = 0 to be ignored. The weight for all rules is assumed 

to be 1 at this stage. Then the error level (e) can be improved by using the back-

propagation learning algorithm (stage three as described in the next chapter) to fine 

tune the rules weights. By doing so, we train the FNN-Tool with the relevant fuzzy 

rules only. 
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Figure 5.3: Considered GA operations (a) two point crossover; (b) mutation. 

 

5.4 Validation Experiment  

The main purpose of this chapter is to introduce the adopted learning approach 

for the fuzzy rules identification stage. In this section, we only test the validity of the 

GA-based learning approach for identifying the relevant fuzzy rules from all possible 

rules. The performance analysis of the GA-based learning approach is presented in 

the next chapter. In this validation experiment, the set of training data consists of a 

thousand data samples which are generated from 27 rules, some of which are listed 

below: 

(a)

Parents Children

gng3g2g1
Ch i

(b)

Crossover Points

Two point crossover

gng3g1
New Ch i

2g

where  mg  20

Mutation
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If x1 is low and x2 is low and x3 is low, then y is very low; 

If x1 is low and x2 is medium and x3 is medium, then y is low; 

If x1 is low and x2 is medium and x3 is high, then y is medium; 

If x1 is medium and x2 is high and x3 is high, then y is high; 

If x1 is high and x2 is high and x3 is high, then y is very high; 

     The weight (Degree of Coverage) of all rules is set to unity (i.e. wi = 1).  

 

From the above rules, it can be observed that there are three inputs and one out-

put linguistic variables. For each input linguistic variable, its term set is defined as 

{low, medium, high}, while the output linguistic variable term set is defined as 

{very low, low, medium, high, very high}. Therefore, there are a total of 135 possi-

ble rules, and the resulting FNN consists of three linguistic nodes, nine input-label 

nodes (three for each linguistic node), twenty seven initial rule nodes, five output-

label nodes, and one output node. In this case, the string (chromosome) is given by 

(𝑔1,𝑔2,… ,𝑔𝑖 ,… ,𝑔27), where 𝑔𝑖   is an integer (0 ≤ 𝑔𝑖 ≤ 5). The GA-based approach 

is employed to identify the same 27 fuzzy rules from the 135 possible rules. The 

crossover and mutation probabilities considered in this experiment are 0.7 and 0.02 

respectively. After a number of runs, the results show that the GA is able to quickly 

and correctly identify all 27 fuzzy rules with an error level equal to zero. Figure 5.4 

presents an average performance graph of 20 experiments created by 100 generations 

of 20 chromosome populations.  

This example demonstrates that the proposed GA-based method can identify 

correctly all relevant fuzzy rules in this small case. The evaluation of the effective-

ness of the application of the proposed GA-based method is analyzed and presented 

in the next chapter, when it is employed for identifying the fuzzy rules of the FNN-

Tool.  
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Figure 5.4  Performance graph for 100 generation of 20 chromosomes. 

 

5.5 Summary 

The identification of fuzzy rules in designing a fuzzy neural network is an im-

portant topic. This chapter has presented a GA-based method to identify the fuzzy 

rules for FNNs. The proposed GA-based method makes use of the known member-

ship functions to identify only the relevant fuzzy rules. Initially, it has considered all 

possible rules and then used the training data and the fitness function to select a lim-

ited number of relevant fuzzy rules. The validity of the proposed method has been 

tested for the identification of all the relevant fuzzy rules. The results demonstrate 

the capabilities of the proposed GA-based method in terms of the quick and correct 

identification of the fuzzy rules.  
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As mentioned before, using the presented approach for identifying fuzzy rules 

with a large number of variables and fuzzy sets is not recommended because the to-

tal number of possible rules will be extremely large, which makes the genetic learn-

ing process very slow. In this case, instead of encoding the chromosomes with all 

possible rules, an alternative approach is to employ a clustering algorithm (e.g. 

[135]) just to identify an optimal number (n) of fuzzy rules to start with. In this case 

the encoding used to represent chromosomes is given by: 

(1,𝑔1,2,𝑔2,… , 𝑖 ,𝑔𝑖 ,… ,𝑛 ,𝑔𝑛) 

where 𝑖  is an integer (1 ≤ 𝑖 ≤ 𝑁), which indicates the link of the fuzzy nodes 𝑅𝐿𝑖  

(i.e. nodes in the Fuzzy-Rules Layer) with the input nodes (i.e. nodes in the Condi-

tion Layer); 𝑔𝑖  is an integer (0 ≤ 𝑔𝑖 ≤ 𝑚) which indicates the link of the fuzzy 

nodes 𝑅𝐿𝑖  (i.e. nodes in the Fuzzy-Rules Layer) with the output nodes (i.e., nodes in 

the Consequence Layer); N is the number of all possible rules, while m is the number 

of neurons in the Consequence Layer.  

The fuzzy rules identification method that has been presented in this chapter 

represents the second stage of our proposed three stage-based learning approach of 

our FNN-Tool. In the next chapter, the first and third stages of the proposed learning 

approach of the FNN-Tool are presented with a detailed description. The research 

results of this chapter have been reported in [1]. 
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Chapter  6  

 

 

Learning Approach for Fuzzy 

Neural Networks  

 

6.1 Chapter Overview 

 In this chapter we present a three stage-based learning approach for our fuzzy 

neural network (i.e. FNN-Tool) presented in Chapter 4. In the first stage of the pro-

posed three stage-based learning approach, the membership functions of both input 

and output variables are initialized by determining their centres and widths, using a 

self-organizing algorithm. The GA-based fuzzy rules identification method, which 

was presented in the previous chapter, is performed in the second stage to identify 

the fuzzy rules. In the last stage, the derived structure and parameters are fine tuned 

using the back-propagation learning algorithm. The capability of the proposed learn-

ing approach is tested with a well-examined benchmark example, and its strength is 

analyzed through a comparative study with other approaches. Moreover, an applica-
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tion of the pre-trained FNN-Tool with the proposed three stage-based learning ap-

proach is demonstrated with regard to the traffic case study introduced in Chapter 4.   

This chapter is organized as follows. The next section reviews the related works 

published in the literature. Section 6.3 highlights the various stages in the design of 

the learning process of the FNN-Tool. The performance of the proposed FNN-Tool 

is tested in Section 6.4. Section 6.5 discusses the application of the proposed learn-

ing process for the traffic case study presented in Chapter 4.  

6.2 FNN Learning Methods  

Employing an effective learning process is a critical aspect of designing a fuzzy 

neural network, especially when the expert knowledge is not available. A wide vari-

ety of learning methods associated with fuzzy neural networks exist. In general, we 

can classify the existing fuzzy neural networks learning approaches into two types. 

The first type includes methods that use linguistic information provided by human 

beings to create the structure of the fuzzy neural network, while the tuning and the 

configuration of the parameters and structures is achieved by using neural network 

techniques such as [98], [150] and [101]. In this type, experts are required to provide 

a clear description of the membership functions and fuzzy rules used for the con-

struction stage. As mentioned before, this type of learning is subjective, since lin-

guistic information from experts may vary from person to person, and from time to 

time. 

The second type includes methods that use numerical information to create the 

structure of a fuzzy neural network. The tuning and the configuration of the parame-

ters and structures is achieved by using neural network techniques such as [137], 
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[90] and [162]. This type is similar to the previous one in terms of the tuning and the 

configuration of the parameters and structures. However, the initial set of parameters 

and the structure of the fuzzy neural network are derived from numerical information 

instead of linguistic information. This type of learning method is suitable for applica-

tions where experts who can provide an organized description of the system are un-

available. However, since the set of training data is the only source of information 

employed in this type of fuzzy neural network, it has to be representative of the sys-

tem‟s behaviour. A brief survey of some well-known examples of fuzzy neural sys-

tems and their learning methods is provided in the rest of this section.  

ANFIS by Jang [77] is a well known neuro-fuzzy system which implements a 

Sugeno-like fuzzy system [157] in a five-layered network structure. Backpropaga-

tion is used to learn the antecedent membership functions, while a least mean 

squares algorithm determines the coefficients of the linear combinations in the con-

sequent of the rule. ANFIS uses differentiable functions instead of min and max 

functions. ANFIS adjusts only the membership functions of the antecedent and con-

sequent parameters, thus the rule base must be known in advance. 

Quek and Zhou [137] have designed a five-layered fuzzy neural network named 

Outer-Product-based Fuzzy Neural Network (POPFNN). The learning process of 

POPFNN consists of three phases: self-organization, POP learning, and supervised 

learning. A self-organizing algorithm is employed in the first phase to initialize the 

membership functions of both the input and output variables by determining their 

centres and widths. In the second phase, the POP algorithm is run in one pass to 

identify the fuzzy rules that are supported by the training set. The derived structure 

and parameters are then fine-tuned using the backpropagation algorithm. The 
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POPFNN approach has been subsequently applied to develop several FNN systems 

such as (POPFNN-AARS(S) [138]  and POPFNN-CRI(S) [5]).   

Kim and Kasabov [90] have proposed an adaptive neuro-fuzzy system called 

HyFIS (Hybrid Neural Fuzzy Inference System), for building and optimising fuzzy 

models. The learning procedure in HyFIS consists of two phases.  In phase one, the 

rule finding phase, the method proposed by Wang and Mendel [170] for deriving 

fuzzy rules from desired input–output data pairs is used to find the linguistic fuzzy 

rules and the initial structure of the neural fuzzy system. In phase two, the rule tun-

ing phase, a supervised learning scheme, based on gradient descent learning, is used 

to optimally adjust the MFs for the desired outputs. 

GenSoFNN (Generic Self-organizing Fuzzy Neural Network) is another Five 

layered fuzzy neural network developed by Tung and Quek [162]. The GenSoFNN 

network uses a new clustering technique called Discrete Incremental Clustering 

(DIC) to enhance its noise tolerance capability against noisy/spurious training data 

sets. The learning process of GenSoFNN also consists of three phases, self-

organizing, rule formulation and parameter learning. Firstly, in the self-organizing 

phase, the problem domain is modelled by performing a cluster analysis on the nu-

merical training data, using DIC technique to compute the input–output clusters. 

Next, fuzzy rules are produced by connecting the appropriate input and output clus-

ters during the rule-mapping process of the learning phase in the rule formulation 

phase. Finally, back-propagation learning algorithm is used to fine-tune the parame-

ters of the GenSoFNN network, to achieve the desired output response. 

The Falcon-ART is an FNN architecture with 5 layers developed by Lin and Lin 

[105]. Before the training, Falcon-ART has only the input and output layers to repre-
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sent the input and output linguistic variables respectively. The hidden layers for the 

input and output term nodes and the fuzzy rules are created and begin to grow as the 

learning cycle progresses. Falcon-ART dynamically partitions the input–output data 

spaces into trapezoidal fuzzy sets, tunes the trapezoidal membership functions that 

represent the linguistic terms, and determines the proper network connections be-

tween the input–output clusters and the fuzzy rules through a mapping process, with 

all these performed in a single pass of the training data set. The fuzzy Adaptive 

Resonance Theory (fuzzy ART) is used to perform the fuzzy clustering of the input–

output spaces into fuzzy hyper-boxes (hyper-cubes). Falcon-ART then dynamically 

determines the proper fuzzy rules by connecting the appropriate input and output 

clusters (input and output hyper-boxes) by using a mapping process. Subsequently, a 

back-propagation learning algorithm is used to adjust the input–output membership 

functions.  

Our proposed three stage-based learning approach presented in this chapter falls 

under the second type of FNN learning approach where the expert knowledge is not 

available and only numerical information is used for contracting and learning the 

system. The main reason behind the application of GA in the second stage instead of 

a self-organizing algorithm (or competitive learning algorithm) to identify fuzzy 

rules, is that since the membership functions are determined prior to the identifica-

tion of fuzzy rules, self-organizing or competitive learning becomes redundant, be-

cause the boundary of the clusters in the input and output spaces have already been 

predefined [134].  

One of the main advantages of the proposed three stage-based learning approach 

comparing it with, for example, HyFIS [90] and ANFIS [77], is that the FNN model 
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is built for a system without prior knowledge about the partitions input/output space 

and the number of fuzzy rules. Moreover, the task of GA in the proposed  three 

stage-based learning approach is determining the relevant rules from a set of all pos-

sible rules (i.e. rule-selection) only, and the fine tuning rule weights process is im-

plemented in a separate learning stage (i.e. stage three). Another advantage of our 

proposed approach is that it is fast compared with those approaches presented in Lin 

and Lee [104], where rule-selection is performed by a competitive learning using 

rule weights with the rule with the largest weight being selected. In Lin and Lee‟s 

approach, the learning process involves iterative training before the system comes to 

a stable state, because a large number of all possible fuzzy rules are useless. 

 

 

Figure 6.1: Flowchart of the proposed three stage-based learning approach. 
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6.3 The Proposed Learning Approach 

The proposed learning approach for the FNN-Tool consists of three stages of 

learning as shown in Figure 6.1. The first stage (initializing input/output membership 

functions) and the second stage (identifying fuzzy rules) yield the initial structure of 

the FNN-Tool. The third stage (fine tuning the parameters) produces the final struc-

ture of the FNN-Tool. A detailed description of the three-stage learning approach is 

presented in the following sections.  

6.3.1 Stage 1: Initialization with a Self- Organizing Al-

gorithm 

The first stage in the proposed learning approach initializes (self-organizes) the 

membership functions of both input and output variables of the FNN-Tool by deter-

mining their centres and widths. To perform this stage, we have employed a self-

organizing algorithm. Alternatively, if expert knowledge is available, it can be used 

in this stage. Kohonen‟s feature-map algorithm [95], which has been employed in 

[138], is adopted in this work to identify the initial centres 𝑐𝑛 ,𝑚
(2)

 and 𝑐𝑘 ,𝑛𝑚
(4)

of the 

membership functions which represent the input and output label nodes 𝐼𝐿𝑛 ,𝑚  

and 𝑂𝐿𝑛 ,𝑚 . Kohonen's feature map algorithm , ,  is "the representation of knowledge 

in a particular category of things in general might assume the form of a feature map 

that is geometrically organized over the corresponding piece of the brain"[95]. Ko-

honen's algorithm is a self-organizing approach which takes a set of N-dimensional 

objects as inputs and produces a low-dimensional (typically two dimensional) grid, 

called a map.  
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The inputs and the output of the FNN-Tool are represented as vectors 𝑋𝑛 =

[𝑥1, 𝑥2 ,… , 𝑥𝑛1] and 𝑌𝑛 = [𝑦1,𝑦2,… ,𝑦𝑛2], where  𝑛1  𝑎𝑛𝑑 𝑛2 represent the number of 

the input and output variables. It must be noted that the input and output vectors are 

non-fuzzy vectors. That is, each element in 𝑋𝑛  and 𝑌𝑛  has a non-fuzzy value. The 

self-organizing algorithm adopts the following steps: 

 

Step1: initialize 𝑐𝑛 ,𝑚
(2)

 value: 

 

𝑐𝑛 ,𝑚
 2  𝑇 = min

𝑘∈𝑋
 𝑥𝑘 +

1

2
 
𝑚 + 1

𝑖
 (max

𝑘∈𝑋
(𝑥𝑘)− min

𝑘∈𝑋
(𝑥𝑘)) (6.1) 

 

where 𝑚 ϵ  1,2,… , 𝑖 , i is the number of the membership functions that represent the 

terms of the respective linguistic, and variable 𝑥𝑘  is the kth element of the input vec-

tor 𝑋𝑛 .  

 

Step2: find the closest: 

 

 𝑥𝑘 𝑇 − 𝑐𝑛 ,𝑐𝑙𝑜 𝑠𝑒𝑠𝑡
 2  𝑇  = min

1≤𝑚≤𝑖
  𝑥𝑘 𝑇 − 𝑐𝑛 ,𝑚

 2  𝑇    (6.2) 

 

where  𝑇  is the training iteration. 

 

Step3: Update 𝑐𝑛 ,𝑚
 2 

 value: 
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𝑐𝑛 ,𝑚
 2  𝑇 + 1 =

 
 
 

 
 𝑐𝑛 ,𝑚

 2  𝑇 + 𝜀 𝑇  𝑥𝑘 𝑇 − 𝑐𝑛 ,𝑚
 2  𝑇  ,

                  𝑖𝑓 𝑐𝑛 ,𝑚
 2  𝑇 =  𝑐𝑛 ,𝑐𝑙𝑜𝑠𝑒𝑠𝑡

 2  𝑇 

𝑐𝑛 ,𝑚
 2  𝑇 ,                       𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒

  (6.3) 

 

where ε T  is a monotonically decreasing scalar learning rate. 

 

Step4: repeat steps 2 & 3 for T=T+1, while T< the limit on time iteration. 

 

Step5: determine the width 𝜎𝑛 ,𝑚
(2)

 value: 

 

σn,m
 2 =

 𝑐𝑛 ,𝑚
 2 − 𝑐𝑛 ,𝑐𝑙𝑜𝑠𝑒𝑠𝑡

 2  

2
 (6.4) 

 

 

Similarly, the initial centres 𝑐𝑘 ,𝑛𝑚
(4)

  and widths 𝜎𝑘 ,𝑛𝑚
(4)

 of the membership func-

tions representing the output-label nodes, can be derived except that the output vec-

tor 𝑌𝑛  is used as the training data instead of the input vector 𝑋𝑛 . It should be noted 

that the values of the centres and widths obtained here are all initial values which 

will be fine-tuned in the final stage using back-propagation learning. Since the aim 

of this stage is to reflect the rough locations of the clusters that are formed by the 

input and output data samples, any other appropriate clustering algorithm (e.g. K-

means) can be used in this stage.  
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6.3.2 Stage 2: Rule Identification with GA-Based  

Method 

The GA-based fuzzy rules identification method presented in the previous chap-

ter is performed in the second stage to identify the fuzzy rules that are supported by a 

set of training data. As we mentioned before, the weights for all identified fuzzy 

rules are assumed to be 1 at this stage. A full description of the GA-based fuzzy rules 

identification method employed in this stage was given in Chapter 5. After complet-

ing this stage, the initial structure of the FNN-Tool is derived and should be ready 

for the last stage of the learning process.  

6.3.3 Stage 3: Fine Tuning Stage with a Back-

Propagation Learning Algorithm 

After identifying the relevant fuzzy rules and the initial structure of the FNN-

Tool, it can adjust its parameters using the back-propagation algorithm. The aim of 

this learning stage is to minimize the following error function: 

𝐸 =
1

2
(𝑦𝑖 − 𝑦 𝑖)

2 (6.5) 

where 𝑦𝑖  is the actual output and 𝑦 𝑖  is the model output for ith data. 

 From the structure of the FNN-Tool shown in Figure 4.2 (in Chapter 4), it can 

be observed that there are only five types of adjustable parameters. These are: cen-

tres 𝑐𝑛 ,𝑚
 2 

 and widths 𝜎𝑛 ,𝑚
 2 

 of input-label membership functions, and centres 𝑐𝑢 ,𝑛𝑚
 4 

, 
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widths 𝜎𝑘 ,𝑛𝑚
 4 

 of output-label membership functions and the connection weights 

𝑊𝑢 ,𝑛𝑚  of the links connecting nodes 𝑅𝐿𝑢  in layer 3 to 𝑂𝐿𝑛 ,𝑚  in Layer 4 (i.e. fuzzy 

rules weights).  

Once an input training vector x is presented at the input layer during supervised 

learning, it is propagated forward through the neural network. Subsequently, an error 

signal is calculated and then feedback from Layer Five is used to adjust the parame-

ters. The adjustment steps in the supervised learning for the FNN-Tool are stated as 

follows: 

 

Layer 5-Output Layer: In this layer, the error signal 𝑒𝑛
 5 

 is calculated using 

Equation 6.5 as follows: 

𝑒𝑛
 5 = −  

𝜕𝐸

𝜕𝑦𝑛
 5 

 =  𝑦𝑛 − 𝑦𝑛
(5)

 (6.6) 

 

where 𝑦𝑖  and 𝑦𝑛
(5)

are the target and actual outputs of node n in Layer 5. 

The adjusted centres ∆𝑐𝑢 ,𝑛𝑚
 4 

 and widths ∆𝜎𝑢 ,𝑛𝑚
 4 

 of the output labels are calcu-

lated using Equation4.7 as follows: 

 

∆𝑐𝑢 ,𝑛𝑚
 4 =

𝜕𝐸

𝜕𝑦𝑛
(5)

 
𝜕𝑦𝑛

(5)

𝜕𝑐𝑢 ,𝑛𝑚
4

= −(𝑦𝑛 − 𝑦𝑛
(5)

)
𝜎𝑢 ,𝑛𝑚
 4    𝑜𝑛 ,𝑚

 4 

 (𝜎𝑢 ,𝑛𝑚
 4    𝑜𝑛 ,𝑚

 4 
𝑚 )

 
(6.7) 

 

 

Hence, the 𝑐𝑢 ,𝑛𝑚
 4 

 parameter is updated by: 

 

𝑐𝑢 ,𝑛𝑚
 4  𝑡 + 1 =  𝑐𝑢 ,𝑛𝑚

 4  𝑡 − 𝜑 ∆𝑐𝑢 ,𝑛𝑚
 4 

 (6.8) 



 
CHAPTER 6: LEARNING APPROACH FOR FUZZY NEURAL NETWORKS                                97 

 

 

where 𝜑>0 is the learning rate. 

Similarly: 

∆𝜎𝑢 ,𝑛𝑚
 4 =

𝜕𝐸

𝜕𝑦𝑛
(5)

 
𝜕𝑦𝑛

(5)

𝜕𝜎𝑢 ,𝑛𝑚
 4 

=        

 

 − 𝑦𝑛 − 𝑦𝑛
 5  

𝑜𝑛 ,𝑚
 4   𝑐𝑢 ,𝑛𝑚

 4   𝜎𝑢 ,𝑛𝑚
 4  𝑜𝑛 ,𝑚

 4 
𝑚  −   𝜎𝑢 ,𝑛𝑚

 4  𝑜𝑛 ,𝑚
 4 

𝑚 𝑐𝑢 ,𝑛𝑚
 4   

( 𝜎𝑢 ,𝑛𝑚
 4    𝑜𝑛 ,𝑚

 4 
𝑚 )2

 

(6.9) 

 

 

 

Hence, the 𝜎𝑢 ,𝑛𝑚
(4)

 parameter is updated by: 

 

𝜎𝑢 ,𝑛𝑚
 4  𝑡 + 1 =  𝜎𝑢 ,𝑛𝑚

 4  𝑡 − 𝜑 ∆𝜎𝑢 ,𝑛𝑚
 4 

 

 
(6.10) 

 

Layer 4- Consequence Layer: In this layer, the local error 𝑒𝑛 ,𝑚
 4 

 is calculated us-

ing Equation 4.7 as follows: 

 

𝑒𝑛 ,𝑚
 4 =

𝜕𝐸

𝜕𝑜𝑛 ,𝑚
 4 

=
𝜕𝐸

𝜕𝑦𝑛
(5)

 
𝜕𝑦𝑛

(5)

𝜕𝑜𝑛 ,𝑚
 4 

= 

 

  (𝑦𝑛 − 𝑦𝑛
 5 ) 

𝜎𝑢 ,𝑛𝑚
4   𝑐𝑢 ,𝑛𝑚

4   𝜎𝑢 ,𝑛𝑚
4  𝑜𝑛 ,𝑚

 4 
𝑚  −   𝜎𝑢 ,𝑛𝑚

4  𝑜𝑛 ,𝑚
 4 

𝑚 𝑐𝑢 ,𝑛𝑚
4   

( 𝜎𝑢 ,𝑛𝑚
4    𝑜𝑛 ,𝑚

 4 
𝑚 )2

  

(6.11) 

 

Hence, the adjusted connection weights 𝑊𝑢 ,𝑛𝑚  of the links connecting nodes 

𝑅𝐿𝑢  in Layer 3 to 𝑂𝐿𝑛 ,𝑚  in Layer 4 is calculated using Equation 4.6 as follows: 

 

∆𝑊𝑢 ,𝑛𝑚 =
𝜕𝐸

𝜕𝑊𝑢 ,𝑛𝑚
=

𝜕𝐸

𝑜𝑛 ,𝑚
 4 

 
𝑜𝑛 ,𝑚
 4 

𝜕𝑊𝑢 ,𝑛𝑚
 = 𝑒𝑛 ,𝑚

 4  
𝑜𝑛 ,𝑚
 4 

𝜕𝑊𝑢 ,𝑛𝑚
 (6.12) 
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where 

 

𝑜𝑛 ,𝑚
 4 

𝜕𝑊𝑢 ,𝑛𝑚
=  

   𝑜𝑢
 3       𝑖𝑓  𝑜𝑛 ,𝑚

 4 =  𝑚𝑎𝑥
𝑢𝜖𝐺

  𝑜𝑢
 3  𝑊𝑢 ,𝑛𝑚  

0                                          𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒

  (6.13) 

 

where  𝐺  is the set of indices of the nodes 𝑅𝐿𝑢  in Layer 3 that are connected to node  

𝑂𝐿𝑛 ,𝑚  in Layer 4. Hence, the 𝑊𝑢 ,𝑛𝑚  parameter is updated by: 

 

𝑊𝑢 ,𝑛𝑚  𝑡 + 1 =  𝑊𝑢 ,𝑛𝑚  𝑡 + 𝜑 ∆𝑊𝑢 ,𝑛𝑚  (6.14) 

 

Layer 3 - Rule-based Layer: only the local error 𝑒𝑢
(3)

 needs to be computed and 

propagated using Equation 4.5 as follows: 

 

𝑒𝑢
 3 =

∂E

𝑜𝑢
 3 

=
∂E

𝜕𝑜𝑛 ,𝑚
 4 

 
𝜕𝑜𝑛 ,𝑚

 4 

𝜕𝑜𝑢
 3 

=
∂E

𝜕𝑜𝑛 ,𝑚
 4 

= 𝑒𝑛 ,𝑚
 4 

 (6.15) 

 

Layer 2 - Condition Layer: In this layer, the centres 𝑐𝑛 ,𝑚
(2)

 and widths  𝜎𝑛 ,𝑚
(2)

 of the 

membership functions of input-label nodes are adjusted using Equation 4.4 as fol-

lows: 

 

∆𝑐𝑛 ,𝑚
 2 =

𝜕𝐸

𝜕𝑜𝑛 ,𝑚
 2 

 
𝜕𝑜𝑛 ,𝑚

 2 

𝜕𝑐𝑛 ,𝑚
 2 

=  
𝜕𝐸

𝜕𝑜𝑛 ,𝑚
 2 

 𝑜𝑛 ,𝑚
 2 

2 𝑜𝑛
 1 − 𝑐𝑛 ,𝑚

 2  

(𝜎𝑛 ,𝑚
 2 )2

 (6.16) 
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∆𝜎𝑛 ,𝑚
2 =

𝜕𝐸

𝜕𝜎𝑛 ,𝑚
 2 

=
𝜕𝐸

𝜕𝑜𝑛 ,𝑚
 2 

 
𝜕𝑜𝑛 ,𝑚

 2 

𝜕𝜎𝑛 ,𝑚
 2 

=  
𝜕𝐸

𝜕𝑜𝑛 ,𝑚
 2 

 𝑜𝑛 ,𝑚
 2 2(𝑜𝑛

 1 − 𝑐𝑛 ,𝑚
(2)

)2

(𝜎𝑛 ,𝑚
(2)

)3
 (6.17) 

 

where from Equation 4.5: 

 

𝜕𝐸

𝜕𝑜𝑛 ,𝑚
 2 

=  
 𝑒𝑢

 3 

𝑢

            𝑖𝑓  𝑜𝑛 ,𝑚
 2 =  𝑚𝑖𝑛

𝑖𝜖𝑈
  𝑜𝑖

 2  

0                                        𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒

  (6.18) 

 

where 𝑈  is the set of indices of the nodes in layer 2 that are connected to node u in 

layer 3. Hence, the 𝑐𝑛 ,𝑚
 2 

 parameter is updated by: 

 

𝑐𝑛 ,𝑚
 2  𝑡 + 1 =  𝑐𝑛 ,𝑚

 2  𝑡 + 𝜑 ∆𝑐𝑛 ,𝑚
 2 

 (6.19) 

 

and the 𝜎𝑛 ,𝑚
2  parameter is updated by: 

σn,m
2  𝑡 + 1 =  σn,m

2  𝑡 + 𝜑 ∆𝜎𝑛 ,𝑚
2  (6.20) 

 

6.4 Experimental Results and Analysis 

In this section, we validate the performance of the FNN-Tool by using a well-

known benchmark example (i.e. the Box–Jenkins time series) and show the merits 

and capabilities of the FNN-Tool as compared to other models. Well-known bench-

mark examples are used for the sake of easy comparison with existing models. 
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6.4.1 Nonlinear System Identification Example 

Here, the FNN-Tool is applied to a nonlinear system identification, using the gas 

furnace data (series J) of Box and Jenkins [16]. The data set used in this experiment 

was recorded from a combustion process of a methane-air mixture. During the proc-

ess, the portion of methane was randomly changed, while maintaining a constant gas 

flow rate. The data set used here, which consists of 296 input-output pairs, is pro-

vided in Appendix A. The gas flow into the furnace is the input 𝑥(𝑡) and the 𝐶𝑂2 

concentration in the outlet gas is the output 𝑦(𝑡). The sample interval is 9s. Figures 

6.2, 6.3 and 6.4 demonstrate some characteristic functions of the 𝐶𝑂2 time series 

data. It is noted that there is a finite memory effect indicated by a positive correla-

tion. In addition, the histogram shows significant deviation from the Gaussian behav-

iour.  

 

Figure 6.2: The characterization of the Box-Jenkins gas furnace data: original time 

data. 
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Figure 6.3: The characterization of the Box-Jenkins gas furnace data: auto correla-

tion function. 

 

  

Figure 6.4: The characterization of the Box-Jenkins gas furnace data: Histogram. 
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6.4.2 Experimental Design  

 The FNN-Tool is employed to provide identification for the 𝐶𝑂2 concentration 

 𝑦(𝑡). In order to compare the FNN-Tool results with other models, a similar ex-

perimental design has been used. It is assumed that the task is to identify the 𝐶𝑂2 

produced in a furnace 𝑦 𝑡  at time t, given the methane gas portion from four time 

steps before 𝑥(𝑡 − 4) and the last 𝐶𝑂2 produced in the furnace 𝑦 𝑡 − 1 . The data 

set was converted to [𝑥 𝑡 − 4 ,𝑦 𝑡 − 1 : 𝑦 𝑡 ] pairs which reduced it to 292 input-

output pairs.  

All data sets used in this experiment were normalized using the min-max nor-

malization technique given as follows: 

𝑋𝑛 =
(𝑋 − 𝑋min )

(𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛 )
 6.21 

 

where 𝑋𝑛 is the normalized value, and 𝑋,  𝑋𝑚𝑖𝑛 ,  and 𝑋𝑚𝑎𝑥  are an instance of the 

minimum and the maximum values of the vector to be normalized. The normalized 

data was then divided such that 70% (204 records) was used for training the FNN-

Tool, and the other 30% (88 records) was used for testing the trained FNN-Tool. 

This identification problem is then mapped onto the five-layer FNN-Tool with 

the following configuration as shown in Figure 6.5. The input layer consists of two 

nodes: 𝑥(𝑡 − 4) and  𝑡 − 1  , whereas, the output layer consists of one node: 𝑦 𝑡 . 

The input and the output variables were divided into five linguistic labels (VS, S, M, 

L, and VL). Thus, the Condition Layer consists of 10 nodes and the Consequence 

Layer consists of 5 nodes. The initial fuzzy-rule layer consists of all possible combi-
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nations of input variables which, in this is case, is 25 nodes. They are fully con-

nected with the Consequence Layer.  

 

 

 

Figure 6.5: The initialized FNN-Tool Structure for the Box-Jenkins gas furnace data 

The initial parameters (centre and width) of the membership functions for all in-

puts and output variables were generated using the self-organizing algorithm de-

scribed in Section 6.3.1. Figure 6.6 shows these initial membership functions.  

In this experiment we use the Mean Square Error (MSE) as a performance index 

for the FNN-Tool: 

𝑀𝑆𝐸 =
1

𝑁
  (𝑦𝑖 −  𝑦 𝑖)

2

𝑁

𝑖=1

 6.22 

where N is the number of data, 𝑦𝑖  the actual output, and 𝑦 𝑖  is the model output for ith 

data. 
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(a)  Initial input 1: 𝑥(𝑡 − 4) 

 

 

(b) Initial input 2: 𝑦 𝑡 − 1  

 

 

(c) Initial output 1: 𝑦 𝑡  

Figure 6.6: The initial membership functions generated from the first stage of the 

learning process of FNN-Tool. 
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6.4.3 GA Operations and Parameters 

The GA-based fuzzy rules identification method has been used to generate the 

fuzzy rules. Firstly, a candidate solution has been encoded into an integer string as a 

chromosome. The chromosome size has been set as the total number of nodes in the 

fuzzy-rules layer which is 25. Each gene 𝑔𝑖  , where 0 ≤ 𝑔i ≤ 5, represents a fuzzy 

rule. Then an initial population containing N chromosomes has been generated ran-

domly. After a series of trial experiments, we found that the optimal learning pa-

rameters for this stage were: (i) the population size = 90, (ii) tournament selection, 

(iii) the elitist generation replacement, (iv) standard two-point crossover with prob-

ability = 0.7, (v) and mutation priority = 0.05. The stopping criterion for a GA run is 

to achieve the pre-specified error level (e.g. MSE < 0.0014). 

Figure 6.7 presents an average performance graph for 10 experiments for the se-

lected GA learning parameters. The solid line shows the plot of generation number 

versus maximum fitness, while the dotted line shows the average fitness of the popu-

lation. It can be observed from Figure 6.7 that the GA starts with a poor initial popu-

lation but it improves rapidly. As the GA progresses, the bad solutions are disap-

peared because their fitness are reduced, so their chance becomes low for the selec-

tion process for the next generation. After a few generations a number of good solu-

tions have been found which have been fine-tuned to improve their fitness. 

In order to evaluate the impact of different parameters and operations on the GA 

performance, sensitivity analysis on crossover probability and type, mutation prob-

ability, and population size has been carried out. A mutation probability of 0.05 was 

considered to show how sensitive the GA performance is with different crossover 

types including one point and two-point and different crossover probabilities ranging 
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from 0.5 to 0.9. All other parameters were kept constant.  

 

 

Figure 6.7:  GA average performance of 10 runs using a population size of 90, two-

point crossovers with probability of 0.7, and a mutation probability of 0.05. 

 

Figure 6.8 illustrates the sensitivity of the GA performance to crossover type 

and probability. It can be observed from Figure 6.8 that the peak performance of GA 

was achieved when two-point crossover with a probability of 0.7 was used. The fig-

ure also shows that too low crossover probability might lead to a bad performance of 

GA, especially with one-point crossover. 

In the same way, the sensitivity of the performance of GA to mutation probabil-

ity has been analyzed using a two-point crossover with a probability of 0.7. Figure 

6.9 shows how sensitive the GA performance is to different mutation probabilities. It 

is clear from the figure that the best performance was obtained with mutation prob-

abilities of 0.05 and 0.06. We have considered 0.05 because it is lower. The GA per-
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formance are not good if too low (e.g. 0.001 and 0.005) or too high (e.g. 0.2) muta-

tion probabilities are used. 

 

Figure 6.8: Sensitivity to crossover type and probability using mutation probability 

of 0.05. 

 

 

Figure 6.9: Sensitivity to mutation probability using a two-point crossover with a 

probability of 0.7. 
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Figure 6.10: Sensitivity to population size using a two-point crossover with probabil-

ity of 0.7 and a mutation probability of 0.05. 

Using a two-point crossover with a probability of 0.7 and a mutation probability 

of 0.05, the impact of the population size on the GA performance has been analyzed. 

The sensitivity of the performance of GA to different population sizes ranging from 

20 to 120 is illustrated in Figure 6.10. The acceptable performance is obtained with a 

population greater than 80. The peak performance of GA was achieved with popula-

tion sizes of 90. The smaller population size decreases the GA performance because 

the diversity in the population cannot be maintained. In general, the selection of ap-

propriate population size depends upon the user‟s experience.   

6.4.4 Experimental Results 

This second stage started with 25 fuzzy rules (i.e. all possible rules), and after 

completing it, the number of rules was decreased to 18, with a mean square error 

(MSE) = 0.00138. The fuzzy rules generated from this stage are shown in Table 6.1. 

It should be noted that the weight of all generated rules in this stage were set to 1.  
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Rule # 

IF THEN Weight 

𝑥(𝑡 − 4) 𝑦(𝑡 − 1) 𝑦(𝑡) After Stage2 After Stage3 

1 VS VS VL 1 0.93 

2 VS S VS 1 0.94 

3 VS M L 1 1.00 

4 VS VL VL 1 0.99 

5 S S S 1 0.48 

6 S M L 1 0.17 

7 S L L 1 0.63 

8 S VL VL 1 0.31 

9* M S S 1 0.00 

10 M M M 1 1.00 

11 M L M 1 0.21 

12* L S S 1 0.00 

13 L L L 1 0.79 

14 L VL VL 1 0.48 

15 VL VS VS 1 0.68 

16* VL M S 1 0.00 

17 VL L S 1 0.20 

18 VL VL VS 1 0.20 

 

Table 6.1: Fuzzy rules generated from the second and the third stages of the learning 

process and their corresponding weights of the Box-Jenkins gas furnace data. 

Lastly, after identifying the FNN-Tool structure, the BP algorithm explained in 

Section 6.3.3 was employed (with learning rate 𝜑 = 0.1) to fine tune the membership 

parameters and the weights of the fuzzy rules. In this stage two experiments were 

run. In the first experiment, the BP algorithm was employed only to adjust the mem-

berships parameters (centres, widths) as done in most similar works such as [90] (i.e. 
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the error for nodes in Layer 4 was computed and propagated without updating to 

𝑊𝑢 ,𝑛𝑚 ) In the second experiment the membership parameters and the fuzzy rules 

weights 𝑊𝑢 ,𝑛𝑚  were adjusted. The results of both experiments after 1,000 epochs are 

illustrated in Figure 6.11. The improvement of the training error rate (MSE) in ex-

periment one is denoted by the dotted curve, from 0.00138 to 0.00082, while the 

solid curve represents the improvement of the error rate (MSE) in experiment two, 

from 0.00138 to 0.00042.  

 

 

Figure 6.11: The improvement of the FNN-Tool prediction error of the Box-Jenkins 

gas furnace data after the BP algorithm. 

Figures 6.12(a), (b) and (c) show the learned input-output membership functions 

after this stage. The fuzzy rules and their corresponding weights resulted from this 

stage are given in Table 6.1. There are three rules with zero weights, outlined by the 

(*) in the table, which means that those rules can be deleted without affecting the 

outputs.  
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(a) Final input 1: 𝑥(𝑡 − 4) 

 

        

(b) Final input 2: 𝑦 𝑡 − 1  
 

 

 

 
 

(c) Final output 1: 𝑦 𝑡  
 

Figure 6.12: The learned input-output membership functions of the Box-Jenkins gas 

furnace data. 
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 (a) 

             

(b) 

 

 

(c) 
 

Figure 6.13: The FNN-Tool performance of the Box-Jenkins gas furnace data: (a) 

desired and predicted output; (b) training and testing distribution; (c) the GAFNN 

prediction error. 
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After completing the training process for the FNN-Tool, the testing data set was 

used to test the trained FNN-Tool. The FNN-Tool successfully identified the desired 

nonlinear system dynamics with a very low MSE (= 0.00045). Figure 6.13 summa-

rizes the final results of this experiment, where the real (desired) and the predicted 

outputs in response to the testing input data are given in graphical form in Figure 

6.13(a), and training and testing data distribution is shown in Figure 6.13(b). Figure 

6.13(c) shows the FNN-Tool prediction errors.   

6.4.5 Comparison with Other Models 

Table 6.2 shows a comparison of the results obtained from our proposed FNN-

Tool and that of different models reported in the literature for the Box-Jenkins data 

prediction problem. The table summarizes the general structure of each model, in-

cluding the number of inputs and the number of rules. The fuzzy based neural mod-

els (such as ANFIS, FuNN, HyFIS, and FNN-Tool) have a much better performance 

with respect to their counterpart mathematical models (such as ARMA) and fuzzy 

models (such as Xu,  Sugeno and Takagi). This indicates that the fuzzy neural net-

work models are utilizing the advantages of both fuzzy techniques and neural net-

works in fuzzy neural topology. 

It can be observed from the table that the performance of our proposed FNN-

Tool is better than the performance of other models, except the HyFIS model. It is 

worth noting that the HyFIS approach uses all data samples to construct the model 

(i.e. creating fuzzy membership functions of the input-output variables and generat-

ing the fuzzy rules) and 92 data pairs of the same data set were used for testing the 

model. In our case, the data set was divided into two parts. The first part was used to 
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construct and learn the FNN-Tool model, then the model was tested with the second 

part which is unseen data.  

 

 

Model name and reference 
Number of  

inputs 

Number of  

rules 

Model error 

(MSE) 

ARMA model [16] 5 - 0.71 

Tong‟s model [160] 2 19 0.469 

Pedrycz‟s model [129] 2 81 0.320 

Xu‟s model [181] 2 25 0.328 

Sugeno‟s model [153] 2 6 0.355 

Surmann‟s model [154] 2 25 0.160 

Linear model [152] 5 - 0.193 

Takagi-Sugeno model [152]   6 2 0.068 

Position-gradient model [152] 3 6 0.190 

Lee,s model [99] 2 25 0.407 

Hauptmann‟s model [52] 2 10 0.134 

Lin‟s model [103] 5 4 0.261 

Nie‟s model [120] 4 45 0.169 

Pedrycz‟s model [130] 2 25 0.3950 

ANFIS model [78] 2 25 0.00073 

FuNN model [87] 2 7 0.00051 

HyFIS model [90] 2 15 0.00042 

FNN-Tool (current model) 2 15 0.00045 

 

Table 6.2: Comparative results for different modelling approaches 
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Also, the comparative results show that FuNNs is a very promising model, 

which has an acceptable error level (0.00051) with a much lower number of rule 

nodes (7) than our FNN-Tool (15). FuNNs use a multilayer perceptron (MLP) net-

work and a modified backpropagation training algorithm. The general FuNN archi-

tecture consists of five layers: input, condition, rule, action and output layers. The 

second and third (condition and rule) layers are fully connected and the sigmoidal 

logistic activation function is used in each rule node to represent the degree to which 

input data match the antecedent component of an associated fuzzy rule. That means 

each rule node in the FuNN is represented by several fuzzy rules, each of them rep-

resenting a combination of the input condition elements which would activate that 

node. Therefore, the number of rule nodes in FuNN, which is in Gas-Furnace Time 

Series example 7, does not represent the total number of fuzzy rules as in our FNN-

Tool model. In general, the results of this experiment show that the proposed FNN-

Tool is a competitive model when compared with other promising models published 

in the literature. 

6.5 Road Traffic Case Study 

In Section 4.4, we created a road traffic case-study for a part of the traffic net-

work in the city of Riyadh in Saudi Arabia, in order to assess the technical feasibility 

of ITC-DSS. The FNN-Tool was used to predict the Total Travel Time (TTT) and the 

Total Distance Travelled (TDT) for the five traffic control actions. (See Chapter 4, 

Section 4.4 for more details of the case study design). This section presents the 

learning process and the performance test of the FNN-Tool used in that case study. 

The data needed for the training and testing processes of the FNN-Tool in this 
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study have been generated using the traffic macroscopic simulation model META-

NET as mentioned before. The process of generating traffic data using METANET is 

explained in the following sub-section.  

6.5.1 Traffic Data Generation 

Real data is very important for accurately evaluating and testing any new sys-

tem. However, in some cases, obtaining real data is very difficult. In order to explore 

the possibility of obtaining real road traffic data for experimentation purposes, we 

visited and contacted several road traffic control centres and other traffic organiza-

tions such as Transportation, Design and Planning of the City of Bradford Metropoli-

tan District Council, The Highways Agency in Manchester, Riyadh Region Traffic 

Department, Minnesota Traffic Research Laboratory at the University Of Minnesota 

and the ARC Intelligent Transport Systems Research Laboratory at The University 

of Queensland. However, the available real traffic data was very expensive to gather, 

manipulate and process, and also was still not sufficient to cover the entire problem 

domain. For example, for a road traffic incident, the performance of all possible con-

trol actions is required, but such a scenario may have never happened.  

The applications of different control actions to real life situations to gather the 

required data, were not possible for safety reasons. Therefore, we decided to use arti-

ficial (simulated) traffic data in this study for training and testing the proposed intel-

ligent traffic control decision support system. However, since the proposed intelli-

gent traffic system employs FNN-Tool, it is easy to modify the fuzzy rule base and 

the structure of the network when real data become available. 

Since the main objective of this ITC-DSS is to help in controlling a traffic net-
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work section as a whole without the need to study the individual behaviour of vehi-

cles, we have considered a macroscopic traffic simulation model rather than a micro-

scopic one. The macroscopic traffic simulation model used was METANET, details 

of which have been provided in Chapter 2 (Section 4).  The main reason behind the 

selection of METANET was not only because a macroscopic approach makes it very 

suitable for model-based traffic control, but also because it provides a good trade-off 

between simulation speed and accuracy. Furthermore, the small number of parame-

ters makes it easy to execute and calibrate.  

In order to simulate our case study using METANET, the part of the traffic net-

work in the Riyadh city under consideration was represented by a directed graph, 

where bifurcations, junctions and on/off-ramps were represented by the nodes of the 

graph and the highway stretches between these locations were represented by the 

links. Each link is subdivided into segments with typical lengths of 300 to 800 me-

tres. Figure 6.14 shows the network under consideration drawn via METANET. 

Each link has its geometric characteristics such as the number of lanes, curvature, 

etc. At the boundaries of the network, origin or destination links were added where 

traffic enters or leaves, respectively, the part of the traffic network under considera-

tion. Before running METANET, the following information must be declared: 

 

 Simulation control information including: simulation period, simulation 

time step, incident modelling, etc. 

 Traffic data including: traffic demand, traffic density, speed, composition 

rates, splitting rates, turning rates, etc. 

 Control actions including: control start time, end time, where the control 

action starts and ends, etc.   
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A simulation run starts with reading the simulation control information and all 

control actions to be modelled during the simulation time for the initialization stage. 

The main simulation loop then starts. For each time step, the simulation reads the 

required traffic data until the simulation loop is terminated. At the end of the simula-

tion, some final information (e.g. control action performance criteria) is produced. 

 

 

Figure 6.14: The considered traffic network drawn via METANET 
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time interval set to 120 minutes (i.e. the simulation period). From each run one data 

pair sample, (𝑐𝑎𝑖 , TDm, TDn, IS; 𝑇𝑇𝑇𝑖 , 𝑇𝐷𝑇𝑖) has been abstracted. 𝑐𝑎𝑖 , TDm, TDn, 

and IS are the input variables and they represent the current traffic state and the pro-

posed control action. 𝑇𝑇𝑇𝑖 , 𝑇𝐷𝑇𝑖  are the output variables and represent the predicted 

total travel time and predicted total distance travelled after 120m of the application 

of control action 𝑐𝑎𝑖 .  

The generated data set consists of 5,000 input-output pairs. Table 6.3 summa-

rizes the statistical indicators for the input-output parameters, including the min, 

max, mean, standard deviation, and coefficient of variance. It is necessary to ensure 

that the generated data is sufficient to cover the entire problem domain, including 

maximum and minimum values for each variable, as well as a good distribution of 

values within this range. Using the values in Table 6.3, the normalization of data 

samples was performed using Equation 6.21. The normalized data samples are then 

divided such that 70% was used for training the FNN-Tool and 30% unseen data was 

used for testing the trained FNN-Tool. 

 

 TDm TDn IS TTT TDT 

MIN 500.0 5.0 2000.0 807.7 76685.6 

MAX 6000.0 150.0 6000.0 58606.2 352915.9 

Mean 3311.6 79.4 4094.0 23244.6 23244.6 

Std Dev 1608.2 43.1 1620.9 16549.2 55863.3 

CV (%) 48.6 54.3 39.6 71.2 240.3 

Table 6.3: Maximum, minimum, and average value of data set for the considered 

traffic case study. 
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6.5.2 Learning FNN-Tool  

The membership functions of both input and output variables were initially de-

termined as follows. The input variables TDm, TDn and IS were divided into three 

labels (low, medium, and high), whereas the control action 𝑐𝑎𝑖  was directly repre-

sented by five non-fuzzy indices (C1, C2, C3, C4, and C5). On the other hand, the 

output variables 𝑇𝑇𝑇𝑖  and 𝑇𝐷𝑇𝑖  were divided into five labels (very low, low, me-

dium, high, and very high). Consequently, the condition layer consisted of 14 nodes 

and the consequence layer consisted of 10 nodes. The fuzzy-rule layer consisted of 

all possible combinations of input variables which, in this case, was 135 nodes. They 

are fully connected with the Consequence Layer. Figure 6.15 shows the overall 

structure of the FNN-Tool after this stage. The initial parameters (centre and width) 

of the membership functions for all inputs and outputs variables are summarized in 

Table 6.4 in columns 3 and 4.  

 

Figure 6.15: the initialized FNN-Tool Structure for the traffic case study. 
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I/O variables Label 

Initial Parameters Final Parameters 

Centre Width Centre Width 

𝑐𝑎𝑖  

C1 0 0.105 0 0.105 

C2 0.25 0.105 0.25 0.105 

C3 0.5 0.105 0.5 0.105 

C4 0.75 0.105 0.75 0.105 

C5 1 0.105 1 0.105 

TDm 

Low 0.16 0.17 0.29 0.48 

Medium 0.50 0.17 0.51 0.41 

High 0.85 0.17 0.88 0.28 

TDn 

Low 0.15 0.17 0.16 0.19 

Medium 0.50 0.17 0.52 0.17 

High 0.86 0.18 0.79 0.22 

IS 

Low 0.2 0.21 0.14 0.40 

Medium 0.5 0.21 0.53 0.41 

High 0.9 0.21 0.98 0.32 

TTT 

Very Low 0.0592 0.09395 0.01 0.1 

Low 0.2471 0.09395 0.03 0.115 

Medium 0.4732 0.0986 0.12 0.12 

High 0.6704 0.0876 0.71 0.215 

Very High 0.8456 0.0876 0.89 0.185 

TDT 

Very Low 0.2136 0.1234 0.13 0.085 

Low 0.4604 0.0871 0.14 0.035 

Medium 0.6346 0.0654 0.8 0.11 

High 0.7654 0.0654 0.85 0.115 

Very High 0.9094 0.072 0.95 0.095 
 

Table 6.4: Initial and final parameters of the MFs for all variables of the traffic case 

study. 

We started the second stage of the learning process with 135 fuzzy rules, and af-

ter completing this stage, 126 relevant fuzzy rules were identified with a mean 

square error (MSE) of 0.013. After a series of experiments the following learning 
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parameters were identified as appropriate: (i) the population size = 200, (ii) tourna-

ment selection, (iii) the elitist generation replacement, (iv) standard two-point cross-

over with probability = 0.8, (v) and mutation probability = 0.04. The stopping crite-

rion was 1,500 generations. Figure 6.16 shows the FNN-Tool prediction error of the 

traffic case study after the second stage of the learning process. The curve represents 

an average performance of 10 experiments. 

 

Figure 6.16: The FNN-Tool prediction error of the traffic case study after the second 

stages of the learning process. 

Due to the large number of experiments and the long training time required, a 

modified master-slave parallel genetic algorithm (used in [139]) was used with a 

network of 35 PCs to speed up this stage of training. For example, the completion of 

one generation using only one PC takes approximately 450 seconds, which is de-

creased sharply to approximately 19 seconds with 35 PCs.  

0

0.02

0.04

0.06

0.08

0.1

0 250 500 750 1000 1250 1500

M
ea

n
 S

q
u
ar

e 
E

rr
o

r 

Generation



 
CHAPTER 6: LEARNING APPROACH FOR FUZZY NEURAL NETWORKS                                123 

 

 

The BP algorithm (with a learning rate 𝜑 of 0.1) was then used to fine-tune the 

membership parameters and the weights of the identified fuzzy rules. The error rate 

MSE was improved to 0.0024 and the number of fuzzy rules decreased to 112 rules. 

The improvement of MSE during this stage is illustrated in Figure 6.17. The final 

parameters (centre and width) of the membership functions for all input and output 

variables are summarized in Table 6.4 in columns 5 and 6.  

Figure 6.17: The improvement of the error rate after the BP algorithm.  

Finally, the trained FNN-Tool was employed to predict the total travel time and 

the total distance travelled for the five control actions using the testing data. The 

general testing results are given in Figures 6.18 and 6.19. The real and the modelled 

outputs in response to the testing input data are illustrated in Figure 6.18 (a) and (b), 

while the FNN-Tool prediction errors are illustrated in Figures 6.19 (a) and (d). We 

can see very clearly from these figures that the FNN-Tool can predict the total travel 

time and the total distance travelled to the desired level of accuracy.   
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(a) 

 

(b) 

Figure 6.18: (a) Desired and predicted output TTT; (b) Desired and predicted output 

TDT. 
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    (a) 

 

 

        (b) 

Figure 6.19: (a) The FNN-Tool prediction error of TTT; (d) the FNN-Tool prediction 

error of TDT. 
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6.5.3 Result Validation 

In order to illustrate how accurate the predicted data set models the desired out-

put data set, we used the coefficient of determination (𝑅2) as a performance index of 

the FNN-Tool with 0 ≤  𝑅2  ≤ 1. When 𝑅2 equals zero, the desired and predicted 

outputs are totally uncorrelated. In contrast, when 𝑅2 equals 1, they are exactly the 

same. 𝑅2 is defined as: 

𝑅2 =
   𝑦𝑖 − 𝑦   𝑦 𝑖 − 𝑦   𝑁

𝑖=1  
2

  𝑦𝑖 − 𝑦  2𝑁
𝑖=1     𝑦 𝑖 − 𝑦   

2𝑁
𝑖=1

 (6.23) 

 

where N is the number of data, 𝑦𝑖  is the ith actual output, 𝑦 𝑖  is the ith model or pre-

dicted output, 𝑦   is the mean of actual output  𝑦𝑖  , and 𝑦   is the mean of model output 

𝑦 𝑖  .  

The results of the FNN-Tool performance prediction for the total travel time and 

the total distance travelled were recorded for each control action separately. The 

model outputs of the FNN-Tool was plotted against the actual outputs to give an in-

dication of the FNN-Tool‟s ability to predict the total travel time and the total dis-

tance travelled while applying the traffic control actions, and the 𝑅2 values were cal-

culated accordingly.Table 6.5 summarizes the final results of this part of the experi-

ment.   

Table 6.5 shows that the 𝑅2 values calculated for TTT prediction are higher than 

the values calculated for the TDT prediction. This indicates that the level of accuracy 

of the prediction of TDT is lower than the level of accuracy of the prediction of TTT. 

Also, we can see that the FNN-Tool is able to predict the performance of the control 
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action 𝑐𝑎5 more accurately than other control actions. In general, it can be observed 

that 𝑅2 values obtained from the FNN-Tool are very promising with 𝑅2  ≥ 0.93  for 

all control actions, which means that the FNN-Tool is able to accurately predict the 

total travel time and the total distance travelled for all control actions. 

 

Traffic Control Action 

𝑅2 

TTT TDT 

𝑐𝑎1 0.97 0.93 

𝑐𝑎2 0.98 0.95 

𝑐𝑎3 0.98 0.95 

𝑐𝑎4 0.97 0.94 

𝑐𝑎5 0.98 0.96 

 

Table 6.5:   𝑅2 of  the TTT and TDT for the five control actions 

 

6.6 Summary 

This chapter has described an effective learning approach for the FNN-Tool. The 

proposed learning approach consists of three stages: the first stage is initializing the 

membership functions of both input and output variables by determining their cen-

tres and widths using a self-organizing algorithm; the GA-based method presented in 

the previous chapter is performed in the second stage to identify the fuzzy rules; in 

the last stage, the derived structure and parameters are fine-tuned by using the back-

propagation learning algorithm.  
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A well-known benchmark example was used to test the performance of the pro-

posed learning approach. Moreover, the prediction capability of the FNN-Tool 

trained by the proposed learning approach was assessed for forecasting the perform-

ance of traffic control actions on the current traffic state. Experimental results have 

demonstrated the ability of the proposed learning approach to identify all relevant 

fuzzy rules from the training data. Comparative analysis has shown that the proposed 

learning approach has a higher degree of prediction capability than other models. 

The main features of the proposed FNN-Tool performs the learning process of 

identifying the fuzzy rules and the learning process of adjusting rules weights in 

separate stages to ensure that only the relevant rules are trained. The main advan-

tages of the FNN-Tool and the three stage-based learning approach proposed in this 

chapter are: (1) the FNN-Tool is a general framework which combines the advan-

tages of two intelligent techniques, namely fuzzy logic and neural networks; (2) the 

initial set of parameters and the structure of the FNN-Tool have been derived from 

the numerical information; (3) it is easy to modify the fuzzy rule base and the struc-

ture of the FNN-Tool when new data (or linguistic information) becomes available; 

(4) the FNN-Tool model is applicable for solving different types of problems where 

prediction is essential. 

In the next chapter, the ITC-DSS presented in the previous chapters will be ex-

tended to obtain a scalable system using a multi-agent approach.   
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Chapter  7     

 

 

A Multi-Agent Approach for  

Intelligent Traffic Control Systems  

 

7.1 Chapter Overview 

In this chapter we propose a multi-agent based approach for road traffic control 

systems. The system proposed in this chapter is a major extension of ITC-DSS pre-

sented in the previous chapters. ITC-DSS was successfully tested for a small-sized 

network and for a limited number of traffic situations and control actions. However, 

when ITC-DSS was used for a large-sized network, it did not scale up well. The rea-

son behind that is that a large network, characterizing the current traffic state, re-

quires a large number of traffic variables, as well as the number of possible traffic 

control actions that can be applied to control the current state can be large. Using 

ITC-DSS with such large numbers of inputs is not efficient because the training 

process of the FNN-Tool is overloaded. Therefore, in this chapter we have devel-
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oped a multi-agent based approach where a large network is divided into a number 

of sub-networks, each of which has its own ITC-DSS and its own agent. The coordi-

nation between agents is achieved through a high level agent called coordinator. The 

coordinator receives proposed local control actions from the agent of the sub-

network with an incident, resolves conflicts between other affected agents, and sends 

the globally acceptable solution back to that agent.  

The chapter is structured as follows. Initially, it discusses the need for global 

network-oriented traffic control. Subsequently, the proposed multi-agent approach is 

introduced. Finally, the application of the proposed system within a case study is 

presented in order to demonstrate the capabilities of the proposed system. 

7.2 Global Network-Oriented Traffic Control 

The traffic control actions influencing a traffic situation in one area of a road 

network can also influence the traffic situation in neighbouring areas. Therefore, as 

the spatial interrelations between traffic situations at different locations in the net-

work get stronger, consequently the interrelations between the traffic control actions 

at different locations also gets stronger. These interrelations may differ depending on 

the situation (depending also upon network topology, traffic demand, etc.) and the 

control actions may be cooperative or counteractive. Coordinative control strategies 

are required in these cases, to make sure that all available control actions serve the 

same objective. For example, solving local traffic congestion only, can have a con-

sequence that the vehicles run faster into another (downstream) congestion, where 

still the same number of vehicles have to pass the downstream bottleneck (with a 

given capacity). In such a case, the average travel time on the network level will still 
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be the same or worse.  

In large traffic networks such as metropolitan areas, several agencies share the 

administration of the transport infrastructure, through a distributed network of traffic 

operation centres responsible for the management and control of their facilities. Even 

if the main purpose of these agencies is, in general, the efficient management of the 

urban network, different agencies have different policies that may generate conflict-

ing operations. Furthermore, the spatial and administrative organization of such 

agencies often results in a localized distribution of data and information, and in the 

presence of multiple decision-making entities that pursue different goals and adopt 

different criteria to achieve these goals. Therefore, the presence of different modes 

of transportation and the different demand and performance characteristics of inter-

acting subsystems, such as freeways and surface streets, require an intelligent multi-

agent control system. Several reports, for example [163] and [48], address the need 

of inter-agency cooperation for a more efficient resolution of the conflicts that may 

arise. 

Multiagent systems have been applied successfully to a variety of road traffic 

management problems such as traffic simulations and prediction problems[34], [112] 

and traffic control problems [29], [30] (See Chapter 3). Initially, most distributed 

traffic problem-solving systems were based on a distinguished agent, which achieved 

the coordination of the activities of its acquaintances in a centralized fashion. More 

recently, the focus has shifted to more autonomous agents that coordinate in a decen-

tralized fashion [62]. Centralized and decentralized multiagent traffic management 

systems differ significantly in the way that these traffic agents are coordinated (see 

Figure. 7.1). In a centralized multiagent system, all traffic agents are connected with 
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a high level agent called a coordinator agent. The coordinator agent receives local 

control proposals from the traffic control agents, resolves conflicts between them, 

and sends the resulting globally consistent local plans back to the traffic agents. An 

example of a centralized multiagent system for traffic management is InTRYS[27]. 

In a decentralized multiagent system, coordination between agents is achieved 

through communication that takes place on the same hierarchical level. An example 

of a centralized multiagent system for traffic management is TRYSA2[124]. 

 

        

                    a)  Centralized                                                                b) Decentralized 

 

Figure 7.1: Centralized and decentralized coordination in multi-agent systems. 

7.3 The Proposed Multi-agent System  

In this section we describe our proposed multi-agent system. The architecture of 

the proposed multi-agent system is a centralized coordination, where traffic agents 

are connected with a high level agent called a coordinator agent. The coordinator 

agent receives local control proposals from the traffic control agents, resolves con-

flicts between them, and sends the resulting globally consistent local signal plans 

back to the traffic agents.  
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7.3.1 Structure 

Consider a traffic network consisting of several highway (motorway/freeway) 

links. Traffic enters the network via the origin links (e.g. on-ramps or highway links 

coming from outside the network), and leaves the network via destination links (e.g. 

off-ramps or highway links going out of the network). The given traffic network is 

divided into overlapping regions, called sub-networks, and each sub-network is su-

pervised and controlled by an agent. Each agent has three traffic subsystems (see 

Figure 7.2). 

1) Monitoring and detection subsystem: This subsystem determines the current 

traffic state in the sub-network and detects any traffic problem in the sub-

network. It provides the operator with a diagnosis of the problem, together 

with an explanation for such a diagnosis. Examples of such a subsystem has 

been reported in [180], [100], and [159]. 

2) Traffic control subsystem: This subsystem assists the operator to predict the 

local performance of the proposed control actions using ITC-DSS. 

3) Traffic devices control subsystem: This subsystem monitors and controls the 

available traffic devices such as Variable Message Signs (VMS), traffic 

lights, ramp meters, etc. 

Our research focuses on the traffic control subsystem (ITC-DSS) and how this 

subsystem can react with other agents to find the most suitable global traffic condi-

tions. The description of the monitoring and detection subsystem and the traffic de-

vices control subsystem is out of the scope of this thesis. 
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Figure 7.2:  The overall structure of the proposed multi-agent system. 

The coordinator uses a control actions data-table (𝐶𝐴𝑡𝑎𝑏𝑙𝑒 ) for each of the sub-

networks. This control action table is constructed with all possible traffic control ac-

tions that can be applied on a sub-network. As mentioned before, a traffic control 

action can be one control action such as lane closure, ramp metering, variable mes-

sage signs etc., or a combination of several control actions. The control action data-

table is generated for a given sub-network off-line using the available road control 

facilities, traffic operator‟s experience, and historical traffic data. This also takes into 

consideration the interrelations between the traffic control actions at different loca-

tions in the network. The overall structure of the proposed multi-agent system is de-

picted in Figure 7.2.  

The structure of  𝐶𝐴𝑡𝑎𝑏𝑙𝑒   is illustrated in Table 7.1. Considering sub-network 𝑍, 

each record in  𝐶𝐴𝑡𝑎𝑏𝑙𝑒   is characterized by the following: 

 Traffic control action (𝑐𝑎𝑖): name (or description) of the traffic control action 

that can be applied on the sub-network 𝑍.  

Coordinator

CA
table,x

CA
table,z

CA
table,y

Agent (z)

•Monitoring

•ITC-DSS.

•Devices Control

Agent (x)

•Monitoring

•ITC-DSS.

•Devices Control

Agent (y)

•Monitoring

•ITC-DSS.

•Devices Control
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 Affected sub-networks (𝑠𝑛𝑗 ): all sub-networks that might be influenced by 

the traffic control action 𝑐𝑎𝑖 . This field is characterized by the following: 

- Agent-ID (𝑔𝑗 ): the identity (or name) of the agent that controls the sub-

network (𝑠𝑛𝑗 ). 

- Influence Rates ( 𝑌j
𝑖  and 𝑅j

𝑖  ), where 𝑌j
𝑖  represents percentage change (posi-

tive or negative) that may happen in the traffic flows from sub-network  𝑍 

to the affected sub-network (𝑠𝑛𝑗 ) (i.e. 𝑠𝑛𝑗   traffic demand) due to the appli-

cation of the traffic control action 𝑐𝑎𝑖 , and 𝑅j
𝑖  representing the outflow re-

strictions for the affected sub-network (𝑠𝑛𝑗 ) due to the application of the 

traffic control action 𝑐𝑎𝑖 . The value of 𝑅j
𝑖  is given as a percentage and it 

means that the maximum outflow capacity will be reduced by 𝑅j
𝑖   during 

the application of 𝑐𝑎𝑖 . The values of  𝑌j
𝑖  and 𝑅j

𝑖   can be estimated using the 

historical traffic data or alternatively using a traffic simulation program. 

Traffic Control 

Action 

Affected sub-networks 

𝑠𝑛1 (𝑔1) 𝑠𝑛2 (𝑔2) . . . 𝑠𝑛𝑗  (𝑔j) 

𝑐𝑎1 𝑌1
1 𝑅1

1 𝑌2
1 𝑅2

1 . . . 𝑌j
1 𝑅j

1 

𝑐𝑎2 𝑌1
2 𝑅1

2 𝑌2
2 𝑅2

2 . . . 𝑌j
2 𝑅j

2 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

𝑐𝑎𝑖  𝑌1
𝑖  𝑅1

𝑖  𝑌2
𝑖  𝑌2

𝑖  . . . 𝑌j
𝑖  𝑅j

𝑖  

Table 7.1: The structure of the proposed control actions data table  𝐶𝐴𝑡𝑎𝑏𝑙𝑒  
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7.3.2 Operation 

Once the control actions data-tables have been constructed, they are used by the 

coordinator to identify the best global control actions as follows. Suppose there are 4 

traffic agents (A, B, C, and D), which control 4 sub-networks (𝑠𝑛1, 𝑠𝑛2 , 

 𝑠𝑛3 , 𝑠𝑛4), respectively. When a traffic problem is detected by the monitoring sub-

system controlled by agent A, it runs its ITC-DSS to come up with a ranked list of 

best local control actions (S) for the coordinator (as explained in Chapter 4). Each 

control action of S has a fitness value calculated by agent A (i.e. local aggregated 

performance  𝑃𝑖  ). Let  𝑆 =  𝑐𝑎1 , 𝑐𝑎2 , 𝑐𝑎3 }  . Next, all agents that will be affected by 

any control action of the proposed S, are determined by the coordinator 

ing 𝐶𝐴𝑡𝑎𝑏𝑙𝑒  . Let Agent B be affected by 𝑐𝑎1  and 𝑐𝑎2 , Agent D be affected 

by 𝑐𝑎1   and 𝑐𝑎3 , and Agent C be not affected (i.e. its traffic state will not be af-

fected by any control action of S). In this case, the coordinator will send 

𝑐𝑎1  and 𝑐𝑎2  with their associated influence rates (𝑌𝐵
1 and 𝑌𝐵

2) to Agent B to calcu-

late their fitness. Similarly, 𝑐𝑎1  and 𝑐𝑎3  , with their associated influence rates (𝑌𝐷
1 

and 𝑌𝐷
3), will be sent to Agent D to calculate their fitness.  

The affected agents (B and D) will calculate the fitness of the proposed control 

actions using the influence rates, as we will see in the next section, then will return 

the results to the coordinator. The global performance of each control action of S is 

predicted by the coordinator using the fitness of the control actions received from 

agent A and the affected agents. The process of calculating the global performance of 

the control actions is explained in Section 7.4.4. Finally, the proposed control actions 

of agent A (S) will be re-ranked by the coordinator based on their global performance 
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and returned to agent A. In some cases, agent A may need to use a traffic simulation 

program to effectively compare the best two (or more) control actions before apply-

ing them. If, for example, 𝑐𝑎1 has been selected by agent A as a best global control 

action, the coordinator is responsible for informing agents B and D to guarantee that 

all applied control actions at that time serve the same objective. Thus, agents B and 

D can apply their selected local control actions (if any) simultaneously. A simple 

flowchart of this process is illustrated in Figure 7.3.  

 

 

 

Figure 7.3: Flowchart of the process of the proposed multi-agent system. 

A traffic problem is detected by the 

monitoring subsystem in Agent A

ITC-DSS is run by  Agent A

All affected agents by S are 
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The global performance is 

calculated by Coordinator, and S is 
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Start

End

Process

Data
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7.3.3 Calculation of Control Action Fitness 

Once the affected agents receive the proposed local control actions (𝑐𝑎𝑖) with 

their associated influence rates (𝑌𝑗
𝑖  and 𝑅𝑗

𝑖) from the coordinator, they run their ITC-

DSS subsystems to calculate their fitness for the proposed control actions. According 

to our example, A is the agent which detected the problem and B is the agent which 

is affected by the control action 𝑐𝑎1  and 𝑐𝑎2 . To calculate the fitness of 𝑐𝑎1 , agent 

B runs his pre-trained ITC-DSS. In this case, the input of ITC-DSS will be the cur-

rent traffic state of sub-network (𝑠𝑛2) (including any current traffic accidents, the 

predicted traffic demand, and the outflow restrictions due to the application of 𝑐𝑎1 ) 

and only the internal control actions that mainly influence the traffic flows within its 

network (such as shoulder lane opening or variable speed limits). The main reason 

behind agent B using only the internal control actions is to ensure that the nominated 

control actions will not have the negative knock on effect of creating a new problem 

for one or more of its neighbours. 

The predicted traffic demand of the sub-network associated with agent B (i.e. 𝑠𝑛2) 

coming from the sub-network associated with agent A (i.e. 𝑠𝑛1) due to the applica-

tion of  𝑐𝑎1 , can be calculated by using the influence rate (𝑌𝐵
1) as follows: 

 

𝑃_𝐷𝑒𝑚𝐵
1 =  𝐶_𝐷𝑒𝑚𝐵 +   𝐶_𝐷𝑒𝑚𝐵 ∗  

𝑌𝐵
1

100
    (7.1) 

 

where 𝑃_𝐷𝑒𝑚𝐵
1  and 𝐶_𝐷𝑒𝑚𝐵  denote the predicted and the current traffic demand of 

sub-network 𝑠𝑛2 (associated with agent B) coming from sub-network 𝑠𝑛1 (associ-
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ated with agent A) respectively.  

Finally, the best internal control action will be selected by agent B and its aggre-

gated performance will be sent as agent B‟s fitness (𝐹𝐵
1) of  𝑐𝑎1  to the coordinator. 

The fitness of a control action (𝐹𝑗
𝑖) is in the range of [0,1]. When 𝐹𝑗

𝑖  equals zero, the 

control action  𝑐𝑎𝑖 is totally unsuitable for agent 𝑔𝑗  (i.e. for sub-network 𝑠𝑛𝑗 ). In 

contrast, when 𝐹𝑗
𝑖  equals 1, the control action 𝑐𝑎𝑖 is totally suitable.  

7.3.4 Global Performance of Control Action  

The process of calculating the global performance of a control action is per-

formed by the coordinator. All affected agents will calculate the fitness of the pro-

posed control actions received from the coordinator according to their traffic states, 

and then return the results to the coordinator. The global performance 𝑝𝑔
𝑖  for each 

proposed local control action 𝑐𝑎𝑖  is now determined as: 

 

𝑝𝑔
𝑖 =

𝑝𝑙
𝑖 +  (𝐹𝑗

𝑖   𝜔𝑗     μj
𝑖)N

𝑗=1

1 +  (𝜔𝑗    μj
𝑖N

𝑗=1 )
 (7.2) 

 

where 𝑝𝑙
𝑖  is the aggregated performance of the control action 𝑐𝑎𝑖 which is calculated 

by agent A (i.e. the local fitness of 𝑐𝑎𝑖  of agent A); N is the number of affected 

agents; 𝐹𝑗
𝑖  is the fitness of 𝑐𝑎𝑖  which is provided by the affected agent 𝑔𝑗  (accord-

ing to our example 𝑔𝑗 ∈{B,D}); the weights 𝜔𝑗 > 0 represent the relative impor-

tance of agent 𝑔𝑗 . The weights (𝜔𝑗 ) are not necessarily fixed, but can be changed 

on-line by the coordinator, depending on the current traffic management policies and 
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other considerations; and 𝜇𝑗
𝑖  is a measure that shows how much impact the traffic 

control action 𝑐𝑎𝑖  is having on the affected sub-network associated with agent 𝑔𝑗 . 

When 𝜇𝑗
𝑖  is high, 𝑐𝑎𝑖 has a high impact on the traffic state of the sub-network asso-

ciated with agent𝑔𝑗 . When 𝜇𝑗
𝑖  is low, 𝑐𝑎𝑖 has a low impact on the traffic state of the 

sub-network associated with agent 𝑔𝑗 . 𝜇𝑗
𝑖  is calculated by the coordinator using in-

fluence rates ( 𝑌𝑗  and 𝑅𝑗  ) from 𝐶𝐴𝑡𝑎𝑏𝑙 𝑒  as follows : 

 

𝜇𝑗
𝑖  =  

 
 
 

 
     

𝑌𝑗
𝑖

100
 ∗  

𝑃𝐷𝑒𝑚 𝑗
𝑖

𝑀𝑎𝑥𝑂𝐹𝑗
  +  

𝑅𝑗
𝑖

100
           𝑖𝑓  𝑌𝑗

𝑖  >   0 

𝑅𝑗
𝑖

100
                                                       𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒

  
      (7.3) 

 

where 𝑃_𝐷𝑒𝑚𝑗
𝑖  is the predicted traffic inflow into the affected sub-network associ-

ated with agent 𝑔𝑗  coming from the sub-network associated with agent A due to the 

application of 𝑐𝑎𝑖  (i.e. traffic demand of agent j). 𝑃𝐷𝑒𝑚 𝑗
𝑖  can be calculated by using 

Equation 7.1. 𝑀𝑎𝑥𝑂𝐹𝑗   is the maximum possible traffic inflow into the affected sub-

network associated with agent 𝑔𝑗  coming from the sub-network associated with 

agent A (e.g. the maximum capacity of the links between two sub-networks). 

When two or more different traffic problems are detected by different agents, 

the coordinator is responsible for ranking those agents based on their importance at 

that time, with the most important one being considered first. The other agents with 

lower priority will consider their traffic problems as a part of their current traffic 

states when they use their ITC-DSS to calculate the fitness of the local control ac-

tions proposed by that agent (the most important agent). 
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7.4 Case Studies and Experimental Results 

7.4.1 Riyadh Traffic Case Study 

In order to test the technical feasibility of the proposed multi-agent system, a 

traffic case-study was created for a part of the traffic network in the city of Riyadh in 

Saudi Arabia (see Figure 7.4). The selected network, which is an extension of our 

case study discussed in Chapter 4, consists of three parallel highways (the Olaya 

highway, the King Fahad highway, the Takhassusi highway) connected via several 

on- and off-ramps. In this case study, we only consider traffic going from the south 

to the north (i.e. towards the city centre). Traffic enters the network from five origins 

(O1, O2, O3, O4, and O5) and leaves the network through six destinations (D1, D2, 

D3, D4, D5, and D6). We have divided the network into three sub-networks King 

Fahad, Olaya, and Takhassusi (see Figure 7.4), controlled and managed by three 

agents A, B, and C, respectively. It is worth noting that the King Fahad sub-network 

alone represents the part that was considered in the case study presented in Chapter 

4. 

The sub-networks have been simulated separately using METANET (as shown 

in Chapter 6) for several traffic states and different control actions with the following 

parameters:  

 

 Incidents vary in severity from 20% to 80% of reduction in link capacity;  

 Simulated time period two hours (e.g. from 9:00 am to 11:00 am);  

 The traffic entering the King Fahad sub-network is divided as follows:  
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20% goes to destination D1 (97% uses the King Fahad highway, and 3% 

uses the Olaya highway), 55% goes to destination D2 (90% uses the King 

Fahad highway, 6% uses the Takhassusi highway, and 4% uses the Olaya 

highway), while the rest goes to destinations D3 (5%), D4 (10%), D5 (5%), 

and D6 (5%);   

 The traffic entering the Olaya sub-network is divided as follows: 20% goes 

to destination D3, 60% goes to destination D4, and the rest goes to destina-

tions D1 (10%) and D2 (10%);  

 The traffic entering the Takhassusi sub-network is divided as follows: 70% 

goes to destination D6, 20% goes to destination D5, and the rest goes to 

destinations D2 (10%);  

 The traffic state has been represented by: average traffic demand (TDm), 

average traffic density (TDn), incident severity (IS), and outflow restric-

tions (OFR). The generated data has been used to train the ITC-DSS and to 

create a CAtable  for each sub-network.   

 

Note that the results presented in this section are not intended to verify the abil-

ity of ITC-DSS to correctly predict the best local control actions, because this has 

already been done in Chapters 4 and 6. The aim is to demonstrate the technical fea-

sibility of the proposed multi-agent approach, and to show how the traffic agents re-

act with the coordinator in order to effectively identify the best global control action 

from a set of control actions. 
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Figure 7.4: The Riyadh traffic network considered in the case study. 

 

7.4.2 Application of the Proposed Multi-agent Ap-

proach 

In order to make a comparison with the results obtained in the case study pre-

sented in Chapter 4, i.e., to illustrate the difference between best local control actions 

and best global control actions, we are considering here the following similar control 

actions.  

 𝑐𝑎1: Using VMS at point A to direct traffic that goes to D2 to use the Olaya 

highway. 

Agent  A

Agent  B

Agent  C

O1

O3

O5

O2

O4

D3

D1

D2
D4

D5

D6

Traffic Incident

B

A

C

Ramp Metering

Ramp Metering

VMS &VSL

Olaya Highway

King Fahid Highway

Takhassusi Highway

DRamp Metering

S1

S2

L1

L2

L3

X

S3

S4

VMS &VSL E
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 𝑐𝑎2: Using VMS at point A to direct traffic that goes to D1 to use the Olaya 

highway. 

 𝑐𝑎3: Using VMS at point A to direct traffic that goes to D1 and traffic that 

goes to D2 to use the Olaya highway. 

 𝑐𝑎4: Using VMS at point A to direct traffic that goes to D2 to use the Tak-

hassusi highway. 

 𝑐𝑎5: Using VMS at point A to direct traffic that goes to D1 to use the Olaya 

highway and on Ramp Metering at point B. 

 

The considered current traffic states of the three sub-networks are summarized 

in Table 7.2. For comparison purposes, we consider the same traffic state of the King 

Fahad sub-network presented in Chapter 4 and we have assumed a heavy traffic state 

in the Olaya sub-network, and a smooth traffic state in the Takhassusi sub-network.  

 

Traffic 

Variables 

King Fahad  

sub-network 

Olaya 

sub-network 

Takhassusi  

sub-network 

TDm 6800 7500 4000 

TDn 32 24 9 

IS 75% 0% 0% 

OFR 0% 0% 0% 

 

Table 7.2: The considered traffic states of the three sub-networks. 
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The current and the maximum possible traffic demands (𝐶_𝐷𝑒𝑚𝑗 and 𝑀𝑎𝑥_𝑂𝐹𝑗 ) 

of Olaya and Takhassusi sub-networks coming from King Fahad sub-network are  

shown in Table 7.3. 

 

Traffic 

Variables 

Olaya 

sub-network 

Takhassusi  

sub-network 

𝐶_𝐷𝑒𝑚𝑗  943.4 809.84 

𝑀𝑎𝑥_𝑂𝐹𝑗  4000 4000 

Table 7.3: The current and the maximum possible traffic demands (𝐶_𝐷𝑒𝑚𝑗 and 

𝑀𝑎𝑥_𝑂𝐹𝑗 ) of Olaya and Takhassusi sub-networks coming from King Fahad sub-

network. 

Creating  𝑪𝑨𝒕𝒂𝒃𝒍𝒆 for the King Fahd sub-network 

As we mentioned before, a 𝐶𝐴𝑡𝑎𝑏𝑙𝑒  can be created using historical traffic data or 

a traffic simulation model. In this experiment we have used the METANET pro-

gram. Table 7.4 shows the 𝐶𝐴𝑡𝑎𝑏𝑙𝑒  for the King Fahad sub-network with the five 

control actions (𝑐𝑎1 , 𝑐𝑎2 , 𝑐𝑎3 , 𝑐𝑎4 and 𝑐𝑎5 ). Due to the fact that the Olaya sub-

network is connected with the King Fahad sub-network via two outflow links L1 and 

L2 (see Figure 7.4), the restriction of the outflow capacity (𝑅𝑗
𝑖) field is represented 

by two columns (columns 3 & 4). For example, as can be seen from the table, the 

traffic control 𝑐𝑎1  affects the traffic demand on the Olaya sub-network negatively 

by 207.6% and the traffic demand on the Takhassusi sub-network positively by 

24.2%. That is, 𝑐𝑎1   increases the traffic inflow into the Olaya sub-network from the 
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King Fahad sub-network by 207.6%, and decreases the traffic inflow into the Tak-

hassusi sub-network from the King Fahad sub-network by 24%. This is because 55% 

of the traffic that enters the King Fahad sub-network and needs to go to D2 is di-

rected by 𝑐𝑎1
𝐴.  

 

Control  

Actions 

Affected sub-networks 

Olaya sub-network 

 (Agent B) 

Takhassusi sub-network 

(Agent C) 

𝑌B
𝑖  

𝑅B
𝑖  

 𝑌C
𝑖  𝑅C

𝑖  

L1 L2 

𝑐𝑎1  +207.6% 0% 0% -24.2% 0% 

𝑐𝑎2  +76.3% 0% 0% 0% 0% 

𝑐𝑎3  +283.9% 0% 0% -24.2% 0% 

𝑐𝑎4  -8.7% 0% 0% +225.1% 0% 

𝑐𝑎5  +76.3% 30% 0% 0% 0% 

 

Table 7.4: 𝐶𝐴𝑡𝑎𝑏𝑙𝑒   for the King Fahd sub-network with the five control actions. 

Table 7.4 also shows that only 𝑐𝑎5   reduces the maximum outflow capacity L1 

of the Olaya sub-network by 30%, while there is no negative effect on the outflow of 

the Takhassusi sub-network from any control action. It is worth noting that the re-

striction of outflow capacity of a link does not have that much of a negative impact if 

the traffic outflow in that link is low. For example, if the maximum capacity of a link 
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is 4,000 vehicles/hour, 30% restriction mainly affects the sub-network outflow when 

the traffic outflow of that link is more than 2,800 vehicles/hour. 

Calculation of Control Action Fitness  

Agents B and C (the affected agents) calculate the local fitness of 

𝑐𝑎1 , 𝑐𝑎2 , 𝑐𝑎3 , 𝑐𝑎4  and  𝑐𝑎5  using their ITC-DSS, as explained earlier. Table 7.5 

summarizes the values of 𝑤𝐶𝑑  , 𝐶𝑑
𝑚𝑖𝑛  and 𝐶𝑑

𝑚𝑎𝑥  used by agents B and C to calculate 

the aggregated performance (fitness) of each control action. The table shows that 

𝑤𝑇𝐷𝑇  is assigned 0 by agent B, indicating that TTT is the only considered perform-

ance criterion at that time. As mentioned before, the values of  𝑤𝐶𝑑  , 𝐶𝑑
𝑚𝑖𝑛  and 𝐶𝑑

𝑚𝑎𝑥  

are not fixed. They are assigned by the operator based on the traffic state or other 

policies. 

 

Traffic 

sub-networks 

TTT TDT 

𝑤𝑇𝑇𝑇  𝑇𝑇𝑇𝑚𝑖𝑛  𝑇𝑇𝑇𝑚𝑎𝑥  𝑤𝑇𝐷𝑇  𝑇𝐷𝑇𝑚𝑖𝑛  𝑇𝐷𝑇𝑚𝑎𝑥  

King Fahad 

sub-network 
1.5 3000 10000 0.5 80000 250000 

Olaya  

sub-network 
1.0 3300 8800 0 150000 300000 

Takhassusi  

sub-network 
1.5 1800 7000 0.5 180000 250000 

 

Table 7.5: the values of 𝑤𝐶𝑑  , 𝐶𝑑
𝑚𝑖𝑛  and 𝐶𝑑

𝑚𝑎𝑥  used by agents B and C to calculate 

the aggregated performance of each control action  

Table 7.6 and Table 7.7 summarize the best performance of the five control ac-
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tions 𝑐𝑎1 , 𝑐𝑎2 , 𝑐𝑎3 , 𝑐𝑎4  and 𝑐𝑎5  predicted by agents B and C respectively after 

considering the traffic demands and the outflow restrictions imposed by agent A,  

and their internal control actions. In this part of the experiment we have considered 

two internal control actions for Agent B: 1) doing nothing; 2) shoulder lane opening 

on section (S3 - S4); and two internal control actions for agent C: 1) doing nothing; 

2) reduce the speed limit from 90 k/h to 60 k/h using VSL at point E (see Figure 

7.4). For each control action, 𝐸𝑇𝑇𝑇   and 𝐸𝑇𝐷𝑇  have been calculated using Equation 

4.2 and summarized in columns 3 and 5. The aggregated performances (fitness) of 

the control actions, which will be returned to the coordinator, are calculated using 

Equation 4.1 and listed in column 6 of each table.  

 

Control  

Actions 
TTT 𝐸𝑇𝑇𝑇  TDT 𝐸𝑇𝐷𝑇  

Aggregated  

performance  

(Fitness) 

𝑐𝑎1  7500.35 0.24 237209.50 0.42 0.24 

𝑐𝑎2  4771.25 0.73 235074.10 0.43 0.73 

𝑐𝑎3  8796.80 0.00 232126.80 0.45 0.00 

𝑐𝑎4  3373.71 0.99 247009.50 0.35 0.99 

𝑐𝑎5  5935.66 0.52 222331.50 0.52 0.52 

 

Table7.6: The predicted performance of the five control actions for agent B. 

It is observed from Table 7.6 that 𝑐𝑎4  is recommended by agent B (with fitness 

0.99) because the application of 𝑐𝑎4  does not increase the traffic inflow to Olaya 

sub-network, while 𝑐𝑎3  is completely rejected (with fitness 0.0) because it increases 

the Olaya sub-network inflow which affects the sub-network traffic state very nega-
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tively. 𝑐𝑎5  has a moderately negative impact on the inflow and the outflow of the 

Olaya sub-network and has 0.52 fitness. On the other hand, Table 7.7 shows that 

agent C strongly recommends all control actions except 𝑐𝑎4 , which increases the 

traffic inflow to the Takhassusi sub-network. However, 𝑐𝑎4  is still accepted by 

agent C (with fitness 0.62), because the traffic flow in the Takhassusi sub-network at 

that time is smooth. 

 

Control  

Actions 
TTT 𝐸𝑇𝑇𝑇  TDT 𝐸𝑇𝐷𝑇  

Aggregated  

performance   

(Fitness) 

𝑐𝑎1
𝐴 1792.28 1.00 180820.40 0.99 1.00 

𝑐𝑎2
𝐴 1871.61 0.99 187451.30 0.89 0.97 

𝑐𝑎3
𝐴 1792.28 1.00 180820.40 0.99 1.00 

𝑐𝑎4
𝐴 2753.42 0.82 248387.90 0.02 0.62 

𝑐𝑎5
𝐴 1871.61 0.99 187451.30 0.89 0.97 

 

Table 7.7: The predicted performance of the five control actions for agent C. 

Calculation of Control Action Global Performance  

Table 7.8 summarizes the final results of the proposed multi-agent system for 

calculating the global performance for the five control actions. The table shows that 

the Olaya sub-network is assigned a larger weight, ω = 1 , than the Takhassusi sub-

network (ω = 0.5), indicating the high importance of the Olaya sub-network at that 

time. The μ values of each sub-network, which indicates how the sub-network was 

affected by the control actions, are computed for each control action using Equation 

7.3 and summarized in columns 4 and 6. The local and the global performance of the 
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control actions are given in the second and the last columns of the table, respec-

tively.  

It is observed from Table 7.8 that the best global control action is 𝑐𝑎4   which 

can reduce the congestion in the King Fahad sub-network and also improve the over-

all traffic state in the network. Although  𝑐𝑎3   has the best local performance to 

solving the traffic congestion in the King Fahad sub-network, it is not the best global 

control action. That is simply because 𝑐𝑎3  passes a large number of vehicles from 

the King Fahad sub-network to the Olaya Sub-network at a time when the Olaya 

sub-network is suffering from bad traffic, which will not improve the overall traffic 

state in the network overall.  

 

Control  

Action 

(Ranked) 

Local  

Aggregated 

Performance 

(King Fahad 

sub-network) 

Olaya  

sub-network 

Takhassusi 

sub-network 

Global  

Aggregated 

Performance 
𝛚𝐁: 1 𝛚𝐂: 0.5 

Fitness 

(F) 
𝛍 

Fitness 

(F) 
𝛍 

𝑐𝑎4  0.61 0.99 0.00 0.62 1.48 0.61 

𝑐𝑎2  0.52 0.73 0.32 0.96 0.00 0.57 

𝑐𝑎5  0.53 0.52 0.62 0.96 0.00 0.52 

𝑐𝑎1  0.70 0.24 1.51 1.00 0.00 0.42 

𝑐𝑎3  0.81 0.00 2.57 1.00 0.00 0.23 

 

Table 7.8: Summary of the final results of the proposed multiagent approach 

In order to validate the results obtained from the proposed multi-agent system so 

far, the same case study (the Riyadh traffic network) has been simulated as one large 
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traffic network using the METANET simulation model and the same traffic state has 

been considered. METANET has then been run to predict the performance of the 

five control actions 𝑐𝑎1 , 𝑐𝑎2 , 𝑐𝑎3 , 𝑐𝑎4  and 𝑐𝑎5 . The output shows that the 

METANET simulation model indicates the same trend as the proposed multi-agent 

system, when it recommends 𝑐𝑎4  as the best global control action. However, it is 

noted that the proposed multi-agent system is more manageable for a large network. 

The weights (ωj), which represent the relative importance of sub-networks, can be 

changed on-line, depending on the current traffic management policy and on other 

considerations. Furthermore, the proposed multi-agent system is much faster than the 

simulation model when it is used to rank several control actions according to their 

approximate performance, as all training processes of the ITC-DSS and the creation 

of 𝐶𝐴𝑡𝑎𝑏𝑙𝑒  are done off-line. This example demonstrates that the proposed system 

can quickly and roughly rank several control actions based on their global perform-

ance.  

7.4.3 Different Traffic Scenarios 

After demonstrating the technical feasibility of the proposed multi-agent ap-

proach for identifying the best global control action, this section demonstrates the 

capability of the proposed multi-agent approach with different traffic scenarios. Also 

this part of the experiment shows how the weights (ωj) play an important role for 

the operator in identifying the best global control action. In this experiment we have 

increased the number of control actions to ten controls and used the proposed multi-

agent system to predict their global performance for five different traffic scenarios. 

Table 7.9 shows a brief description of the ten control actions considered in this part 
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of the experiment, while Table 7.10 displays 𝐶𝐴𝑡𝑎𝑏𝑙𝑒   for the King Fahad sub-

network with these control actions. Since the previous section showed the applica-

tion of all steps of the proposed multi-agent system, the rest of this section only dis-

cusses the final results of the proposed multi-agent system for each traffic scenario. 

 

Control 

Action 
Description 

𝑐𝑎0  Doing nothing 

𝑐𝑎1  
Using VMS at point A to direct traffic that goes to D2 to use the 

Olaya highway. 

𝑐𝑎2  
Using VMS at point A to direct traffic that goes to D1 to use the 

Olaya highway. 

𝑐𝑎3  
Using VMS at point A to direct traffic that goes to D1& D2 to use 

the Olaya highway. 

𝑐𝑎4  
Using VMS at point A to direct traffic that goes to D2 to use the 

Takhassusi highway 

𝑐𝑎5  

Using VMS at point A to direct traffic that goes to D1 to use the 

Olaya highway and traffic that goes to D2 to use the Takhassusi 

highway. 

𝑐𝑎6  
Using VMS at point A to direct traffic that goes to D2 to use the 

Olaya highway  &  on ramp metering at point B. 

𝑐𝑎7  
Using VMS at point A to direct traffic that goes to D1 to use the 

Olaya highway and applying  Lane Closure on  points C & D. 

𝑐𝑎8  
Shoulder Lane Opening on section (S1 – S2) on the King Fahad 

highway and on ramp metering at points B, C & D. 

𝑐𝑎9  

Using VSL at point A to reduce the speed limit from 90 k/h to 60 

k/h, and Shoulder Lane Opening on section (S1 – S2) on the King 

Fahad highway. 

 

Table 7.9: Brief description of the ten control actions considered in this part of the 

experiment. 



 
CHAPTER 7: A MULTI-AGENT APP. FOR INTELLIGENT TRAFFIC CONTROL SYS.            153 

 

 

Control 

Actions 

Affected sub-networks 

Olaya sub-network 

 (Agent B) 

Takhassusi sub-network 

(Agent C) 

𝑌B
𝑖  

𝑅B
𝑖  

 𝑌C
𝑖  𝑅C

𝑖  

L1 L2 

𝑐𝑎0  0% 0% 0% 0% 0% 

𝑐𝑎1  +207.6% 0% 0% -24.2% 0% 

𝑐𝑎2  +76.3% 0% 0% 0% 0% 

𝑐𝑎3  +283.9% 0% 0% -24.2% 0% 

𝑐𝑎4  -8.7% 0% 0% +225.1% 0% 

𝑐𝑎5  +68% 0% 0% +255.1% 0% 

𝑐𝑎6  +76.3% 30% 0% 0% 0% 

𝑐𝑎7  +207.6% 0% 25% -24.2% 25% 

𝑐𝑎8  0% 30% 30% 0% 30% 

𝑐𝑎9  0% 0% 0% 0% 0% 

 

Table 7.10: The 𝐶𝐴𝒕𝒂𝒃𝒍𝒆  for the King Fahad sub-network with the ten control ac-

tions. 

From Tables 7.9 and 7.10, it can be seen that control actions  𝑐𝑎0  and 𝑐𝑎9  are 

local control actions because they do not have any impact on the traffic state in the 

Olaya and Takhassusi sub-networks. Also we can observe that the average traffic 

demand (𝑌j
𝑖) of the Olaya sub-network is affected negatively by the control actions 

 𝑐𝑎1,
𝐴𝑐𝑎2 ,  𝑐𝑎3 , 𝑐𝑎5 , 𝑐𝑎6  and 𝑐𝑎7 , while only the control actions 𝑐𝑎6 , 𝑐𝑎7  and 𝑐𝑎8   

reduce the outflow capacity of the Olaya sub-network out links. On the other hand, 
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only 𝑐𝑎4  and 𝑐𝑎5   have negative impacts on the average traffic demand (𝑌j
𝑖) of the 

Takhassusi sub-network, while the outflow capacity of the sub-network out links are 

only reduced by  𝑐𝑎7  and 𝑐𝑎8 . 

The five traffic scenarios considered in this experiment represent five different 

traffic states in the King Fahad, Olaya and Takhassusi sub-networks. Figures 7.5-7.9 

show the five scenarios: 

 

1) The first scenario represents a smooth traffic state in all sub-networks 

(i.e. there are no traffic incidents in any of the sub-networks). 

2) The second scenario represents a congestion traffic state in all sub-

networks (i.e. there are traffic incidents in all sub-networks simultane-

ously).  

3) In the third scenario, we suppose a traffic incident in King Fahad Sub-

network only.  

4) The fourth scenario shows a traffic state with two simultaneous traffic 

incidents in the King Fahad and Olaya sub-networks. 

5) The fifth scenario shows two simultaneous traffic incidents in the King 

Fahad and Takhassusi sub-networks. 

 

Note that in scenarios 1 and 2, the weights (ω
j
) will mainly affect the process of 

ranking the control actions, because the overall traffic state in the Olaya and the 

Takhassusi sub-networks are similar.  
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Figure 7.5:  The first traffic scenario for the three traffic sub-networks. 

 

Figure 7.6: The second traffic scenario for the three traffic sub-networks. 
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Figure 7.7 The third traffic scenario for the three traffic sub-networks. 

 

Figure 7.8: The fourth traffic scenario for the three traffic sub-networks. 
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Figure 7.9: The fifth traffic scenario for the three traffic sub-networks 

 

First Scenario: 

Table 7.11 summarizes the final results obtained by the proposed multi-agent 

system for the first scenario. Since the first scenario represents a smooth traffic state 

in all sub-networks, including the King Fahad sub-network, it is observed from Ta-

ble 7.11 that the global aggregated performance of the control actions are almost 

similar to the local aggregated performance. Moreover, since the King Fahad sub-

network does not have any traffic congestion, 𝑐𝑎0  has high local and global per-

formance, indicating that there is no need for applying any control action. However 

some control actions can cause adverse effects such as 𝑐𝑎4  and 𝑐𝑎5 . Table 7.11 also 

shows that all sub-networks in this scenario have the same importance (ωj = 1). The 

Agent  A

Agent  B

Agent  C

O1

O3

O5

O2

O4

D3

D1

D2
D4

D5

D6

X Traffic Incident

B

A

C

Ramp Metering

Ramp Metering

VMS &VSL

Olaya Highway

King Fahid Highway

TakhassusiHighway

DRamp Metering

X Traffic Incident

S1

S2



 
CHAPTER 7: A MULTI-AGENT APP. FOR INTELLIGENT TRAFFIC CONTROL SYS.            158 

 

 

best global control action in the first scenario is 𝑐𝑎8 , because it further improves the 

traffic state of the King Fahad sub-network by opening shoulder lanes, and its side 

effect is not felt by the affected agents (B and C).  

 

Control  

Action 

Local  

Aggregated 

Performance 

(King Fahad 

sub-network) 

Olaya  

sub-network 

Takhassusi sub-

network 
Global  

Aggregated 

Performance 
𝛚𝐁: 1 𝛚𝐂: 1 

Fitness 

(F) 
𝛍 

Fitness 

(F) 
𝛍 

𝑐𝑎0  0.94 0.99 0.00 0.98 0.00 0.94 

𝑐𝑎1  0.90 0.82 1.51 1.00 0.00 0.85 

𝑐𝑎2  0.91 0.96 0.32 0.98 0.00 0.93 

𝑐𝑎3  0.87 0.76 2.57 1.00 0.00 0.79 

𝑐𝑎4  0.78 1.00 0.00 0.79 1.48 0.79 

𝑐𝑎5  0.76 0.97 0.27 0.79 1.48 0.80 

𝑐𝑎6  0.92 0.94 0.62 0.98 0.00 0.93 

𝑐𝑎7  0.91 0.73 1.63 1.00 0.25 0.82 

𝑐𝑎8  1.00 0.99 0.30 0.98 0.30 0.99 

𝑐𝑎9  0.92 0.99 0.00 0.98 0.00 0.92 

 

Table 7.11: Summary of the final results of the proposed multi-agent system for the 

first scenario. 

Figure 7.10 shows a comparison between the local and global aggregated per-

formance of the ten control actions for the first scenario. The first three bars repre-

sent the local performance (fitness) of a control action for the three sub-networks 

(the King Fahad sub-network, the Olaya sub-network, and the Takhassusi sub-

network), while the last bar (the black one) represents the global performance of the 

control action. 
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𝑐𝑎0  𝑐𝑎1  𝑐𝑎2  𝑐𝑎3  𝑐𝑎4  𝑐𝑎5  𝑐𝑎6  𝑐𝑎7  𝑐𝑎8  𝑐𝑎9  

 

Figure 7.10: The local and global performance of the ten control actions for the first 

scenario. 

Second Scenario: 

Table 7.12 demonstrates the output of the proposed multi-agent system for the 

second scenario, where all sub-networks have incidents. It is observed from the table 

that all control actions that negatively affect a sub-network are given a low fitness by 

that sub-network. This is simply because all sub-networks have traffic congestion 

and they try to avoid any more aggravation. For example, the Olaya sub-network 

gives the control action 𝑐𝑎3  the lowest fitness (0.07) because 𝑐𝑎3  directs all traffic 

that goes to D1 and D2 to use the Olaya sub-network, while 𝑐𝑎4  has the highest fit-

ness (0.69), because it does not have any negative impact.  In addition, it reduces the 
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traffic inflow to the Olaya sub-network by 9% (see Table 7.9). In this scenario the 

Olaya sub-network is assigned a larger weight (ωj = 1) than the Takhassusi sub-

network (ωj = 0.5), indicating the high importance of that part of the network at 

that time. Thus, the output ranked list is mainly affected by the fitness obtained from 

the Olaya sub-network. For example, although control action 𝑐𝑎3  has a high local 

fitness (0.87) and it is recommended by the Takhassusi sub-network (with fitness 

0.82), it has very low global performance (0.29) because it is given a very low fit-

ness (0.07) by the Olaya sub-network.  

 

Control  

Action 

Local  

Aggregated 

Performance 

(King Fahad 

sub-network) 

Olaya  

sub-network 

Takhassusi sub-

network 
Global  

Aggregated 

Performance 
𝛚𝐁: 1 𝛚𝐂: 0.5 

Fitness 

(F) 
𝛍 

Fitness 

(F) 
𝛍 

𝑐𝑎0  0.08 0.68 0.00 0.78 0.00 0.08 

𝑐𝑎1  0.78 0.24 1.51 0.82 0.00 0.46 

𝑐𝑎2  0.31 0.54 0.32 0.78 0.00 0.37 

𝑐𝑎3  0.87 0.07 2.57 0.82 0.00 0.29 

𝑐𝑎4  0.56 0.69 0.00 0.08 1.48 0.36 

𝑐𝑎5  0.82 0.56 0.27 0.08 1.48 0.51 

𝑐𝑎6  0.31 0.49 0.62 0.78 0.00 0.38 

𝑐𝑎7  0.78 0.24 1.63 0.82 0.25 0.46 

𝑐𝑎8  0.25 0.68 0.30 0.72 0.30 0.38 

𝑐𝑎9  0.20 0.68 0.00 0.78 0.00 0.20 

 

Table 7.12: Summary of the final results of the proposed multi-agent system for the 

second scenario. 
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The best global control action in the second scenario is 𝑐𝑎5 , because it has high 

local performance and its negative side effects on the Olay sub-network is relatively 

not very high. Figure 7.11 shows a comparison between the local and global aggre-

gated performance of the ten control actions for the second scenario. 

 
𝑐𝑎0  𝑐𝑎1  𝑐𝑎2  𝑐𝑎3  𝑐𝑎4  𝑐𝑎5  𝑐𝑎6  𝑐𝑎7  𝑐𝑎8  𝑐𝑎9  

Figure 7.11: The local and global performance of the ten control actions for the sec-

ond scenario. 
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Takhassusi), to indicate that solving the traffic incident in the King Fahad sub-

network has a high importance at that time. Thus, Table 7.13 shows that all control 

actions that have a high local performance (i.e. given a high fitness by the King Fa-

had sub-network) have also a high global performance. In this case, the control ac-

tion 𝑐𝑎3  is the best local and global one. Figure 7.12 shows a comparison between 

the local and global aggregated performance of the ten control actions for the third 

scenario. 

 

Control  

Action 

Local  

Aggregated 

Performance 

(King Fahad 

sub-network) 

Olaya  

sub-network 

Takhassusi  

sub-network 
Global  

Aggregated 

Performance 
𝛚𝐁: 0.5 𝛚𝐂: 0.5 

Fitness 

(F) 
𝛍 

Fitness 

(F) 
𝛍 

𝑐𝑎0  0.08 0.99 0.00 0.98 0.00 0.08 

𝑐𝑎1  0.78 0.89 1.51 1.00 0.00 0.83 

𝑐𝑎2  0.31 0.97 0.32 0.98 0.00 0.40 

𝑐𝑎3  0.87 0.86 2.57 1.00 0.00 0.86 

𝑐𝑎4  0.56 1.00 0.00 0.79 1.48 0.66 

𝑐𝑎5  0.82 0.98 0.27 0.79 1.48 0.82 

𝑐𝑎6  0.31 0.96 0.62 0.98 0.00 0.47 

𝑐𝑎7  0.78 0.86 1.63 1.00 0.25 0.83 

𝑐𝑎8  0.25 0.99 0.30 0.98 0.30 0.42 

𝑐𝑎9  0.20 0.99 0.00 0.98 0.00 0.20 

Table 7.13: Summary of the final results of the proposed multi-agent system for the 

third scenario. 
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𝑐𝑎0  𝑐𝑎1  𝑐𝑎2  𝑐𝑎3  𝑐𝑎4  𝑐𝑎5  𝑐𝑎6  𝑐𝑎7  𝑐𝑎8  𝑐𝑎9  

Figure 7.12: The local and global performance of the ten control actions for the third 

scenario. 

 

Fourth Scenario: 

In the fourth scenario, all sub-networks are assigned the same weight (ωj = 1)  

to show how the proposed system can recommend the best control action that im-

proves the overall traffic state in the network. Table 7.14 summarizes the results of 

the fourth scenario, where both the King Fahad and the Olay sub-networks have traf-

fic incidents. As can be seen from Table 7.14, although 𝑐𝑎1  and 𝑐𝑎3  have a high 

local performance (0.78 and 0.87 respectively) to solve the traffic incident in the 

King Fahad sub-network, they have a low global performance (0.42 and 0.24 respec-
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tively) because these control actions increase the severity of the traffic incident in the 

Olaya sub-network, which does not improve the overall performance of the network. 

Control action 𝑐𝑎5  is the best global control action in the fourth scenario, because it 

has high local performance and its negative side effect is relatively not very high on 

the Olay sub-network. Figure 7.13 shows a comparison between the local and global 

aggregated performance of the ten control actions for the fourth scenario. 

 

Control  

Action 

Local  

Aggregated 

Performance 

(King Fahad 

sub-network) 

Olaya  

sub-network 

Takhassusi  

sub-network 
Global  

Aggregated 

Performance 
𝛚𝐁: 1.0 𝛚𝐂: 1.0 

Fitness 

(F) 
𝛍 

Fitness 

(F) 
𝛍 

𝑐𝑎0  0.08 0.66 0.00 0.98 0.00 0.08 

𝑐𝑎1  0.78 0.18 1.51 1.00 0.00 0.42 

𝑐𝑎2  0.31 0.49 0.32 0.98 0.00 0.35 

𝑐𝑎3  0.87 0.00 2.57 1.00 0.00 0.24 

𝑐𝑎4  0.56 0.65 0.00 0.79 1.48 0.70 

𝑐𝑎5  0.82 0.51 0.27 0.79 1.48 0.78 

𝑐𝑎6  0.31 0.43 0.62 0.98 0.00 0.36 

𝑐𝑎7  0.78 0.18 1.63 1.00 0.25 0.46 

𝑐𝑎8  0.25 0.64 0.30 0.98 0.30 0.46 

𝑐𝑎9  0.20 0.64 0.00 0.98 0.00 0.20 

 

Table 7.14: Summary of the final results of the proposed multi-agent system for the 

fourth scenario. 
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𝑐𝑎0  𝑐𝑎1  𝑐𝑎2  𝑐𝑎3  𝑐𝑎4  𝑐𝑎5  𝑐𝑎6  𝑐𝑎7  𝑐𝑎8  𝑐𝑎9  

Figure 7.13: The local and global performance of the ten control actions for the 

fourth scenario. 

 

Fifth Scenario: 

The fifth scenario also uses a same weight(ωj = 1) for all subnetworks, as in 

the fourth scenario. The fifth scenario represents the traffic state where both the King 

Fahad and the Takhassusi sub-networks have traffic incidents simultaneously. The 

final results obtained by the proposed multi-agent system for the fifth scenario are 

summarized in Table 7.15. The results show that 𝑐𝑎4  and 𝑐𝑎5  are not recom-

mended as global control actions (with 0.27 and 0.44 respectively), because they 

have a negative effect on the Takhassusi sub-network which does not improve the 
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overall performance of the network. Since, the Olay sub-network has not any traffic 

problems at this time, the best local control action 𝑐𝑎3 
 (with 0.87), which negatively 

affects the Olay sub-network and positively affects the Takhassusi sub-network (see 

Table 7.10), is selected by the proposed multi-agent system as the most appropriate 

global control action (with 0.86). Figure 7.14 shows a comparison between the local 

and global aggregated performance of the ten control actions for the fourth scenario. 

 

Control  

Action 

Local  

Aggregated 

Performance 

(King Fahad 

sub-network) 

Olaya  

sub-network 

Takhassusi  

sub-network 
Global  

Aggregated 

Performance 
𝛚𝐁: 1.0 𝛚𝐂: 1.0 

Fitness 

(F) 
𝛍 

Fitness 

(F) 
𝛍 

𝑐𝑎0  0.08 0.99 0.00 0.78 0.00 0.08 

𝑐𝑎1  0.78 0.89 1.51 0.82 0.00 0.84 

𝑐𝑎2  0.31 0.97 0.32 0.78 0.00 0.47 

𝑐𝑎3  0.87 0.86 2.57 0.82 0.00 0.86 

𝑐𝑎4  0.56 1.00 0.00 0.08 1.48 0.27 

𝑐𝑎5  0.82 0.98 0.27 0.08 1.48 0.44 

𝑐𝑎6  0.31 0.96 0.62 0.78 0.00 0.56 

𝑐𝑎7  0.78 0.86 1.63 0.82 0.25 0.83 

𝑐𝑎8  0.25 0.99 0.30 0.78 0.30 0.49 

𝑐𝑎9  0.20 0.99 0.00 0.78 0.00 0.20 

 

Table 7.15: Summary of the final results of the proposed multi-agent system for the 

fifth scenario. 
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𝑐𝑎0  𝑐𝑎1  𝑐𝑎2  𝑐𝑎3  𝑐𝑎4  𝑐𝑎5  𝑐𝑎6  𝑐𝑎7  𝑐𝑎8  𝑐𝑎9  

Figure 7.14: The local and global performance of the ten control actions for the fifth 

scenario. 

 

7.4.4 Cross-Scenario Analysis 

In the previous sub section five different traffic scenarios were considered to 

represent five different traffic states in the King Fahad, Olaya and Takhassusi sub-

networks and ten traffic control actions with different impacts on the traffic state of 

those sub-networks were proposed. According to Tables 7.9 and 7.10 the traffic con-

trol actions considered in this experiment can be classified based on their impact into 

five groups: 1) internal control actions that do not have any impact on the traffic 
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state in the Olay and Takhassusi sub-networks (𝑐𝑎0  and 𝑐𝑎9 ); 2) control actions 

that affect the traffic states in the Olay and Takhassusi sub-networks (𝑐𝑎5 , 𝑐𝑎7  and 

𝑐𝑎8 ); 3) control actions that affect only the traffic state in the Olay sub-network 

(𝑐𝑎1 , 𝑐𝑎2 , 𝑐𝑎3  and 𝑐𝑎6 ) 4) control actions that affect only the traffic state in the 

Takhassusi sub-network (𝑐𝑎4 ). In this section we discuss and analyze the results ob-

tained from the five traffic scenarios.    

In general, the results of the traffic scenarios demonstrates that the global per-

formances of the traffic control actions are not fixed in all five traffic scenarios but 

fluctuate according to the traffic states in all sub-networks. For example, the best 

global traffic control actions in the first scenario, when the traffic state in all sub-

networks was a smooth (i.e. there are no traffic incidents in any of the sub-

networks), is different from the best ones in the second scenario, when there is a 

congestion traffic state in all sub-networks. The global performance of each control 

action is influenced by its local performance (King Fahd traffic state) and the traffic 

state in the affected sub-network(s).  

For example, the global performances of the control actions 𝑐𝑎1 , 𝑐𝑎2 , 𝑐𝑎3  and 

𝑐𝑎6  are influenced by their local performances and the traffic states in the Olay and 

Takhassusi sub-networks, while the global performances of the control actions 𝑐𝑎4  

is influenced by its local performances and the traffic states in the Takhassusi sub-

network only. The global performances of the internal control actions (i.e. 𝑐𝑎0  and 

𝑐𝑎9 ) are only influenced by King Fahd traffic state, so in the second, third, fourth 

and fifth scenarios, where the same traffic state of King Fahad subnetwork was con-

sidered, the global performances of those control actions were still the same.   
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Local and Global aggregated performances:  

It is observed from the analysis of the results of the five traffic scenarios that 

there are two different aggregated performances for each traffic control action: the 

local aggregated performance and the global aggregated performance. The local ag-

gregated performance of a control action represents its local impact on the King Fa-

had sub-network only. I.e. it is the fitness of a control action, which is provided by 

agent A, to solve the current traffic congestion in the King Fahad sub-network. For 

calculating the local aggregated performance of a traffic control action (as explained 

in Chapter 4), only the traffic state of the King Fahad subnetwork is considered 

without taking into account any change that may happen in the traffic flow of the 

affected subnetworks due to the application of that traffic control action.  

Therefore, it is observed from Tables (7.12-7.15) that the control actions with 

the higher local aggregated performance are the control actions that mainly reduce 

the traffic congestion severity in the King Fahad subnetwork. For example, in the 

second scenario, the control actions 𝑐𝑎3  and 𝑐𝑎5  have the higher local aggregated 

performance (0.87 and 0.82) because they pass the most of the traffic inflow of the 

King Fahad subnetwork to the other subnetworks (Olaya and Takhassusi) which sub-

sequently reduce the traffic congestion in the King Fahad subnetwork, while the con-

trol action 𝑐𝑎0  has the lower local aggregated performance because 𝑐𝑎0  does im-

prove the traffic state in the King Fahad subnetwork. 

The global aggregated performance of a control action represents how good (or 

bad) the control action to solve the current traffic congestion in the King Fahad sub-

network with taking into consideration the traffic state on the network level (i.e. its 

performance on all subnetworks). As explained in the previous sections in this chap-
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ter, the traffic state of all affected sub-networks and the change that may happen in 

the traffic flow of those sub-networks due to the application of a traffic control are 

considered in the calculation of the global aggregated performance of that control 

action. So, it is observed from the analysis of the results of the five traffic scenarios 

that the fitness of a control action provided by the affected sub-networks influences 

the global aggregated performance of that control action. For example, in the fourth 

scenario, when the Olay sub-network has traffic congestion, the Olay sub-network‟s 

fitness of the control actions 𝑐𝑎1 , 𝑐𝑎3  and 𝑐𝑎7  is very low (0.18, 0.00 and 0.18 re-

spectively), because those control actions have negative impacts on the Olay sub-

network. Subsequently, the global aggregated performances of those control actions 

are low (0.42, 0.24 and 0.46 respectively), although their local aggregated perform-

ance are high (0.78, 0.87 and 0.78 respectively). 

 

 𝝎𝒋 and 𝝁𝒋
𝒊 parameters  

There are two weighting parameters ( ωj and 𝜇𝑗
𝑖 ) are used in the calculation of 

the global aggregated performances of the traffic control actions (see Equations 7.2 

and 7.3). The results analysis of the five traffic scenarios shows how these weighting 

parameters play an important role in ranking the control actions in each scenario. 

The  ωj parameter represents the relative contribution of sub-network j to the global 

aggregated performances of the traffic control actions. For example, in the second 

scenario, when the Olaya sub-network was assigned a larger weight (ω𝐵 = 1) than 

the Takhassusi sub-network (ω𝐶 = 0.5), indicating the high importance of that part 

of the network at that time, the contribution of the Takhassusi sub-network (i.e. the 

fitness of the traffic control actions provided by the Takhassusi sub-network) had 
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less impact on the global aggregated performances than the contribution of the Olaya 

sub-network (i.e. the fitness of the control actions provided by the Olaya sub-

network). The  ωj parameter has been employed in the calculation of the global ag-

gregated performances of the control actions in the proposed multi-agent approach to 

increase the flexibility by allowing the operator, depending on the current traffic 

management policies and other consideration, to increase or decrease the relative 

importance (contribution) of a part of the network.  

The 𝜇𝑗
𝑖  parameter expresses how much impact the traffic control action 𝑐𝑎𝑖  has 

on the affected sub-network j. When 𝜇𝑗
𝑖   is low, the global aggregated performances 

of control action i is meanly affected by the contribution (fitness) of sub-network j. 

In contrast, when 𝜇𝑗
𝑖  is high, the global aggregated performances of control action i 

is mainly affected by the contribution (fitness) of sub-network j. Also, 𝜇𝑗
𝑖  is used, 

when equals zero, to indicate irrelevant sub-networks. By using  𝜇𝑗
𝑖 , we ensure that 

only the mainly affected sub-networks are more considered in the identification of 

the global aggregated performances of the control actions.  

For example, since the internal control actions (𝑐𝑎0  and 𝑐𝑎9 ) do not have any 

impact on the Olay and Takhassusi sub-networks, the associated 𝜇𝐵
𝑖  and 𝜇𝐶

𝑖  are as-

signed zeros to disregard the contributions (fitness) of these sub-networks in the 

global aggregated performances of ca0 and ca9. While in the control actions (𝑐𝑎1 , 

𝑐𝑎2 , 𝑐𝑎3  and 𝑐𝑎6 ), which affect only the traffic state in the Olay sub-network, the 

associated 𝜇𝐶
𝑖   are assigned zeros to only consider the contribution of the Olay sub-

network, and the opposite in 𝑐𝑎4 . 
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Based on this analysis of the results obtained from the five traffic scenarios, it 

can be concluded that the proposed multi-agent approach can be effectively used in 

ranking a number of control actions based on their global performance in different 

traffic states with different traffic management policies. It is observed how the pro-

posed approach efficiently consider the current traffic states of all parts of the net-

work (i.e. King Fahad, Olaya and Takhassusi sub-networks) in the process of identi-

fying the global performances of the control actions, and also how the proposed 

weighing parameters ( ωj and 𝜇𝑗
𝑖 ) play an effective role in this process. 

 

7.5 Summary 

In this chapter, we have extended the intelligent traffic control decision support 

system (ITC-DSS) presented in the previous chapters, which has previously been 

used only for controlling a small-sized network, to be used to control a large-sized 

network. We have opted for a multi-agent approach where the total network was di-

vided into a number of sub-networks, each of which has its own agent. The coordi-

nation between those agents was achieved through a high level agent called a coor-

dinator, which receives proposed local control actions from the agent of the sub-

network with regard to an incident, resolves conflicts between other affected agents, 

and sends the globally acceptable solution back to that agent. The chapter presented 

the proposed multi-agent approach, including its structure and all operational steps. 

In order to test the technical feasibility of the proposed multi-agent decision 

support system, a case study of a large section of the ring-roads around Riyadh, with 

five different traffic states has been presented and discussed. The obtained results 
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demonstrated the capabilities of the proposed multi-agent system in order to help the 

traffic centre operator to identify the best global control action for a large traffic 

network. The research results of this chapter have been partially reported in [2]. 
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Chapter  8     

 

 

Conclusions and Future Work 

 

8.1 Conclusions 

In this thesis we have proposed and analysed the application of an Intelligent 

Traffic Control Decision Support System (ITC-DSS) for road traffic management to 

assist the human operator to manage the current traffic state in real-time. 

An investigation into the real-time intelligent decision support system using a 

combination of three soft-computing approaches, namely fuzzy logic, neural net-

works, and a genetic algorithm have been carried out to demonstrate the merits of the 

proposed system through a set of experiments and case studies. In Chapter 4, we in-

troduced the structure of ITC-DSS which employs FNN-Tool that combines the ca-

pabilities of fuzzy reasoning in measuring imprecise and dynamic factors, and the 

capabilities of neural networks in learning from processes. The system has been suc-

cessfully trained and subsequently tested for a traffic case-study of a small section of 

the road traffic network in Riyadh city in Saudi Arabia. The results obtained are 
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promising and demonstrate that the proposed intelligent decision support system can 

provide an effective support for real-time traffic control. A comparison between the 

results of the proposed system and the results obtained by the traffic simulation 

model (METANET) confirmed the validity of the proposed intelligent real-time traf-

fic control decision support in predicting the control action performance and clearly 

showed the ability of the proposed system in terms of processing speed and flexibil-

ity.  

The experimental results described in Chapter 4 demonstrated that the parame-

ters 𝑤𝐶𝑑  , 𝐶𝑑
𝑚𝑖𝑛  and 𝐶𝑑

𝑚𝑎𝑥 , (where 𝑤𝐶𝑑  is the weight of the performance criterion 𝐶𝑑 , 

and 𝐶𝑑
𝑚𝑖𝑛  and 𝐶𝑑

𝑚𝑎𝑥  are the minimum and the maximum values of 𝐶𝑑) play an im-

portant role in the calculation of the aggregated performance of a control action. 

Tuning them by the operator is a matter of describing the desired behaviour of the 

traffic state.   

In this thesis, we recognise the well-known facts that employing an effective 

learning process can lead to a good performance on the part of a fuzzy neural net-

work. Therefore we have investigated the development of an effective learning proc-

ess for our fuzzy neuronal network (FNN-Tool). In Chapters 5 and 6, we have intro-

duced an effective learning approach for the FNN-Tool, consisting of three stages. 

The first stage initializes the membership functions using a self-organization algo-

rithm. The second stage identifies fuzzy rules using a genetic algorithm (GA) based 

learning method. The third stage employs the back-propagation neural network algo-

rithm for fine tuning the system parameters.  

In Chapter 5, a simple and effective GA-based fuzzy rule identification method 

was developed and tested in order to be used in the second stage of the learning 
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process of the FNN-Tool. In our developed fuzzy rule identification method, the fine 

tuning of the fuzzy rules weight is done in a separate learning stage (stage three). We 

used an integer representation (encoding) of the problem which reduced the length of 

the chromosome (compared with binary representation) as well as the size of the GA 

search space. We showed that the developed GA-based fuzzy rule identification 

method was able to identify all the relevant fuzzy rules correctly.  

In Chapter 6, the performance of the proposed three-stage learning approach 

was evaluated using a well-known benchmark example (i.e. the Box–Jenkins time 

series). Moreover, the prediction capability of the FNN-Tool trained by the proposed 

learning approach, was assessed for predicting the performance of traffic control ac-

tions on a given traffic state. The results obtained have demonstrated the ability of 

the proposed learning approach to identify all relevant fuzzy rules from the training 

data. Furthermore, a comparative analysis has demonstrated that our approach leads 

to better performance than that of other well-known approaches. The main features 

and advantages of the FNN-Tool and the three stage-based learning approach pro-

posed in this thesis are the use of GA for extracting fuzzy IF-THEN rules from nu-

merical information, and the effective tuning process where it is easy to modify the 

fuzzy rule base and the structure of the FNN-Tool when new data (or linguistic in-

formation) becomes available.  

In order to evaluate the impact of different parameters and operations on the GA 

performance, sensitivity analysis on crossover probability and type, mutation prob-

ability, and population size has been carried out in Section 6.4.3. The obtained re-

sults demonstrate that too low crossover probability might lead to a bad performance 

of GA, especially with one-point crossover.  Also, the GA performance was not 
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good if too low (e.g. 0.001 and 0.005) or too high (e.g. 0.2) mutation probabilities 

are used.  

In Section 6.4.4, two experiments were run. In the first experiment, the BP algo-

rithm was employed only to adjust the membership parameters (centres, widths), 

while in the second experiment the membership parameters and the fuzzy rules 

weight were adjusted. The experimental results show that the error rate can be im-

proved by learning the weights of the fuzzy rules.  

It is observed that the proposed ITC-DSS has the potential to be a useful sup-

porting tool for controlling a small traffic network. However, ITC-DSS does not 

scale well with a large traffic network.  In order to scale up the proposed ITC-DSS to 

be used for controlling a large traffic network, in Chapter 7 we developed our ITC-

DSS using a multi-agent approach. In the multi-agent approach we divided the large 

traffic network into several (possibly overlapping) sub-networks, each of which has 

its own ITC-DSS and own agent. To make sure that all available control actions 

serve the same objective (i.e. the most appropriate global control action), we used a 

coordinative control strategy through a high level agent called a coordinator. The 

coordinator receives proposed local control actions from the agent of the sub-

network with regard to an incident, resolves conflicts between other affected agents, 

and sends the globally acceptable solution back to that agent.  

The technical feasibility of the proposed multi-agent approach was tested for a 

case study involving a large section of the traffic network in the city of Riyadh in 

Saudi Arabia, and the output was compared with the output of the simulation model 

METANET. The results showed that the proposed multi-agent approach is more 

manageable and much faster than the simulation model when it is used to rank sev-
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eral control actions according to their approximate performance. We also showed the 

capability of the proposed multi-agent approach for controlling large networks 

through different traffic scenarios with different traffic policies.  

The experimental results in Section 7.5.3 demonstrated how the weights (ωj), 

which represents the relative importance of the sub-networks and the parameters 

(µj), which express how much impact the traffic control action 𝑐𝑎𝑖
𝐴 has on the af-

fected sub-network, plays an important role for the operator in identifying the best 

global control action. 

We believe that the intelligent traffic control decision support system developed 

in this thesis has the potential to be a useful intelligent tool for assisting the human 

operator in the traffic control centre to optimally manage the current traffic state in 

the real-time. The main advantages of our intelligent traffic control decision support 

system is that it is easy to use, reliable and faster. Moreover, it is simple to be devel-

oped and implemented.  

8.2 Usability Issues 

Human computer interaction (HCI) is an important area of computer science, 

which involves the interaction of human user, task, and computer. HCI combines the 

physical, logical, conceptual, and language-based interactions between the human 

user and the computer for achieving some goals [81]. The basic goal of HCI, (as de-

fined in Interacting with Computers [33]), “is to develop or improve the safety, util-

ity, effectiveness, efficiency and usability of systems that include computers”. 

Usability is an aspect of HCI. It is defined as the effectiveness, efficiency and 

satisfaction with which specified users can achieve specified goals in particular envi-
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ronments [38]. Nielsen [121] defines usability by five quality components: 

Learnability: how easy users accomplish their basic tasks the first time they en-

counter the design. 

Efficiency: how quickly can users perform a task using the interface of the system? 

Memorability: how easy is to memorize how to use the interface of the system and 

how easily users can reuse the system after a break? 

Errors: How many errors do users make using the interface of the system and how 

serious are these errors 

Satisfaction: How do users like using the system‟s interface? 

 

In order to successfully develop the proposed traffic control system, we must 

consider the user interface design carefully and thoroughly. The user interface 

should provide all necessary functions and information to the traffic operator. For 

example, the interface window of the proposed traffic control system that is pre-

sented to the operators should allow the operator to enter the parameters that de-

scribe the current traffic state and then should provide him/her with a ranked list of 

the various possible of control actions based on their performance over that current 

state. In order to explain why specific control action is recommended, the interface 

window should display for each control action its performance which is represented 

by some traffic criteria e.g.  the total travel time, total distance traveled, total waiting 

time, total time in net, vehicles in net, vehicles driven in, vehicles driven out, and 

total fuel consumption. In addition, the interface window should allow the operator 

to specify the weights 𝑤𝐶𝑑  for the various performance criteria to meet his-specified 

objectives.  
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Another example for increasing the usability of the proposed traffic control sys-

tem is that the system should allow the user (expert operator) to effectively include 

expert knowledge within the system when it becomes available. This can be done be 

providing the user with expert options which give him some facilities, for example, 

to change the membership functions (i.e. centres  𝑐  and widths  𝜎 ) using linguistic 

information provided by experts. In addition in order to add new fuzzy rules (or de-

lete an exciting rules), the expert options should allow the user to adjust the fuzzy 

rules weights (i.e. connection weights 𝑊𝑢 ,𝑛𝑚  of the links connecting nodes 𝑅𝐿𝑢  in 

layer 3 to 𝑂𝐿𝑛 ,𝑚  in Layer 4). Since the structure of FNN-Tool created with all possi-

ble fuzzy rules where fuzzy rule with weight   𝑊𝑢 ,𝑛𝑚 ≠ 0  represents a fuzzy rule to 

be considered and with weight  𝑊𝑢 ,𝑛𝑚 = 0  to be ignored, assigning zero weight 

(𝑊𝑢 ,𝑛𝑚 = 0) to any considered fuzzy rule indicates that the rule is deleted. In con-

trast, assigning a value (𝑊𝑢 ,𝑛𝑚 ≠ 0) to any ignored fuzzy rule indicates that the rule 

is added.   

 

The main challenges for practical implementation of the research can be sum-

marized in the following points: 

 Understanding the users (traffic operators) who will use the proposed sys-

tem is the first and the most important challenge for practical implementa-

tion of the research. It is necessary to understand who the user of the sys-

tem is, what level of expertise he/she has, what he/she is likely to assume 

about the system and the environment in which he/she is operating. Golud 

said in his paper [47] that “designers are often reluctant to define the users 

and even when they have done so seem reluctant to define the users and 
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system”. It also has to carefully examine the user expertise and back-

ground to decide what type of help facilities and training that will be 

needed for the support of the system. Users must understand how to ex-

press instructions to the computer, how to organize these instructions, and 

how the computer executes these statements [121]. 

 Another challenge is training the proposed system. The proposed system 

is FNN based system, thus its performance mainly affected by the quality 

of training. When the number of training pairs is small, or perhaps not rep-

resentative of the possibility space, the system results are predictably 

poor. Therefore, it is necessary to ensure that the training data is sufficient 

to cover the entire problem domain, including maximum and minimum 

values for each variable, as well as a good distribution of values within 

this range. Moreover, incorporation real road traffic data is very important 

and needs to be considered during the training process to increase the ac-

curacy of the proposed system.  

 The hardware and software solutions that are needed to implement the 

proposed traffic control system are another challenge. For example, the 

proposed system should be tested in an advanced traffic control centre 

where the current traffic state is monitored online to accurately provide 

the proposed system with the required input information, however, based 

on the author experience, the current online traffic monitoring devices and 

incident detection methods in most of exciting traffic control centers in 

Saudi Arabia are still insufficient.  
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8.3 Future Work 

This section suggests the following directions for future research arising from 

this thesis: 

 

In Chapter 5, a GA-based learning method was used for identifying fuzzy rules 

of our FNN-Tool. In the GA-method the chromosome was encoded with all possible 

rules. This has the advantage of decreasing the chance to miss any relevant rule. In 

the experiments undertaken so far, the number of variables was limited, thus the total 

number of possible rules was still not extremely large. In some cases, when the 

number of variables and fuzzy sets are extremely large, encoding a chromosome 

with all possible rules is not efficient, making the length of a chromosome very large 

and, consequently, the whole genetic learning process becoming overloaded. There-

fore, an interesting further investigation of this issue would be to use a variable 

length chromosome. In this case it would be interesting to employ a clustering algo-

rithm (e.g. as detailed in [102]) just to identify an optimal number (n) (i.e. fuzzy 

rules) to start with. A further option that can be explored is the effectiveness of 

multi-objective optimization approach, where the objectives are minimizing the error 

level and minimizing the number of fuzzy rules.  

 

The three-stage learning approach for training the FNN-Tool, presented in 

Chapter 6, is an off-line learning approach. The results obtained have verified the 

effectiveness of the FNN-Tool with the three-stage learning approach for predicting 

the performance of traffic control actions. To increase the efficiency of the FNN-

Tool and to avoid a re-run of the learning process when the training set is updated, 
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the development of on-line learning strategy for FNN-Tool deserves further investi-

gation. In this case the membership functions parameters (centres and widths) and 

the fuzzy rules weights should be fine-tuned on-line according to the error between 

the predicted performance of the applied traffic control action obtained from the 

FNN-Tool and the actual performance of the applied traffic control action obtained 

from the monitoring system.  

Another interesting future work could be an experimental analysis of the FNN-

Tool‟s noise tolerance ability. This can verify that the FNN-Tool is able to maintain 

its predictive capability in terms of control actions‟ performance under the influence 

of noisy input data. In this case, a new test set should be generated by introducing 

white noise of a specific percentage (e.g. 10%) into the original test data. Then the 

new test data is used for predicting the performance of control actions using the 

FNN-Tool. It would be interesting to evaluate the FNN-Tool‟s noise tolerance ability 

and to compare the results with that of other models (e.g. [90] and [137]).  

 

In Chapter 7 we proposed a multi-agent approach for road traffic control sys-

tems. Numerous areas of research arise from the multi-agent approach. 

 So far we have only used the proposed multi-agent approach as a framework 

to scale up ITC-DSS to be used in one traffic control centre (e.g. one com-

puter). Further work could be done to develop the multi-agent approach to be 

used at different traffic control centres. In this case, extensive work needs to 

be carried out to investigate the communications issues between agents and 

the coordinator.  

 In the proposed multi-agent approach, a large network is divided into a num-
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ber of sub-networks. The main aim of this is to minimize the number of traf-

fic variables that are required to characterize the current traffic (i.e. the inputs 

of the FNN-Tool), as well as to minimize the number of possible traffic con-

trol actions that can be applied to manage the traffic state. An investigation of 

an optimal way to split the network can be carried out. This should take into 

account some additional factors such as the topology of the network, the in-

terrelations between the traffic control actions at different locations in the 

network, overlapping sections between sub-networks, etc. 

 For calculating the control action fitness, the affected agents run their ITC-

DSS with only the internal control actions (i.e. which mainly influence the 

traffic flow within the sub-network) to avoid the negative knock-on effect of 

creating a new problem. However, this may reduce the chance of taking ad-

vantage of the external control actions (i.e. that have an effect in the entire 

network) that may help to yield an optimal global traffic state.  It would be 

interesting to investigate this more extensively.   

 In the proposed multi-agent approach, the coordinator receives the proposed 

local control actions for an agent, then communicates with the affected agent 

to produce the global performance for the proposed local control actions (see 

Chapter 7.4.2). It would be interesting to develop an intelligent decision sup-

port tool (using, for example, FNN, knowledge based systems or case-based 

reasoning) to help the coordinator to predict the global performance of a con-

trol action using previous history. For example, when the coordinator re-

ceives the proposed local control actions, it needs to check the traffic state of 

the affected agents, then use the intelligent decision support tool to predict 
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the global performance of the control actions. This will speed up the coordi-

nation process.  

 Since the implementation of the multi-agent centralized architecture is much 

less complex than the decentralized architecture, the centralized architecture 

has been adopted in our proposed multi-agent system. Although the central-

ized architecture has shown to perform well, it still has some limitations 

comparing with decentralized architecture. First, a centralized based system 

is more sensitive to disruptions than a decentralized based system, e.g., when 

the coordinator becomes unavailable, global traffic control system breaks 

down. Second, the response time is potentially increased in a centralized 

based system. For example, when an incident happens, this must communi-

cated all the way up to a the coordinator, after which the coordinator makes a 

decision and communicates it all the way down to those carrying out the 

work. A faster response may be obtained by allowing the agent with the inci-

dent to take immediate action. Third, the centralized architecture also suffers 

difficulties in scalability. The complexity of the coordination task grows ex-

ponentially in the size of traffic control agents. In addition, the adding of ad-

ditional control actions (and/or control devices) is easier in a decentralized 

based system than in a centralized based system. Therefore, an interesting 

further work is to investigate the possibility of using the decentralized archi-

tecture in our proposed multi-agent approach. In this case, similarly, the net-

work is divided into a set of overlapping sub-networks each of which has its 

autonomous agent. However, the centralized and decentralized approaches 

differ significantly in the way that theses traffic agents are coordinated. To 
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perform the coordination task in our proposed multi-agent approach in decen-

tralized fashion, each agent should have its own control actions data-table 

(𝐶𝐴𝑡𝑎𝑏𝑙𝑒 ). This control actions table should be constructed with all possible 

traffic control actions that can be applied on the sub-network associated with 

that agent. When a traffic problem is detected by the monitoring subsystem 

controlled by the agent, instead of contacting the coordinator as in the cen-

tralized approach, it runs its ITC-DSS to come up with a ranked list of possi-

ble local control actions. Then, similarly to what the coordinator does in the 

centralized approach, the agent determines the affected agents for each local 

control action using its 𝐶𝐴𝑡𝑎𝑏𝑙𝑒  and contact them to get the fitness of these 

control actions in order to calculate the aggregated global performance of the 

control action.  

 

Finally, the investigation presented in this thesis has verified the effectiveness of 

the proposed intelligent control decision support system for road traffic management. 

It would be interesting to investigate the application of the proposed intelligent deci-

sion support system for another area, where real-time decision-making is involved, 

for examples stock trading and wastewater control. 
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Appendix A 
 

 

Series J Data from Box and Jenkins 

-0.109 53.8 0 53.6 0.178 53.5 0.339 53.5 

0.373 53.4 0.441 53.1 0.461 52.7 0.348 52.4 

0.127 52.2 -0.18 52 -0.588 52 -1.055 52.4 

-1.421 53 -1.52 54 -1.302 54.9 -0.814 56 

-0.475 56.8 -0.193 56.8 0.088 56.4 0.435 55.7 

0.771 55 0.866 54.3 0.875 53.2 0.891 52.3 

0.987 51.6 1.263 51.2 1.775 50.8 1.976 50.5 

1.934 50 1.866 49.2 1.832 48.4 1.767 47.9 

1.608 47.6 1.265 47.5 0.79 47.5 0.36 47.6 

0.115 48.1 0.088 49 0.331 50 0.645 51.1 

0.96 51.8 1.409 51.9 2.67 51.7 2.834 51.2 

2.812 50 2.483 48.3 1.929 47 1.485 45.8 

1.214 45.6 1.239 46 1.608 46.9 1.905 47.8 

2.023 48.2 1.815 48.3 0.535 47.9 0.122 47.2 

0.009 47.2 0.164 48.1 0.671 49.4 1.019 50.6 

1.146 51.5 1.155 51.6 1.112 51.2 1.121 50.5 

1.223 50.1 1.257 49.8 1.157 49.6 0.913 49.4 

0.62 49.3 0.255 49.2 -0.28 49.3 -1.08 49.7 

-1.551 50.3 -1.799 51.3 -1.825 52.8 -1.456 54.4 

-0.944 56 -0.57 56.9 -0.431 57.5 -0.577 57.3 

-0.96 56.6 -1.616 56 -1.875 55.4 -1.891 55.4 

-1.746 56.4 -1.474 57.2 -1.201 58 -0.927 58.4 

-0.524 58.4 0.04 58.1 0.788 57.7 0.943 57 

0.93 56 1.006 54.7 1.137 53.2 1.198 52.1 

1.054 51.6 0.595 51 -0.08 50.5 -0.314 50.4 

-0.288 51 -0.153 51.8 -0.109 52.4 -0.187 53 
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-0.255 53.4 -0.229 53.6 -0.007 53.7 0.254 53.8 

0.33 53.8 0.102 53.8 -0.423 53.3 -1.139 53 

-2.275 52.9 -2.594 53.4 -2.716 54.6 -2.51 56.4 

-1.79 58 -1.346 59.4 -1.081 60.2 -0.91 60 

-0.876 59.4 -0.885 58.4 -0.8 57.6 -0.544 56.9 

-0.416 56.4 -0.271 56 0 55.7 0.403 55.3 

0.841 55 1.285 54.4 1.607 53.7 1.746 52.8 

1.683 51.6 1.485 50.6 0.993 49.4 0.648 48.8 

0.577 48.5 0.577 48.7 0.632 49.2 0.747 49.8 

0.9 50.4 0.993 50.7 0.968 50.9 0.79 50.7 

0.399 50.5 -0.161 50.4 -0.553 50.2 -0.603 50.4 

-0.424 51.2 -0.194 52.3 -0.049 53.2 0.06 53.9 

0.161 54.1 0.301 54 0.517 53.6 0.566 53.2 

0.56 53 0.573 52.8 0.592 52.3 0.671 51.9 

0.933 51.6 1.337 51.6 1.46 51.4 1.353 51.2 

0.772 50.7 0.218 50 -0.237 49.4 -0.714 49.3 

-1.099 49.7 -1.269 50.6 -1.175 51.8 -0.676 53 

0.033 54 0.556 55.3 0.643 55.9 0.484 55.9 

0.109 54.6 -0.31 53.5 -0.697 52.4 -1.047 52.1 

-1.218 52.3 -1.183 53 -0.873 53.8 -0.336 54.6 

0.063 55.4 0.084 55.9 0 55.9 0.001 55.2 

0.209 54.4 0.556 53.7 0.782 53.6 0.858 53.6 

0.918 53.2 0.862 52.5 0.416 52 -0.336 51.4 

-0.959 51 -1.813 50.9 -2.378 52.4 -2.499 53.5 

-2.473 55.6 -2.33 58 -2.053 59.5 -1.739 60 

-1.261 60.4 -0.569 60.5 -0.137 60.2 -0.024 59.7 

-0.05 59 -0.135 57.6 -0.276 56.4 -0.534 55.2 

-0.871 54.5 -1.243 54.1 -1.439 54.1 -1.422 54.4 

-1.175 55.5 -0.813 56.2 -0.634 57 -0.582 57.3 

-0.625 57.4 -0.713 57 -0.848 56.4 -1.039 55.9 

-1.346 55.5 -1.628 55.3 -1.619 55.2 -1.149 55.4 

-0.488 56 -0.16 56.5 -0.007 57.1 -0.092 57.3 

-0.62 56.8 -1.086 55.6 -1.525 55 -1.858 54.1 

-2.029 54.3 -2.024 55.3 -1.961 56.4 -1.952 57.2 

-1.794 57.8 -1.302 58.3 -1.03 58.6 -0.918 58.8 

-0.798 58.8 -0.867 58.6 -1.047 58 -1.123 57.4 

-0.876 57 -0.395 56.4 0.185 56.3 0.662 56.4 

0.709 56.4 0.605 56 0.501 55.2 0.603 54 

0.943 53 1.223 52 1.249 51.6 0.824 51.6 

0.102 51.1 0.025 50.4 0.382 50 0.922 50 
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1.032 52 0.866 54 0.527 55.1 0.093 54.5 

-0.458 52.8 -0.748 51.4 -0.947 50.8 -1.029 51.2 

-0.928 52 -0.645 52.8 -0.424 53.8 -0.276 54.5 

-0.158 54.9 -0.033 54.9 0.102 54.8 0.251 54.4 

0.28 53.7 0 53.3 -0.493 52.8 -0.759 52.6 

-0.824 52.6 -0.74 53 -0.528 54.3 -0.204 56 

0.034 57 0.204 58 0.253 58.6 0.195 58.5 

0.131 58.3 0.017 57.8 -0.182 57.3 -0.262 57 
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