1,285 research outputs found

    Human-like arm motion generation: a review

    Get PDF
    In the last decade, the objectives outlined by the needs of personal robotics have led to the rise of new biologically-inspired techniques for arm motion planning. This paper presents a literature review of the most recent research on the generation of human-like arm movements in humanoid and manipulation robotic systems. Search methods and inclusion criteria are described. The studies are analyzed taking into consideration the sources of publication, the experimental settings, the type of movements, the technical approach, and the human motor principles that have been used to inspire and assess human-likeness. Results show that there is a strong focus on the generation of single-arm reaching movements and biomimetic-based methods. However, there has been poor attention to manipulation, obstacle-avoidance mechanisms, and dual-arm motion generation. For these reasons, human-like arm motion generation may not fully respect human behavioral and neurological key features and may result restricted to specific tasks of human-robot interaction. Limitations and challenges are discussed to provide meaningful directions for future investigations.FCT Project UID/MAT/00013/2013FCT–Fundação para a Ciência e Tecnologia within the R&D Units Project Scope: UIDB/00319/2020

    Exploring Natural User Abstractions For Shared Perceptual Manipulator Task Modeling & Recovery

    Get PDF
    State-of-the-art domestic robot assistants are essentially autonomous mobile manipulators capable of exerting human-scale precision grasps. To maximize utility and economy, non-technical end-users would need to be nearly as efficient as trained roboticists in control and collaboration of manipulation task behaviors. However, it remains a significant challenge given that many WIMP-style tools require superficial proficiency in robotics, 3D graphics, and computer science for rapid task modeling and recovery. But research on robot-centric collaboration has garnered momentum in recent years; robots are now planning in partially observable environments that maintain geometries and semantic maps, presenting opportunities for non-experts to cooperatively control task behavior with autonomous-planning agents exploiting the knowledge. However, as autonomous systems are not immune to errors under perceptual difficulty, a human-in-the-loop is needed to bias autonomous-planning towards recovery conditions that resume the task and avoid similar errors. In this work, we explore interactive techniques allowing non-technical users to model task behaviors and perceive cooperatively with a service robot under robot-centric collaboration. We evaluate stylus and touch modalities that users can intuitively and effectively convey natural abstractions of high-level tasks, semantic revisions, and geometries about the world. Experiments are conducted with \u27pick-and-place\u27 tasks in an ideal \u27Blocks World\u27 environment using a Kinova JACO six degree-of-freedom manipulator. Possibilities for the architecture and interface are demonstrated with the following features; (1) Semantic \u27Object\u27 and \u27Location\u27 grounding that describe function and ambiguous geometries (2) Task specification with an unordered list of goal predicates, and (3) Guiding task recovery with implied scene geometries and trajectory via symmetry cues and configuration space abstraction. Empirical results from four user studies show our interface was much preferred than the control condition, demonstrating high learnability and ease-of-use that enable our non-technical participants to model complex tasks, provide effective recovery assistance, and teleoperative control

    Becoming Human with Humanoid

    Get PDF
    Nowadays, our expectations of robots have been significantly increases. The robot, which was initially only doing simple jobs, is now expected to be smarter and more dynamic. People want a robot that resembles a human (humanoid) has and has emotional intelligence that can perform action-reaction interactions. This book consists of two sections. The first section focuses on emotional intelligence, while the second section discusses the control of robotics. The contents of the book reveal the outcomes of research conducted by scholars in robotics fields to accommodate needs of society and industry

    A Framework of Hybrid Force/Motion Skills Learning for Robots

    Get PDF
    Human factors and human-centred design philosophy are highly desired in today’s robotics applications such as human-robot interaction (HRI). Several studies showed that endowing robots of human-like interaction skills can not only make them more likeable but also improve their performance. In particular, skill transfer by imitation learning can increase usability and acceptability of robots by the users without computer programming skills. In fact, besides positional information, muscle stiffness of the human arm, contact force with the environment also play important roles in understanding and generating human-like manipulation behaviours for robots, e.g., in physical HRI and tele-operation. To this end, we present a novel robot learning framework based on Dynamic Movement Primitives (DMPs), taking into consideration both the positional and the contact force profiles for human-robot skills transferring. Distinguished from the conventional method involving only the motion information, the proposed framework combines two sets of DMPs, which are built to model the motion trajectory and the force variation of the robot manipulator, respectively. Thus, a hybrid force/motion control approach is taken to ensure the accurate tracking and reproduction of the desired positional and force motor skills. Meanwhile, in order to simplify the control system, a momentum-based force observer is applied to estimate the contact force instead of employing force sensors. To deploy the learned motion-force robot manipulation skills to a broader variety of tasks, the generalization of these DMP models in actual situations is also considered. Comparative experiments have been conducted using a Baxter Robot to verify the effectiveness of the proposed learning framework on real-world scenarios like cleaning a table

    Human-Mechanical system interaction in Virtual Reality

    Get PDF
    The present work aims to show the great potential of Virtual Reality (VR) technologies in the field of Human-Robot Interaction (HRI). Indeed, it is foreseeable that in not too distant future cooperating robots will be increasingly present in human environments. Many authors actually believe that after the current information revolution, we will witness the so-called "robotics revolution", with the spread of increasingly intelligent and autonomous robots capable of moving into our own environments. Since these machines must be able to interact with human beings in a safe way, new design tools for the study of Human-Robot Interaction (HRI) are needed. The author believes that VR is an ideal design tool for the study of the interaction between humans and automatic machines, since it allows the designers to interact in real-time with virtual robotic systems and to evaluate different control algorithms, without the need of physical prototypes. This also shields the user from any risk related to the physical experimentation. However, VR technologies have also a more immediate application in the field of HRI, such as the study of usability of interfaces for real-time controlled robots. In fact, these robots, such as robots for microsurgery or even "teleoperated" robots working in a hostile environments, are already quite common. VR allows the designers to evaluate the usability of such interfaces by relating their physical input with a virtual output. In particular, the author has developed a new software application aimed at simulating automatic robots and, more generally, mechanical systems in a virtual environment. The user can interact with one or more virtual manipulators and also control them in real-time by means of several input devices. Finally, an innovative approach to the modeling and control of a humanoid robot with high degree of redundancy is discussed. VR implementation of a virtual humanoid is useful for the study of both humanoid robots and human beings
    • …
    corecore