1,264 research outputs found

    Hybrid Fault-Tolerant Consensus in Asynchronous and Wireless Embedded Systems

    Get PDF
    Byzantine fault-tolerant (BFT) consensus in an asynchronous system can only tolerate up to floor[(n-1)/3] faulty processes in a group of n processes. This is quite a strict limit in certain application scenarios, for example a group consisting of only 3 processes. In order to break through this limit, we can leverage a hybrid fault model, in which a subset of the system is enhanced and cannot be arbitrarily faulty except for crashing. Based on this model, we propose a randomized binary consensus algorithm that executes in complete asynchrony, rather than in partial synchrony required by deterministic algorithms. It can tolerate up to floor[(n-1)/2] Byzantine faulty processes as long as the trusted subsystem in each process is not compromised, and terminates with a probability of one. The algorithm is resilient against a strong adversary, i. e. the adversary is able to inspect the state of the whole system, manipulate the delay of every message and process, and then adjust its faulty behaviour during execution. From a practical point of view, the algorithm is lightweight and has little dependency on lower level protocols or communication primitives. We evaluate the algorithm and the results show that it performs promisingly in a testbed consisting of up to 10 embedded devices connected via an ad hoc wireless network

    Byzantine fault-tolerant agreement protocols for wireless Ad hoc networks

    Get PDF
    Tese de doutoramento, Informática (Ciências da Computação), Universidade de Lisboa, Faculdade de Ciências, 2010.The thesis investigates the problem of fault- and intrusion-tolerant consensus in resource-constrained wireless ad hoc networks. This is a fundamental problem in distributed computing because it abstracts the need to coordinate activities among various nodes. It has been shown to be a building block for several other important distributed computing problems like state-machine replication and atomic broadcast. The thesis begins by making a thorough performance assessment of existing intrusion-tolerant consensus protocols, which shows that the performance bottlenecks of current solutions are in part related to their system modeling assumptions. Based on these results, the communication failure model is identified as a model that simultaneously captures the reality of wireless ad hoc networks and allows the design of efficient protocols. Unfortunately, the model is subject to an impossibility result stating that there is no deterministic algorithm that allows n nodes to reach agreement if more than n2 omission transmission failures can occur in a communication step. This result is valid even under strict timing assumptions (i.e., a synchronous system). The thesis applies randomization techniques in increasingly weaker variants of this model, until an efficient intrusion-tolerant consensus protocol is achieved. The first variant simplifies the problem by restricting the number of nodes that may be at the source of a transmission failure at each communication step. An algorithm is designed that tolerates f dynamic nodes at the source of faulty transmissions in a system with a total of n 3f + 1 nodes. The second variant imposes no restrictions on the pattern of transmission failures. The proposed algorithm effectively circumvents the Santoro- Widmayer impossibility result for the first time. It allows k out of n nodes to decide despite dn 2 e(nk)+k2 omission failures per communication step. This algorithm also has the interesting property of guaranteeing safety during arbitrary periods of unrestricted message loss. The final variant shares the same properties of the previous one, but relaxes the model in the sense that the system is asynchronous and that a static subset of nodes may be malicious. The obtained algorithm, called Turquois, admits f < n 3 malicious nodes, and ensures progress in communication steps where dnf 2 e(n k f) + k 2. The algorithm is subject to a comparative performance evaluation against other intrusiontolerant protocols. The results show that, as the system scales, Turquois outperforms the other protocols by more than an order of magnitude.Esta tese investiga o problema do consenso tolerante a faltas acidentais e maliciosas em redes ad hoc sem fios. Trata-se de um problema fundamental que captura a essência da coordenação em actividades envolvendo vários nós de um sistema, sendo um bloco construtor de outros importantes problemas dos sistemas distribuídos como a replicação de máquina de estados ou a difusão atómica. A tese começa por efectuar uma avaliação de desempenho a protocolos tolerantes a intrusões já existentes na literatura. Os resultados mostram que as limitações de desempenho das soluções existentes estão em parte relacionadas com o seu modelo de sistema. Baseado nestes resultados, é identificado o modelo de falhas de comunicação como um modelo que simultaneamente permite capturar o ambiente das redes ad hoc sem fios e projectar protocolos eficientes. Todavia, o modelo é restrito por um resultado de impossibilidade que afirma não existir algoritmo algum que permita a n nós chegaram a acordo num sistema que admita mais do que n2 transmissões omissas num dado passo de comunicação. Este resultado é válido mesmo sob fortes hipóteses temporais (i.e., em sistemas síncronos) A tese aplica técnicas de aleatoriedade em variantes progressivamente mais fracas do modelo até ser alcançado um protocolo eficiente e tolerante a intrusões. A primeira variante do modelo, de forma a simplificar o problema, restringe o número de nós que estão na origem de transmissões faltosas. É apresentado um algoritmo que tolera f nós dinâmicos na origem de transmissões faltosas em sistemas com um total de n 3f + 1 nós. A segunda variante do modelo não impõe quaisquer restrições no padrão de transmissões faltosas. É apresentado um algoritmo que contorna efectivamente o resultado de impossibilidade Santoro-Widmayer pela primeira vez e que permite a k de n nós efectuarem progresso nos passos de comunicação em que o número de transmissões omissas seja dn 2 e(n k) + k 2. O algoritmo possui ainda a interessante propriedade de tolerar períodos arbitrários em que o número de transmissões omissas seja superior a . A última variante do modelo partilha das mesmas características da variante anterior, mas com pressupostos mais fracos sobre o sistema. Em particular, assume-se que o sistema é assíncrono e que um subconjunto estático dos nós pode ser malicioso. O algoritmo apresentado, denominado Turquois, admite f < n 3 nós maliciosos e assegura progresso nos passos de comunicação em que dnf 2 e(n k f) + k 2. O algoritmo é sujeito a uma análise de desempenho comparativa com outros protocolos na literatura. Os resultados demonstram que, à medida que o número de nós no sistema aumenta, o desempenho do protocolo Turquois ultrapassa os restantes em mais do que uma ordem de magnitude.FC

    Intrusion tolerant routing with data consensus in wireless sensor networks

    Get PDF
    Dissertação para obtenção do Grau de Mestre em Engenharia InformáticaWireless sensor networks (WSNs) are rapidly emerging and growing as an important new area in computing and wireless networking research. Applications of WSNs are numerous, growing, and ranging from small-scale indoor deployment scenarios in homes and buildings to large scale outdoor deployment settings in natural, industrial, military and embedded environments. In a WSN, the sensor nodes collect data to monitor physical conditions or to measure and pre-process physical phenomena, and forward that data to special computing nodes called Syncnodes or Base Stations (BSs). These nodes are eventually interconnected, as gateways, to other processing systems running applications. In large-scale settings, WSNs operate with a large number of sensors – from hundreds to thousands of sensor nodes – organised as ad-hoc multi-hop or mesh networks, working without human supervision. Sensor nodes are very limited in computation, storage, communication and energy resources. These limitations impose particular challenges in designing large scale reliable and secure WSN services and applications. However, as sensors are very limited in their resources they tend to be very cheap. Resilient solutions based on a large number of nodes with replicated capabilities, are possible approaches to address dependability concerns, namely reliability and security requirements and fault or intrusion tolerant network services. This thesis proposes, implements and tests an intrusion tolerant routing service for large-scale dependable WSNs. The service is based on a tree-structured multi-path routing algorithm, establishing multi-hop and multiple disjoint routes between sensors and a group of BSs. The BS nodes work as an overlay, processing intrusion tolerant data consensus over the routed data. In the proposed solution the multiple routes are discovered, selected and established by a self-organisation process. The solution allows the WSN nodes to collect and route data through multiple disjoint routes to the different BSs, with a preventive intrusion tolerance approach, while handling possible Byzantine attacks and failures in sensors and BS with a pro-active recovery strategy supported by intrusion and fault tolerant data-consensus algorithms, performed by the group of Base Stations

    Machine Learning in Wireless Sensor Networks: Algorithms, Strategies, and Applications

    Get PDF
    Wireless sensor networks monitor dynamic environments that change rapidly over time. This dynamic behavior is either caused by external factors or initiated by the system designers themselves. To adapt to such conditions, sensor networks often adopt machine learning techniques to eliminate the need for unnecessary redesign. Machine learning also inspires many practical solutions that maximize resource utilization and prolong the lifespan of the network. In this paper, we present an extensive literature review over the period 2002-2013 of machine learning methods that were used to address common issues in wireless sensor networks (WSNs). The advantages and disadvantages of each proposed algorithm are evaluated against the corresponding problem. We also provide a comparative guide to aid WSN designers in developing suitable machine learning solutions for their specific application challenges.Comment: Accepted for publication in IEEE Communications Surveys and Tutorial

    Time Synchronization in Wireless Sensor Networks

    Get PDF

    Distributed Robotic Systems in the Edge-Cloud Continuum with ROS 2: a Review on Novel Architectures and Technology Readiness

    Full text link
    Robotic systems are more connected, networked, and distributed than ever. New architectures that comply with the \textit{de facto} robotics middleware standard, ROS\,2, have recently emerged to fill the gap in terms of hybrid systems deployed from edge to cloud. This paper reviews new architectures and technologies that enable containerized robotic applications to seamlessly run at the edge or in the cloud. We also overview systems that include solutions from extension to ROS\,2 tooling to the integration of Kubernetes and ROS\,2. Another important trend is robot learning, and how new simulators and cloud simulations are enabling, e.g., large-scale reinforcement learning or distributed federated learning solutions. This has also enabled deeper integration of continuous interaction and continuous deployment (CI/CD) pipelines for robotic systems development, going beyond standard software unit tests with simulated tests to build and validate code automatically. We discuss the current technology readiness and list the potential new application scenarios that are becoming available. Finally, we discuss the current challenges in distributed robotic systems and list open research questions in the field
    • …
    corecore