Fuzzing and symbolic execution are popular techniques for finding
vulnerabilities and generating test-cases for programs. Fuzzing, a blackbox
method that mutates seed input values, is generally incapable of generating
diverse inputs that exercise all paths in the program. Due to the
path-explosion problem and dependence on SMT solvers, symbolic execution may
also not achieve high path coverage. A hybrid technique involving fuzzing and
symbolic execution may achieve better function coverage than fuzzing or
symbolic execution alone. In this paper, we present Munch, an open source
framework implementing two hybrid techniques based on fuzzing and symbolic
execution. We empirically show using nine large open-source programs that
overall, Munch achieves higher (in-depth) function coverage than symbolic
execution or fuzzing alone. Using metrics based on total analyses time and
number of queries issued to the SMT solver, we also show that Munch is more
efficient at achieving better function coverage.Comment: To appear at 33rd ACM/SIGAPP Symposium On Applied Computing (SAC). To
be held from 9th to 13th April, 201