122 research outputs found

    Real-Time Accurate Visual SLAM with Place Recognition

    Get PDF
    El problema de localización y construcción simultánea de mapas (del inglés Simultaneous Localization and Mapping, abreviado SLAM) consiste en localizar un sensor en un mapa que se construye en línea. La tecnología de SLAM hace posible la localización de un robot en un entorno desconocido para él, procesando la información de sus sensores de a bordo y por tanto sin depender de infraestructuras externas. Un mapa permite localizarse en todo momento sin acumular deriva, a diferencia de una odometría donde se integran movimientos incrementales. Este tipo de tecnología es crítica para la navegación de robots de servicio y vehículos autónomos, o para la localización del usuario en aplicaciones de realidad aumentada o virtual. La principal contribución de esta tesis es ORB-SLAM, un sistema de SLAM monocular basado en características que trabaja en tiempo real en ambientes pequeños y grandes, de interior y exterior. El sistema es robusto a elementos dinámicos en la escena, permite cerrar bucles y relocalizar la cámara incluso si el punto de vista ha cambiado significativamente, e incluye un método de inicialización completamente automático. ORB-SLAM es actualmente la solución más completa, precisa y fiable de SLAM monocular empleando una cámara como único sensor. El sistema, estando basado en características y ajuste de haces, ha demostrado una precisión y robustez sin precedentes en secuencias públicas estándar.Adicionalmente se ha extendido ORB-SLAM para reconstruir el entorno de forma semi-densa. Nuestra solución desacopla la reconstrucción semi-densa de la estimación de la trayectoria de la cámara, lo que resulta en un sistema que combina la precisión y robustez del SLAM basado en características con las reconstrucciones más completas de los métodos directos. Además se ha extendido la solución monocular para aprovechar la información de cámaras estéreo, RGB-D y sensores inerciales, obteniendo precisiones superiores a otras soluciones del estado del arte. Con el fin de contribuir a la comunidad científica, hemos hecho libre el código de una implementación de nuestra solución de SLAM para cámaras monoculares, estéreo y RGB-D, siendo la primera solución de código libre capaz de funcionar con estos tres tipos de cámara. Bibliografía:R. Mur-Artal and J. D. Tardós.Fast Relocalisation and Loop Closing in Keyframe-Based SLAM.IEEE International Conference on Robotics and Automation (ICRA). Hong Kong, China, June 2014.R. Mur-Artal and J. D. Tardós.ORB-SLAM: Tracking and Mapping Recognizable Features.RSS Workshop on Multi VIew Geometry in RObotics (MVIGRO). Berkeley, USA, July 2014. R. Mur-Artal and J. D. Tardós.Probabilistic Semi-Dense Mapping from Highly Accurate Feature-Based Monocular SLAM.Robotics: Science and Systems (RSS). Rome, Italy, July 2015.R. Mur-Artal, J. M. M. Montiel and J. D. Tardós.ORB-SLAM: A Versatile and Accurate Monocular SLAM System.IEEE Transactions on Robotics, vol. 31, no. 5, pp. 1147-1163, October 2015.(2015 IEEE Transactions on Robotics Best Paper Award).R. Mur-Artal, and J. D. Tardós.Visual-Inertial Monocular SLAM with Map Reuse.IEEE Robotics and Automation Letters, vol. 2, no. 2, pp. 796-803, April 2017. (to be presented at ICRA 17).R.Mur-Artal, and J. D. Tardós. ORB-SLAM2: an Open-Source SLAM System for Monocular, Stereo and RGB-D Cameras.ArXiv preprint arXiv:1610.06475, 2016. (under Review).<br /

    On the 3D point cloud for human-pose estimation

    Get PDF
    This thesis aims at investigating methodologies for estimating a human pose from a 3D point cloud that is captured by a static depth sensor. Human-pose estimation (HPE) is important for a range of applications, such as human-robot interaction, healthcare, surveillance, and so forth. Yet, HPE is challenging because of the uncertainty in sensor measurements and the complexity of human poses. In this research, we focus on addressing challenges related to two crucial components in the estimation process, namely, human-pose feature extraction and human-pose modeling. In feature extraction, the main challenge involves reducing feature ambiguity. We propose a 3D-point-cloud feature called viewpoint and shape feature histogram (VISH) to reduce feature ambiguity by capturing geometric properties of the 3D point cloud of a human. The feature extraction consists of three steps: 3D-point-cloud pre-processing, hierarchical structuring, and feature extraction. In the pre-processing step, 3D points corresponding to a human are extracted and outliers from the environment are removed to retain the 3D points of interest. This step is important because it allows us to reduce the number of 3D points by keeping only those points that correspond to the human body for further processing. In the hierarchical structuring, the pre-processed 3D point cloud is partitioned and replicated into a tree structure as nodes. Viewpoint feature histogram (VFH) and shape features are extracted from each node in the tree to provide a descriptor to represent each node. As the features are obtained based on histograms, coarse-level details are highlighted in large regions and fine-level details are highlighted in small regions. Therefore, the features from the point cloud in the tree can capture coarse level to fine level information to reduce feature ambiguity. In human-pose modeling, the main challenges involve reducing the dimensionality of human-pose space and designing appropriate factors that represent the underlying probability distributions for estimating human poses. To reduce the dimensionality, we propose a non-parametric action-mixture model (AMM). It represents high-dimensional human-pose space using low-dimensional manifolds in searching human poses. In each manifold, a probability distribution is estimated based on feature similarity. The distributions in the manifolds are then redistributed according to the stationary distribution of a Markov chain that models the frequency of human actions. After the redistribution, the manifolds are combined according to a probability distribution determined by action classification. Experiments were conducted using VISH features as input to the AMM. The results showed that the overall error and standard deviation of the AMM were reduced by about 7.9% and 7.1%, respectively, compared with a model without action classification. To design appropriate factors, we consider the AMM as a Bayesian network and propose a mapping that converts the Bayesian network to a neural network called NN-AMM. The proposed mapping consists of two steps: structure identification and parameter learning. In structure identification, we have developed a bottom-up approach to build a neural network while preserving the Bayesian-network structure. In parameter learning, we have created a part-based approach to learn synaptic weights by decomposing a neural network into parts. Based on the concept of distributed representation, the NN-AMM is further modified into a scalable neural network called NND-AMM. A neural-network-based system is then built by using VISH features to represent 3D-point-cloud input and the NND-AMM to estimate 3D human poses. The results showed that the proposed mapping can be utilized to design AMM factors automatically. The NND-AMM can provide more accurate human-pose estimates with fewer hidden neurons than both the AMM and NN-AMM can. Both the NN-AMM and NND-AMM can adapt to different types of input, showing the advantage of using neural networks to design factors

    A Large Scale Inertial Aided Visual Simultaneous Localization And Mapping (SLAM) System For Small Mobile Platforms

    Get PDF
    In this dissertation we present a robust simultaneous mapping and localization scheme that can be deployed on a computationally limited, small unmanned aerial system. This is achieved by developing a key frame based algorithm that leverages the multiprocessing capacity of modern low power mobile processors. The novelty of the algorithm lies in the design to make it robust against rapid exploration while keeping the computational time to a minimum. A novel algorithm is developed where the time critical components of the localization and mapping system are computed in parallel utilizing the multiple cores of the processor. The algorithm uses a scale and rotation invariant state of the art binary descriptor for landmark description making it suitable for compact large scale map representation and robust tracking. This descriptor is also used in loop closure detection making the algorithm efficient by eliminating any need for separate descriptors in a Bag of Words scheme. Effectiveness of the algorithm is demonstrated by performance evaluation in indoor and large scale outdoor dataset. We demonstrate the efficiency and robustness of the algorithm by successful six degree of freedom (6 DOF) pose estimation in challenging indoor and outdoor environment. Performance of the algorithm is validated on a quadcopter with onboard computation

    Direct Visual-Inertial Odometry using Epipolar Constraints for Land Vehicles

    Get PDF
    Autonomously operating vehicles are being developed to take over human supervision in applications such as search and rescue, surveillance, exploration and scientific data collection. For a vehicle to operate autonomously, it is important for it to predict its location with respect to its surrounding in order to make decisions about its next movement. Simultaneous Localization and Mapping (SLAM) is a technique that utilizes information from multiple sensors to not only estimate the vehicle's location but also simultaneously build a map of the environment. Substantial research efforts are being devoted to make pose predictions using fewer sensors. Currently, laser scanners, which are expensive, have been used as a primary sensor for environment perception as they measure obstacle distance with good accuracy and generate a point-cloud map of the surrounding. Recently, researchers have used the method of triangulation to generate similar point-cloud maps using only cameras, which are relatively inexpensive. However, point-clouds generated from cameras have an unobservable scale factor. To get an estimate of scale, measurements from an additional sensor such as another camera (stereo configuration), laser scanners, wheel encoders, GPS or IMU, can be used. Wheel encoders are known to suffer from inaccuracies and drifts, using laser scanners is not cost effective, and GPS measurements come with high uncertainty. Therefore, stereo-camera and camera-IMU methods have been topics of constant development for the last decade. A stereo-camera pair is typically used with a graphics processing unit (GPU) to generate a dense environment reconstruction. The scale is estimated from the pre-calculated base-line (distance between camera centers) measurement. However, when the environment features are far away, the base-line becomes negligible to be effectively used for triangulation and the stereo-configuration reduces to monocular. Moreover, when the environment is texture-less, information from visual measurements only cannot be used. An IMU provides metric measurements but suffers from significant drifts. Hence, in a camera-IMU configuration, an IMU typically is used only for short-durations, i.e. in-between two camera frames. This is desirable as it not only helps to estimate the global scale, but also to give a pose estimate during temporary camera failure. Due to these reasons, a camera-IMU configuration is being increasingly used in applications such as in Unmanned Aerial Vehicles (UAVs) and Augmented/ Virtual Reality (AR/VR). This thesis presents a novel method for visual-inertial odometry for land vehicles which is robust to unintended, but unavoidable bumps, encountered when an off-road land vehicle traverses over potholes, speed-bumps or general change in terrain. In contrast to tightly-coupled methods for visual-inertial odometry, the joint visual and inertial residuals is split into two separate steps and the inertial optimization is performed after the direct-visual alignment step. All visual and geometric information encoded in a key-frame are utilized by including the inverse-depth variances in the optimization objective, making this method a direct approach. The primary contribution of this work is the use of epipolar constraints, computed from a direct-image alignment, to correct pose prediction obtained by integrating IMU measurements, while simultaneously building a semi-dense map of the environment in real-time. Through experiments, both indoor and outdoor, it is shown that the proposed method is robust to sudden spikes in inertial measurements while achieving better accuracy than the state-of-the art direct, tightly-coupled visual-inertial fusion method. In the future, the proposed method can be augmented with loop-closure and re-localization to enhance the pose prediction accuracy. Further, semantic segmentation of point-clouds can be useful for applications such as object labeling and generating obstacle-free path

    Deformable and articulated 3D reconstruction from monocular video sequences

    Get PDF
    PhDThis thesis addresses the problem of deformable and articulated structure from motion from monocular uncalibrated video sequences. Structure from motion is defined as the problem of recovering information about the 3D structure of scenes imaged by a camera in a video sequence. Our study aims at the challenging problem of non-rigid shapes (e.g. a beating heart or a smiling face). Non-rigid structures appear constantly in our everyday life, think of a bicep curling, a torso twisting or a smiling face. Our research seeks a general method to perform 3D shape recovery purely from data, without having to rely on a pre-computed model or training data. Open problems in the field are the difficulty of the non-linear estimation, the lack of a real-time system, large amounts of missing data in real-world video sequences, measurement noise and strong deformations. Solving these problems would take us far beyond the current state of the art in non-rigid structure from motion. This dissertation presents our contributions in the field of non-rigid structure from motion, detailing a novel algorithm that enforces the exact metric structure of the problem at each step of the minimisation by projecting the motion matrices onto the correct deformable or articulated metric motion manifolds respectively. An important advantage of this new algorithm is its ability to handle missing data which becomes crucial when dealing with real video sequences. We present a generic bilinear estimation framework, which improves convergence and makes use of the manifold constraints. Finally, we demonstrate a sequential, frame-by-frame estimation algorithm, which provides a 3D model and camera parameters for each video frame, while simultaneously building a model of object deformation

    Towards Visual Localization, Mapping and Moving Objects Tracking by a Mobile Robot: a Geometric and Probabilistic Approach

    Get PDF
    Dans cette thèse, nous résolvons le problème de reconstruire simultanément une représentation de la géométrie du monde, de la trajectoire de l'observateur, et de la trajectoire des objets mobiles, à l'aide de la vision. Nous divisons le problème en trois étapes : D'abord, nous donnons une solution au problème de la cartographie et localisation simultanées pour la vision monoculaire qui fonctionne dans les situations les moins bien conditionnées géométriquement. Ensuite, nous incorporons l'observabilité 3D instantanée en dupliquant le matériel de vision avec traitement monoculaire. Ceci élimine les inconvénients inhérents aux systèmes stéréo classiques. Nous ajoutons enfin la détection et suivi des objets mobiles proches en nous servant de cette observabilité 3D. Nous choisissons une représentation éparse et ponctuelle du monde et ses objets. La charge calculatoire des algorithmes de perception est allégée en focalisant activement l'attention aux régions de l'image avec plus d'intérêt. ABSTRACT : In this thesis we give new means for a machine to understand complex and dynamic visual scenes in real time. In particular, we solve the problem of simultaneously reconstructing a certain representation of the world's geometry, the observer's trajectory, and the moving objects' structures and trajectories, with the aid of vision exteroceptive sensors. We proceeded by dividing the problem into three main steps: First, we give a solution to the Simultaneous Localization And Mapping problem (SLAM) for monocular vision that is able to adequately perform in the most ill-conditioned situations: those where the observer approaches the scene in straight line. Second, we incorporate full 3D instantaneous observability by duplicating vision hardware with monocular algorithms. This permits us to avoid some of the inherent drawbacks of classic stereo systems, notably their limited range of 3D observability and the necessity of frequent mechanical calibration. Third, we add detection and tracking of moving objects by making use of this full 3D observability, whose necessity we judge almost inevitable. We choose a sparse, punctual representation of both the world and the moving objects in order to alleviate the computational payload of the image processing algorithms, which are required to extract the necessary geometrical information out of the images. This alleviation is additionally supported by active feature detection and search mechanisms which focus the attention to those image regions with the highest interest. This focusing is achieved by an extensive exploitation of the current knowledge available on the system (all the mapped information), something that we finally highlight to be the ultimate key to success

    Integrasjon av et minimalistisk sett av sensorer for kartlegging og lokalisering av landbruksroboter

    Get PDF
    Robots have recently become ubiquitous in many aspects of daily life. For in-house applications there is vacuuming, mopping and lawn-mowing robots. Swarms of robots have been used in Amazon warehouses for several years. Autonomous driving cars, despite being set back by several safety issues, are undeniably becoming the standard of the automobile industry. Not just being useful for commercial applications, robots can perform various tasks, such as inspecting hazardous sites, taking part in search-and-rescue missions. Regardless of end-user applications, autonomy plays a crucial role in modern robots. The essential capabilities required for autonomous operations are mapping, localization and navigation. The goal of this thesis is to develop a new approach to solve the problems of mapping, localization, and navigation for autonomous robots in agriculture. This type of environment poses some unique challenges such as repetitive patterns, large-scale sparse features environments, in comparison to other scenarios such as urban/cities, where the abundance of good features such as pavements, buildings, road lanes, traffic signs, etc., exists. In outdoor agricultural environments, a robot can rely on a Global Navigation Satellite System (GNSS) to determine its whereabouts. It is often limited to the robot's activities to accessible GNSS signal areas. It would fail for indoor environments. In this case, different types of exteroceptive sensors such as (RGB, Depth, Thermal) cameras, laser scanner, Light Detection and Ranging (LiDAR) and proprioceptive sensors such as Inertial Measurement Unit (IMU), wheel-encoders can be fused to better estimate the robot's states. Generic approaches of combining several different sensors often yield superior estimation results but they are not always optimal in terms of cost-effectiveness, high modularity, reusability, and interchangeability. For agricultural robots, it is equally important for being robust for long term operations as well as being cost-effective for mass production. We tackle this challenge by exploring and selectively using a handful of sensors such as RGB-D cameras, LiDAR and IMU for representative agricultural environments. The sensor fusion algorithms provide high precision and robustness for mapping and localization while at the same time assuring cost-effectiveness by employing only the necessary sensors for a task at hand. In this thesis, we extend the LiDAR mapping and localization methods for normal urban/city scenarios to cope with the agricultural environments where the presence of slopes, vegetation, trees render the traditional approaches to fail. Our mapping method substantially reduces the memory footprint for map storing, which is important for large-scale farms. We show how to handle the localization problem in dynamic growing strawberry polytunnels by using only a stereo visual-inertial (VI) and depth sensor to extract and track only invariant features. This eliminates the need for remapping to deal with dynamic scenes. Also, for a demonstration of the minimalistic requirement for autonomous agricultural robots, we show the ability to autonomously traverse between rows in a difficult environment of zigzag-liked polytunnel using only a laser scanner. Furthermore, we present an autonomous navigation capability by using only a camera without explicitly performing mapping or localization. Finally, our mapping and localization methods are generic and platform-agnostic, which can be applied to different types of agricultural robots. All contributions presented in this thesis have been tested and validated on real robots in real agricultural environments. All approaches have been published or submitted in peer-reviewed conference papers and journal articles.Roboter har nylig blitt standard i mange deler av hverdagen. I hjemmet har vi støvsuger-, vaske- og gressklippende roboter. Svermer med roboter har blitt brukt av Amazons varehus i mange år. Autonome selvkjørende biler, til tross for å ha vært satt tilbake av sikkerhetshensyn, er udiskutabelt på vei til å bli standarden innen bilbransjen. Roboter har mer nytte enn rent kommersielt bruk. Roboter kan utføre forskjellige oppgaver, som å inspisere farlige områder og delta i leteoppdrag. Uansett hva sluttbrukeren velger å gjøre, spiller autonomi en viktig rolle i moderne roboter. De essensielle egenskapene for autonome operasjoner i landbruket er kartlegging, lokalisering og navigering. Denne type miljø gir spesielle utfordringer som repetitive mønstre og storskala miljø med få landskapsdetaljer, sammenlignet med andre steder, som urbane-/bymiljø, hvor det finnes mange landskapsdetaljer som fortau, bygninger, trafikkfelt, trafikkskilt, etc. I utendørs jordbruksmiljø kan en robot bruke Global Navigation Satellite System (GNSS) til å navigere sine omgivelser. Dette begrenser robotens aktiviteter til områder med tilgjengelig GNSS signaler. Dette vil ikke fungere i miljøer innendørs. I ett slikt tilfelle vil reseptorer mot det eksterne miljø som (RGB-, dybde-, temperatur-) kameraer, laserskannere, «Light detection and Ranging» (LiDAR) og propriopsjonære detektorer som treghetssensorer (IMU) og hjulenkodere kunne brukes sammen for å bedre kunne estimere robotens tilstand. Generisk kombinering av forskjellige sensorer fører til overlegne estimeringsresultater, men er ofte suboptimale med hensyn på kostnadseffektivitet, moduleringingsgrad og utbyttbarhet. For landbruksroboter så er det like viktig med robusthet for lang tids bruk som kostnadseffektivitet for masseproduksjon. Vi taklet denne utfordringen med å utforske og selektivt velge en håndfull sensorer som RGB-D kameraer, LiDAR og IMU for representative landbruksmiljø. Algoritmen som kombinerer sensorsignalene gir en høy presisjonsgrad og robusthet for kartlegging og lokalisering, og gir samtidig kostnadseffektivitet med å bare bruke de nødvendige sensorene for oppgaven som skal utføres. I denne avhandlingen utvider vi en LiDAR kartlegging og lokaliseringsmetode normalt brukt i urbane/bymiljø til å takle landbruksmiljø, hvor hellinger, vegetasjon og trær gjør at tradisjonelle metoder mislykkes. Vår metode reduserer signifikant lagringsbehovet for kartlagring, noe som er viktig for storskala gårder. Vi viser hvordan lokaliseringsproblemet i dynamisk voksende jordbær-polytuneller kan løses ved å bruke en stereo visuel inertiel (VI) og en dybdesensor for å ekstrahere statiske objekter. Dette eliminerer behovet å kartlegge på nytt for å klare dynamiske scener. I tillegg demonstrerer vi de minimalistiske kravene for autonome jordbruksroboter. Vi viser robotens evne til å bevege seg autonomt mellom rader i ett vanskelig miljø med polytuneller i sikksakk-mønstre ved bruk av kun en laserskanner. Videre presenterer vi en autonom navigeringsevne ved bruk av kun ett kamera uten å eksplisitt kartlegge eller lokalisere. Til slutt viser vi at kartleggings- og lokaliseringsmetodene er generiske og platform-agnostiske, noe som kan brukes med flere typer jordbruksroboter. Alle bidrag presentert i denne avhandlingen har blitt testet og validert med ekte roboter i ekte landbruksmiljø. Alle forsøk har blitt publisert eller sendt til fagfellevurderte konferansepapirer og journalartikler

    Dense Visual Simultaneous Localisation and Mapping in Collaborative and Outdoor Scenarios

    Get PDF
    Dense visual simultaneous localisation and mapping (SLAM) systems can produce 3D reconstructions that are digital facsimiles of the physical space they describe. Systems that can produce dense maps with this level of fidelity in real time provide foundational spatial reasoning capabilities for many downstream tasks in autonomous robotics. Over the past 15 years, mapping small scale, indoor environments, such as desks and buildings, with a single slow moving, hand-held sensor has been one of the central focuses of dense visual SLAM research. However, most dense visual SLAM systems exhibit a number of limitations which mean they cannot be directly applied in collaborative or outdoors settings. The contribution of this thesis is to address these limitations with the development of new systems and algorithms for collaborative dense mapping, efficient dense alternation and outdoors operation with fast camera motion and wide field of view (FOV) cameras. We use ElasticFusion, a state-of-the-art dense SLAM system, as our starting point where each of these contributions is implemented as a novel extension to the system. We first present a collaborative dense SLAM system that allows a number of cameras starting with unknown initial relative positions to maintain local maps with the original ElasticFusion algorithm. Visual place recognition across local maps results in constraints that allow maps to be aligned into a common global reference frame, facilitating collaborative mapping and tracking of multiple cameras within a shared map. Within dense alternation based SLAM systems, the standard approach is to fuse every frame into the dense model without considering whether the information contained within the frame is already captured by the dense map and therefore redundant. As the number of cameras or the scale of the map increases, this approach becomes inefficient. In our second contribution, we address this inefficiency by introducing a novel information theoretic approach to keyframe selection that allows the system to avoid processing redundant information. We implement the procedure within ElasticFusion, demonstrating a marked reduction in the number of frames required by the system to estimate an accurate, denoised surface reconstruction. Before dense SLAM techniques can be applied in outdoor scenarios we must first address their reliance on active depth cameras, and their lack of suitability to fast camera motion. In our third contribution we present an outdoor dense SLAM system. The system overcomes the need for an active sensor by employing neural network-based depth inference to predict the geometry of the scene as it appears in each image. To address the issue of camera tracking during fast motion we employ a hybrid architecture, combining elements of both dense and sparse SLAM systems to perform camera tracking and to achieve globally consistent dense mapping. Automotive applications present a particularly important setting for dense visual SLAM systems. Such applications are characterised by their use of wide FOV cameras and are therefore not accurately modelled by the standard pinhole camera model. The fourth contribution of this thesis is to extend the above hybrid sparse-dense monocular SLAM system to cater for large FOV fisheye imagery. This is achieved by reformulating the mapping pipeline in terms of the Kannala-Brandt fisheye camera model. To estimate depth, we introduce a new version of the PackNet depth estimation neural network (Guizilini et al., 2020) adapted for fisheye inputs. To demonstrate the effectiveness of our contributions, we present experimental results, computed by processing the synthetic ICL-NUIM dataset of Handa et al. (2014) as well as the real-world TUM-RGBD dataset of Sturm et al. (2012). For outdoor SLAM we show the results of our system processing the autonomous driving KITTI and KITTI-360 datasets of Geiger et al. (2012a) and Liao et al. (2021) respectively

    Visual slam in dynamic environments

    Get PDF
    El problema de localización y construcción visual simultánea de mapas (visual SLAM por sus siglas en inglés Simultaneous Localization and Mapping) consiste en localizar una cámara en un mapa que se construye de manera online. Esta tecnología permite la localización de robots en entornos desconocidos y la creación de un mapa de la zona con los sensores que lleva incorporados, es decir, sin contar con ninguna infraestructura externa. A diferencia de los enfoques de odometría en los cuales el movimiento incremental es integrado en el tiempo, un mapa permite que el sensor se localice continuamente en el mismo entorno sin acumular deriva.Asumir que la escena observada es estática es común en los algoritmos de SLAM visual. Aunque la suposición estática es válida para algunas aplicaciones, limita su utilidad en escenas concurridas del mundo real para la conducción autónoma, los robots de servicio o realidad aumentada y virtual entre otros. La detección y el estudio de objetos dinámicos es un requisito para estimar con precisión la posición del sensor y construir mapas estables, útiles para aplicaciones robóticas que operan a largo plazo.Las contribuciones principales de esta tesis son tres: 1. Somos capaces de detectar objetos dinámicos con la ayuda del uso de la segmentación semántica proveniente del aprendizaje profundo y el uso de enfoques de geometría multivisión. Esto nos permite lograr una precisión en la estimación de la trayectoria de la cámara en escenas altamente dinámicas comparable a la que se logra en entornos estáticos, así como construir mapas en 3D que contienen sólo la estructura del entorno estático y estable. 2. Logramos alucinar con imágenes realistas la estructura estática de la escena detrás de los objetos dinámicos. Esto nos permite ofrecer mapas completos con una representación plausible de la escena sin discontinuidades o vacíos ocasionados por las oclusiones de los objetos dinámicos. El reconocimiento visual de lugares también se ve impulsado por estos avances en el procesamiento de imágenes. 3. Desarrollamos un marco conjunto tanto para resolver el problema de SLAM como el seguimiento de múltiples objetos con el fin de obtener un mapa espacio-temporal con información de la trayectoria del sensor y de los alrededores. La comprensión de los objetos dinámicos circundantes es de crucial importancia para los nuevos requisitos de las aplicaciones emergentes de realidad aumentada/virtual o de la navegación autónoma. Estas tres contribuciones hacen avanzar el estado del arte en SLAM visual. Como un producto secundario de nuestra investigación y para el beneficio de la comunidad científica, hemos liberado el código que implementa las soluciones propuestas.<br /
    corecore