17,538 research outputs found

    Internet of robotic things : converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms

    Get PDF
    The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of MobileThings (IoMT), Autonomous Internet of Things (A-IoT), Autonomous Systemof Things (ASoT), Internet of Autonomous Things (IoAT), Internetof Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc.that are progressing/advancing by using IoT technology. The IoT influencerepresents new development and deployment challenges in different areassuch as seamless platform integration, context based cognitive network integration,new mobile sensor/actuator network paradigms, things identification(addressing, naming in IoT) and dynamic things discoverability and manyothers. The IoRT represents new convergence challenges and their need to be addressed, in one side the programmability and the communication ofmultiple heterogeneous mobile/autonomous/robotic things for cooperating,their coordination, configuration, exchange of information, security, safetyand protection. Developments in IoT heterogeneous parallel processing/communication and dynamic systems based on parallelism and concurrencyrequire new ideas for integrating the intelligent “devices”, collaborativerobots (COBOTS), into IoT applications. Dynamic maintainability, selfhealing,self-repair of resources, changing resource state, (re-) configurationand context based IoT systems for service implementation and integrationwith IoT network service composition are of paramount importance whennew “cognitive devices” are becoming active participants in IoT applications.This chapter aims to be an overview of the IoRT concept, technologies,architectures and applications and to provide a comprehensive coverage offuture challenges, developments and applications

    SALSA: A Novel Dataset for Multimodal Group Behavior Analysis

    Get PDF
    Studying free-standing conversational groups (FCGs) in unstructured social settings (e.g., cocktail party ) is gratifying due to the wealth of information available at the group (mining social networks) and individual (recognizing native behavioral and personality traits) levels. However, analyzing social scenes involving FCGs is also highly challenging due to the difficulty in extracting behavioral cues such as target locations, their speaking activity and head/body pose due to crowdedness and presence of extreme occlusions. To this end, we propose SALSA, a novel dataset facilitating multimodal and Synergetic sociAL Scene Analysis, and make two main contributions to research on automated social interaction analysis: (1) SALSA records social interactions among 18 participants in a natural, indoor environment for over 60 minutes, under the poster presentation and cocktail party contexts presenting difficulties in the form of low-resolution images, lighting variations, numerous occlusions, reverberations and interfering sound sources; (2) To alleviate these problems we facilitate multimodal analysis by recording the social interplay using four static surveillance cameras and sociometric badges worn by each participant, comprising the microphone, accelerometer, bluetooth and infrared sensors. In addition to raw data, we also provide annotations concerning individuals' personality as well as their position, head, body orientation and F-formation information over the entire event duration. Through extensive experiments with state-of-the-art approaches, we show (a) the limitations of current methods and (b) how the recorded multiple cues synergetically aid automatic analysis of social interactions. SALSA is available at http://tev.fbk.eu/salsa.Comment: 14 pages, 11 figure

    CMOS Vision Sensors: Embedding Computer Vision at Imaging Front-Ends

    Get PDF
    CMOS Image Sensors (CIS) are key for imaging technol-ogies. These chips are conceived for capturing opticalscenes focused on their surface, and for delivering elec-trical images, commonly in digital format. CISs may incor-porate intelligence; however, their smartness basicallyconcerns calibration, error correction and other similartasks. The term CVISs (CMOS VIsion Sensors) definesother class of sensor front-ends which are aimed at per-forming vision tasks right at the focal plane. They havebeen running under names such as computational imagesensors, vision sensors and silicon retinas, among others. CVIS and CISs are similar regarding physical imple-mentation. However, while inputs of both CIS and CVISare images captured by photo-sensors placed at thefocal-plane, CVISs primary outputs may not be imagesbut either image features or even decisions based on thespatial-temporal analysis of the scenes. We may hencestate that CVISs are more “intelligent” than CISs as theyfocus on information instead of on raw data. Actually,CVIS architectures capable of extracting and interpretingthe information contained in images, and prompting reac-tion commands thereof, have been explored for years inacademia, and industrial applications are recently ramp-ing up.One of the challenges of CVISs architects is incorporat-ing computer vision concepts into the design flow. Theendeavor is ambitious because imaging and computervision communities are rather disjoint groups talking dif-ferent languages. The Cellular Nonlinear Network Univer-sal Machine (CNNUM) paradigm, proposed by Profs.Chua and Roska, defined an adequate framework forsuch conciliation as it is particularly well suited for hard-ware-software co-design [1]-[4]. This paper overviewsCVISs chips that were conceived and prototyped at IMSEVision Lab over the past twenty years. Some of them fitthe CNNUM paradigm while others are tangential to it. Allthem employ per-pixel mixed-signal processing circuitryto achieve sensor-processing concurrency in the quest offast operation with reduced energy budget.Junta de Andalucía TIC 2012-2338Ministerio de Economía y Competitividad TEC 2015-66878-C3-1-R y TEC 2015-66878-C3-3-

    MusA: Using Indoor Positioning and Navigation to Enhance Cultural Experiences in a museum

    Get PDF
    In recent years there has been a growing interest into the use of multimedia mobile guides in museum environments. Mobile devices have the capabilities to detect the user context and to provide pieces of information suitable to help visitors discovering and following the logical and emotional connections that develop during the visit. In this scenario, location based services (LBS) currently represent an asset, and the choice of the technology to determine users' position, combined with the definition of methods that can effectively convey information, become key issues in the design process. In this work, we present MusA (Museum Assistant), a general framework for the development of multimedia interactive guides for mobile devices. Its main feature is a vision-based indoor positioning system that allows the provision of several LBS, from way-finding to the contextualized communication of cultural contents, aimed at providing a meaningful exploration of exhibits according to visitors' personal interest and curiosity. Starting from the thorough description of the system architecture, the article presents the implementation of two mobile guides, developed to respectively address adults and children, and discusses the evaluation of the user experience and the visitors' appreciation of these application
    • 

    corecore