523 research outputs found

    Simple Pole Placement Controller for Elastic Joint Manipulator

    Get PDF
    This paper presents investigations into the development of simple pole placement controller for tip angular position tracking and deflection reduction of an elastic joint manipulator system. A Quanser elastic joint manipulator is considered and the dynamic model of the system is derived using the Euler-Lagrange formulation. The pole placement controller is designed based on integral state feedback structure and the feedback gain is computed based on the desired time response specifications of tip angular position. The proposed control scheme is also compared with a hybrid Linear Quadratic Regulator (LQR) with input shaper control scheme. The performances of the control schemes are assessed in terms of tip angular tracking capability, level of deflection angle reduction and time response specifications. Finally, a comparative assessment of the control techniques is presented and discussed

    Design New Online Tuning Intelligent Chattering Free Fuzzy Compensator

    Full text link

    Design Intelligent Model base Online Tuning Methodology for Nonlinear System

    Full text link

    Robot Manipulators

    Get PDF
    Robot manipulators are developing more in the direction of industrial robots than of human workers. Recently, the applications of robot manipulators are spreading their focus, for example Da Vinci as a medical robot, ASIMO as a humanoid robot and so on. There are many research topics within the field of robot manipulators, e.g. motion planning, cooperation with a human, and fusion with external sensors like vision, haptic and force, etc. Moreover, these include both technical problems in the industry and theoretical problems in the academic fields. This book is a collection of papers presenting the latest research issues from around the world

    Nonlinear control for Two-Link flexible manipulator

    Get PDF
    Recently the use of robot manipulators has been increasing in many applications such as medical applications, automobile, construction, manufacturing, military, space, etc. However, current rigid manipulators have high inertia and use actuators with large energy consumption. Moreover, rigid manipulators are slow and have low payload-to arm-mass ratios because link deformation is not allowed. The main advantages of flexible manipulators over rigid manipulators are light in weight, higher speed of operation, larger workspace, smaller actuator, lower energy consumption and lower cost. However, there is no adequate closed-form solutions exist for flexible manipulators. This is mainly because flexible dynamics are modeled with partial differential equations, which give rise to infinite dimensional dynamical systems that are, in general, not possible to represent exactly or efficiently on a computer which makes modeling a challenging task. In addition, if flexibility nature wasn\u27t considered, there will be calculation errors in the calculated torque requirement for the motors and in the calculated position of the end-effecter. As for the control task, it is considered as a complex task since flexible manipulators are non-minimum phase system, under-actuated system and Multi-Input/Multi-Output (MIMO) nonlinear system. This thesis focuses on the development of dynamic formulation model and three control techniques aiming to achieve accurate position control and improving dynamic stability for Two-Link Flexible Manipulators (TLFMs). LQR controller is designed based on the linearized model of the TLFM; however, it is applied on both linearized and nonlinear models. In addition to LQR, Backstepping and Sliding mode controllers are designed as nonlinear control approaches and applied on both the nonlinear model of the TLFM and the physical system. The three developed control techniques are tested through simulation based on the developed dynamic formulation model using MATLAB/SIMULINK. Stability and performance analysis were conducted and tuned to obtain the best results. Then, the performance and stability results obtained through simulation are compared. Finally, the developed control techniques were implemented and analyzed on the 2-DOF Serial Flexible Link Robot experimental system from Quanser and the results are illustrated and compared with that obtained through simulation

    Advanced Strategies for Robot Manipulators

    Get PDF
    Amongst the robotic systems, robot manipulators have proven themselves to be of increasing importance and are widely adopted to substitute for human in repetitive and/or hazardous tasks. Modern manipulators are designed complicatedly and need to do more precise, crucial and critical tasks. So, the simple traditional control methods cannot be efficient, and advanced control strategies with considering special constraints are needed to establish. In spite of the fact that groundbreaking researches have been carried out in this realm until now, there are still many novel aspects which have to be explored

    Control Improvement of Low-Cost Cast Aluminium Robotic Arm Using Arduino Based Computed Torque Control

    Get PDF
    Gravity causes non-linearity in position control of an articulated industrial robotic arm. Especially for a joint position control of a robot’s shoulder and elbow that works parallel with the gravity direction. To overcome the problem, Computed Torque Control algorithm was implemented. This algorithm linearized the feedback, so a regular linear Proportional Derivative controller can be implemented. The contribution of this research is to find an effective controller to control a heavy weight low-cost robotic arm link/body using low-cost controller such as Arduino. A Computed Torque Control was implemented to control the shoulder joint of an articulated robotic arm. This joint is the most affected joint by the gravity. It works along the vertical plane, and loaded by the rest of the arm and the robot’s load. The proposed controller was compared to a Proportional Integral Derivative (PID) Controller and a Cascade PID Controller. The experiment showed that the Computed Torque Controller can control the position of the arm properly both in the direction along or against the gravity. A linear PID controller could not bring the arm to the set point when it moves against the gravity, but it works well when the arm moves in the opposite direction. A Cascade PID controller has an overshot when the arm moves along the gravity. But it works properly when it moves up against the gravity. A Computed Torque Control works well in both directions even in the presence of gravity force because it includes the gravity on its algorithm

    OUTPUT BASED INPUT SHAPING FOR OPTIMAL CONTROL OF SINGLE LINK FLEXIBLE MANIPULATOR

    Get PDF
    Endpoint residual vibrations and oscillations due to flexible and rigid body motions are big challenges in control of single link flexible manipulators, it makes positioning of payload difficult especially when using various payloads. This paper present output based input shaping with two different control algorithms for optimal control of single link flexible manipulators. Output based filter (OBF) is designed using the signal output of the system and then incorporated with both linear quadratic regulator (LQR) and PID separately for position and residual vibration control. The Robustness of these control algorithms are tested by changing the payloads from 0g to30g, 50g and 70g in each case. Based on MATLAB simulation results and time response analysis, LQR-OBF outperformed the PID-OBF in both tracking and vibration reduction

    Application of Non-Model Dependent Hybrid Higher-Order Differential Feedback Controller on Crane System

    Get PDF
    Gantry Crane is a machine used for shipping of goods from one point to another. Speed, accuracy and safety are of paramount importance in gantry crane (GC) operation, but operating GC results in unwanted sway which degrades the accuracy and safety. In this paper, hybrid control schemes are proposed for precise trolley position control and sway suppression in GC systems. Output Based input shaping (OBIS) filter was designed using the output of the system for sway suppression and proportional integral derivative (PID), linear quadratic regulator (LQR), higher order differential feedback (HODF) controllers were incorporated separately for precise trolley position control. Based on Simulation studies and analysis, it was observed that LQR-OBIS controller shown more precise tracking and higher sway reduction control. But HODFC-OBIS is a model-free control schemes hence more robust
    corecore