619 research outputs found

    Improving Function Coverage with Munch: A Hybrid Fuzzing and Directed Symbolic Execution Approach

    Full text link
    Fuzzing and symbolic execution are popular techniques for finding vulnerabilities and generating test-cases for programs. Fuzzing, a blackbox method that mutates seed input values, is generally incapable of generating diverse inputs that exercise all paths in the program. Due to the path-explosion problem and dependence on SMT solvers, symbolic execution may also not achieve high path coverage. A hybrid technique involving fuzzing and symbolic execution may achieve better function coverage than fuzzing or symbolic execution alone. In this paper, we present Munch, an open source framework implementing two hybrid techniques based on fuzzing and symbolic execution. We empirically show using nine large open-source programs that overall, Munch achieves higher (in-depth) function coverage than symbolic execution or fuzzing alone. Using metrics based on total analyses time and number of queries issued to the SMT solver, we also show that Munch is more efficient at achieving better function coverage.Comment: To appear at 33rd ACM/SIGAPP Symposium On Applied Computing (SAC). To be held from 9th to 13th April, 201

    Towards concolic testing for hybrid systems

    Get PDF
    Hybrid systems exhibit both continuous and discrete behavior. Analyzing hybrid systems is known to be hard. Inspired by the idea of concolic testing (of programs), we investigate whether we can combine random sampling and symbolic execution in order to effectively verify hybrid systems. We identify a sufficient condition under which such a combination is more effective than random sampling. Furthermore, we analyze different strategies of combining random sampling and symbolic execution and propose an algorithm which allows us to dynamically switch between them so as to reduce the overall cost. Our method has been implemented as a web-based checker named HYCHECKER. HYCHECKER has been evaluated with benchmark hybrid systems and a water treatment system in order to test its effectiveness.CPCI-S(ISTP)[email protected]; [email protected]

    A Survey of Symbolic Execution Techniques

    Get PDF
    Many security and software testing applications require checking whether certain properties of a program hold for any possible usage scenario. For instance, a tool for identifying software vulnerabilities may need to rule out the existence of any backdoor to bypass a program's authentication. One approach would be to test the program using different, possibly random inputs. As the backdoor may only be hit for very specific program workloads, automated exploration of the space of possible inputs is of the essence. Symbolic execution provides an elegant solution to the problem, by systematically exploring many possible execution paths at the same time without necessarily requiring concrete inputs. Rather than taking on fully specified input values, the technique abstractly represents them as symbols, resorting to constraint solvers to construct actual instances that would cause property violations. Symbolic execution has been incubated in dozens of tools developed over the last four decades, leading to major practical breakthroughs in a number of prominent software reliability applications. The goal of this survey is to provide an overview of the main ideas, challenges, and solutions developed in the area, distilling them for a broad audience. The present survey has been accepted for publication at ACM Computing Surveys. If you are considering citing this survey, we would appreciate if you could use the following BibTeX entry: http://goo.gl/Hf5FvcComment: This is the authors pre-print copy. If you are considering citing this survey, we would appreciate if you could use the following BibTeX entry: http://goo.gl/Hf5Fv

    Badger: Complexity Analysis with Fuzzing and Symbolic Execution

    Full text link
    Hybrid testing approaches that involve fuzz testing and symbolic execution have shown promising results in achieving high code coverage, uncovering subtle errors and vulnerabilities in a variety of software applications. In this paper we describe Badger - a new hybrid approach for complexity analysis, with the goal of discovering vulnerabilities which occur when the worst-case time or space complexity of an application is significantly higher than the average case. Badger uses fuzz testing to generate a diverse set of inputs that aim to increase not only coverage but also a resource-related cost associated with each path. Since fuzzing may fail to execute deep program paths due to its limited knowledge about the conditions that influence these paths, we complement the analysis with a symbolic execution, which is also customized to search for paths that increase the resource-related cost. Symbolic execution is particularly good at generating inputs that satisfy various program conditions but by itself suffers from path explosion. Therefore, Badger uses fuzzing and symbolic execution in tandem, to leverage their benefits and overcome their weaknesses. We implemented our approach for the analysis of Java programs, based on Kelinci and Symbolic PathFinder. We evaluated Badger on Java applications, showing that our approach is significantly faster in generating worst-case executions compared to fuzzing or symbolic execution on their own

    An empirical investigation into branch coverage for C programs using CUTE and AUSTIN

    Get PDF
    Automated test data generation has remained a topic of considerable interest for several decades because it lies at the heart of attempts to automate the process of Software Testing. This paper reports the results of an empirical study using the dynamic symbolic-execution tool. CUTE, and a search based tool, AUSTIN on five non-trivial open source applications. The aim is to provide practitioners with an assessment of what can be achieved by existing techniques with little or no specialist knowledge and to provide researchers with baseline data against which to measure subsequent work. To achieve this, each tool is applied 'as is', with neither additional tuning nor supporting harnesses and with no adjustments applied to the subject programs under test. The mere fact that these tools can be applied 'out of the box' in this manner reflects the growing maturity of Automated test data generation. However, as might be expected, the study reveals opportunities for improvement and suggests ways to hybridize these two approaches that have hitherto been developed entirely independently. (C) 2010 Elsevier Inc. All rights reserved

    Fuzzing Symbolic Expressions

    Full text link
    Recent years have witnessed a wide array of results in software testing, exploring different approaches and methodologies ranging from fuzzers to symbolic engines, with a full spectrum of instances in between such as concolic execution and hybrid fuzzing. A key ingredient of many of these tools is Satisfiability Modulo Theories (SMT) solvers, which are used to reason over symbolic expressions collected during the analysis. In this paper, we investigate whether techniques borrowed from the fuzzing domain can be applied to check whether symbolic formulas are satisfiable in the context of concolic and hybrid fuzzing engines, providing a viable alternative to classic SMT solving techniques. We devise a new approximate solver, FUZZY-SAT, and show that it is both competitive with and complementary to state-of-the-art solvers such as Z3 with respect to handling queries generated by hybrid fuzzers
    • …
    corecore