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Overview

The present work aims to show the great potential of Virtual Reality (VR)
technologies in the field of Human-Robot Interaction (HRI). Indeed, it is
foreseeable that in not too distant future cooperating robots will be increas-
ingly present in human environments. Many authors actually believe that
after the current information revolution, we will witness the so-called robotics
revolution, with the spread of increasingly intelligent and autonomous robots
capable of moving into our own environments.

Since these machines must be able to interact with human beings in a
safe way, new design tools for the study of Human-Robot Interaction (HRI)
are needed. The author believes that VR is an ideal design tool for the
study of the interaction between humans and automatic machines, since it
allows the designers to interact in real-time with virtual robotic systems
and to evaluate different control algorithms, without the need of physical
prototypes. This also shields the user from any risk related to the physical
experimentation.

However, VR technologies have also a more immediate application in
the field of HRI, such as the study of usability of interfaces for real-time
controlled robots. In fact, these robots, such as robots for microsurgery or
even teleoperated robots working in a hostile environments, are already quite
common. VR allows the designers to evaluate the usability of such interfaces
by relating their physical input with a virtual output.

In particular, the author has developed a new software application aimed
at simulating automatic robots and, more generally, mechanical systems in a
virtual environment. The user can interact with one or more virtual manip-
ulators and also control them in real-time by means of several input devices.
Finally, an innovative approach to the modeling and control of a humanoid
robot with high degree of redundancy is discussed. VR implementation of
a virtual humanoid is useful for the study of both humanoid robots and
human beings.

The present work is divided into five chapters, that will be briefly de-
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Overview 2

scribed below.

Chapter 1 is an introduction to the Human-Robot Interaction (HRI) con-
cepts and the possible uses of VR technologies in this field of study.

Chapter 2 concerns the description of the hardware technologies and the
software applications that underly VR experience. In particular, the
hw/sw tools used for this work are briefly described. Moreover, some
issues related to the actual application of VR technologies to the prod-
uct development are discussed.

Chapter 3 describes RoboTiX, a VR robotic simulation tool developed by
the author.

Chapter 4 focuses on the use of VR for usability evaluation of Human-
Robot interfaces.

Chapter 5 describes an innovative approach to the modeling and control
of humanoid robots, as well as virtual humans.



Chapter 1

Introduction

In recent years, research in robotics is looking for different applications where
a human being is to be conceived not exclusively as an operator programming
off-line the robot, but rather as a system interacting with the machine by
means of different modes, [CC00].

According to many researchers, in not too distant future, robotic devices
assisting and serving humans in domestic as well as professional environment
will become as common as Personal Computers nowadays are.

Cooperating robots could be very interesting not only in household en-
vironments, but especially in the industrial field. In fact, at the current
stage, the flexibility of production processes is still strongly dependent upon
manual production steps. This is mainly caused by the fact that man-
ual production processes involve limited investments, are characterized by
faster decision processes and require simpler and faster training if compared
to those required by personnel involved in highly automatic processes.

Thus, one of the most compelling challenges of the next few years will
not be a further spread of automatic processes into the industry, but instead
the improving of the existing manual workstations with intelligent tools,
designed to assist and support the human operators during their working,
such as power extenders [Kaz98] (Figure 1.1).

Industrial robots today only operate within secure areas, where there is
no possibility for human operators to interfere with them. In fact, sharing
the workplace with an automatic robot is still very dangerous for a human
being, because of the lack of efficient collision avoidance mechanisms and
proper security measures.

Indeed, according to the European Machine Directive 98/37/EC, such
flexible manufacturing systems, and in particular man-machine interaction
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Figure 1.1: Dual Arm Power Amplification Robot (courtesy of Activelink
Co.,ltd.)

systems, would require the development of algorithms specifically targeted
to safety and control, capable of making the robot respond with intelligent
reactions to unforeseen events. Moreover, it is fundamental to develop algo-
rithms capable of minimizing the need to interrupt the production, ensuring,
at the same time, the safety of the personnel interacting with the robot.

Another interesting research line that involves the study of HRI is the
so-called assistive robotics. Assistive robotics refers to the study of the
technologies and methodologies to develop robotic machines that operate
services in environments cohabited with the human, such as wheelchair-
mounted manipulators for physically disabled people [DDM∗08]. In this
field, it is also important to design proper control interfaces that allow the
humans to easily control the robots in unstructured environments. More-
over, these robotic systems that operate in anthropic environments must be
characterized by a significant degree of autonomy, reliability and security in
order to make them capable to react in the most appropriate way when a
failure occurs, as well as when a collision or, more generally, an unforeseen
event takes place [AAB∗06].

Finally, the study of Human-Robot interaction can be applied more gen-
erally to the usability evaluation of control interface for real-time controlled
robots, such as robots for microsurgery [DZJ∗99] and other teleoperated
robots (Figure 1.2).

Teleoperation is also essential to perform tasks in adverse environments,
such as space robotics, nuclear plant servicing, undersea operations and more
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Figure 1.2: da Vinci surgical system (Boston Globe/Milton Hospital)

generally when the human operator cannot be in the operational scenario
for any reason. In such cases, the operator controls the robot manipulator
in real-time by means of a physical interface.

It is understood that the study of all aforementioned issues, which in-
volves both the robot control algorithms and their control interfaces, requires
new design tools that can take into account not only the functional require-
ments of the product itself, but also the problems arising from its interaction
with the human beings.

1.1 Motivations and objectives

Virtual Reality (VR) technologies have helped the spread of the so-called
Partecipatory Design in several industries [MBMP06], [Dav04], [MMGS09]
and have already shown their great potential for designing not only industrial
products, but even manufacturing systems, [CDM06a], [CDM06b], [DDM06]
and work-cells [Cra97].

This work aims to extend the application of these technologies also in
the field of physical Human-Robot Interaction (pHRI) and the so-called An-
thropic Robotics. In fact, virtual and augmented reality technologies appear
to be an effective way to evaluate different behavior strategies for robot and
other automatic machines [Bur99]. Inside a Virtual Environment (VE), the
designer can interact directly with a virtual robotic machine, and verify, for
instance, the effectiveness of the implemented control algorithms or simulate
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human-robot shared tasks, while operators position is tracked in real-time.
VR technologies can be also used to evaluate the usability of robot con-

trol interfaces. In fact, by means of VR technologies, it is possible to relate
the physical inputs coming from different control interfaces to a virtual out-
put inside a digital immersive environment. Specifically, we can control in
real-time a virtual robotic arm by means of a real control interface, such
as an ordinary joystick. Thanks to stereoscopic visualization, we can also
take into account both cognitive and physical aspects related to the man-
machine interaction [KHK∗07], [KBS∗01]. This is particularly important for
assistive robotics, because it is not so obvious that a human being positively
accepts the physical presence of a robotic system in his own environment.
The “immersion feeling” provided by stereoscopic technology improves the
reliability of the opinions expressed by VR-testers by means of ordinary
questionnaires.

Moreover, several unforeseen events, such as the occurring of a mechan-
ical/electronics failure or the unexpected movement of a human operator
within the robot’s working space, can be simulated as well in real-time.

It is worth emphasizing that all these evaluations can be performed in a
virtual environment, without the need of physical prototypes.

In short, the objective of this research line is to use VR technologies in
the development and validation of safety measures necessary to provide a
safe interaction between human being and mechanical systems, considering
at same time the usability of their eventual control interfaces.

In particular, I have developed many modules mainly oriented to Vir-
tual Design Review applications and Robotics Simulation. They will be
extensively described in the following chapters.

The use of Virtual Reality as a tool aimed to the measure of experi-
mental data has provided significant benefits in terms of performance and
repeatability of the tests, ensuring controlled experimental conditions. The
interaction with a virtual product also shields the user from any risk even-
tually related to the interaction with real prototypes. Finally, the use of
VR technologies for the collection of the experimental data is fundamental
in terms of safety, costs and repeatability of the tests.



Chapter 2

Virtual Reality framework

2.1 Introduction

The goal of every immersive Virtual Reality (VR) simulation is to give the
user the feeling of operating in a three-dimensional environment in which
he can directly interact with virtual objects, for instance by grasping and
using them to perform a simulated task.

For this purpose, a stereoscopic visualization system is essential, but not
enough. Indeed, a complete VR system is a large software system [Zac00],
consisting of many modules (Figure 2.1).

Figure 2.1: A typical VR framework.

Every VR system contains an object manager, renderer, device drivers,
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communication module, navigation and interaction module, etc. The visual
part of a virtual environment is represented by a hierarchical scene graph.
Everything is a node in this graph: geometries, light sources, viewpoint(s),
etc. Moreover, the Virtual Environment Management System (VEMS) han-
dles the interactions with the user. Generally, VEMSs are driven by config-
uration scripts that essentially tell which action to perform when a certain
event is detected (event-based approach).

Another important part of our scheme is the device manager. VR appli-
cation use a number of Multi-Dimensional Interactive (MDI) devices, thus
a device handler with high degree of abstraction is fundamental. It must
provide abstract interface to all the different input devices. This layer is
very important for VEMS.

In many implementations the interaction manager integrates a collision
detection module, responsible for detecting collisions among objects in the
scene graph. The detecting of a virtual collision is essential in many situa-
tions, for instance when the user has to grab objects.

VEMSs often provide the possibility to extend their functionalities with
plug-ins modules, which can be loaded at run-time by the VR system. In this
way, the programmer can provide some application-specific functionalities.

Almost all modules should be able to run concurrently to each other.
This is particularly true of real-time critical modules such as the renderer
and collision detection module.

Finally, the Visual Computing System (VCS) and a proper stereoscopic
display complete VR framework. In the following section the equipment of
VRTest laboratory will be described.

2.2 VRTest Laboratory

The activities described in this thesis have been mainly carried out at VRTest
lab, that is a VR laboratory set-up under the sponsorship of Campania
regional authority [CD07b]. The laboratory is equipped with specific hw/sw
components, which will be quickly mentioned in the following (Figure 2.2).

Computing system The computational unit is a high-end workstation
based on a dual AMD Opteron

TM

CPU with 16GB of RAM. Both
the concurrency characteristics of the processor and the amount of
available system memory are indeed fundamental for real-time render-
ing.

PowerWallR© display The PowerWallR© display set-up at VRTest provides
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Figure 2.2: VRTest lab equipment.

a large display area (7.5 by 2.4 meters) in order to facilitate collabora-
tions of groups of researchers and engineers. Thanks to rear-projection
technology, all the collaborators can see the display clearly and with-
out obstruction (Figure 2.3).

Figure 2.3: VRTest PowerWall collaborative display.

Projection system The stereoscopic display system is composed by three
high-end DLP projectors, namely Barco

TM

Galaxy 6000+. Their bright-
ness (6000 ANSI Lumen) and work frequency (100Hz) always grant a
clear and flickering-free visualization. Moreover, the projectors are
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synchronized with several Stereo3D
TM

CrystalEyesR© shutter glasses for
active stereoscopic view.

Visual Computing System (VCS) The master workstation is connected
to nVidia

TM

QuadroPlex 1000 VCS, a scalable solution for high-end
computer graphics.

Tracking system The main purpose of a tracking system is to trace the po-
sition of the user and other physical objects in the virtual environment.
In particular, VRTest lab is equipped with an optical tracking system,
by Advanced Realtime Tracking GmbH. Three infrared cameras detect
the position and orientation of a number of markers properly attached
to the object(s) to be tracked (Figure 2.4).

Figure 2.4: Tracking system architecture.

Input devices VRTest lab is equipped with a number of input devices that
allow the user to easily navigate and interact within the virtual scene.
In particular, we have two Spacemouse, two Joystick, a Flystick and a
Cyberglove R© (Figure 2.5).

3D audio output system The laboratory is endowed with a 3D audio
output system to increase the realism of the Virtual Environment
(VE).

Switching System and room control In order to simplify the control
and the management of the VR laboratory there are interconnection
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(a) Cyberglove (b) Spacemouse (c) Joystick (d) Flystick

Figure 2.5: Input devices at VRTest.

devices such as video switching matrices and serial control connection
equipment, provided with touch screen control panels. Any source,
coming from the workstations, the tracking system, video I/O, etc.
can be transmitted through a switching matrix on the projectors and
on the control monitors positioned on the command console (Figure
2.6).

Figure 2.6: Command console at VRTest.
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2.3 Architecture of Simulation Manager

As aforementioned, a VEMS properly handles all the VR-equipments in
the lab. Specifically, the majority of this work has been developed starting
from a commercial VEMS, namely Virtual Design 2 (VD2) by vrcom GmbH
[DMP06]. VD2 is an extensive tool containing many functions for product
development, from the creation of Virtual Environment to assembly simu-
lation, [AB98], or ergonomic analysis. Moreover, the Software Development
Kit (SDK) allows the programmer to enhance the basic functionalities of
the system by developing external modules that interface with VD2 kernel.

Since the programming of the virtual environment must go together with
the knowledge of the simulation software internals, the concepts underlying
VD2 internal data representation will be mentioned in the following sections.

2.3.1 Kernel modules

The kernel of Virtual Design 2 consists of three main components, [VA06]:
the interaction manager, the device manager and the rendering kernel, as
shown in Figure 2.7.

Figure 2.7: VD2 kernel architecture.

The interaction manager controls all actions in the Virtual Environ-
ment as well as the user’s interactions within the virtual scene. It can be
configured with a single scene description file, this is a script file that de-
scribes the static and dynamic configurations of the virtual objects. The
description is based on events, actions and objects. The basic idea is that
certain events will trigger certain actions, properties, or behaviors. For ex-
ample, the virtual environment can be programmed in such a way that when
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the user touches a virtual button, a light will be switched on.
The device manager initializes and controls the hardware devices used

in the Virtual Environment. It provides the mapping of physical devices to
logical devices with high degree of abstraction (Figure 2.3.1) . Moreover,
this mapping can be configured in a specific server-file. This concept sim-
plifies scene building and enhances portability, limiting the concerns about
which tracker-system is used or which machine it is attached to. The device
manager supports the most common VR devices, like Spacemouse, tracking
systems (Polhemus, Ascension, ART, Vicon, Intersense), digital data gloves
(Cyberglove, 5DT ), and haptic systems (Phantom).

Figure 2.8: VD2 device manager architecture.

The rendering kernel (called ’Y’) is based on OpenGL. It loads the
geometry, maintains a hierarchical scene graph and renders it.

VD2 stores the vertexes of a face as pointers to a single point array. Each
face can have its own material and appearance (e.g. wire-frame, solid).
An object is built from a list of faces and a list of points. This design
has several advantages. It prevents errors, like arrays which are too small,
not allocated or incorrectly indexed. All attributes of a point are easily
accessible. Furthermore, faces can be accessed directly and its attributes
changed independently. This is very important for collision detection to
show colliding faces. The main disadvantage to this approach is that memory
is used very extensively, particularly if only point positions are needed. If
this is a major problem for an application, it should be easy to add another
node type to the system that is based on separate arrays or on smaller
point-structures.

Finally, the renderer supports multiple graphics pipes and more than
one rendering window per graphic pipe. The rendering kernel also offers
several built-in functions for stereo viewing. Stereo viewing can be achieved
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with dual pipe rendering, shutter (active stereo), MCO-style, interlaced, or
anaglyph (green-red stereo).

2.3.2 Virtual scene and scene graph

The so-called scene graph essentially is the digital representation of a virtual
environment. In other words, it is a structure aimed at containing a set of
pointers to the objects that constitute the scene. In this context, the term
object refers not only to the visual elements of the virtual environment,
such as points, lines, surfaces and geometries, but also to many other items
necessary to render the scene, such as the light sources and the current point
of view.

Moreover, in order to make the interaction with the virtual scene the
more realistic as possible, the scene graph must provide a way to consider
also the relationships among the different objects. For instance, it is neces-
sary that the movement of the object “container” will result in the corre-
sponding movement of all the “content” objects. For this purpose, the scene
graph not only stores the informations related to the different objects in the
virtual scene, but also the hierarchical relationships existing among them.

This is achieved by means of a tree structure. As a tree, the scene graph
basically has two kinds of elements (Figure 2.9):

Figure 2.9: The tree structure of the scene graph

Nodes are objects which reference any number of other objects, that can
be, in turn, other nodes or terminal elements, called leaves. In the
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following, objects referenced by a certain node will be referred to as
the child objects of a defined parent node. There are various types
of nodes, which will be described in more detail in the sections which
follow.

Leaves of a scene graph are node objects without child objects or objects
which cannot make further reference to additional objects. These spe-
cial objects are, for example, geometric objects. Geometric objects
represent the visual objects in the scene (scene objects).

It is worth noticing that a parent object can have many children, but
each child object can have only one parent. In other words, the scene graph
is an acyclic structure.

2.3.3 Transformations

One of the most interesting characteristics of VR is the possibility of in-
teracting with the objects in the virtual environment by moving them in
real-time. The transformation of an object (translation, rotation, scaling)
can be defined as a set of homogeneous matrices that will be pre-multiplied
to the object. In other words, moving an object in the virtual environment
simply means applying a transformation matrix to it. Thus, every object
has its set of matrices, that can be modified in real-time.

During the traversing of the scene graph, the renderer multiplies trans-
formation matrices automatically, taking into account also the matrices re-
lated to the parent node. In this way, a transformation applied to certain
node affects also its children. This characteristic paves the way to the so-
called hierarchical modeling, that will be discussed in the following.

2.3.4 Authoring the Virtual Environment

A virtual reality software cannot be limited to the rendering. Indeed, the
proper handling of the interaction among the elements in the virtual en-
vironment is a key issue. Handling the interaction means to provide the
virtual environment with a certain behavior, that essentially is the ability
of the environment to react dynamically to particular events. As aforemen-
tioned, the software module that handles the interaction is called interac-
tion manager and, generally, it can be based on two different approaches
[Zac00]:

Event-based approach According to this model, the programmer (au-
thor) first defines a sort of story-board, that describes the behavior of
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the virtual environment. Usually, this is represented by a script file in
which a set of event-action relationships are defined. An event may be
the push of a button, the occurrence of a collision, the expiration of
a timer, etc. The actions may be instead very different: the turning
on of a light, the playing of a sound, and, more generally, the modifi-
cation of any geometric/visual characteristic of one or more elements
in the virtual scene. In short, the interaction manager waits for the
events defined in the story-board and when one of them occurs, it takes
the predetermined action. Obviously, according to this approach, the
virtual environment will react only to predetermined events, while all
others will be ignored.

Figure 2.10: Event-based approach

Behavioral-based approach This is a more complex model: each object
in the virtual environment is an autonomous agent with a number of
receptors for certain virtual inputs. In this way, each element can react
to a condition according to its own dynamics and thus have its own
behavior. According to this approach, the result of the interaction
between two objects will be automatically determined, without the
need to anticipate every possible interaction.

Since Virtual Design 2 is an industrial-oriented software, its interaction
manager follows an event-based approach. Thus, programming VD2 means
defining a set of event-action relationships by means of a configuration file.
The grammar of the configuration file is quite simple and allows the pro-
grammer to call external library functions or even to generate user-defined
events.

Authoring a virtual environment is a fundamental activity: the more
accurate it is, the more realistic the behavior of the environment will be and
accordingly the reliability of simulation results.
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Figure 2.11: Behavioral approach

2.3.5 The basic actions set

VD2 provides a complete set of commands for planning the behavior of the
VE in relation to the user interaction. Many commands describe actions
that operate on the objects in the VE. Every action is triggered by a certain
event, as defined in the so-called scene description file. The most important
actions used for robotic simulations are:

• grabbing: what makes the virtual experience really “interactive” is
the possibility to grab virtual objects and to move them through the
scene. The “grab” action first makes an object “grabbable”. Then,
when the hand touches it, it will be attached to the hand.

• changing object attributes: these actions allow the user to change
some objects attributes, such as materials, visibility, position, etc.

• sweeping: this action traces the movement of an object in the VE,
by replicating its shape.

• animations: some actions allow the user to record and playback the
movement of one or more objects of the virtual scene.

• gravity: this feature increases the realism of the virtual world, making
objects fall in a certain direction and bounce off some “floor objects”,
that can be specified separately for each object.

• constraints: VD2 kernel allows the user to constrain the movement
of an object in the virtual environment. These constraints provide an
easy way to define simple interactive kinematics, such as virtual doors
and car hoods. By default, when the constrain action is active, the
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object is linked to the virtual hand, so that it tries to follow the hand’s
motion but only within the constraint.

2.3.6 Dynamic Shared Objects

As aforementioned, the features provided by VD2 kernel can be enhanced
by functions defined in external modules, called Dynamic Shared Objects
(DSO).

Figure 2.12: DSO modular approach.

Generally, each DSO module contains a set of functions developed for
a specific application target, as a plug-in. The basic installation of Virtual
Design 2 already provides many plug-ins, for instance to manage interactive
menus or to make snapshots of the virtual scene.

A DSO module is a dynamically linkable object file, which allows the link-
ing of the module to VD2 kernel to be made at run-time, [PW72]. Moreover,
the module is shared, meaning that many different processes can share the
library functions at the same time (Figure 2.12). This modular approach
offers three main benefits:

1. The object code is loaded in the physical memory only once and then it
can be used by multiple processes via virtual memory management,[Dre06];

2. It is easy to add new features to Virtual Design 2 and maintain them;
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3. The object code is linked to VD2 kernel only when the features imple-
mented in the module are really needed.

The functions provided by DSO modules can be used as well as the basic
commands, by specifying them in the scene description file. In particular, a
DSO module exports at least four kinds of function:

init function This function is called by the simulation manager just one
time, during the initialization process. A string is passed to the func-
tion. Generally the init function is used to start up the DSO module.

loop function It is called by the renderer every frame. It is mainly used
to update the data structures of DSO module during the simulation.
The loop function does not accept any argument.

exit function This function is called by the simulation manager just one
time, when the simulation ends.

callback function This function is called when the event defined in the
scene description file occurs, similarly to the basic bult-in actions.
Usually a DSO module exports a number of callback functions. The
simulation manager passes three arguments, in particular the binary
state of the calling event (0 or 1) and a string pointer.

2.4 Virtual Design Review

Virtual Design Review (VDR) is a methodology that uses VR technologies
to improve the development and the critical review of projects. It can be
considered a way of implementing DMU [dZ99].

The data-flow related to VDR is summarized in figure 2.13.
Digital models from CAD tools are stored and maintained in a Product

Data Management (PDM) system, together with all the other simulation
data from different CAx1 tools. The first step in order to carry out a Vir-
tual Reality simulation is to properly prepare these data. Unfortunately,
until now, this operation cannot be done automatically, at least for complex
models, that actually need a VDR session.

Indeed, a VR expert has to import the geometric models, which often
come from different CAD tools, and must operate some optimizations on
their structure in order to make them suitable to be rendered in real-time.

1Computer Aided everything.
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Figure 2.13: VR-based Design Review data flow

Moreover, the same expert has to prepare the virtual environment, consid-
ering the kind of analysis to perform, such as styling, assembly simulation,
or even ergonomics evaluations.

Only after that, VR session can start. It is worth highlighting that
VR simulation does not operate on the original CAD model, but instead
on new tessellated geometry. This part of the methodology is quite well-
established, especially in automotive field. Commercial VEMS provide the
users with a number of virtual tools aimed at signaling criticality, selecting
and hiding objects, verifying the accessibility of tools and parts, taking
measures, etc. Furthermore, a stereoscopic visualization system helps the
designers to analyze the model in all its details.

This approach has well-known benefits, if compared with traditional
desktop-based design review. In particular:

• more design solutions can be evaluated in real-time;

• easier detection and resolution of technical problems, thanks to stereo-
scopic visualization;

• optimization of the information flow about the project, thanks to a
more collaborative environment.

However, apart from these clear benefits, VR-based Design Review has
still a weakness, that is highlighted by the red arrow in figure 2.13. In fact,
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to the best of author’s knowledge, the efficient transferring of feedback data
from VR to PDM is still a challenge. In this context, feedback is meant
as meta-data related to the results of VDR session, such as the purpose of
changing a product part or even a process.

For instance, we cannot import any geometry change directly to the orig-
inal CAD model, since the model preparation actually is a one-way process.
In other words, geometry tessellation is a lossy data conversion. Not to men-
tion the number of CAD software that VR tools should eventually interface
with. Moreover, often feedback data are not related to a single CAD model,
but involve entire processes.

A possible way would be interfacing the virtual tools with PDM system,
but unfortunately even this solution is not generally applicable. According
to the author’s experience, this is mainly due to the lack of a commonly
accepted PDM system standard. Instead, each company tends to have its
own PDM system, targeted on its particular needs. As a result, we cannot
store feedback by means of a common “interchange format”.

The author has faced this issue by developing several VR tools that do
not directly interface with PDM system, but instead keep their feedback
as general as possible. These modules will be described in the following
subsections.

2.4.1 Markers and Comments

The interactive placement of markers into the scene is one of the most basic
tool in any Design Review activity. Markers are useful for signaling any kind
of design faults emerged.

Starting from the framework described in the previous section, the au-
thor has developed a new software module which provides the following
features:

• A snapshot of the virtual scene is taken every time a marker is placed;

• A console-operator can edit a comment related to the design faults
highlighted;

• A HTML document containing both snapshots and comments can be
automatically sent to a specified mailing-list.

An example is reported in figure 2.14
Moreover, the developed tool does not play at interfacing directly with

a PDM system, anyway it provides an interesting feature that uses STEP2

2STandard for the Exchange of Product model data.
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(a) (b)

Figure 2.14: Markers and comments: a) markers placements; b) automatic
snapshot.

[ISO94] in order to store the comments related to a user-selected geometry.
It is understood that this feature requires the application of a specific

work-flow (Figure 2.15).
In particular, the CAD models should be firstly converted in STEP for-

mat and then prepared for VR session. In this way, we will have two models:
a tessellated one for VDR and a parametric one that will be used to store
the feedback from VR.

When a certain part is selected to be commented, its definition is searched
inside the STEP file. Then, the comments related to the selected part are
stored into the file as an instance attribute. At this point, the STEP model
can be imported into original CAD software.

However, although the effectiveness of this methodology has been verified
with its application to several commercial CAD tools, it must be noticed that
the described work-flow becomes inapplicable for complex VR scenarios that
involve heterogeneous data.

2.4.2 NURBS sketching in VR

Many researchers are involved in developing three-dimensional VR sketching
systems [Dee95], [SRS91], [FdAMS02], [BMPR02], [IC09]. The basic idea is
to provide the user with a set of VR tools for designing curves and surfaces
directly in a three-dimensional environment, by means of ordinary VR input
devices. For instance, these tools could be useful for quickly sketching new
form concepts on the basis of an already existent CAD model displayed in
a virtual environment.

Within the hardware and software framework presented in the previous
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Figure 2.15: VR-to-STEP work-flow.

paragraphs, the author has developed a VR tool that allows the user to
sketch cubic NURBS3 curves directly in VR.

NURBS [PT66] refers to the mathematical representations of a 3D ge-
ometry, such as lines, circles, ellipses, spheres or even free-form geometries,
such as cars bodies and organic shapes. However, probably the most im-
portant property of a NURBS is its Projective Invariance. In other words,
if a projective transformation is applied to a NURBS, the same result can
be achieved if the same transformation is applied to its control points. This
means that projective transformations can be applied to NURBS, without
loss of information.

The developed module is based on Cox-DeBoor [COX72] algorithm and
allows the user to draw a NURBS curve that can be changed interactively
in VR. Specifically, the user initially selects the first and the last control
points of the curve. He can perform this task simply by drawing a line in
the virtual environment with its virtual finger.

After that, the position of seven control points is highlighted by some
spheres (Figure 2.16).

At this point, the designer can select and move any control point of the
curve, simply by touching these spheres with its virtual finger while pressing

3Non-Uniform Rational B-Splines.
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(a) (b) (c)

Figure 2.16: NURBS curve sketching in VR.

a button on the flystick. As a result, the user can sketch a curve in the virtual
environment and save its geometry in different graphics formats4.

Such a tool can be very useful for instance to sketch the position of pipes
and wirings during a Design Review session. A future research direction can
be the exporting of the control points in STEP format in order to integrate
VR-sketched NURBS directly into CAD models.

2.5 Conclusions and future work

VR framework described in this chapter has been intensively used for a
number of Design Review sessions [DPT09], [DPT07], [DPT07], [DT08]. The
results of this research activity have been verified through collaboration with
various manufacturing companies operating in transportation and nautical
field and the developed tools have shown their great potential in improving
the critical review of the projects.

However, the future research directions will mainly focus on the devel-
opment of different tools, each targeted to a particular VR-based analysis.
Finally, further studies should be carried out in order to improve the ex-
changing of feedback data between VR and CAD.

4currently only OpenInventor and VRML 1.0



Chapter 3

RoboTiX: a VR engine for
robot control

3.1 Introduction

VD2 computational engine does not provide native support for defining and
handling kinematic chains. For this reason, the author has developed a
DSO module, called RoboTiX, aimed at managing open kinematic chain
manipulators in Virtual Reality. The basic idea was to provide the users
with an interactive interface for designing, studying and controlling robot
manipulators without the need for complex programming [FI98]. This has
been achieved with a VR-based interface which allows the user to move in
real-time the robot manipulator arms, in both joint and operational space.
The application kernel is a general kinematic generator which can calculate
in real time the inverse kinematics of any open-kinematic mechanical struc-
ture (Figure 3.1). The description of the robot kinematic characteristics are
specified in a text-based configuration file, which uses a simple syntax that
will be described in the following. Inside this VR environment, the user can
interact with the robot in an effective and intuitive way. For instance, the
operator can pick any part of the robot and directly move it by means of
a Multi-Dimensional Interactive (MDI) device, such as the virtual glove, or
even control the end-effector positioning with a spacemouse or a joystick.
Thus, trajectories can be defined, optimized and stored easily. The inter-
face also provides the user with information about current parameters of the
robot to help the user in trajectory decision making.

Moreover, during the trajectory planning, the user can display the ma-
nipulability ellipsoid related to the current posture. The ellipsoid is properly

25
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oriented in the three-dimensional environment and it is centered on the cur-
rent end-effector. This feature allows the user to immediately identify the
most dexterous posture for performing the considered task. Obviously, only
linear components of the velocity are considered.

Finally, a simple collision avoidance algorithm has been implemented.
The user can actually specify a virtual object from which the robot must be
away during its moving.

Figure 3.1: VR framework

In short, the main characteristics of RoboTiX module are:

• Flexibility The software and its functions are suitable for any type
of open kinematic chain manipulator;

• Programmability The robot can be programmed directly in the vir-
tual environment. Moreover, it is possible to store and reproduce an
user-defined path;

• Usability The user can control the robot in real-time in both joint
and operational space;

• Integration The module is completely integrated with underlying
software framework. For instance, any eventual error condition, such
as end-of-stroke, is signaled to VD2 kernel in order to be properly
handled;

• Redundancy handling The software can handle eventual redun-
dancy issues.
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3.2 Robot hierarchical model

The first step for using RoboTiX module is a proper modeling of the robot
mechanical structure1.

In general, a kinematic chain is a set of rigid elements, called links,
connected by joints. A joint essentially is a constraint on the geometric
relationship between two adjacent links. The basic idea has been to use
the scene-graph tree structure in order to keep the logical sequence of the
different links.

Thus, the geometric model has to be arranged in such a way that each
joint of the chain is represented by an assembly node containing three ele-
ments (Figure 3.2):

• the geometry of the link (visual element);

• an assembly node representing the subsequent joint (logical element);

• the axis related to the subsequent joint.

This structure is repeated until the final node (hierarchical modeling).

Figure 3.2: Robot hierarchical model.

1In general, CAD models of industrial robots are available for free, because the robot
companies tends to help their potential customers in designing new production plants.
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Thanks to the hierarchical structure of the scene graph, the programmer
does not have to be concerned about the analytic solution of the direct
kinematic problem. In fact, as aforementioned, during the traversing of the
scene graph the renderer will apply to each element also the transformation
matrix of its parent node and so on. This means that the movement of a
generic joint, such as a rotation about its axis, will cause the rotation of all
the subsequent links of the kinematic structure around the same axis.

In other words, for each i-node, the renderer will calculate its accumu-
lated homogeneous matrix T0

i , where:

T0
i = T0

1 T1
2 ..T

i−1
i

In this way, the direct kinematic problem, which essentially is the computa-
tion of the T0

i matrix, is numerically solved, without the need of explicitly
implementing Denavit-Hartenberg (D-H) algorithm [SS00]. Moreover, the
accumulated homogeneous matrix T0

e, which defines the position and orien-
tation of the end-effector with respect to the world origin, is always available
as well.

However, it is worth pointing out that the hierarchical model above
described is only suitable for open kinematic chains, because, as aforemen-
tioned, the scene-graph has an acyclic structure.

3.3 Robot Configuration file

One of the most important goals is the flexibility of the module: in other
words the DSO module should be able to handle different types of kinematic
chain, independently from number and type of the axes the robot is equipped
with. In order to achieve this, the kinematic chain has to be described in
a configuration file, which specifies not only names of joints and axes, as
defined in the robot scene-graph, but also type (revolute or prismatic) and
working range of each axis, see Figure 3.3.

The configuration file simply is an ASCII file with several lines, such as:

# This is a comment

ROBOT = <robot_number>

{

JOINT <joint_name>

{

AXIS = <axis_name>
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TYPE = <joint_type (1=REVOLUTE 2=PRISMATIC)>

QMIN = <upper_end_of_stroke_angle>

QMAX = <lower_end_of_stroke_angle>

}

JOINT <joint_name>

{

AXIS = <axis_name>

TYPE = <joint_type (1=REVOLUTE 2=PRISMATIC)>

QMIN = <upper_end_of_stroke_angle>

QMAX = <lower_end_of_stroke_angle>

}

...

}

The order of the joints definitions should respect the order of the links.
Finally, notice that the keyword ROBOT allows the user to define the charac-
teristics of multiple robots in the same file.

Figure 3.3: Example configuration file for an Industrial robot.
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3.4 Robot task planning

Early industrial robots were programmed by moving the robot to a desired
goal point and recording its positions in a memory, which the sequencer
would read during playback. During teaching phase, the user can guide the
robot directly by hand, or through the interaction with a teach pendant,
that is a hand-held control terminal which allows to move each joint of the
manipulator, [Cra03].

The DSO module provides functions to simulate in Virtual Reality both
aforementioned teaching systems. Indeed, it is possible to control the kine-
matic chain through the flystick, that is a wireless interaction device designed
especially for VR applications, or to make the robot follow a tracked object,
such as the virtual hand.

Moreover, the set of actions described in the section 2.3.5, can be speci-
fied in the scene description file, in order to carry out the robotic simulation
as more realistically as possible.

3.4.1 Path planning

The DSO module allows to define different postures for the robot, by spec-
ifying each of them in the scene description file. Moreover, it is possible
to handle the kinematic chain in real-time, by relating an input from a VR
device, such as a button of the flystick, to the handling of a specific joint,
see Figure 3.4.

Figure 3.4: Real-time path planning.

In this way, the user causes the robot to assume the desired posture, by
using the flystick as a teach-pendant. Each posture can be stored in a file,
so that the user can define a point-to-point path. The reproduction of the
defined path then can be triggered by an event, as it happens for any other
action in the VE. Thus, the features described above provide an easy way
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to plan a collision-free path for the robot task. Furthermore, the integration
with the underlying software architecture also allows the user to plan quite
complex behaviors, so that the robot can manipulate objects or manage any
eventual collision, see Figure 3.5.

Figure 3.5: The manipulator reproducing an assembly task.

3.5 Inverse kinematics

As aforementioned, a kinematic chain consists of a set of links connected by
a certain number of joints (Figure 3.6).

Figure 3.6: Links and joints of a kinematic chain.

The configuration of the chain at a certain time (state) can be defined
as the set of its joint variables. The dimension of this set is the Degree Of
Mobility (DOM) of the kinematic chain. Generally, in this work, the Degree
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Of Freedom (DOF) is intended as the set of independent parameters required
to completely specify the position and orientation of the end-effector only2.

When DOM is greater than DOF, the kinematic chain is redundant,
because there are DOM-DOF+1 set of joint variables that can determine
the same configuration for the end-effector.

It is understood that finding the position of end-effector, given the state
of the chain, is a trivial issue, but the contrary, namely finding the joints
values for a specified configuration of the end-effector, generally remains a
challenge (inverse kinematics problem). Indeed, this problem often does not
have analytic expression, or has more than one solution, even for apparently
simple chains.

The developed DSO module implements a general purpose inverse kine-
matics algorithm. The goal has been to develop a generic solver, suitable
for different kinematic chains with an arbitrary number of joints. The re-
sult has been achieved following two different methods described in the next
sections.

3.5.1 A numerical approach

With reference to the control of the end-effector of a n-joint robot, the well-
known relation

ṗ = J(q)q̇ (3.1)

maps the joint space velocities q̇ into the operational space velocity ṗ of the
end-effector, where J(q) is the (m× n) Jacobian matrix.

This mapping may be inverted using the pseudo-inverse of the Jacobian
matrix3, i.e.,

q̇ = J†(q)ṗ (3.2)

where J† is a (n×m) matrix, which corresponds to the minimization of the
joint velocities in a least-squares sense [SS00]:

J† = JT(JJT)−1 (3.3)

Unfortunately, the analytic expression of the Jacobian Matrix J strictly
depends from the considered kinematic chain. In other words, we cannot
obtain a general expression for J that can be suitable for every kind of
kinematic chain.

2Thus, the concept of DOF is task-dependent. In any case, it is DOF <= 6
3also called Moore-Penrose inverse.



Chapter 3. RoboTiX: a VR engine for robot control 33

However, we can differentiate the 3.1 as:

dp = J(q)dq (3.4)

Thus we have the following analytic expression for J(q):

J(q) =


∂p1
∂q1

∂p1
∂q2

.. ∂p1
∂qn

∂p2
∂q1

∂p2
∂q2

.. ∂p2
∂qn

.. .. .. ..
∂pm
∂q1

∂pm
∂q2

.. ∂pm
∂qn

 (3.5)

Thanks to the hierarchical modeling (see Section 3.2), p(q) is always numer-
ically known and equation (3.5) suggests the following numerical solution:

Jij ∼=
pi(qj + ∆q)− pi(qj)

∆q
(3.6)

where ∆q is an arbitrary small variation from the current joint value qj .
At this point, the solution of inverse kinematics problem passes through

the numerical inversion of the Jacobian matrix.
Unfortunately, equation 3.3 is not always applicable. In the so-called

near-singular postures, in fact, the Jacobian matrix becomes very sensitive
to small changes in joint values and the determinant of JJT abruptly takes
very small values. It is understood that these posture cause many numeric
problems in inversion, with sudden and high variations of q̇ that can deter-
mine shakes and jitters of the kinematic chain. For this, a Damped Least
Square (DLS) inversion method4 has been adopted [Wam86]:

J∗ = JT(JJT + λ2I)−1 (3.7)

This method is theoretically justified in [WIL88], but we can roughly say
that the damping factor λ “dirties” the rigorous solution (3.3) in order to
keep it numerically stable. Its value must be a trade-off between numerical
stability of J∗ in near-singular postures and accuracy of solution in all other
cases. There have been a number of methods proposed for select the value of
λ considering the current posture, for instance [OAJ09], [MWM92], [DW92].
However, the author has chosen:

λ = k

(
1

1 + ‖JJT‖

)
(3.8)

4It is also known as Levenberg-Marquardt method.
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In this way, when the robot is in near-singular postures ‖JJT‖ ∼= 0 and thus
λ = k. In all other cases, with a proper choice for the constant k, λ becomes
negligible. Moreover, the possibility of changing in real-time the value of
constant k has been also provided to the user.

3.5.2 A simpler approach

Generally, finding the joint angles for a given position of the end-effector in
the operational space requires an inverse kinematic approach, as described in
[ZB94]. Since this analysis is limited to open kinematic chain manipulators,
a simpler but effective methodology can be adopted.

As aforementioned, VD2 provides a specific action that cause a virtual
object to follow the user hand, within a specified constraint. For instance,
an object can only rotate about a defined axis, according to the movement of
the virtual hand. Unfortunately, each constraint is related to a single object
in the scene-graph and it is treated separately from the other constraints. In
other words, the user cannot define directly kinematic relationships among
two or more virtual objects.

This approach is suitable for modeling simple kinematics, such as a vir-
tual door, but it can lead to an unexpected behavior when it is applied
to a kinematic chain, because generally each link of the chain will move
independently from the other elements, as illustrated in Figure 3.7.

In order to avoid the breaking of the kinematic chain, each constraint
operates on a different joint-node of the hierarchical model described in
section 3.2, rather than directly on the geometries of each link.

In fact, thanks to the hierarchical modeling, each constraint action affects
a different joint-node, that contains many links of the chain. For instance,
according to the kinematic chain shown in Figure 3.8, the first joint-node
contains the whole kinematic chain, the second includes only the last two
links and finally the third node is just the last link of the chain.

Since all the geometries belonging to a specific joint-node act as a single
“rigid object” during the movement, the geometric relationships among the
different links will be kept in any case.

Many constraints can be triggered by a single event, such as the collision
between the virtual hand and a specific link of the robot. In this way, the
user can drag the whole kinematic chain by “grasping” the end-effector until
the robot reaches the desired position, see Figure 3.9.

At the same time, it is also possible to move by hand only one or more
links of the chain. However, this approach has some limitations:

• Eventual kinematic redundancy issues are not properly handled;
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Figure 3.7: Non-hierarchical modeling: The kinematic chain breaks while
moving.

• It is only suitable for open kinematic chain manipulators;

3.6 Manipulability ellipsoid

It is understood that Jacobian relates joint space velocities to the operational
space velocity. Thus, a unit sphere in the joint space will be mapped as a
generalized ellipsoid in the task space, where principal axes of this ellipsoid
represent the direction that the arm is easy to move. For this reason, this
ellipsoid is called manipulability ellipsoid.

Displaying the manipulability ellipsoid related to the positional Jacobian
can be very useful to visually evaluate the attitude of the current posture
to achieve a certain task (Figure 3.10). In order to define the axes of such
an ellipsoid, it is necessary to diagonalize the Jacobian.

Since generally Jacobian is a not-square matrix, we cannot define its
eigenvectors, but we can use instead the Singular Values Decomposition
(SVD) method [Str09]. SVD allows us to factorize Jacobian matrix as fol-
lows:

J = UΣVT (3.9)

where U and V are orthogonal matrices and Σ is diagonal. If J is m × n
matrix, then U is m×m and V is n×n. It should also be noted that singular
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Figure 3.8: Hierarchical modeling: the joint-nodes of a kinematic chain.

value decomposition is not unique, but U and V are always orthogonal
matrices. However, we can assume:

U = [u1 u2 .. um] (3.10)

V = [v1 v2 .. vn]

(3.11)

where ui and vj are respectively the eigenvalues of JJT and JTJ. They are
respectively called left and right singular vectors of J matrix.

For Σ instead we have:

Σ =

[
D 0
0 0

]
D = diag{σ1 σ2 .. σr} (3.12)

where σr are the so-called singular values of the Jacobian.
The principal axes of the ellipsoid are given by the left singular vectors of

the Jacobian and the lengths of the principal axes are given by the singular
values of the Jacobian.

In particular, RoboTiX module performs the SVD decomposition with
Jacobi eigenvalue algorithm [Ves79], then it draws the manipulability ellip-
soid centered in the end-effector. The user can see the ellipsoid changing
during the movement of the chain and choice the posture that better suits
to certain task. Obviously, only the three linear components of the velocity
are considered.
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Figure 3.9: The kinematic chain being dragged by the virtual hand.

3.7 Redundancy handling and collision avoidance

Generally, referring to redundant manipulators, Jacobian is a “fat” rectan-
gular matrix. This means that equation (3.1) has more than one solution.
In other words, there are different postures that causes the same position for
the end-effector, depending on the degree of redundancy of the kinematic
chain (Figure 3.11).

The idea is to take advantage of the redundancy of the manipulator in
order to generate movements that satisfy other low priority tasks, different
from the main task assigned to the end-effector. For instance, the end-
effector moves along the planned trajectory, while the kinematics structure
moves in order to avoid a possible obstacle.

A possible way to achieve this is to reformulate equation (3.1) in terms of
a constraint that must be satisfied, while a cost function g(q̇) is minimized.
Given the cost function, this kind of problem can be solved by means of
Lagrange multipliers method [SS00].

We can define a low-priority task in terms of a cost function as follows:

g(q̇) =
1

2
(q̇− q̇t)

T (q̇− q̇t) (3.13)

where q̇t is a target posture expressed in joint velocities space. Indeed,
finding a solution for (3.1), while minimizing g(q̇) means to achieve the
main task, while the posture of robot keeps as near as possible to q̇t.
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Figure 3.10: The manipulability ellipsoid during the task execution.

Figure 3.11: Different postures achieve the same position.

A general solution for this problem is:

q̇ = J†v + NJq̇t (3.14)

where
NJ = (I− J†J)

is the null-space projector for Jacobian matrix J. In other words, the end-
effector velocity v will not be affected by q̇t, that will consequently be
considered a low priority task.

Now, we have to define the expression of the vectorial function q̇t(q).
For this, if we consider a further control point v1 (different from the end-
effector) we can write:

v1 = J1q̇t
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and consequently:
q̇t = J†1v1 + NJ1 q̇t2 (3.15)

where q̇t2 is a new secondary task in joint velocity space.
Now we can put equation (3.15) in (3.14) and then we have:

q̇ = J†v + NJ(J†1v1 + NJ1 q̇t2) (3.16)

This method can be reiterated till NJi
= 0. In this way we can have r + 1

control points, where r is the degree of redundancy of the kinematic chain.
They trajectories assigned to this further control points will be treated as
nested low-priority tasks (Figure 3.12).

Figure 3.12: Different priority tasks.

Multiple control points with different priority level can be used for imple-
menting collision avoidance algorithms. For instance, when the end-effector
gets close to an obstacle, we can switch its priority level, in favor of a collision
free trajectory, and so on.

In particular, RoboTiX module implements a collision avoidance algo-
rithm that uses two priority level.

3.8 Exported functions

The developed module exports to VD2 kernel the following functions:

init "<file_name>"

This is the initialization function. The argument is the configuration
file of the kinematic chain(s) (see section 3.3).

loop It is the main loop of the program.
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step "dq1,dq2, ... dqN"

allows the user to move the robot in the joints space. The generic
argument dqi is the increment value of i-joint. This function can be
useful to control the robot in real-time, by means of a button device,
such as the flystick or simply the keyboard.

move "[@ steps ];[R robot_number ] ; <q1 | *>, q2, .., <qN>"

moves the robot to the joint-space posture (q1, q2, ... qn).

The keyword “@” specifies that the posture will be achieved in steps

rendering cycles, otherwise the software uses the default step incre-
ment. (see setStep).

The keyword “R” specifies which robot to move, otherwise the software
moves the currently active robot (see setRobot).

Finally, the keyword “*” (asterisk) keeps unaltered the position of the
respective joint.

stop (no args)
stops the movement of the robot.

setEventEOS "<event_name>"

Set the event to generate when an end-of-stroke condition is achieved
during the movement.

setEventMove "<event_name>"

Set the event to generate when the robot moves.

printvar (no args)
Prints the current posture to standard output

setStep "[+|-]<steps>"

Set the default duration of the movement to <steps>. If specified, the
keywords [+|-] respectively increment or decrement the current steps
number.

setEndEffector "<joint_number>"

Set the last joint of the chain on which the inverse kinematics algorithm
is active. It will be considered the end-effector.

setFirstJoint "<joint_number>"

Set the first joint of the chain on which the inverse kinematics algo-
rithm is active.
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setRobot "<robot_number>"

Set the robot currently active.

move xyz "(x,y,z)"

Moves the current end-effector of the currently active robot to the
specified position.

displayEllipsoid (no args) Display the manipulability ellipsoid related to
the current posture.

initEllipsoid "[material_name]"

sets the ellipsoid material with material_name. If the material is not
specified, a default material is applied to it.

play "<file_name>"

Reproduces the path stored in file_name.

save "<file_name>"

Save the current state of the kinematic chain (posture) in <file_name>.
If the file already exists, then the data are appended to it.

renew (no args)
Reloads configuration file, reset all module data structures. Debug
purpose only.

move p2p "(x,y,z)"

Save the current posture and moves the current end-effector of the
currently active robot to the new specified position. If the trigger event
status is zero, the robot returns to the previously stored posture.

setObstacle "<object_name>; <float>"

the robot will move always keeping itself at a distance of float from
object_name (collision avoidance).

trackInit "<device>"

allows the user to control the kinematic chain in real-time by means
of the specified MDI device.

trackInitScale "<float>"

sets the default scale for the device data.

trackInitDampingFactor "<float>"

sets the damping factor k to <float>. See section 3.5.
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trackToggle (no args)
starts/stop the real-time control.

trackSetScale "<float>"

sets the data scale to <float>.

trackExit exit function.

An example script is reported in the following:

appl init robotix.so:init "robot.cfg"

appl loop robotix.so:loop

appl callback robotix.so:step "(1, 0, 0, 0)" \

key Left type reflect event on

appl callback robotix.so:move "@500;(20,-30,40,*)" key l

appl callback robotix.so:stop \

collision end_effector obstacle

appl init robotix.so:setEventEOS "end_of_stroke"

wireframe robot appinput "end_of_stroke" event change

3.9 Conclusions and future work

As aforementioned, the library functions allow the user to easily plan an
intended task for any type of open kinematic chain manipulator: it is only
necessary to prepare the robot scene-graph and then edit the configuration
file according to the type of chain. Since the DSO module is completely
integrated with the underlying software framework, the user can take ben-
efit from all the other functionalities provided by the Simulation Manager.
For instance, it is possible to display the working area of the robot, high-
light eventual collisions between the robot and any object in the VE or
trace the path of the end-effector (sweeping) during the task execution, see
Figure 3.13.

The basic command set can also be used to simulate specific robot behav-
iors triggered by certain events, eventually generated by external modules.
Thus, the modular approach adopted by VD2 kernel could be used to inter-
face a real sensor network with a virtual robot cell. In this way, it would be
possible to test the safety strategies adopted to control robots that operate
in anthropic domains.
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Figure 3.13: The sweeping action applied to the end-effector.

Furthermore, in order to use the function set provided by the DSO mod-
ule, the user has to prepare the robot scene-graph and the related configu-
ration file manually. Thus, a future goal will be to develop a graphic wizard
to lead the user through the configuration process.



Chapter 4

Usability evaluation in VR

4.1 Introduction

The concept of usability comes from the studies of cognitive ergonomics
about the development of graphical interfaces. A comprehensive review
about the evolution of Human Computer Interaction (HCI) is reported in
[SR08].

For instance, according to IEEE 610-12:1990 standard glossary [IEE90]
the usability is the ease which a user can learn how to operate with, prepare
inputs for, and interpret the outputs of the interaction between user and
system.

ISO reference 9126-1:2001 [ISO01], which concerns the development of
software products, defines the usability as the capacity of the software prod-
uct to be included/understood, learned, used and attractive to the user when
it is used under specified conditions.

Finally, ISO reference standard 9241-11:1998 [ISO98], which concerns
the ergonomic requirements for the office work with Video Display Terminals
(VDTs), defines the usability as the degree of use of a product by the user
to achieve specific objectives with effectiveness, efficiency and satisfaction in
a specified context of use.

Following the standard reference, Nielsen [Nie93] stresses the importance
of the user satisfaction as a measure of the degree of pleasure related to the
use of the system. Therefore, the usability evaluation cannot be consid-
ered apart from the assessment of the subjective aspects of the product-
system interaction, that are extremely difficult to be evaluated systemati-
cally [MLG08].

Many studies about the methods to evaluate the usability have shown

44
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that such analysis can be performed not only with respect to the graphical
interfaces of the computers, but also about the physical ones of the indus-
trial products [Nor88], especially of “mass consumption”, such as washing
machines, mobile phones, etc. In this way, the design and usability metrics
have also been extended to the field of the industrial design.

In particular, this chapter focuses on the study of usability of physical
interfaces designed to drive real-time controlled robots, such as wheelchair-
mounted manipulators. However, differently from previous studies, in which
the attention is mainly focused on aspects mainly related to the objective
features of the product, in this chapter the author highlights the importance
of the subjective aspects arising from the user-product interaction. Further-
more, we will show that, thanks to virtual prototypes, it is possible to select
the best architecture in terms of both usability and safety.

4.1.1 Usability in assitive robotics

Research in the field of assistive applications is playing a key role in the
international robotics community. Several research groups are developing
systems aimed at assisting disabled people in the actions and assignments
typical of everyday life in both structured and unstructured domestic envi-
ronments [GBSG03]. Indeed, the objective validation of the safety measures
necessary to provide a dependable human-robot cooperation is becoming
central for service robotics [AAB∗06], [ASH07].

The main goal of robotics for assistance is to increase the quality of life
of disabled people; in particular, robot manipulators are required, able to
replicate human abilities in terms of strength, speed and accuracy in the
manipulation of objects and tools. While such systems can offer autonomy
to impaired persons, great challenges are presented by the study of the
interface, the suitability of available robotic systems for special users, the
usability, especially related to the kind of disability.

The assessment of the usability is a crucial issue for the design of such
products, since they communicate with their users not only through their
shape, but especially through their control interfaces.

In the following, we will show that these evaluations can be efficiently
carried out via realistic simulation experiments.

In a first phase, the study has focused on defining a synthetic usability
index on the basis of the methodologies currently in use. In a second phase,
some experiments in Virtual Reality (VR) have been carried out. Indeed,
the use of VR technologies for the collection of the experimental data has
been fundamental in terms of safety, costs and repeatability of the tests.
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Another important result has been the reduction of the sources of noise,
thanks to preliminary simulations in VR and non-invasive questionnaires
and interviews for capturing the subjective perceptions of users.

Finally, it is worth noticing that the developed model may show its
validity also in evaluating the usability of other products. In fact, it provides
a basis for a more extensive use of VR experiments for evaluating different
design solutions in terms of global usability requirements, giving the user an
active role in designing the product.

4.2 Usability evaluations in VR

Generally, the design of human-robot collaboration tools has to pay partic-
ular attention to the following issues:

• user’s safety,

• system ergonomics and usability,

• cost-effectiveness.

The study of the aforementioned issues requires design tools able to simulate
not only the robotic system and its control interface, but also unexpected
behaviours in anthropic environments, depending both on the user and the
system, such as the occurrence of mechanical/electronics failures or unex-
pected user movements within the robot workspace. Moreover, a realistic
interface can be helpful for appreciating the cognitive Human–Robot Inter-
action (cHRI). The main advantage of the immersive Virtual Reality (VR)
technology in the field of assistive robotics is the ability both to evaluate
the control interface usability and to simulate the aforementioned dynamic
events [BC03], [BC99].

The present study aims to provide a tool to easily recognize the criticality
of a wheelchair-mounted manipulator, through the evaluation of its usabil-
ity, taking into account not only the functional requirements, but also the
subjective needs of the target user, which are not necessarily obvious. This
objective is pursued through the identification of a metric for a quantitative
assessment of the usability in order to compare different design alternatives.

Hence, the objective of this work is to demonstrate the effectiveness of a
VR-based simulator (Fig. 4.2) for testing the usability and possible applica-
tions of wheelchair–mounted robot manipulators, with an effective solution
for mounting available robot manipulators on commercial wheelchairs via a
sliding rail (Fig. 4.2).
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Figure 4.1: The wheelchair-mounted manipulator in the virtual environment

4.3 Wheelchair-mounted manipulators

Assistive robots can be divided in fixed structures and moving platforms.
While the first solution often requires modifications of the infrastructures
in order to provide a known environment, manipulators mounted on mo-
bile vehicles or on wheelchairs offer higher flexibility. A good discussion of
these issues has been addressed in [GBSG03]. It is worth noticing that often
disabled people with upper-limb limitations also present mobility impair-
ments which force them to use wheelchairs. A wheelchair-mounted manip-
ulator [EB99], [HG94], [AMED05] can be an effective extender but, on the
other hand, realistic simulations of the environment and extensive experi-
mental activities have to be conducted for testing the effectiveness of their
applications in unstructured domains. Moreover, safety issues have to be
addressed in depth [AAB∗06].

Finally, manipulators which almost replicate the kinematic structure of
the human arm can be chosen for the legibility of their motion, which could
improve the confidence of the users during physical Human-Robot Interac-
tion (pHRI).

The use of Virtual Reality could speed up the design of such robotics
solutions, because it allows the designer to set systems parameters based on
feedback from experimenters, involving also cognitive aspects of the inter-
action with the robots. Such instrument can be used for a fast comparison
of interface, appearance, kinematic parameters.

The research work described in this paper has consisted of two stages;
namely, a concept stage in which the functional parameters of the wheelchair
and the robotic arm have been defined, and an evaluation stage in which a
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VR architecture has been developed in order to evaluate the usability of the
system.

4.4 Concept stage

4.4.1 Requirements and robot choice

The integrated system has to guarantee the maximum effectiveness and us-
ability. At the same time, the introduction of the robotic arm does not have
to require any significant change on its surrounding environment. Moreover,
the wheelchair-mounted manipulator has to satisfy the following require-
ments:

• reduced weight,

• intrinsic safety toward accidental collisions with the user.

The powered wheelchair Indoor 2003 by Neatech [Nea] has been chosen,
based on consideration on its features, which are reported in Fig. 4.3.

Figure 4.2: The virtual environment with a wheelchair-mounted manipula-
tor on a sliding rail

In order to obtain a wider workspace for a robotic extender mounted
on the wheelchair, a sliding rail has been considered around the powered
wheelchair, with proper modeling of such a joint for exploiting it as an
additional degree of freedom (DOF) available for robot control.

The manipulator can move around the wheelchair by sliding along the
rail; the rail is able to rotate around an horizontal axis, providing a way to
change its inclination, for adapting the workspace to the user’s needs (e.g.,
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better dexterity on the ground). Such characteristic widely increases the
robot workspace.

Figure 4.3: The real Neatech Indoor wheelchair is lightweight and powered

Three different lightweight robot arms (see Fig. 4.4), have then been
considered for integration with the wheelchair:

a. KUKA Light Weight Robot (LWR),

b. Amtec Ultra Light Weight Robot (ULWR),

c. Mitsubishi PA-10.

Figure 4.4: (a) KUKA LWR, (b) Amtec ULWR, (c) Mitsubishi PA-10

These manipulators have a kinematic structure similar to the human
arm: moreover, the reduced weight allows using them for service robotics,
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while quantitative evaluation of intrinsic safety in case of rigid impacts are
available only for the KUKA arm [ASH07].

Since the robotic arm and the rail mounted on the wheelchair introduce
static balancing issues, it has been necessary to verify also the stability
of the integrated system, which has been verified for all the three robots
considering the wheelchair both with and without a person sitting on it.

4.4.2 Kinematic modeling

A key point for wheelchair-mounted manipulators is the possibility for the
robot of moving around the sit, and extending this way its workspace around
the user, without passing trough the front part of the wheelchair [BGH∗06].

For the proposed application, the kinematic model of the considered
manipulators has been extended to include the motion on the base joint.

With reference to figure 4.5, the base joint is modeled as a prismatic
joint on the left, right and rear side of the wheelchair, while the sections
between these segments are modeled as rotary joints. Smooth transitions
between different segments have been considered.

Figure 4.5: 3D model of the proposed rail.

In order to control the motion of different control point of the robotic
systems, the approach described in [DASO∗07] has been adopted. The user
(or an automatic module for safety procedures) can control the position not
only of the end-effector, but also of an arbitrary point on the articulated
structure of the manipulator, moving on the robot.

For instance, a control point can be the point of the robot which is closest
to a collision (monitored with exteroception), or a point (e.g., the “elbow”)
that it is wished to move away from its current position.
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The control interface gives reference directions, which are interpreted as
desired velocities, and a closed-loop inverse kinematics (CLIK) scheme is
adopted for computing the reference joint values.

Some properties for the evaluation of the considered robots can be de-
scribed via objective indicators such as the well-known manipulability mea-
sure [SS00], which gives an indication of the ability of the robot to change
posture and, therefore, of its ability in manipulation from the current po-
sition (and orientation). It is the volume of the so-called manipulability
ellipsoid, which gives a graphical interpretation of robot dexterity.

With a dynamic model of the arms, it is also possible to compute a
dynamic version of such indicator and an additional safety measure, namely,
the impact ellipsoid [Wal94].

4.5 Experimental setup

Virtual Reality technologies have been used in order to give the user the im-
pression of moving a robotic arm attached to an ordinary powered wheelchair
for physical disabled people. In particular, the case study refers to a powered
wheelchair (Indoor 2003 by Neatech srl) equipped with a kuka light-weight
robot [DDM∗08]. The main goal has been the development of a three-
dimensional virtual environment in which the user was able to control a
robot manipulator attached to a wheelchair, in 1:1 scale and from his own
point of view.

The experimental activity has been mainly carried out at “VRoom”,
that is a low-cost VR laboratory equipped with two LCD projectors and
polarized glasses for passive stereoscopic view [CDP06]. Further tests have
been also carried out at VRTest lab, that is a high-end laboratory with three
DLP projectors and shutter-glasses for active stereoscopic view [CD07b]. In
order to enhance the impression of moving a real appendix of a wheelchair,
a physical wheelchair has been placed in the laboratory in such a way that
the user viewpoint coincided with the virtual wheelchair starting position.
Moreover, the glasses are endowed with optical targets, and the user can
also adjust the point of view on the virtual scene by moving his head. In
this way, a semi-immersive VE has been set up, where the user can move
and control both the wheelchair and the virtual robotic arm by means of
different devices (Figure 4.6).

The first step in order to carry out the virtual simulations has been
the design of the VE. The author has designed a “virtual flat” with all the
common furnishing. In particular, it is completely unstructured with respect
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Figure 4.6: The semi-immersive set-up at VRTest

to the robotic manipulator (Figure 4.7).
The realism of the VE has been particularly considered, because a semi-

immersive experimental set-up may create some problems in terms of sense
of presence, especially with respect to experiments that involve both real
input and virtual outputs. In fact, a low sense of presence of the user may
undermine the validity of test results.

The second phase has concerned the programming of the virtual envi-
ronment, that means, essentially, defining its behavior in response to the
user’s interaction. The software platform that have been used as Simulation
Manager for this work is Virtual Design 2 (VD2), by vrcom GmbH.

In particular, the VE can be programmed with a complete set of com-
mands that essentially describe actions that operate on the objects in the
VE.

The software application [DMT07] that has been described in chapter
3 allows the user to move a kinematic chain in the virtual environment by
means of a multidimensional input device, such as a joystick or a space-
mouse (Figure 4.8).

The space-mouse is an input device with 6 Degrees of Freedom (DOF). It
has a round “puck” or a “ball” that can be manipulated out of its quiescent
position in order to apply rotations as well as translations.

The joystick is a very common input device, generally consisting of a
stick that pivots on a base and reports its vectorial direction. Moreover a
lever controls the “vertical elevation”. Thus, the joystick is a 4-DOF input
device.

Although the space-mouse and the joystick have different degrees of free-
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Figure 4.7: The “virtual flat” with all the common furnishing

dom, in this work only three DOF have been used, in order to control only
the position of the end-effector, but not its orientation.

Consequently any orientation adjustments have to be done by operating
in the joint space. For this reason, the user can individually control each
joint angle by means of the joystick buttons.

This choice has been mainly due to the difficulty for training a disabled
user in controlling both the position and the orientation of the end-effector
at the same time with a 6-DOF control interface.

However, both the space-mouse and the joystick are equipped with sev-
eral buttons that can be used to trigger user-defined actions. For instance,
the user can control both the wheelchair and the robot with the same inter-
face (e.g. the space-mouse). This is achieved by simply pressing a button,
that switches the active control between the wheelchair and the robotic arm
and vice versa. Moreover, some buttons of the joystick are related to prede-
fined postures. This feature simplifies the handling of the kinematic chain,
since generally it reduces the time needed to reach a desired posture. More-
over, the possibility to display the manipulability ellipsoid and the Jacobian
matrix related to a certain posture is given (Fig. 4.10)

Finally, it is worth noticing that the user can even move the powered
wheelchair in the virtual space with the joystick while he is controlling the
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Figure 4.8: Input devices

robot with the space-mouse and that other kinds of input devices can be
tested with minor modifications to the interface.

4.6 VR experiments

The second step of the experimental phase is the training of the users. The
experimenter has to be briefly trained to the use of the interaction devices
and also informed about the importance of their experience [DG07]. The
training stage has been carried out in two phases: in a first phase, the
operator has simply to move the end-effector along the three axes of the
virtual space; then, in a second phase, the operator has to move the end-
effector following a defined path. Only once the user is able to use properly
the virtual devices, the experimental session can begin.

In order to compare the proposed robots for the considered application,
an appropriate methodology of usability analysis has been developed.

The usability denotes the ease the user can handle the kinematic chain.
It strictly depends on the robot type, the inverse kinematics algorithm,
the user-robot interface, and the level of training of the user. In order to
quantify the usability for a specific robot, we have defined a set of time-
based experiments. For the considered tasks, the usability measure is based
on the elapsed time for completing the required motion.

In particular, four tasks have been conceived:

1. book positioning on a shelf (reaching);

2. objects relocation on a shelf (dexterity);

3. moving a chess piece on a board (fine motion between obstacles);
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4. moving objects between two different planes (free motion);

Book positioning on shelves

Twelve books of four different colors are positioned (s. Fig. 4.9) on four
different shelves. The task consists of moving every book on the shelves of
the same color. This test allows determining the feasibility of operations
performed by disabled people and also to measure the manipulability and
the usability of the robot with respect to different levels of height for the
end-effector.

Figure 4.9: Execution of the object relocation task on a bookshelf

Objects relocation on a shelf

The user is 0.4 m far from a shelf of height 1 m, where five equidistant
markers are set. The distance among the most external markers is set to
1 m. It deals with the normal dimension of the human arm workspace. A
spherical object is set on the central marker. The user first has to grab the
object from the central marker and then release it on the others. The test
evaluates the horizontal usability of the robot.

Moving a chess piece on a board

The user is 0.380 m far from the chessboard (measured from the chest to the
center of the board). The violet horse (Fig. 4.10) is the piece to be moved,
the yellow box represents the starting position of the horse and blue boxes
highlight the final destination of the piece. The user has to move the piece
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Figure 4.10: Execution of the task at a chessboard: the manipulability
ellipsoid is displayed on the screen

from the yellow box to the blue one. This test evaluates the ability to handle
small objects among some obstacles.

Moving objects between two different planes

In this test, the user has to move some glasses from a table to another and
back again. The two tables are 0.9 m far. The starting position and the
final destination of the glasses are signaled by different colored markers.

4.7 Experimental results

Experimental sessions have been performed by able-bodied users. We have
considered a random sample of 10 users and we have asked them to carry
out the four tasks using the three manipulators in a random order. The
task execution time t has been considered as a performance index. In order
to take in account both the mean µ and the standard deviation σ of the
measured times, the score E for each test has been calculated in the following
manner:

E = (µ2 + σ2) (4.1)

With this choice, lower scores mean better performances.
The performance of the manipulators is summarized in figures 4.11-4.14.
In conclusion, the KUKA LWR has obtained the best score in terms of

usability in each test.
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Figure 4.11: Test 1 - Book positioning on shelves

Figure 4.12: Test 2 - Objects relocation on shelf

These preliminary results suggest the potential impact of the proposed
tool for the evaluation of robotic extenders.

Different indicators can be considered as well, depending on the appli-
cation: the possibility of carrying heavy objects, for instance, is considered
important by the participants, for autonomy in their houses, while the cen-
tral requirement of safety is considered somehow less central, due to the will
of taking the control of the robot without autonomous robot behaviors. It
is worth noticing that some weights chosen by the users can be quite sur-
prising for an engineer. This shows that the appearance of the robot has a
strong impact on the user, and even the intrinsic safety and versatility can
be appreciated not enough, if not accompanied by a proper design.
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Figure 4.13: Test 3 - Moving a chess piece on a board

Figure 4.14: Test 4 - Moving objects between two different planes

4.8 Conclusions and future work

The proposed simulation environments can allow comparison between tra-
jectory planning schemes, kinematic optimization of robots for wheelchairs,
appearance and reliability of wheelchair-mounted manipulators.

However, the described methodology can be improved by increasing the
number of evaluation criteria and the sample of users considered.

Furthermore, with the addition of simplified dynamic models, joint torques
due to the interaction with the environment can be generated as well, for a
better modeling of the environment.

The use of robots in unstructured and time-varying environments implies
the need for implementing real-time reactive strategies to cope with possible
collisions [DASO∗07], which are going to be implemented for completing the
simulator. The proposed tool can be used also for evaluating in a very
realistic way the reactions during the approach and the motion of the robot



Chapter 4. Usability evaluation in VR 59

on desired or unexpected trajectories. Force feedback can be added via a
proper haptic interface [Bur96].

Finally, tests with physically disabled people could provide additional
insights in the cognitive and ethical aspects related to the introduction of
robotic extenders in everyday life.

The study on the interface should take into account the possible difficulty
for a disabled user in controlling both the position and the orientation of
the end-effector at the same time.

Virtual reality provides a time- and cost-effective tool for the proposed
comparisons.



Chapter 5

Modeling and Control of
humanoid robots

5.1 Introduction

This chapter describes an approach to the modeling and control of a hu-
manoid robot with high degree of redundancy. The increasing attention
of robotics community about the so-called humanoid robotics, [SKSH03],
[KNK∗02] [OEF∗06], is not simply related to the ancestral ambition of build-
ing something that looks like a man, but has also an immediate and objective
reason. In particular, it arises from the apparently obvious fact that all ac-
tions that human beings perform daily, the objects that they manipulate
and the environments in which they live have all been made “on a human
scale”. For instance, all the objects we manipulate have been made in order
to best fit the shape of our hands and are light enough to be easily handled
by one person. This means that if we really want to build machines able
to cooperate with human beings, we need to design robots that not only
can move through environments designed for humans, but can also handle
objects particularly suited to our physical structure and our behavior. For
instance, bipedal robots could potentially move in the same space where
people work, such as an industrial plant with stairs and handrails. In this
way, these robots could cooperate with us and even collaborate with each
other using our own tools or machinery. Further considerations can be made
even under the aspect of human-robot and robot-robot communication. In
fact, humanoid robots could potentially use already existing human com-
munication channels [SK] and even be used in the therapy of some forms of
mental disorders [RDBB05]. Therefore, it makes sense to develop efficient
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models that allow us to accurately control the motion of humanoid robots.
On the other hand, it is also necessary to develop simulation tools to study
robots behavior in unstructured environments, considering the safety issues
arising from the interaction with humans.

Moreover, the model of humanoid robot that will be described in the
following sections, is also suitable for simulating the behavior of human
beings in a virtual environment. This can be very useful for ergonomics
analyses or even for manual processes simulations.

Manufacturing companies, indeed, have now taken the concept of “man
adaptability” as a basic parameter of quality for their products, therefore
they are giving an increasingly attention to ergonomic analyses, even from
the early stages of design, [CD07a]. The so-called virtual manikins, provided
by many process simulation software, essentially are virtual kinematic chains
consisting of several segments and joints. The length of their segments are
derived from anthropometric databases, which can be queried with respect
to different percentiles in the population. However, these software tools
generally are too much complicated to be handled and the so-called “process
simulation” often becomes a very time-consuming task, mainly because of
the difficulty in controlling the kinematic chain of the virtual humanoid.

Therefore, developing efficient algorithms aimed at controlling a high-
articulated chain, such as the human mechanical structure, is very interest-
ing even for fields apparently unrelated to robotics.

5.2 Kinematic modeling

The basic idea was to control the highly redundant kinematic structure of a
humanoid robot, by means of only few control points. This idea is supported
by the observation that generally, during the carrying out of a certain task,
the postures taken by our kinematic structure largely depend on balancing
and mechanics issues, that are only partially related to the considered task.
In other words, a human being can play the piano without concerns about
the position of his center of mass.

For this purpose, the goal has been to develop an algorithm that allowed
us to concentrate only on the task-related control points, without the need
of specifying the other redundant Degrees of Mobility (DoMs) of the chain.

In particular, the position of the Center of Mass (CoM) of the humanoid
has been taken into account, in order that it was always consistent with the
balancing issues of its mechanical structure.
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5.2.1 Hierarchical model of humanoid robot

Firstly, in order to take advantage of the systematic approaches typical of
serial robots, the humanoid has been modeled as the combination of four
kinematic chains, which share the same starting point, called root. The
resulting model is the hierarchical structure shown in figure 5.1.

Figure 5.1: Hierarchical model of humanoid robot

Starting from this graph, it is possible to build up the Denavit-Hartenberg
(D-H) model of the whole kinematic chain (Figure 5.2).

In particular, we can define a number of direct kinematics equations,
with respect to the root reference frame. As we can see, the position and
orientation of the root node with respect to reference frame is specified
by introducing 6 virtual joints (see section 5.2.2). Thus, the considered
kinematic structure has 39 Degrees of Freedom in all.

This kind of modeling has the advantage of simplicity, but generally it
may cause a physical consistency problem, since some links (as well as all
the virtual links) are shared among different kinematic chains. For instance
the “back” of the virtual humanoid is shared between its right and left arms.
This issue and its solution is discussed in section 5.2.5.
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Figure 5.2: D-H model of humanoid robot

5.2.2 Virtual joints

Now, we must describe the position and orientation of the multi-legged kine-
matic chain with respect to an inertial frame. For industrial robots identi-
fying such a frame is intuitive, because they have a fixed base. A humanoid
robot, instead is bound to the ground by a one-way constraint, that is the
current support plane, for instance one foot.

Figure 5.3: Which reference frame?

But this reference periodically changes during the walk, thus we ap-
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parently cannot identify a fixed base starting from which the Denavit-
Hartenberg method can be applied (Figure 5.3).

Moreover, the presence of multiple end-effectors (two hands and two feet)
implies the need to describe the position and orientation of many frames,
differently from industrial robots, in which the kinematic chain has only
one end-effector. This problem was overcome using the virtual joints ap-
proach [Yam04]. Namely, when describing the position and orientation of
a robot arm, it was conceived connected to the ground plane through a
virtual manipulator consisting of three prismatic and three revolute joints,
which characterize its position and orientation. The attaching point has
been called root (Figure 5.4).

Figure 5.4: Virtual joints approach

With this approach, the hands and the feet (and even any other control
point) simply are end-effectors that can be controlled with velocity refer-
ences. In other words, the posture of the virtual humanoid is completely
specified by the following parameters vector:

q =
[
qr

T q1 q2 .. qn
]T

where qr =
[
po
r
T ωo

r
T
]T

identifies the root frame.

Moreover, virtual joints technique makes unnecessary the management
of closed kinematic chains during the phase of double support. Indeed, this
condition becomes equivalent, from a kinematic point of view, merely to
impose a null velocity reference to the feet.
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5.2.3 Augmented Jacobian

Each chain has its own direct kinematic function, therefore a Jacobian ma-
trix can be computed for a generic control point of the structure. Generally,
considering n control points we can define the following set of equations:

v1 = J1q̇

v2 = J2q̇
... (5.1)

vn = Jnq̇

where the generic element Ji is the Jacobian matrix related to a specific
control point.

It is understood that, if the generic joint variable qj does not affect vn,
it is (Jn)ij = 0. This set of equations can be summarized as:

v = JAU q̇ (5.2)

where JAU is the so-called Augmented Jacobian. On one hand, this ap-
proach allows us to solve the inverse kinematic problem with only one CLIK
algorithm [SK]. On the other hand, the trajectories defined for the control
points will be all treated as primary tasks, unlike other solution methods
do, such as null space based approaches [SS91], [Nak91].

In particular, in order to define the structure of JAU, the vector q̇ must
be properly sorted. Since humanoid structure is composed by four kinematic
chains, we can write four different vectors of unknowns:

q̇1 =
[
q̇T
r q̇T

rl

]T
right leg

q̇2 =
[
q̇T
r q̇T

ll

]T
left leg

q̇3 =
[
q̇T
r q̇T

b q̇T
ra

]T
right arm

q̇4 =
[
q̇T
r q̇T

b q̇T
la

]T
left arm

where q̇r are the velocities of the virtual joints that are shared among four
kinematics chains. These vectors can be summarized in only one vector of
unknowns:

q̇ =
[
q̇T
r q̇T

rl q̇T
ll q̇T

b q̇T
ra q̇T

la

]T
= [q̇1 q̇2 .. q̇39]

T

(5.3)
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With this choice, the Augmented Jacobian takes the following form:

JAU =


Jri Jrli 0 0 0 0
Jri 0 Jlli 0 0 0
Jri 0 0 Jbi

0 0
Jri 0 0 Jbi

Jrai
0

Jri 0 0 Jbi
0 Jlai

 (5.4)

The matrix JAU has 39 columns, while the number of its rows depends on
the number of control points considered.

5.2.4 Center-of-Mass Jacobian

Unlike industrial manipulators and, more generally, not-ambulatory robots,
bipedal robots must concern about their balance while performing any task.
If this does not happen, obviously, the robot would lean over and fall. More-
over, humanoid robots generally have a number of joints, and a consequent
degree of redundancy, much higher than those of a traditional industrial
robots. Consequently, there are many postures that achieve the same po-
sition for its body terminal. Also, taking into account the balancing issues
allows the humanoid to take more natural posture, similar to those of human
beings.

For this, the Virtual End-Effectors (VEEs) technique [DPS06] has been
implemented also with respect to the center of mass (CoM) of the digital
humanoid, which becomes a further control point for the kinematic chain.
In particular, the trajectory of the CoM can be defined in such a way that
its vertical projection on the current support plane (namely, the Center of
Pressure, CoP) belongs to the stability polygon formed by the feet (Figure
5.5). It is worth noticing that the constraint about the CoP will be treated
as a primary task, as well as the other tasks.

The basic idea is to obtain a differential relationship like this:

vG = JGq̇ (5.5)

where JG is a 3 × n matrix, called Center-of-Mass Jacobian. Then, the
equation (5.5) will be inserted in the equation (5.1) as a further control
point.

For this purpose, we can define the CoM of a kinematic chain composed
of n links, as:

pG =

∑n
i=1mipGi∑n

i=1mi
=

1

m

n∑
i=1

mipGi (5.6)
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Figure 5.5: Center of Pressure and support plane

The Equation (5.6) can be derived with respect to time:

vG =
1

m

n∑
i=1

mivGi (5.7)

Since the center of mass of each link can be considered as a Virtual End-
Effector (VEE), it is always possible to write a differential relationship like
this

vGi
= JGi

q̇

where:

JGi
=

 γx,1 · · · γx,i 0 · · · 0
γy,1 · · · γy,i 0 · · · 0
γz,1 · · · γz,i 0 · · · 0

 (5.8)

Indeed, if the vector q̇ has been properly sorted, vGi
can be affected at most

by the first i links of the chain. Now, the equation (5.7) can be written as:

vG =

[
1

m

n∑
i=1

miJGi

]
q̇ (5.9)

By comparing the equations (5.5) and (5.9), we can finally assume:

JG =
1

m

n∑
i=1

miJGi
(5.10)

Given JG, the velocity of CoM vG becomes a further control point for
the kinematic chain. Thus, we can insert the kinematic relation (5.5) in the
equations set (5.1). As a result, we will have an Augmented Jacobian matrix
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with two more rows, that are related to the components of vG projected on
the current support plane. As aforementioned, the implemented inversion
algorithm assures that a constraint on CoM velocity becomes a primary task
to be achieved.

Finally, it is worth emphasizing that the expression of JG suggests also
the possibility to use the static-kinematic duality [SS00] to compute the
balancing torques that support the weight of the kinematic structure of the
humanoid robot, avoiding the computation of its inertia matrix.

5.2.5 Conflicting tasks

As aforementioned, some tracts of the humanoid structure are shared among
apparently different kinematics chains. For instance, the right and left arms
of the humanoid share a common tract, namely the back. But, if actually
left and right arms was modeled as independent chains, they could perform
different or even conflicting tasks.

For this, inversion algorithms for multi-legged robots generally provide
two different solutions for the left and right arm. In particular, for the back
it will be:

q̇bl 6= q̇br (5.11)

where ˙qbr and ˙qbl are different solutions obtained considering the back
belonging respectively to right and to left arm. However, generally this
issue is commonly solved with the following choice for the joints of the back:

q̇b =
1

2
(q̇br + q̇br) (5.12)

This guarantees a physical consistent solution, but in general none of the
conflicting tasks will be actually achieved.

The inversion algorithm based on the Augmented Jacobian cleverly re-
solves also this issue. Indeed, the vector of solution q̇ has been sorted in
such a way that its elements appear just one time, thus the inversion al-
gorithm provides only one solution that is consistent with all the physical
constraints.

On the other side, the main problem related to the application of Aug-
mented Jacobian method is the matrix inversion, due to its dimensions (JAU

has 39 columns) and consequently to the detecting of its singularities.
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5.3 Simulations in VR

In order to test the proposed inversion model, several VR simulations have
been carried out. First of all, a geometric model for the virtual humanoid
has been built up with the hierarchical approach already discussed in section
3.2. The result has been the VRML model shown in figure 5.6.

Figure 5.6: VRML model of Virtual humanoid

After that, the kinematic model of the virtual humanoid and its inversion
algorithm has been implemented in RoboTiX module (see chapter 3). Since a
weighted pseudo-inverse has been adopted to compute the inverse kinematic,
a proper choice of weights and of some optimization criteria have granted
quite natural and fluid movements for the virtual humanoid. As a result,
despite of the ease of planning the movements of the digital humanoid, we
can simulate quite complex tasks, by planning the trajectory for only a
limited number of control points. For instance, the virtual humanoid can
walk or even climb a ladder, as will be shown in the following sections.
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5.3.1 Standing-up from a sitting position

In figure 5.7 different frames of a standing-up simulation are shown. This
task has been achieved just by imposing a null velocity to the feet of the
virtual humanoid and by giving a vertical velocity reference to its pelvis.
As a further constraint, the CoP must always belong to the support plane
(balance control). As shown, the virtual humanoid performs the assigned
movement always keeping itself in balance (Figure 5.7).

Figure 5.7: Standing up from a sitting position

In a similar way, it is possible to simulate the virtual humanoid sitting
down from a standing position.

5.3.2 Collision avoidance

The VEE approach can be used to take into account also eventual obstacles
in the humanoid workspace. In figure 5.8 is shown again the simulation of
a standing up, but this time there is a table. This task has been achieved
by assigning to the control points velocity references coming from repulsive
potential fields.

5.3.3 More complex tasks

In this section the results of the simulation of quite complex tasks are re-
ported. The inversion algorithm has always taken into account the con-
straints about the CoP, as aforementioned.
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Figure 5.8: Standing up from sitting position near a table

The results shown in the following figures can be quite interesting in the
field of both computer graphics and robotics.

Figure 5.9: The virtual humanoid avoids a hole while walking

5.4 Conclusions and future work

The main novelty of the proposed approach has been the computation of
the Jacobian matrix with respect to the center of mass of the kinematic
structure. In fact, the definition of the movements of the center of pressure
as a primary task has granted natural movements to the virtual humanoid,
in spite of the limited number of control points considered.
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Figure 5.10: The virtual humanoid ascends the stairs

Moreover, the developed model lends itself to a very different set of appli-
cations, even not strictly robotic. Firstly, it can be used for digital animation
of virtual humanoids in the field of ergonomics and process analyses. In fact,
despite of the complexity and the cost of already existing software tools ded-
icated to this type of analysis, generally their simulation algorithms are still
tied to “key-frame” animation techniques. The developed model instead
makes it possible to define the kinematics simply by planning the trajectory
of a limited number of control points.

Another field of application could be marker-based motion capture [MTT98],
where the algorithm can be used in order to limit the number of markers
needed to capture the human movements.

Finally, although the described model is advanced in terms of quality of
analysis, it is also computationally efficient. Specifically, a symbolic repre-
sentation for the kinematics of the digital humanoid has been derived. In
this way, we can change in real-time several characteristic parameters of the
chain, such as the applied loads, without further computational overload.
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Figure 5.11: The humanoid lifts a weight.

Figure 5.12: The virtual humanoid grabbing an object on the table.
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[ASH07] Albu-Schäffer A., Hirzinger G.: Dummy crashtests
for evaluation fo rigid human-robot impacts. In IARP In-
ternational Workshop on Technical Challenges for Dependable
Robots in Human environments, Rome (2007).

[BC99] Burdea G., Coiffet P.: Virtual Reality and Robotics.
Wiley–Interscience, 1999.

[BC03] Burdea G., Coiffet P.: Virtual Reality Technology. Wiley–
Interscience, 2003.

[BGH∗06] Balaguer C., Gimenez A., Huete A. J., Sabatini A.,
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