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ABSTRACT

Chan, Kai-Chi Ph.D., Purdue University, May 2016. On the 3D Point Cloud for Human-
Pose Estimation. Major Professors: Cheng-Kok Koh and C. S. George Lee.

This thesis aims at investigating methodologies for estimating a human pose from a

3D point cloud that is captured by a static depth sensor. Human-pose estimation (HPE) is

important for a range of applications, such as human-robot interaction, healthcare, surveil-

lance, and so forth. Yet, HPE is challenging because of the uncertainty in sensor mea-

surements and the complexity of human poses. In this research, we focus on addressing

challenges related to two crucial components in the estimation process, namely, human-

pose feature extraction and human-pose modeling.

In feature extraction, the main challenge involves reducing feature ambiguity. We pro-

pose a 3D-point-cloud feature called viewpoint and shape feature histogram (VISH) to re-

duce feature ambiguity by capturing geometric properties of the 3D point cloud of a human.

The feature extraction consists of three steps: 3D-point-cloud pre-processing, hierarchical

structuring, and feature extraction. In the pre-processing step, 3D points corresponding to a

human are extracted and outliers from the environment are removed to retain the 3D points

of interest. This step is important because it allows us to reduce the number of 3D points

by keeping only those points that correspond to the human body for further processing. In

the hierarchical structuring, the pre-processed 3D point cloud is partitioned and replicated

into a tree structure as nodes. Viewpoint feature histogram (VFH) and shape features are

extracted from each node in the tree to provide a descriptor to represent each node. As

the features are obtained based on histograms, coarse-level details are highlighted in large

regions and fine-level details are highlighted in small regions. Therefore, the features from

the point cloud in the tree can capture coarse level to fine level information to reduce feature

ambiguity.
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In human-pose modeling, the main challenges involve reducing the dimensionality of

human-pose space and designing appropriate factors that represent the underlying proba-

bility distributions for estimating human poses. To reduce the dimensionality, we propose a

non-parametric action-mixture model (AMM). It represents high-dimensional human-pose

space using low-dimensional manifolds in searching human poses. In each manifold, a

probability distribution is estimated based on feature similarity. The distributions in the

manifolds are then redistributed according to the stationary distribution of a Markov chain

that models the frequency of human actions. After the redistribution, the manifolds are

combined according to a probability distribution determined by action classification. Ex-

periments were conducted using VISH features as input to the AMM. The results showed

that the overall error and standard deviation of the AMM were reduced by about 7.9% and

7.1%, respectively, compared with a model without action classification.

To design appropriate factors, we consider the AMM as a Bayesian network and pro-

pose a mapping that converts the Bayesian network to a neural network called NN-AMM.

The proposed mapping consists of two steps: structure identification and parameter learn-

ing. In structure identification, we have developed a bottom-up approach to build a neural

network while preserving the Bayesian-network structure. In parameter learning, we have

created a part-based approach to learn synaptic weights by decomposing a neural network

into parts. Based on the concept of distributed representation, the NN-AMM is further mod-

ified into a scalable neural network called NND-AMM. A neural-network-based system is

then built by using VISH features to represent 3D-point-cloud input and the NND-AMM

to estimate 3D human poses. The results showed that the proposed mapping can be uti-

lized to design AMM factors automatically. The NND-AMM can provide more accurate

human-pose estimates with fewer hidden neurons than both the AMM and NN-AMM can.

Both the NN-AMM and NND-AMM can adapt to different types of input, showing the

advantage of using neural networks to design factors.
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1. INTRODUCTION

1.1 Motivations and Objectives

A human pose is defined as a set of human-joint positions. Human-pose estimation

(HPE) is the process of determining human-joint positions based on sensor measurements.

HPE is important because many applications rely on human poses. Based on the nature of

applications, they can be generally grouped into three categories: human-motion analysis,

control, and surveillance. Figure 1.1 shows some applications in these three categories.

Fig. 1.1. Three main categories of applications related to human-pose estimation.

In human-motion analysis, human poses or human-body parts are tracked over a se-

quence of observations for different analysis purposes. For example, in athletic training,
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tracking the movement of human poses can provide valuable information, such as body-

part positions, in correcting body postures. Estimating human poses is useful in identifying

a potential fall in healthcare facilities because falls have unique patterns and characteris-

tics. Every year, more than 1.6 million U.S. adults are treated in the emergency room for

fall-related injuries [1]. Those systems allow a rapid arrangement of assistance after a fall

in order to reduce the adverse consequence of a fall.

Control applications utilize human-pose estimates to control software or machines.

Compared with traditional control applications that use speech or external handheld devices

such as joysticks, using human-pose estimates in control applications provides a more natu-

ral and intelligent communication interface between humans and machines. New software

or machines that utilize the advance in the communication interface can also be created.

For example, Microsoft Kinect is a control device that captures RGB-D data and estimates

human poses for different control applications. It has been used extensively in the game

industry. Many games that utilize body postures have been created. It is also used in robot

teleoperation so that an operator can intuitively control a robot from a remote site through

body postures. For control applications that use human-pose estimates, operators can give

abstract instructions to machines and focus on high-level tasks rather than low-level imple-

mentation. For example, to control a robot to close a valve with both hands, an operator can

move his/her hands accordingly and focus on turning the valve, instead of using an external

device to control each hand or finger individually.

In surveillance, traditional surveillance systems have been implemented in many places,

such as banks, airports, train stations, and shopping malls, for security and protection pur-

poses. Those systems usually use visual cameras to record parts of places and create video

clips for digital forensic investigation. However, there is usually a huge amount of video

clips. It is tedious to manually identify useful information from them. Thus, there is a

need of smart surveillance systems that analyze video clips in real time in order to identify

useful information automatically and prevent abnormal events from happening. To iden-

tify or recognize individuals such as criminals in smart surveillance systems, techniques

that are developed based on gait, which is a sequence of human poses, have been studied
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extensively. In addition, abnormal activities such as theft can also be detected based on

gait.

Traditionally, human poses are estimated using one or more charge-coupled device

(CCD) cameras. Visual features, such as colors, edges, silhouettes, and textures, are used

to represent human poses. Based on visual features, geometric features can be extracted

by estimating depth information using stereo vision [2]. Although visual features are com-

monly used and are useful for reconstructing depth information, they are still ambiguous

under different illumination conditions. For example, the color of a person in an image may

change drastically between indoor and outdoor environments. Hence, the precision of esti-

mating depth information is decreased when visual features are ambiguous. The decrease

in the precision will then affect the consistence of geometric features. The availability of

depth sensors allows us to obtain depth information directly and with less ambiguity. The

sensors output 3D point clouds as observations and depth information will not be affected

by the quality of visual features. Thus, it motivates us to use a depth sensor and derive a

3D-point-cloud feature for HPE.

Features are then used in a human-pose model to estimate a human pose. Modeling

probability distributions of human poses is challenging because of the complexity and high

dimensionality of human poses. Assumptions have been made to simplify the modeling

process. One of them that is often used in the literature is that, in high dimensional space

of human poses, there exist one or more low dimensional manifolds of possible human

poses. It is common because some points in high dimensional space of human poses do

not correspond to valid human poses. Examples of invalid human poses are those with

joint angles exceeding their limits and improper length of limbs. We observe that in the

literature, a human action is commonly defined as a sequence of human poses changing

in a specific way. Different people perform the same action in a similar manner. Thus,

we believe human-pose space is composed of action-specific manifolds. We want to ex-

ploit human actions to find low dimensional manifolds in high dimensional space of human

poses. Usually, in finding low dimensional manifolds, high dimensional space of human

poses is parameterized with low dimensional manifolds. For example, in principal com-
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ponent analysis (PCA) [3], human-pose space is represented as a linear combination of

principal components that are orthogonal to each other. To simplify the computation in

modeling, we assume that the change of human actions follows a continuous-time Markov

chain. Then, a human pose is estimated by finding the most probable human pose of a

conditional probability distribution. Although parameterization can lead to a human-pose

model that is easy to compute in training or in testing, the assumption on the relationship

between human-pose space and low dimensional manifolds may not be valid. Thus, we

extend the model that uses a continuous-time Markov chain to a model without making

any assumption on the relationship. The extension is based on modeling human-pose space

using artificial neural networks.

The advantages of using neural networks to model human-pose space are in three as-

pects: learning capability, distributed representation and adaptability. For the learning ca-

pability, the universal approximation theorem [4] states that a multilayer perceptron net-

work, which is a neural network with a single hidden layer of hidden neurons, can approx-

imate any continuous function. Thus, using neural networks to model human-pose space

does not limit human-pose space to follow a particular type of conditional probability dis-

tributions of human poses. Instead, it allows a wide range of distributions to be considered

in the modeling process. For the distributed representation, each concept, such as a human

action or a human pose, in a neural network is represented by a group of neurons with a pat-

tern of neural activities. Each neuron is also involved in representing a number of concepts.

Representing a concept this way allows a more efficient coding than a local representation,

which represents each concept by a neuron. For the adaptability, it is the ability of a neural

network to handle data from different situations. For instance, a person may perform an

action more frequent in one place than the other. It will affect the underlying probability

distribution of human poses in modeling human-pose space. When neural networks are

used in modeling human-pose space, the change in probability distributions can be adapted

by varying synaptic weights in a neural network based on training data collected from a

new situation. Thus, human-pose space can be adapted to various situations.
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Using a neural network to model human-pose space involves two major steps: structure

identification and parameter learning. To identify the structure of a neural network, we in-

troduce a Bayesian network that represents our belief on the relationship among 3D-point-

cloud features, human actions, and human poses. A Bayesian network is used because it

is natural to represent causal, evidential and intercausal relationships that are indispens-

able to human understanding. It is a directed acyclic graph (DAG) in which nodes are

random variables and absence of edges represents conditional independence assumptions

on random variables. It defines a family of probability distributions in which conditional

probability distributions are called factors. It can be shown that our human-pose model that

uses a continuous-time Markov chain to model human actions (before the neural-network

extension) is equivalent to a Bayesian network with predefined factors. Thus, in order to

use a neural network to model human poses, we can use only the structure of a Bayesian

network with factors being represented by some neural networks. Based on the relation-

ship among random variables in a Bayesian network and their semantic meaning, we can

systemically convert the structure of a Bayesian network to the structure of a neural net-

work. In parameter learning, directly learning the parameters in a neural network may

suffer from the vanishing-gradient problem [5] when the network has many layers. Thus,

we first decompose a neural network into parts, which are neural networks. Then, we apply

the backpropagation algorithm [6] to learn parameters in parts.

In this research, we investigate methodologies for estimating human poses of a human

being captured by a depth sensor at a fixed position and orientation over time. We focus

on reducing feature ambiguity and building a human-pose model that maps a feature to a

human pose. Our research objectives are:

1. Investigating a 3D-point-cloud feature that is distinguishable among different human

poses and captures the global and local properties of human poses,

2. Discovering low dimensional manifolds in high dimensional space of human poses,

and

3. Designing factors in the modeling of human-pose space based on training data.
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To achieve these objectives, we propose a 3D-point-cloud feature that captures both

global and local properties of a human. The global properties are features extracted in large

regions of a 3D point cloud of a human and hence represent coarse-level details. The local

properties are feature extracted in small regions of the 3D point cloud and hence represent

fine-level details. Using both properties, our proposed feature can capture coarse-level to

fine-level information of the 3D point cloud. The dimensionality of human-pose space is

then reduced by using low-dimensional manifolds to represent the human-pose space based

on human actions. A human pose may appear in more than one action. The probability of a

human pose appearing in each action is estimated by a similarity of features. A probability

distribution in each manifold that represents an action is computed. The distributions in

the manifolds are redistributed according to the stationary distribution of a continuous-

time Markov chain that models the frequency of actions. Finally, we extend the human-

pose model that uses human actions to reduce the dimensionality of human-pose space by

realizing factors in the distribution of human poses using a neural network. Therefore,

factors in the distribution can be designed automatically from training data.

A literature survey of existing work in the areas of feature extraction and human-pose

modeling is given in the next section.

1.2 Literature Survey

In this section, we will review related works about HPE. Currently, most accurate HPE

systems are developed using marker-based approaches. Those systems, such as Vicon and

PhaseSpace, estimate human poses by first locating either active or passive markers that

are attached on a human body. Human poses are then estimated by recovering positions of

the attached markers through a triangulation algorithm. Since the early 70s, they have been

used extensively in biomechanics, which is the study about internal and external forces

acting on a human body. Specifically, the systems are often used as tools in two branches

of biomechanics, namely kinematics and kinetics to study human movement and causes

of human movement, respectively. As marker-based approaches are highly accurate, re-
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searchers in biomechanics can focus on analyzing human motion without putting much

effort on detecting humans and estimating human poses. In the 90s, the systems have been

commonly used to generate computer animations for video games and films. Since then,

the demand of HPE systems is increased. However, marker-based approaches cannot be

applied on many applications, such as virtual-reality gaming and surveillance, because this

type of approaches can only be used in severely restricted situations that a person is re-

quired to wear tight-fitting clothes and is surrounded by many calibrated sensors. Also,

we can no longer assume attaching markers on a person. Markerless-based approaches for

HPE become necessary in less constrained situations. Thus, they have drawn attention to

many researchers from different research fields.

In the past, CCD cameras were commonly used in deriving most markerless-based ap-

proaches. Images that are captured by CCD cameras are 2D projections of 3D objects.

Thus, depth information is lost. To generate depth information, at least two cameras are re-

quired. In 2010, Microsoft Kinect was released. It is different from CCD cameras because

it can directly capture depth information by measuring a distorted infrared pattern emitted

by the sensor. Since then, depth sensors become popular.

In this section, we will cover most related works that are derived based on CCD cam-

eras. Recent works using depth sensors will also be covered. We will review related works

according to two major components in HPE:

1. Features that represent the human body in observations, and

2. Human-pose models that map features to human poses.

Table 1.1 shows a summary of existing works that are included in this section. More com-

prehensive surveys can be found in [7] [8].

1.2.1 Feature

While features in general can represent any observation, in this thesis, we focus on

HPE and thus a feature only refers to a representation of a human body in an observation.
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Table 1.1 Summary of existing works for HPE.

Type Method Observation Feature Model
Generative Hogg [9] Visual Image Color, Edge WALKER
Generative Wachter et al. [10] Visual Image Color, Edge Invariant Extended Kalman Filter
Generative Brand [11] Visual Image Silhouette Hidden Markov Model
Generative MacCormick and Isard [12] Visual Image Edge Deformable Body Model
Generative Deutscher et al. [13] Visual Image Edge, Silhouette Annealed Particle Filtering
Generative Deutscher et al. [14] Visual Image Edge ,Silhouette Partitioned Annealed Particle Filter
Generative Mitchelson and Hilton [15] Visual Image Color, Edge, Silhouette Deformable Body Model
Generative Plänkers and Fua [16] Visual Image Silhouette Metaball Body Model
Generative Lee and Cohen [17] Visual Image Color, Edge Deformable Body Model
Generative Anguelov et al. [18] Depth Image Depth Markov Network
Generative Kehl et al. [19] [20] Visual Image Color, Edge Superellipsoid Body Model
Generative Rodgers et al. [21] Depth Image Edge, Surface Markov Network
Generative Zhu et al. [22] [23] Depth Image Depth Constraint Inverse Kinematics
Generative Gall et al. [24] Visual Image Silhouette, SIFT Deformable Body Model
Generative Sun et al. [25] Visual Image Histogram of Oriented Gradients, EdgeField Deformable Body Model
Generative Siddiqui and Medioni [26] Depth Image Depth, Silhouette Markov Chain
Generative Lehment et al. [27] Depth Image Depth Deformable Body Model
Generative Charles and Everingham [28] Depth Image Silhouette, Depth Pictorial Structure Model
Generative Wang et al. [29] Visual Image Histogram of Oriented Gradients Pictorial Structure Model
Generative Yang and Ramanan [30] Visual Image Histogram of Oriented Gradients Pictorial Structure Model
Generative Liu et al. [31] Visual Image Color, Silhouette, SIFT Markov Random Field
Generative Pons-Moll et al. [32] Visual Image, Inertial Sensor Data Color, Silhouette, IMU Sensor Orientation Deformable Body Model
Generative Duan et al. [33] Visual Image Histogram of Oriented Gradients Part-Based Model

Discriminative Howe [34] Visual Image Silhouette Markov Chain
Discriminative Agarwal et al. [35] Visual Image Edge, Silhouette Relevance Vector Machine
Discriminative Sminchisescu et al. [36] Visual Image Silhouette Mixture of Experts
Discriminative Taycher et al. [37] Visual Image Edge Conditional Random Field
Discriminative Poppe [38] Visual Image Histogram of Oriented Gradients Matching
Discriminative Ramanan [39] Visual Image Color, Edge Conditional Random Field
Discriminative Fathi and Mori [40] Visual Image Motion Matching
Discriminative Okada and Soatto [41] Visual Image Histogram of Oriented Gradients Support Vector Machine
Discriminative Ferrari et al. [42] Visual Image Color, Edge Conditional Random Field
Discriminative Hofmann and Gavrila [43] Visual Image Color, Edge, Silhouette Matching
Discriminative Wang et al. [44] Visual Image Histogram of Oriented Gradients Adaboost
Discriminative Sedai et al. [45] Visual Image HoSC,HLAC Relevance Vector Machine
Discriminative Zhao et al. [46] Visual Image CP-SIFT Regression
Discriminative Taylor et al. [47] Visual Image Edge, Silhouette Conditional Restricted Boltzmann Machine
Discriminative Plagemann et al. [48] Depth Image AGEX Boosting
Discriminative Baak et al. [49] Depth Image Geodesic Extrema Matching
Discriminative Ye et al. [50] Depth Image Depth Matching
Discriminative Shotton et al. [51] Depth Image Depth Randomized Decision Forest
Discriminative Girshick et al. [52] Depth Image Depth Regression
Discriminative Tian et al. [53] Visual Image Silhouette Regression
Discriminative Straka et al. [54] Visual Image Silhouette Matching
Discriminative Stoll et al. [55] Visual Image Color Sums of Spatial Gaussians
Discriminative Sun et al. [56] Depth Image Depth Regression
Discriminative Taylor et al. [57] Depth Image Silhouette, Depth Regression
Discriminative Tian et al. [58] Visual Image Histogram of Oriented Gradients Support Vector Machine
Discriminative Chen and Yuille [59] Visual Image Edge Convolutional Neural Network
Discriminative Jain et al. [60] Visual Image Color Convolutional Neural Network
Discriminative Li et al. [61] [62] Visual Image Color Convolutional Neural Network
Discriminative Toshev and Szegedy [63] Visual Image Color Convolutional Neural Network
Discriminative Pfister et al. [64] Visual Image Color Convolutional Neural Network
Discriminative Ouyang et al. [65] Visual Image Color, Histogram of Oriented Gradients Restricted Boltzmann Machine
Discriminative Tompson et al. [66] Visual Image Color Convolutional Neural Network

Hybrid Sigal et al. [67] [68] Visual Image Color, Edge Loose-Limbed Body Model
Hybrid Gupta et al. [69] Visual Image Silhouette OD-GPLVM
Hybrid Ganapathi et al. [70] Depth Image AGEX Dynamic Bayesian Network
Hybrid Gall et al. [71] Visual Image Edge, Silhouette Isomap
Hybrid Gall et al. [72] Visual Image Color, Silhouette Regression, Deformable Body Model
Hybrid Yao et al. [73] [74] Visual Image Color, Edge, Silhouette, Optical Flow Hough Forest
Hybrid Gall et al. [75] Depth Image Depth Clustering
Hybrid Sedai et al. [76] Visual Image Histogram of Shape Context Scaled Prismatic Model
Hybrid Zuffi et al. [77] Visual Image Color, Histogram of Oriented Gradients Deformable Structure

Features are important in HPE because of the variety of observations of humans such as

human visual appearance. They are used as input to human-pose models. The choice

of features often determines the choice of human-pose models. A typical approach for

HPE begins with extracting appropriate features from an observation and then infers states,
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such as human poses, of a model through some mappings defined by the model. While

determining the most appropriate feature for HPE is useful, it is still contestable, especially

in ranking features that are appropriate in all situations. It is also a common belief that

combining multiple features can increase the accuracy of an estimation system. Thus,

instead of ranking features, we will describe features that are commonly used. We will

divide features into two types according to observations from which features are extracted.

The first type is a visual feature. It is derived from 2D color/grayscale images captured by

CCD cameras. The second type is a geometric feature. It is derived from 3D point clouds

captured by depth sensors.

Visual Feature

One of the common visual features for HPE is histogram of oriented gradients (HOG) [78],

which is derived based on the orientation histograms obtained from 2D color/grayscale im-

ages. Using HOG, Wang et al. [44] estimated human poses by combining the bottom-up

classification for each joint position and the top-down classification for a skeleton model

using the AdaBoost algorithm [79]. Wang et al. [29] adapted HOG to represent body parts

and extended the concept of rigid body parts to hierarchical poselets that incorporated larger

portions of body parts. Poppe [38] clustered HOG detected from input images using the

k-nearest neighbor algorithm (k-NN) [3] to estimate 3D human poses.

Silhouettes can also be used to represent human poses by extracting edges around hu-

mans. Hofmann et al. [43] presented a multi-camera system to reconstruct silhouettes to

represent a 3D human upper body. Brand [11] estimated human poses over time by match-

ing body parts with the corresponding silhouettes. Based on silhouettes, Wachter et al. [10]

derived right-elliptical cones to represent 3D human body parts.

Visual features can be combined for human-pose representation. Ramanan [39] used

color and edges as cues in a conditional random field (CRF) [80]. Ferrari et al. [42] adapted

the features in [39] and color histograms to estimate 2D upper-body human poses based on

a tree-structured CRF. Pons-Moll et al. [32] estimated 3D human poses using silhouettes,
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color and sensor data from ten inertial measurement units. Zhao et al. [46] proposed a

corner-interest-point-based SIFT to estimate 3D human poses using Gaussian-process re-

gression. Multi-view visual data was concatenated as one feature input to a regression

model. Agarwal et al. [35] adopted edges and silhouettes as input to learn 3D human

poses directly by relevance vector machine (RVM) [80]. Mitchelson et al. [15] used sil-

houettes, edges and color to estimate 3D human poses of multiple humans using multiple

cameras. Charles and Everingham [28] proposed a shape model learning from silhouette

and 3D human-pose data. The shape model was built based on the pictorial structure model

(PSM) [81] and was used to model 3D human poses.

Using visual features, depth information can be estimated by stereo vision [2]. Kehl

et al. [19] [20] proposed a multi-camera system to reconstruct the 3D surface of a human.

Superellipsoid was then derived for HPE. Gall et al. [24] estimated human poses and the

deformation of human surface jointly. A weighted least-squares method was used to fit

human poses on the surface. Then, misaligned limbs were fitted using a particle-based

global optimization method. Straka et al. [54] proposed a volumetric body-scans method.

A skeletal graph was created based on voxel scooping. Then, geodesic distances between

end nodes and head node were computed and matched with a template using the dynamic

time warping algorithm (DTW) [82]. A human pose was estimated by matching positions

of the nodes for head, limbs and inner joints from the template. Plänkers and Fua [16]

proposed a surface model to represent an articulated human body. The surface was mod-

eled using metaballs based on silhouettes. Then, the distance between the model and the

observation was minimized using the Levenberg-Marquart algorithm [83].

Since visual features are derived from 2D images captured by CCD cameras, they lose

depth information and are ambiguous under different illumination conditions. Thus, recent

works start to use 3D-point-cloud features to reduce the ambiguities.
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Geometric Feature

Using a depth sensor, Shotton et al. [51] used a single depth image and proposed a

method to determine 3D positions of human joints. Depth image features, which were depth

invariant and 3D translation invariant, were proposed. 3D positions of human joints were

then estimated by classifying features on each pixel using randomized decision forests. Gir-

shick et al. [52] adopted the depth image features [51] to generate candidates for each joint

position using a regression forest. A tree structure of body parts was trained using a greedy-

decision method and parameters were estimated using the expectation-maximization (EM)

algorithm [84]. Rusu et al. [85] proposed the viewpoint feature histogram (VFH), which

measured pan, tilt and yaw angles between 3D points. Plagemann et al. [48] proposed

the accumulative geodesic extrema (AGEX) by extracting geodesic distances from pairs

of points on a body part. Baak et al. [49] estimated 3D human poses by first matching

3D point clouds between consecutive depth images. Based on the difference, the 3D point

cloud in the current observation was refined and matched with 3D point clouds in a human-

pose database to estimate a human pose. Ye et al. [50] used a 3D surface mesh to represent

a human, and to estimate human poses by human-pose detection.

Since the geometric features above are extracted from the whole human body, the

body’s properties — orientation and shape — in local regions are understated. It moti-

vates us to investigate and derive a 3D-point-cloud feature called VISH that captures both

the global and local properties of the 3D point cloud of a human body.

1.2.2 Human-Pose Model

Once features are extracted, the next step is to build a human-pose model that maps fea-

tures to human poses. This section gives an overview of models that are commonly used

for HPE. Models are summarized into three types: generative models, discriminative mod-

els, and hybrid models that combine the previous two models. Generative models describe

joint probability distributions of human poses and features. Thus, generative models can

generate all possible pairs of human poses and features according to the joint distributions.
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Usually, a joint distribution is further decomposed into a prior distribution of human poses,

and a distribution of features conditioned on a human pose. A significant work of using

a generative model for estimating a human pose of a walking person was presented in the

early 80s [9]. Walking patterns were generated in advance and an evaluation function of

comparing each frame with a walking pattern was predefined. The hierarchical structure

of the human body and constraints among body parts that were presented in the paper are

still widely used in many related works. Generative models usually lead to a better gen-

eralization to unseen human poses compared with the discriminative models because the

joint probability of features and human poses is estimated in the generative models.

Discriminative models, on the other hand, focus on the direct mapping between an input

feature and a human pose without estimating the joint probability. They cannot be used to

generate a feature corresponding to a human pose but they can compute the probability

of a human pose being represented by a feature. The input feature is usually modeled

as a constant instead of a random variable. Recently, neural networks have been shown

to be useful in estimating human poses. Specifically, existing works utilize techniques in

deep learning to represent observations or input features in multiple levels of abstraction,

and then map the abstraction to human poses. We will include related works of neural

networks for HPE in the following section as well. More comprehensive surveys about

neural networks can be found in [86] [87].

Generative Model

Generative models have a long history in HPE. The high-level idea of these models

is to formulate possible combinations of human poses and the corresponding features by

a number of parameters. For example, parameters could be the position and orientation

of a body part. An inference is then made by finding the most probable human pose that

accounts for the given features of observations. The main challenge in these models is

to search over a large amount of possible combinations. Searching human poses in such

high dimensional space is computationally impractical. This motivates the development
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of different dimension-reduction and search algorithms that utilizes properties of human

poses such as the hierarchical structure of the human body.

Yang and Ramanan [30] modeled the hierarchical structure by a mixture of templates

for each body part. The templates captured the contextual co-occurrence relationship be-

tween body parts. Each part was associated with a mixture component representing its

type. HOG was used as an image feature and support vector machine (SVM) [88] was used

to learn model parameters. Duan et al. [33] extended the mixture of templates [30] to a

multi-scale model. The multi-scale model contained multiple layers with different num-

bers of body parts and different tree structures. In each layer, HOG was used to represent

the observation of an image. The model between layers was represented by a tree struc-

ture. Dual decomposition was used for efficient inference. Anguelov et al. [18] proposed

a method of rigid body-part detection to recover human poses. 3D meshes were registered

to estimate the transformation between the 3D meshes and the reference mesh. Then, each

point on the mesh was assigned a label representing a rigid part. Soft contiguity constraints

were imposed to bias the contiguous assignment of rigid parts. Hard contiguity constraint

were added to limit every rigid part to at most one connected component. EM algorithm

was used to optimize the transformation and the labeling. Zhu et al. [22] [23] proposed a

2D HPE method based on anatomical landmarks. Landmarks were first detected and in-

terpolated if occlusions were occurred to locate the head, neck and torso. The head, neck

and trunk (HNT) templates were built and body parts were detected in the 3D point cloud

from depth images. In the HNT templates, key points were further extracted to generate

human-pose hypotheses based on the inverse kinematics. Then, arms were detected by

blob detection. Constraints about joint limits and penetration were applied to reconstruct

the poses. Human poses were estimated by fitting the detected body parts into observations.

Su et al. [25] combined a top-down method to generate an initial human-pose estimate and

a bottom-up method to iteratively refine the estimate. Gaussian process latent variable

model (GPLVM) [80] was applied to match all training samples with an input to find an

initial estimate. Rotation invariant EdgeField features were proposed to detect body parts
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to limit searching seeds of candidates. The belief propagation (BP) inference [89] was then

applied over the candidates using the maximum a posteriori (MAP) estimation.

Markov assumptions [89] are commonly applied to human-pose model to reduce the

dimensionality of human-pose space. Liu et al. [31] proposed a maximum-a-posteriori

Markov random field (MAP-MRF) method to segment two persons. Priors of the MAP-

MRF were proposed based on shape and appearance features in the previous frame. Rodgers

et al. [21] proposed a Markov network to estimate 3D human poses. Surfaces and edge

discontinuities of body parts were used to model the probabilities of body parts in 3D

human-pose space. Loopy belief propagation (LBP) [89] and iterative closest point (ICP)

algorithm [90] were used to estimate and refine poses in the Markov network. Lee and Co-

hen [17] proposed a complementary jump proposal in the data-driven Markov chain Monte

Carlo (MCMC) framework to estimate 3D human poses. Face, contour, color and edges

were combined as a feature for the observation. The proposed model also included the

dependency of image positions of body joints, such as head, and the observation. Lehment

et al. [27] proposed an observation likelihood approximation. The likelihood was derived

from the similarity between non-occluded 3D model points and observed 3D data points,

and a penalized function for self collision.

Once a human pose model is defined, parameters of the model are estimated by opti-

mizing the corresponding objective functions. Objective functions are often multimodal

because human bodies of different human poses could be similar. Different optimization

techniques are proposed to avoid local optimizers. Siddiqui and Medioni [26] proposed a

MCMC method for HPE. The method combined a body-part detection and an observation-

likelihood approach. The head of a person was first detected by the Canny edge detector in

depth images. Other body parts were then detected heuristically using their 3D positions.

The observation likelihood was measured based on foreground silhouettes, the Euclidean

distance between the observed and estimated depth images, and the number of missing pix-

els in depth images. MacCormick and Isard [12] tracked the 2D position of a hand using

partitioned sampling. A survival diagnostic and a survival rate were introduced to measure

the reliability of particles in the particle filter. Partition sampling was able to use less parti-
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cles to track a hand as an articulated object and use different numbers of particles to track

different parts in the hand. Deutscher et al. [13] proposed the annealed particle filtering for

HPE. Each limb was modeled using conic sections with elliptical cross-sections. A match-

ing function that measured the likelihood of a possible human pose being the human pose

in the scene was defined based on edges and foreground silhouette. Deutscher et al. [14]

introduced a crossover operator in the annealed particle filter for estimating human motion.

Search space was partitioned based on the variance of each particle.

Discriminative Model

Discriminative models attempt to map features directly to human poses. The mapping

is usually derived in the form of a nearest-neighbor approximation, a regression or mixture

distributions. These models are often fast and reliable when training data can represent

situations well.

When deriving a mapping, a kinematic chain of human is usually incorporated to sim-

plify human-pose models. Taycher et al. [37] modeled 3D human poses using CRF to

represent a kinematic relationship. Stoll et al. [55] modeled both images and the kine-

matic relationship of a human using sums of spatial Gaussians. Sun et al. [56] proposed a

conditional-regression-forest model and incorporated the kinematic relationship among 3D

body-joint positions by introducing a latent variable. The latent variable also represented

human attributes such as height, gender and torso orientation.

Human-pose space can be modeled by mixtures of simple models. Tian et al. [53] lever-

aged the learning problem of high-dimensional space of 3D human poses by introducing

low-dimensional latent space for both input features and 3D human poses. The latent space

was derived by the locality preserving projections (LPP) algorithm [91]. Then, Gaussian

mixture model (GMM) [80] was trained to model the mapping of latent space between

the input features and 3D human poses. As a result, the proposed model could deal with

multimodalities in human-pose space. Sminchisescu et al. [36] proposed a discriminative

Bayesian mixture-of-experts model to track 3D human poses based on silhouettes. Tian et



16

al. [58] proposed a discriminative model that is derived based on the generative model [30]

by using latent nodes to represent the abstraction of body parts such as a left arm and a right

leg. By adding the latent nodes, the relationship among nearby parts could be specified.

Regression techniques were proposed for fast computation. Sedai et al. [45] proposed

a learning-based approach to combine shape and appearance features from single-view

images to estimate 3D human poses. Taylor et al. [57] used a regression forest to estimate

the correspondence between the features from depth and multi-view silhouette images, and

points in a human model. Okada and Soatto [41] approximated the non-linear mapping

between HOG and 3D human poses by multiple local linear regressors.

To reduce the jitter effect from the estimates, Howe [34] estimated human poses by

minimizing three quantities, namely the Chamfer distance between a sequence of human

poses from the video and the database, the temporal similarity between successive frames

using Markov chain, and the smoothness among frames using quadratic splines. Fathi and

Mori [40] proposed a motion exemplar approach to detect and track 2D human poses.

Neural networks with deep network architectures have been shown to achieve the state-

of-the-art performance in HPE [47, 62–64]. Traditionally, neural networks have been used

as function approximators that map observations such as images of humans or body parts

to human poses. In the recent development of deep learning, a limited set of graphical

models has been created. Graphical models in the set have been shown to be equivalent to

some neural networks. Those neural networks are thus probabilistic in nature. They have

been used extensively to extract features from data through modeling data distributions.

Each graphical model in a limited set always has hidden random variables (neurons) that

represent features at root nodes or intermediate nodes, and random variables that represent

data at leaf nodes. Also, random variables are assumed to follow some specific distributions

for efficient computation. With the convention that data neurons are arranged in the bottom

layer, a feature (neuron) is more abstract when its corresponding layer is higher. Since

neurons are stochastic, parameter-learning algorithms have been proposed to learn edge

weights by considering probabilistic neural networks as graphical models. Probabilistic
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neural networks can be categorized according to their edge types: undirected [92] [93],

directed [94] [95], and both [96].

In the undirected case, Ackley et al. [92] proposed Boltzmann machines and a learning

algorithm to learn their edge weights. Each neuron in a Boltzmann machine was a binary

random variable representing a hypothesis about data, and each edge represented a pair-

wise constraint between two hypotheses. The proposed learning algorithm was sequential

and was derived under the assumption that random variables were distributed according to

sigmoid functions, and a weight matrix in a Boltzmann machine was symmetric. Apolloni

and Falco [97] extended Boltzmann machines [92] by proposing a parallel learning algo-

rithm that allowed a weight matrix to be asymmetric. Although the limitation of a weight

matrix was eliminated, the transition of any two configurations of a Boltzmann machine

was assumed to follow a specific Markov transition matrix. Another assumption that is

commonly used to simplify the learning algorithm is to restrict connections between neu-

rons. Smolensky [93] proposed restricted Boltzmann machines (RBMs) that only allowed

connections between layers but not between neurons in a layer. By limiting the connec-

tivity, a parameter-learning algorithm was derived based on MCMC and Gibbs sampling.

More information about different learning algorithms for RBMs can be found in [98].

In the directed case, Neal [99] [94] presented sigmoid and noisy-OR belief networks,

and derived learning algorithms for them. A sigmoid belief network consisted of binary

random variables that were connected by directed edges. Conditional probabilities were

computed by sigmoid functions. A noisy-OR belief network was composed of binary neu-

rons that were OR gates with preceding neurons as input. Conditional probabilities were

predefined. Under these formulations, the negative phase, which was required in training

Boltzmann machines, was not needed in learning algorithms. Bengio and Bengio [100]

extended sigmoid belief networks [99] [94] by adding a hidden layer to capture high-level

features. Based on the extended sigmoid belief networks, Larochelle and Murray [95] im-

posed restrictions on weight changes to speed up the process of learning weights.

In the case when probabilistic neural networks contain both undirected and directed

edges, Hinton et al. [96] proposed deep belief networks that combined both a RBM [93]
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and sigmoid belief networks [100]. A RBM was used as a complementary prior to make

a data posterior distribution factorize. Thus, an explaining away effect was eliminated and

edge weights could be learned one layer at a time.

Typically, hidden layers of neural networks are used to extract features from observa-

tions through layer-wise training [86] [87]. As hidden layers are closer to the output layer

of a neural network, features become more abstract. The output layer then uses extracted

features to estimate human poses. For example, Ouyang et al. [65] proposed to use neural

networks to extract appearance, body-type and spatial features. Once the features were

computed, human poses were estimated by a neural network with one hidden layer and

linear activation functions at the output. Taylor et al. [47] proposed the implicit mixture of

conditional RBMs for HPE. With the proposed model, the history of human poses could be

utilized for estimating a human pose.

Among different structures of neural networks, convolutional neural networks have

been used extensively for HPE. Toshev and Szegedy [63] formulated the HPE problem

as a regression problem that mapped an image of a human to a normalized human pose. A

convolutional neural network was applied on an image to estimate human-joint positions.

Then, a convolutional neural network was built for each human joint and was applied on an

image region centered at a human-joint estimate to refine the estimate. Chen and Yuille [59]

used convolutional neural networks to both detect body parts and learn the spatial relation-

ship between body parts. Weights corresponding to the appearance of body parts and the

spatial relationship were learned using the structured SVM. Jain et al. [60] presented a

framework that used convolutional neural networks to extract low-level features and gener-

ate a kinematic model that represented the constraints among body parts. Li et al. [61] [62]

proposed a two-step approach based on convolutional neural networks. First, convolutional

neural networks were used to directly estimate positions of human joints in an image. Then,

body-part detectors, which were developed based on convolutional neural networks, were

applied on the image at the estimated position to classify body parts. Pfister et al. [64] sug-

gested that, based on convolutional neural networks, upper-body joints could be estimated

without performing foreground segmentation. Temporal information was utilized by using
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multiple frames as input to convolutional neural networks. Tompson et al. [66] used con-

volutional neural networks to build body-part detectors and a spatial model to represent the

relationship between body parts. The detectors and spatial model were combined together

as a neural network and trained using the backpropagation algorithm [6].

Hybrid Model

Hybrid models combine generative and discriminative models so that the combined

models contain both properties of model generalization and fast computation.

Gall et al. [72] proposed a multi-layer framework of global stochastic optimization, fil-

tering and local optimization for 3D HPE. In the first layer, interacting simulated annealing

(ISA) was used to initialize the 3D human pose from images. In the second layer, jitter

was filtered from the initial estimate with a short delay. The refined estimate was then used

as a shape prior for the level-set segmentation. Sedai et al. [76] proposed a supervised

particle filter method to track 2D human poses. The mapping between human poses and

the corresponding histogram-of-shape-context (HoSC) descriptors [45] was learned using a

mixture of regressors. Each regressor was modeled by RVM. A human pose in each frame

was tracked by a particle filter which contained the mapping and the likelihood distribution

derived based on silhouette and edges. Gupta et al. [69] proposed an observation-driven

Gaussian process latent variable model (OD-GPLVM) to include an embedding from the

observation space to the latent space of 3D human poses. It provided faster inference and

a more accurate estimate compared to GPLVM. In addition, the OD-GPLVM could learn

and estimate human poses from the scene context.

Prior knowledge can be used to reduce the dimensionality of the human-pose space.

Gall et al. [75] incorporated the prior knowledge of gender and height for detecting body

parts and human poses. Zuffi et al. [77] utilized the body shape by extending PSM to de-

formable structures (DS) which captured the shape of each body part. PCA was used to

learn a low dimensional linear model of the shape which was represented by a linear Gaus-

sian model. Sigal et al. [67] [68] adopted the kinematic relationship among body parts by
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proposing a loose-limbed model which was a probabilistic graphical model. Nodes in the

model represented body parts and edges represented the kinematic, penetration and tem-

poral constraints. The constraints were represented by a mixture of Gaussian kernels. The

model was first initialized by body-part detectors. Human pose was estimated and tracked

using the Particle Message Passing method. Ganapathi et al. [70] adopted a sequence of

monocular depth images and implemented a generative model for a 48 degree-of-freedom

human model, together with a discriminative model for body-part detection on a GPU. A

kinematic chain was formulated as a directed acyclic graph and the state transition was

modeled by a dynamic Bayesian network.

Recently, human action [73] has been used as prior knowledge. Gall et al. [71] pro-

posed a model for estimating the prior probability of an action from action classification to

separate 3D-human poses into action-specific manifolds. Gaussian processes were trained

to map between 3D-human-pose space and low-dimensional space. The 3D-human pose in

a previous frame was used as an initialization for finding the optimal 3D-human pose and

action jointly using a particle-based annealing optimization scheme. Yao et al. [73] pro-

posed the appearance-based and pose-based features to classify actions using the Hough

forest [101]. The appearance-based features included color, dense optical flow and spatio-

temporal gradients. The pose-based features included the joint-distance feature, the (nor-

mal) plane feature and the (normal) velocity feature. Yao et al. [74] further extended the

model of estimating the prior probability of action in [71] by incorporating the action clas-

sification [73] into a single framework. The dimensionality of human-pose space was re-

duced by considering the most probable action determined by the action classification.

Since, in general, a human pose can belong to more than one action, for example, the

human pose of hand waving can be described from the action of standing and the action of

raising both arms, we extend this concept by allowing more than one action to describe a

human pose.
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1.3 Contributions of the Thesis

This thesis focuses on estimating human poses of a person, using a stationary depth

sensor. We explore methodologies for solving the HPE problem in two aspects: feature

extraction and human-pose modeling.

In the feature-extraction aspect, our research effort centers on reducing feature ambi-

guity. We propose a 3D-point-cloud feature that is derived from an observation taken by a

depth sensor. It is different from traditional work in the way of collecting and using sensory

data. In traditional work, CCD cameras are used as sensors to capture a 3D scene into 2D

color/grayscale images as observations. Since the 3D-to-2D projection does not preserve

distances and angles, the ambiguity of depth information exists in features and thus af-

fects the accuracy of human-pose estimates. On the contrary, the proposed 3D-point-cloud

feature uses a depth sensor that captures depth information (3D point clouds) directly.

In the human-pose-modeling aspect, our research effort centers on two major approaches.

We first propose an approach for reducing the dimensionality of human-pose space by us-

ing multiple human actions. The dimensionality reduction is based on our observation that

human poses from a human action are varied in a specific pattern. Based on this obser-

vation, human-pose space can be decomposed into low-dimensional manifolds that may

be overlapped with each other. Thus, instead of modeling human-pose space directly, our

proposed approach first models each manifold individually. Manifolds are then combined

together to create human-pose space.

In our second approach, we propose a human-pose model that is constructed based on a

feedforward neural network. The proposed neural-network-based human-pose model takes

the proposed 3D-point-cloud feature as input and estimates a human pose. It is considered

as an extension to the first approach because the proposed neural-network-based human-

pose model utilizes the same idea in the first approach, except that in the first approach,

factors are designed manually and predefined in advance, and in the second approach, fac-

tors are learned automatically from training data. Based on the automatic design of factors,
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the second approach can be adapted to various situations by learning factors from training

data that are obtained from different environments.

To investigate the feature extraction and the human-pose modeling in the HPE prob-

lem, our research efforts have been directed towards the development of a 3D-point-cloud

HPE system framework, which is outlined in Figure 1.2. Within this 3D-point-cloud HPE

estimation framework, we shall focus on the following three major tasks:

Fig. 1.2. Proposed 3D-point-cloud human-pose estimation system framework.

1. Derivation of the viewpoint and shape feature histogram (VISH) feature from a 3D

point cloud. The proposed VISH feature captures spatial ordering of the global and

local properties — orientation and shape — of 3D points from a human by extending

the idea of histogram of oriented gradients (HOG). To handle the large number of

3D points in a 3D point cloud, the 3D points are summarized into a nonparametric

distribution using viewpoint feature histogram (VFH) and shape features. The sum-

marization is performed on overlapping 3D regions of the 3D point cloud so that the

spatial ordering can be captured. The proposed VISH feature is then utilized in a

later modeling process. Details about VISH feature can be found in Chapter 2.

2. Derivation of the non-parametric action-mixture model (AMM). As humans are highly

articulated, modeling human-pose space directly is intractable. The proposed AMM

lowers the dimensionality of human-pose space by incorporating the result from ac-

tion classification to HPE. Using the prior knowledge of human actions, human poses
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can be grouped according to their actions and modeled in low-dimensional mani-

folds. The classification result then determines the weighting coefficients in combing

the low-dimensional manifolds. Details about AMM can be found in Chapter 3.

3. Extension of a 3D-point-cloud HPE system framework based on neural networks. We

extend the 3D-point-cloud system framework by utilizing neural networks to estimate

human poses. The extended system framework takes a 3D-point-cloud feature as

input and estimates a human pose. Figure 1.3 shows the extended system framework.

In the extension, instead of predefining AMM factors, we propose a mapping from

AMM to a neural network so that its factors are designed automatically based on

training data. We then use the concept of distributed representation to construct a

scalable neural network for estimating human poses. Details about the extension can

be found in Chapter 4.

Fig. 1.3. An extension of the proposed HPE system based on neural-network realization.

The development of the 3D-point-cloud HPE system framework yields contributions in

feature extraction and human-pose modeling. The contributions are:

1. Reduction of feature ambiguity by using the proposed 3D-point-cloud feature. By

using a depth sensor to capture a 3D point cloud as an observation in HPE, we obtain

the depth information of a person directly and thus reduce the ambiguity of depth

information. Meanwhile, we introduce the hierarchical structuring of extracting fea-

tures from a 3D point cloud to obtain coarse-level to fine-level information. Based
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on the information, we can reduce the ambiguity of features extracted from observa-

tions.

2. Association of human actions into HPE to lower the dimensionality of human-pose

space. In general, the search space grows exponentially with the dimensionality of

human-pose space. Thus, searching human poses directly is intractable. We intro-

duce the idea of using a low-dimensional manifold corresponding to an action in

modeling human-pose space. We first propose a two-step approach (estimation and

redistribution steps) in modeling the distribution of each manifold. Then, manifolds

are combined according to a weighting function in which function values (weights)

are computed by an action classifier.

3. Mapping the design problem of factors in AMM to the computational problem in neu-

ral networks. In general, factors in probabilistic models are manually designed and

laborious. Yet, they may not represent underlying probability distributions. AMM

suffers from the same issue. We realize the similarity between Bayesian networks

and neural networks, and map the design problem in Bayesian networks to the com-

putational problem in neural networks. This way, AMM can make use of the advan-

tages of neural networks, namely learning capability, distributed representation, and

adaptability, in the process of designing factors.

1.4 Organization of the Thesis

The organization of this thesis is described as follows. Chapter 2 describes the pro-

posed 3D-point-cloud VISH feature that is extracted from a 3D point cloud captured by a

stationary depth sensor. We shall first introduce the 3D-point-cloud pre-processing step that

extracts 3D points corresponding to a human and removes 3D points from the environment.

We then discuss the hierarchical-structuring step that partitions the pre-processed 3D point

cloud and organizes the partitions in a tree structure. Features are extracted from each par-

tition to form the proposed 3D-point-cloud feature. Finally, we shall compare our proposed
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3D-point-cloud feature with some existing features, and describe computer-simulation re-

sults to illustrate the robustness of the proposed 3D-point-cloud feature.

Chapter 3 presents the proposed non-parametric action-mixture model (AMM) that uti-

lizes the proposed 3D-point-cloud feature as input and estimates a human pose as output.

We shall describe a mathematical formulation of incorporating multiple human actions in

modeling human-pose space. An estimation step will be presented to individually model

human-pose space for each human action. Since the same human pose may appear in mul-

tiple human actions, we shall consider this case by introducing a redistribution step. Based

on the human-pose models, we shall merge them together by computing a weight for each

human-pose model. A kinematic model will be presented to refine the human poses es-

timated from the AMM. Computer-simulation results will be described to illustrate the

benefits of using multiple human actions in the modeling process.

Chapter 4 describes the extension of the proposed AMM based on neural networks. As

we shall show the equivalence of a Bayesian network and a neural network under special

situations, and test the adaptability of the extension, we shall begin with presenting two

variants of the proposed 3D-point-cloud feature. Then, we shall describe the mathematical

formulation of the proposed AMM as a Bayesian network, and present two important steps

in mapping between a Bayesian network and a neural network: structure identification and

parameter learning. After that, we shall discuss the realization of the proposed AMM by a

neural network. Specifically, in addition to the two steps in the process of the realization,

we shall describe a dictionary learning technique that yields a scalable realization. Finally,

we shall present computer-simulation results to demonstrate the advantages of using neural

networks.

In Chapter 5, we summarize the research results and explore future research direction.
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2. 3D-POINT-CLOUD FEATURE

2.1 Introduction

Features play an important role in data processing because they can reduce undesired

variations in observations, which are measured data, and facilitate the process of modeling.

Features are used to represent observations. They can be binary, categorical or continu-

ous. A robust feature should be informative and non-redundant. Sometimes, a feature also

encapsulates semantic meaning. Deriving robust features has been an active research area

mainly in computer vision and image processing. Although there are different kinds of

features, each of them is essentially extracted by a process called feature extraction. Thus,

deriving a feature can be defined as the task of deriving a feature-extraction process Λ,

which is a function that maps an observation o ∈ O to a feature vector f ∈ F . The set

O = {o1, . . . ,on}, where n ∈ Z+, represents a set of all observations (n observations) from

which features are extracted. The set F represents a set of all possible features. Therefore,

a feature-extraction process can be written as

Λ : O 7→ F. (2.1)

For example, when we use colors as features, we can define both observations and features

as color images. The function Λ is an identity function. In extracting a common edge

feature, namely a Sobel-edge feature, from a grayscale image, the feature-extraction pro-

cess can be formulated in the form of Eq.(2.1) as follows. First, the set of all observations

and the set of features should contain grayscale images, and possible edge magnitudes and

orientations at each pixel, respectively. The function Λ should involve computations of
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gradient magnitudes and orientations from two filtered images that are generated by con-

volving a grayscale image (an observation) with the following two filters
−1 −2 −1

0 0 0

1 2 1

 ,

−1 0 1

−2 0 2

−1 0 1

 .

Historically, visual images (color/grayscale images) are common observations in mark-

erless approaches for HPE. It is because many applications, such as surveillance systems

and driver assistance systems, uses cameras as their input devices. At the same time, many

techniques, such as human detection and human tracking, from research areas related to

computer vision and image processing are traditionally built based on visual images. Thus,

using visual images for HPE facilitates the integration of different techniques, and allows

researchers to focus on HPE without putting much effort on other parts. It is therefore inter-

esting to study the HPE problem using visual images as observations. One of the features

that use visual images as observations is a HOG feature. It has shown to be useful in detect-

ing humans. Being motivated by human detection, HOG features have been used to detect

body parts, such as [65] [77], for HPE as well. Using the feature-extraction formulation

in Eq.(2.1), we can describe HOG features by first defining the set of observations as a set

of grayscale images and the set of features as a set of histograms of gradient directions for

each small image region. The function Λ defines the computations of gradients, weighted

votes of each region, and normalization of each region.

After the release of Microsoft Kinect, the development of depth sensors has been ad-

vanced quickly. As a result, researchers have begun to use depth images as observations.

In a depth image, the intensity of each pixel represents the distance between a 3D point and

a reference point such as the center of a depth sensor. 3D coordinates of a 3D point can be

estimated based on the intensity of a pixel and intrinsic parameters of a depth sensor using

a finite projective camera model [2]. Thus, instead of displaying an object in a 2D depth

image, an object can be illustrated in 3D by plotting 3D points that are computed at depth

pixels in 3D space. A collection of 3D points is called a 3D point cloud. Features that are
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extracted from depth images are called 3D-point-cloud features. Depth images are popular

because they can directly provide depth information that is lost in a visual image, which is

a projection of 3D objects. 3D-point-cloud features can therefore capture geometric infor-

mation. As depth information is important in HPE, we will focus on using depth images

or 3D point clouds as observations and will investigate different types of 3D-point-cloud

features in this chapter.

In the literature, different 3D-point-cloud features have been proposed based on dif-

ferent usages of depth information. A simple 3D-point-cloud feature can be a collection

of 3D coordinates computed at each depth pixel that corresponds to a human. Elements

(3D coordinates) in a simple 3D-point-cloud feature can be considered as equally impor-

tant [50] or can have different weights [57] [56] that are learnt in a human-pose model.

In addition, a 3D-point-cloud feature can be derived based on a comparison between each

depth pixel with nearby pixels [51] [52]. The comparison allows a 3D-point-cloud feature

to be depth-invariant; that is, it does not depend on the distance between a human and a

depth sensor.

Among all the existing 3D-point-cloud features, two of them are easily accessible and

therefore are used for evaluation in this chapter. They are all extracted from observations of

3D point clouds. The first one is called an accumulative geodesic extrema (AGEX) [48]. It

is derived by exploiting a human-body property that geodesic distances on a human surface

are largely invariant to human-body deformation. It is built by collecting a number of 3D

points that are located at the longest distance from the centroid of a 3D point cloud of

a human. Those points can be computed efficiently using the Dijkstra’s algorithm with

computational complexity O(k · (8n+ n logn)), where k is the number of 3D points to be

collected and n is the number of 3D points in a 3D point cloud of a human. As we can

specify the number of 3D points to be collected, k can be considered as a constant. Thus,

the computational complexity of extracting a AGEX feature becomes O(n logn). Although

the feature-extraction process is efficient, the spatial ordering of collected 3D points is not

preserved because 3D points may be collected in different orders from similar human poses.



31

Therefore, each 3D point is required to be classified to ensure a consistent ordering of 3D

points.

The second 3D-point-cloud feature that is used in the experiment is a viewpoint feature

histogram (VFH) [85]. It is mainly used in solving a more general problem of object recog-

nition and pose (position and orientation) identification. A VFH feature is a 3D-point-cloud

feature that collects a histogram of relative pan, tilt and yaw angles between a viewpoint

direction and normals on a surface. The computational complexity is O(n), where n is

the number of 3D points in a 3D point cloud. Similar to visual features, histograms can

summarize 3D points according to the shape of a human body, and can capture the cur-

vature of a human-body surface. Although histograms can summarize characteristics in a

3D-point-cloud feature, details may be underestimated.

To highlight details, we hierarchically divide an observation, which is a 3D point cloud,

of a human body into parts that are arranged in a tree structure. At the same time, we in-

troduce the spatial ordering of parts to ensure that elements in a 3D-point-cloud feature are

extracted from the same part of an observation of a human body. Previously, the concept

of spatial ordering is used for 3D-point-cloud pre-processing [102] and 3D-surface recon-

struction [103]. Based on this concept, we propose a 3D-point-cloud feature for HPE. We

will show that the spatial ordering of parts is important in HPE and is useful to reduce the

ambiguity of symmetric human poses.

To illustrate the performance of our proposed feature, we will use two common models,

namely k-nearest neighbor algorithm (k-NN) [3] and support vector machine (SVM) [88],

to map our proposed feature to human poses. When applying the two models, a set of

training samples is first built. Each training sample contains a 3D-point-cloud feature and

a ground-truth human pose that may be obtained from a marker-based approach or by man-

ually marking on a depth image. To use k-NN, a 3D-point-cloud feature that is extracted

from an observation is matched with all 3D-point-cloud features in a set of training sam-

ples. The closest k features in the set are retrieved and their corresponding human poses are

averaged to form a human-pose estimate. To use SVM, a set of hyperplanes that separate

each human pose with the largest margin is trained based on a set of training sample. A
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human pose can then be estimated by finding a region in which a 3D-point-cloud feature

lies.

In this chapter, we will describe our proposed 3D-point-cloud feature called viewpoint

and shape feature histogram (VISH) [104]. It is inspired by the observation that a human-

body shape is very distinctive and is evidential for different human poses. According to

the formulation in Eq.(2.1), we can formulate our proposed VISH feature as follows. The

set of observations is a set of 3D point clouds that contains a human and is captured by a

static depth sensor. The set of features is a set of all possible VISH features. As we want

to capture the shape of a human body, we build a VISH feature by aggregating an exist-

ing 3D-point-cloud feature, namely a VFH feature, and a shape feature that is computed

based on depth values of 3D points (intensities of depth pixels). While extracting our pro-

posed VISH feature, the function Λ is computed from both a 3D point cloud of a human

and its decomposition. Thus, coarse-level information is extracted from a 3D point cloud

of a human, and fine-level information is extracted from divisions of a 3D point cloud of

a human. The novelty in our proposed VISH feature is the spatial ordering of VFH and

shape features. The spatial ordering can capture both global and local properties, namely

the orientation and shape, of 3D points from a human. These properties, when considered

together, are important in resolving the ambiguity of symmetric human poses. The pro-

posed VISH feature was tested on the Stanford TOF Motion Capture Dataset [70] using

common human-pose models, namely k-NN and SVM. Two existing 3D-point-cloud fea-

tures, namely VFH and AGEX features, were compared with our proposed VISH feature.

Experimental results show that our proposed VISH feature can resolve the ambiguity of

symmetric human poses. The proposed VISH feature can also reduce the overall error and

standard deviation of human-pose estimates.

The structure of this chapter is as follows. Section 4.4 describes the proposed VISH

feature, which represents the 3D point cloud of a human. Experimental results are discussed

in Section 2.3. Conclusions are presented in Section 2.4.
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2.2 Viewpoint and Shape Feature Histogram (VISH)

A VISH feature is defined as a representation of an observation of a 3D point cloud. In

this section, we will describe the process of extracting a VISH feature from an observation

of a 3D point cloud. As we will describe later, a VISH feature will be used to represent

the distribution of 3D points of a human. There are three steps to extract a VISH feature

from an observation of a 3D point cloud. The three steps are shown in Figure 2.1. They

are 3D-point-cloud pre-processing, hierarchical structuring, and VFH and shape feature

extraction. In the pre-processing step, 3D points corresponding to a human are extracted

and 3D points corresponding to the background are removed to retain 3D points of interest.

This step reduces the number of 3D points by keeping only relevant 3D points from a

human for further processing. In the hierarchical structuring, The pre-processed 3D point

cloud is represented as a node in a tree. The node is then partitioned and replicated into a

tree structure. VFH and shape features are extracted from each node in a tree to provide

a descriptor to represent each node. A VISH feature is formed by aggregating VFH and

shape features from each node in a tree. We will explain each step in details in the following

sections.

Fig. 2.1. Main components in the extraction of our proposed VISH feature.
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2.2.1 3D-Point-Cloud Pre-processing

In this section, we simplify the process of human detection and segmentation in order

to focus on HPE. We assume that a human, whose human pose is to be estimated, performs

different actions in a predefined 3D region. Therefore, 3D points corresponding to a human

can be extracted by filtering out 3D points outside a predefined 3D region. Let P be an

observation of a 3D point cloud that is captured by a depth sensor. Let R be a set of

all possible 3D coordinates (3D points) in a predefined 3D region. A set of 3D points

corresponding to a human, PA, can be computed by intersecting a set P and a set R.

Mathematically, it is given by

PA = P
⋂

R, (2.2)

where
⋂

is the set intersection.

Figure 2.2 shows an example of using a predefined 3D region in the intersection method

that extracts 3D points from a human. In Figure 2.2(a), it shows an observation of a 3D

point cloud that is captured by a depth sensor. The observation consists of 3D points from

the background and a human. For better illustration before and after the extraction process

of 3D points from a human, 3D points captured by a depth sensor are depicted in green color

in the figure. By retaining 3D points inside a predefined 3D region through the intersection

method, 3D points from a human can be extracted. The extracted 3D points are depicted in

blue color in Figure 2.2(b).

Because of the measurement noise from a depth sensor, there are outliers in a 3D point

cloud PA. Smoothing or filtering techniques [105] are required to remove outliers by

smoothing both spatial and temporal information of 3D points in a 3D point cloud PA.

When using spatial information, we typically assume that the surface of a human body is

smooth. Thus, any 3D point that is not on the surface will be considered as an outlier and

will be removed. When using temporal information, we typically assume that a human

is smoothly changing his/her postures. Thus, outliers can be detected by exploiting the

consistency of 3D points over some consecutive 3D point clouds of a human. Since, in the

experiment section, the two human-pose models, namely k-NN and SVM, for testing our
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(a) (b)

Fig. 2.2. An extraction of 3D points from a person using a predefined 3D region. (a) An
observation of a 3D point cloud. (b) The resulting point cloud as indicated by the blue color
after filtering 3D points outside a predefined 3D region.

proposed VISH feature do not consider temporal information of a human, we apply only

spatial smoothing to remove outliers in a 3D point cloud PA. We observe that outliers

usually appear at random distances away from the surface of a human. Thus, we will

remove outliers by comparing distances between neighboring 3D points in a 3D point cloud

PA.

To detect outliers, we assume that the distance between two neighboring 3D points in a

3D point cloud PA follows a continuous cumulative distribution function F(·). Any points

that do not follow the distribution are considered as outliers. Under this assumption, out-

liers can be detected by the pseudo-residual method [106]. The formulation of the outlier

detection is as follows.

Let D be a random variable representing the average distance between neighboring 3D

points on the surface of a human. We use a random variable D as an input argument to

a continuous cumulative distribution function F(·). The output of the function F(D) is

also a random variable. It can be shown that a random variable F(D) follows a uniform

distribution, denoted by U , from 0 to 1. Mathematically, the relationship between F(D)

and U is written as

F(D)∼U(0,1). (2.3)
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We can then define an auxiliary random variable, denoted as Z, for detecting outliers. It is

defined as follows.

Z , Φ
−1(F(D)), (2.4)

where Φ−1(·) is the inverse of the cumulative distribution function of the standard normal

distribution.

Thus, outliers in a 3D point cloud PA can be removed by thresholding the deviation of

the realization of an auxiliary random variable Z from the mean of the normal distribution.

We will denote the resulting 3D point cloud after removing outliers by PH .

Figure 2.3 shows an example of the process of removing outliers. Before applying the

pseudo-residual method, outliers are in a predefined 3D region because of the measurement

noise from a depth sensor. In Figure 2.3(a), 3D points in a predefined region is highlighted

in blue color. Outliers are indicated by red circles. After applying the proposed outlier-

removal process, outliers are removed from the surface of a human in a predefined 3D

region. The resulting 3D point cloud PH after removing outliers is highlighted in blue

color as shown in Figure 2.3(b).

(a) (b)

Fig. 2.3. An example of applying the pseudo-residual method to filter out outliers. (a)
A 3D point cloud after removing 3D points outside a predefined 3D region. Outliers due
to measurement noise are indicated by red circles. (b) The resulting 3D point cloud after
filtering out outliers.
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2.2.2 Hierarchical Structuring

In this section, we will create and utilize a spatial ordering in a 3D point cloud PH

that is generated by the previous step of 3D-point-cloud pre-processing. To create a spatial

ordering, a tree is built to keep 3D regions as nodes in a consistent order. 3D regions are

created based on a 3D point cloud PH . To build a tree, a 3D region that contains a 3D

point cloud PH of a human is first created. It is then divided into a number of 3D regions.

All 3D regions are organized into a tree structure.

Specifically, each node in a tree represents a 3D region, which is defined as a set of all

possible 3D points in a 3D region. An edge in a tree represents the process of duplicating

3D points from a node where an edge is connected to. When dividing 3D points in a node

and building a tree, a 3D region is represented by a rectangular region (cuboid). While

we use a rectangular region to represent a 3D region in this thesis, a 3D region can be

generalized to and represented by other shapes such as spheres [107]. As we use the process

above to build a tree, nodes at different levels of a tree capture a spatial ordering of sets of

3D points in 3D regions. At the zeroth level (root level) of a tree, the root node represents a

3D region containing a 3D point cloud PH . At other levels of a tree, nodes represent parts

of the 3D region at a previous level. Mathematically, we formulate the whole process of

building a tree structure as follows.

Let M0 be a set of the smallest cuboid that contains 3D points in the root node at the

zeroth level of a tree. In other words, M0 contains the smallest cuboid that encapsulates all

3D points in a 3D point cloud PH . Let Sn(·) be a function that splits a cuboid into a set of

exhaustive, continuous, mutually exclusive, and equal-sized cuboids, where n ∈ Z+ is the

number of cuboids that are split. Let Mi be a set of cuboids that are returned by a function

Sni(·) at the i-th level of a tree, where ni ∈ Z+ is the number of cuboids that are returned by

a function Sni(·) at the i-th level of a tree. We set n0 to be 1 because, at the zeroth level, there

is only one node (the root node) representing the smallest cuboid encapsulating a 3D point

cloud PH . To indicate each element in a set Mi, we use M i
j to denote the j-th element in
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a set Mi. Based on the symbols defined above, we can derive a set Mi recursively by the

following formula.

Mi =

|Mi−1|⋃
j=1

Sni(M
i−1
j ), ∀i = 1,2, . . . ,h, (2.5)

where
⋃

is the set union, | · | is the cardinality of an input set, and h is the height of a tree

with the convention that the height at the root level of a tree is 0.

In a tree, the j-th node at the i-th level is a cuboid and is denoted by M i
j , where i =

0, . . . ,h and j = 1, . . . , |Mi|. For each node M i
j , it contains a 3D region that is a set of all

possible 3D points within that 3D region. 3D points in each node are then intersected with

3D points in a 3D point cloud PH for feature extraction. The set intersection is equivalent

to the extraction of 3D points from a 3D point cloud PH in 3D regions specified by nodes

in a tree.

Let PH(·) be a function that performs the set intersection or the extraction process. It

takes a cuboid (a node in a tree) as an input argument and outputs a set of 3D points of

a 3D point cloud PH in an input cuboid. To ensure a consistent ordering of sets of 3D

points in 3D regions, we apply a function PH(·) on each node of a tree in a breadth-first

fashion. After traversing all nodes in a tree, we obtain a set of collections of 3D points that

are originated from a 3D point cloud PH . We use W to denote the set. Mathematically, a

set W is computed as follows.

W =
h⋃

i=0

|Mi|⋃
j=1

{PH(M
i
j)}. (2.6)

To illustrate the ideas that are introduced in this section, Figure 2.4 shows an example

of the process of hierarchical structuring. The height of a tree is 1. The number of cuboids

split, which is denoted as n1, is 6. In the figure, the right side shows a 3D point cloud

PH that is generated by the process of 3D-point-cloud pre-processing. 3D points in the

3D point cloud PH are highlighted in blue color. The smallest cuboid that contains the 3D

point cloud PH is depicted by thick red lines. A tree is built and is shown on the upper left

region of the figure. The root node in the tree represents the smallest cuboid encapsulating
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the 3D point cloud PH . M0 is a set that contains the smallest cuboid. The cuboid that is

represented by the root node is then divided into 6 sub-cuboids with equal volume by the

function S6(·). The six sub-cuboids are depicted by thin red lines on the right side of the

figure. They are child nodes of the root node in the tree. Therefore, M1 is a set that contains

the six sub-cuboids. 3D points from the 3D point cloud PH in each node of the tree are

extracted and stored in W for feature extraction. In the example, W has seven elements.

They are denoted as Wi, where i = 1, . . . ,7. Each element in W is a set of 3D points from a

part of the 3D point cloud PH . 3D points in each element are highlighted in blue color in

the figure.

Fig. 2.4. An example of hierarchical structuring with the height of the tree is 1 and the
number of cuboids split by Sn1(·) is 6. The smallest cuboid, which contains the 3D point
cloud PH from the person, is shown on the right side. The cuboid is divided into six
smaller sub-cuboids with equal volume by Sn1(·). All the cuboids are arranged into a tree
structure as shown on the left upper region. 3D points from the 3D point cloud PH are
extracted from each cuboid and grouped together in W for feature extraction.

2.2.3 Feature Extraction

In the previous step of hierarchical structuring, we create a set W , which contains col-

lections of 3D points extracted from a 3D point cloud PH . As a VISH feature is formed
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by aggregating two types of features in each element of a set W , in this section, we will

describe the extraction process of two types of features.

The first type of features is a VFH feature. It is originally designed to estimate a six-

degree-of-freedom pose (position and orientation) of rigid objects. It can describe the shape

of rigid objects by capturing the curvature of their surfaces. As the shape of a human body

is important in HPE, we will use it to describe the shape of the whole or part of a human

body.

A VFH feature contains histograms of relative pan, tilt and yaw angles between the

viewpoint direction of a depth sensor and normals on the surface of a human body. The

process of extracting a VFH feature involves a computation of a surface normal at each 3D

point. In each element of W , every 3D point should be assigned a direction that represents

the direction of a surface normal. The direction of a 3D point is found by the following

three steps. First, we compute the k nearest neighbors of a 3D point in the Euclidean space.

Then, a 3D point together with the k nearest neighbors are assumed to be lying on a 2D

plane. We find a 2D plane by minimizing the average perpendicular distance between a

2D plane, and a 3D point and the k nearest neighbors. After a 2D plane is found, a normal

to a 2D plane is obtained. Finally, we set the direction of a normal of a 2D plane to point

towards a depth sensor that is used to capture observations for HPE. The direction of a 3D

point is set to be the direction of a normal. After defining a direction for each 3D point in

an element of W , the relative pan, tilt and yaw angles between a 3D point and every 3D

point of its k nearest neighbors can be computed.

Figure 2.5 shows an example of the computation of three angles. In the figure, the upper

right region shows a 3D point, which is denoted by c, in red color and its nearest neighbors

in orange color. After computing normals for all the 3D points (3D point c and its nearest

neighbors), pairs are formed by selecting every 3D points in the nearest neighbors and a

3D point c. For each pair, a coordinate frame is assigned to the two 3D points in a pair. The

lower left region of the figure shows a coordinate frame, which is indicated by red, green

and blue arrows, is assigned to a pair of 3D points. Based on a coordinate frame, we can

compute the three relative angles, which are defined as α , φ and θ in the figure.
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Fig. 2.5. Relative pan, tilt and yaw angles between two points in the extraction of a VFH
feature [85].

The three angles of every pair of 3D points in an element of W are collected in a his-

togram with 308 bins, as suggested in [85], to form a VFH feature that represents that

element. Figure 2.6 shows an example of a VFH feature. In the figure, the indices of bins

are represented by the x-axis and the number of entries in bins are represented by the y-axis.

A more detailed description of extracting a VFH feature can be found in [85].

Fig. 2.6. An example of a VFH feature.

In addition to a VFH feature, we will extract a shape feature from each element of W .

We will derive a shape feature based on pixel intensities of a depth image because pixel

intensities have been shown to be important in HPE. As a VFH feature is a histogram-

based feature, spatial information of 3D points in an element of W is lost. By using pixel
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intensities in a shape feature, a shape feature can provide spatial information that is lost in

a VFH feature.

Specifically, a shape feature is derived by measuring depth values of 3D points in an

element of W around the 3D centroid of those 3D points. For notational brevity, our nota-

tions defined below will not distinguish elements of W . We will have notations that are the

same for any one of the elements of W . The process of extracting a shape feature will be

applied to each element of W . Let X be a set of 3D points in an element of W . Let c be a

3D centroid of X . A 3D centroid can be computed as follows.

c =
1
|X | ∑

X∈X
X, (2.7)

where |X | is the number of 3D points in a set X .

After a 3D centroid is computed, 3D points in a set X are projected on a 2D image,

which is denoted by I. Note that an 2D image I is different from a depth image that is

captured directly by a depth sensor. In an 2D image I, it only contains a projection of 3D

points from a human. In a depth image captured by a depth sensor, it contains a projection

of 3D points from both a human and the background. Thus, we need to compute a 2D

image I.

To compute a 2D image I, we use a finite projective camera model [2] to represent a

depth sensor. From a depth sensor, we measure its focal length, denoted as c f , a skew

parameter, denoted as s and a principal point, denoted as (px, py). All those data are stored

in a camera calibration matrix. Let K be a camera calibration matrix. It can be written as

follows.

K =


c f mx s mx px

0 c f my my py

0 0 1

 , (2.8)

where mx and my are the numbers of pixels per unit distance in image coordinates along the

horizontal and vertical directions respectively.
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The orientation and the center of the camera coordinate frame of a depth sensor can be

represented by a 3×3 rotation matrix and a 3×1 position vector, respectively, in the world

coordinate frame. Then, the mapping between a 3D point in a set X and an image point in

an 2D image I can be represented as follows.

x = KR


1 0 0 −xc

0 1 0 −yc

0 0 1 −zc

X, (2.9)

where x is the homogeneous coordinates of an image point in the camera coordinate frame

of an 2D image I and X is the homogeneous coordinates of a 3D point in a set X , K is a

camera calibration matrix, R is a 3× 3 rotation matrix, and (xc,yc,zc) are the coordinates

of the center of a depth sensor.

Based on Eq.(2.9), a 3D point in a set X can be mapped to a pixel in a 2D image I.

In a 2D image I, some pixels may or may not be projections of 3D points in a set X . If a

pixel is not a projection of a 3D point, its intensity is zero. Some pixels may be a projection

of one 3D point in a set X . In this case, each pixel should have an intensity equal to the

distance between a 3D point that is projected to that pixel and a depth sensor. Some pixels

may be a projection of more than one 3D points in a set X . In this case, each pixel should

have an intensity equal to the shortest distance from any one of those 3D points to a depth

sensor.

We define a position of a pixel in a 2D image I as follows. The position of the upper left

pixel in a 2D image I is (0,0). The x coordinate of a pixel position increases towards the

right side of an image. The y coordinate of a pixel position increases towards the bottom

of an image. Let I(u,v) be the intensity of a pixel in a 2D image I at a position (u,v). Let

(u∗,v∗) be the position of a pixel in a 2D image I where a 3D centroid c is projected to. A

window with a size (2w+1) × (2w+1) pixels is centered at the position (u∗,v∗) on an 2D

image I to extract a shape feature, where w is a user-defined parameter to control the size

of a window. Intensities of pixels within a window are grouped together to form a shape
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feature. Concretely, let fs(·) be a mapping that takes a set of points X as input and output

a shape feature. A shape feature fs(X ) can be expressed as

fs(X ) = (I(u∗−w,v∗−w), I(u∗−w,v∗−w+1),

. . . , I(u∗−w+1,v∗−w), . . . , I(u∗+w,v∗+w)). (2.10)

Figure 2.7 shows an example of a shape feature when the parameter w is set to 8.

Under this parameter setting, the size of a window and hence the size of a shape feature are

(2× 8+ 1)2 = 289 pixels. The actual shape feature is a vector with length equal to 289.

In the figure, it is depicted as a 2D image for illustration purposes. The color at each pixel

represents the distance between a 3D point that is projected to that pixel and a depth sensor

that captures a human.

Fig. 2.7. An example of a shape feature.

To form a VISH feature, both VFH and shape features are extracted from every element

of W , and are arranged in a consistent order in the form of a row vector. Let f(·) be a

mapping from a 3D point cloud PH to a row vector that contains VFH and shape features.

We use F to denote a VISH feature. A VISH feature F is considered as an aggregation

of VFH and shape features that are extracted from all the elements of W . Based on the

symbols above, it can be expressed as follows.

F = (f(W1), f(W2), . . . , f(W|W |)), (2.11)
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where Wi is the i-th element in W , and |W | is the size/cardinality of W .

Note that in a tree structure, 3D points in a child node are duplicated from its parent

node. It provides an illusion that 3D points are redundant among different levels of a tree.

However, 3D points at different levels provide different VFH and shape features. When

VFH and shape features are used to summarize 3D points in child nodes at different levels.

they describe different levels of details in the summarization. In addition, the ordering of

elements in a set W provides useful information of spatial ordering of a set of 3D points

from a human.

We analyze the time complexity of extracting a VISH feature as follows. The time

complexity of extracting a VISH feature depends on the time complexity of extracting VFH

and shape features. When deriving a VFH feature, the main computation is the computation

of a histogram of relative pan, tilt and yaw angles. It involves the comparison of each 3D

point with its k nearest neighbors. Thus, the time complexity of extracting a VFH feature is

O(kn), where k is the number of nearest neighbors and n is the number of 3D points in an

element of W . As k is typically small compared to n, the time complexity can be rewritten

as O(n).

When deriving a shape feature, it involves two main computations that depend on the

number of 3D points in an element of W . The first one is the computation of a 3D centroid

from a set of 3D points in an element of W . It has a time complexity of O(n), where n is the

number of 3D points in an element of W . The second one is the computation of projecting

3D points from an element of W into a 2D image I. It has a time complexity of O(n). Thus,

the time complexity of extracting a shape feature from an element of W is O(n).

When we analyze the time complexity of extracting a VISH feature, we need to consider

every 3D point in nodes of a tree. In a tree, the root node contains 3D points of a 3D

point cloud PH . As the function Sn(·) splits a cuboid into a set of exhaustive, continuous,

mutually exclusive, and equal-sized cuboids, all nodes at the same level of a tree contain all

3D points of a 3D point cloud PH . Thus, each 3D point of a 3D point cloud PH appears

exactly (h+ 1) times in a tree, where h is the height of a tree. The time complexity of

extracting a VISH feature is therefore O((h+1)n), where n is the number of 3D points in a
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3D point cloud PH . Experimental results show that the height h of a tree is typically small

compared to the number of 3D points n. Thus, the time complexity of extracting a VISH

feature can be rewritten as O(n). Compared with the two 3D-point-cloud features, namely

VFH and AGEX features that will be analyzed in the experiment, extracting a VISH feature

is asymptotically the same as extracting a VFH feature, and is asymptotically more efficient

than extracting a AGEX feature, which has a time complexity of O(n logn) [48].

Our proposed VISH feature provides a representation of a 3D point cloud of a human

in a predefined region. It captures global and local properties of a 3D point cloud in a rep-

resentation. Through a human-pose model, a VISH feature can be used to estimate human

poses. In the experiment, we will use two common models, namely k-NN and SVM, as our

human-pose models to evaluate our proposed VISH feature and compare its performance

with the other two 3D-point-cloud features. As we will show in the experiment, our pro-

posed VISH feature can reduce the ambiguity of symmetric human poses (see Figures 2.9

and 2.10) and is more robust than the other two 3D-point-cloud features. However, the

dimensionality of human-pose space in k-NN and SVM is high and hence the human-pose

models k-NN and SVM do not perform well. Thus, we will propose a non-parametric

action-mixture model (AMM) in the next chapter to further increase the accuracy of HPE

by lowering the dimensionality of human-pose space.

2.3 Experimental Results

The proposed 3D-point-cloud feature was implemented using the point cloud library

(PCL) [108] and tested on the Stanford TOF Motion Capture Dataset [70], which con-

tains 28 video sequences. Each video sequence corresponds to one action. A human pose

of a subject has 15 degrees-of-freedom (joints), namely head, neck, left/right shoulder,

left/right elbow, left/right wrist, hip center, left/right hip, left/right knee and left/right an-

kle. Figure 2.8 shows a human pose in the dataset.

The number of frames of video sequences in the dataset is shown in Table 2.1. In

the dataset, a subject performed different actions such as kicking and rotation, and was
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Fig. 2.8. A human pose of a subject in the dataset.

captured by a Swissranger SR4000 TOF sensor. Depth images were captured at 25 frames

per second at a resolution of 176 × 144 pixels. The ground-truth 3D joint locations of

the subject were recorded by a commercial motion-capturing system. When evaluating the

performance of HPE, frames with missing ground-truth 3D joint locations were ignored.

The error metric, ζ , for each video sequence was defined as

ζ =
1

N f

N f

∑
s=1

1
Ns

Ns

∑
i=1

∥∥js,i− j̃s,i
∥∥

2 , (2.12)

where N f is the number of frames of a video sequence for testing, Ns is the number of

3D joint locations measured by the motion-capturing system in the s-th frame, js,i is the

ground-truth 3D location of the i-th joint in the s-th frame, j̃s,i is the estimated 3D location

of the i-th joint in the s-th frame and ‖ · ‖2 is the Euclidean norm.

Two existing 3D-point-cloud features, namely VFH and AGEX, were implemented for

comparison. Two common models, namely k-NN and SVM, were used to estimate hu-

man poses based on the three 3D-point-cloud features. The 3D-point-cloud features were

evaluated using 5-fold cross-validation.
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Table 2.1 Total number of frames in each video sequence from the dataset.

Number of frames Video index
100 0-5,8,9,14,16,18,
400 6,7,10-13,15,17,19,20-27

In the pre-processing step, the predefined 3D region was set to be the 3D space with the

depth ranging from -3 meters to -2 meters. 50 closest 3D points were used to estimate the

average distance of each 3D point. The distribution function F(·) of the average distance

was set to be a normal distribution. 3D points were considered as outliers if their deviations

from the mean of the normal distribution were larger than one standard deviation.

Two hierarchical levels were used in the tree structure. Six cuboids were split from

the smallest cuboid containing the root node. To estimate the direction of a 3D point, 3D

points within 0.01 meters from that 3D point were used. The size of the 2D region used for

extracting a shape feature was set to be 17 × 17 pixels; that is, w was set to 8 in Eq.(2.10).

2.3.1 Comparison between VFH and VISH features

As our proposed VISH feature is derived from a VFH feature, we first compare the

performance of VFH and VISH features qualitatively. For comparison purposes, k-NN was

used as a human-pose model to map the two features to human poses based on the same

observations.

Figures 2.9 and 2.10 show the estimation results generated by k-NN using VFH and

VISH features, respectively. In both figures, the estimation results are shown in the form

of 2D images of silhouettes. Those 2D images were created by first projecting 3D point

clouds of a subject performing different actions onto 2D image planes. Then, silhouettes

were detected in 2D images by thresholding the intensity of each pixel. The bottom left

images in the two figures show an observation of a 3D point cloud from a subject. The

subject was raising his/her left arm in an observation. Other images in both figures were

matches that are returned by k-NN. They were ranked from left to right, and bottom to

top. For example, the closest match was at the second column in the last row. The Eu-
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clidean distance between the VFH/VISH feature corresponding to the closest match and

the VFH/VISH feature corresponding to the image at the bottom left is the smallest. In

Figure 2.9, some matches were raising the other arm. It showed that VFH features gave

similar descriptions among symmetric human poses. Therefore, VFH features could not

distinguish those symmetric human poses. In Figure 2.10, all matches were raising the

left arm. Thus, the ambiguity of symmetric human poses was greatly reduced when an

observation of the subject was represented by a VISH feature.

The main reason of the difference between the two estimation results was because VISH

features could capture the spatial ordering of 3D point clouds in an observation and VFH

features could not. When a VISH feature was used, both VFH and shape features in a VISH

feature were extracted from 3D point clouds in a tree. Those 3D point clouds represented

the whole body and body parts of a subject. However, when only a VFH feature was used

to represent an observation, it was extracted from a 3D point cloud of the whole body

of a subject directly. As a VFH feature was derived based on histograms of relative pan,

tilt and yaw angles, extracting features from a 3D point cloud of the whole body directly

could only capture global properties of a 3D point cloud. Any local properties (fine details)

were suppressed. On the other hand, a VISH feature could capture both global and local

properties by partitioning a 3D point cloud of the whole body into body parts in a consistent

order.

2.3.2 Evaluation of our proposed VISH feature using k-NN

The goal of the experiment in this section was to evaluate the accuracy of HPE in a

human-pose model when observations (3D point clouds) were represented by the three 3D-

point-cloud features: VISH, VFH and AGEX features. We used k-NN as a human-pose

model in this experiment. 80% of the dataset was used as training data and 20% of the

dataset was used as testing data. Training samples in the training data were used to learn

the mapping from a 3D-point-cloud feature to a human pose from the training data. When
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Fig. 2.9. Ambiguity of symmetric human poses represented by VFH features exists in some
close matches using k-NN. The 3D point cloud at the bottom left is a query pose. Others
are the 3D point clouds returned by k-NN. The returned 3D point clouds are ranked from
left to right, and bottom to top.

observations were represented by the three 3D-point-cloud features, k-nearest human poses

that were computed by k-NN were averaged to give the final estimates of human poses.

Table 2.2 shows the quantitative results when observations were separately represented

by the three 3D-point-cloud features. The results were computed by k-NN when k = 3. A

bar chart of errors of human-pose estimates incurred in the three 3D-point-cloud features

is shown in Figure 2.11. The three bars (in blue, red, and green colors) in the figure corre-

sponded to HPE errors when observations were represented by our proposed VISH features,

VFH features, and AGEX features, respectively. When comparing the three bars, the blue

bar was significantly lower than the other two bars. It showed that the error incurred in

using our proposed VISH feature was the lowest compared with VFH and AGEX features.

The results showed the importance of the property of spatial ordering in our proposed VISH

feature. The error incurred in using a VFH feature was higher than our proposed VISH fea-

ture because a VFH feature suffered from the limitation of describing local properties of



51

Fig. 2.10. Ambiguity of symmetric human poses is greatly reduced when observations are
represented by VISH features.

an observation of a 3D point cloud. The error incurred in using an AGEX feature was the

highest among the three 3D-point-cloud features. It was because when the limbs of a sub-

ject were moved, geodesic extrema of the limbs in AGEX features were switched or lost.

The spatial ordering of geodesic extrema was not consistent. Thus, using AGEX features

was not able to be used to look up human poses from the training data.

From Table 2.2, the overall error and standard deviation of the HPE error incurred in

using our proposed VISH feature were 0.017m and 0.012m, respectively. Compared with

VFH and AGEX features, their overall errors were about 2 times and 4.5 times as much as

the overall error incurred in using our proposed VISH feature, respectively. The standard

deviations of using VFH and AGEX features were about 2 times and 2.7 times as much

as the standard deviation incurred in using our proposed VISH feature, respectively. It

showed quantitatively that our proposed VISH feature was more robust in representing

observations of 3D point clouds of a subject. It was more discriminative than the other two

3D-point-cloud features.



52

Table 2.2 A quantitative result of feature evaluation using k-NN when k=3. Numbers on the
left and inside the parentheses are errors and standard deviations (in meters), respectively.

Test case VISH VFH AGEX
0 0.015 (0.008) 0.030 (0.021) 0.042 (0.023)
1 0.016 (0.012) 0.039 (0.027) 0.073 (0.037)
2 0.013 (0.008) 0.028 (0.019) 0.053 (0.030)
3 0.021 (0.012) 0.026 (0.013) 0.084 (0.051)
4 0.015 (0.008) 0.032 (0.014) 0.047 (0.024)
5 0.014 (0.009) 0.039 (0.023) 0.051 (0.029)
6 0.012 (0.008) 0.038 (0.021) 0.055 (0.029)
7 0.016 (0.012) 0.033 (0.022) 0.054 (0.027)
8 0.012 (0.010) 0.038 (0.025) 0.055 (0.026)
9 0.015 (0.008) 0.040 (0.028) 0.065 (0.036)

10 0.019 (0.010) 0.033 (0.023) 0.078 (0.059)
11 0.013 (0.007) 0.024 (0.016) 0.056 (0.030)
12 0.012 (0.008) 0.025 (0.019) 0.077 (0.049)
13 0.012 (0.010) 0.026 (0.026) 0.068 (0.038)
14 0.020 (0.016) 0.025 (0.019) 0.085 (0.057)
15 0.014 (0.008) 0.034 (0.020) 0.061 (0.031)
16 0.017 (0.012) 0.065 (0.042) 0.071 (0.034)
17 0.023 (0.015) 0.058 (0.034) 0.086 (0.043)
18 0.015 (0.011) 0.034 (0.027) 0.079 (0.030)
19 0.016 (0.011) 0.042 (0.030) 0.071 (0.048)
20 0.020 (0.013) 0.040 (0.025) 0.082 (0.058)
21 0.022 (0.014) 0.043 (0.023) 0.085 (0.045)
22 0.014 (0.009) 0.042 (0.022) 0.073 (0.046)
23 0.015 (0.011) 0.048 (0.043) 0.089 (0.069)
24 0.021 (0.022) 0.049 (0.059) 0.141 (0.121)
25 0.020 (0.020) 0.032 (0.025) 0.096 (0.070)
26 0.018 (0.012) 0.030 (0.030) 0.097 (0.058)
27 0.023 (0.019) 0.060 (0.057) 0.177 (0.090)

Overall 0.017 (0.012) 0.038 (0.027) 0.077 (0.046)

Figure 2.12 shows the overall error of human-pose estimates incurred in using the three

3D-point-cloud features when the value of k in k-NN was changed to 1, 2, 4, 8, and 16.

When the value of k was changed, the overall error incurred in using our proposed VISH

feature was the lowest among the three 3D-point-cloud features. The overall error incurred

in using a AGEX feature was the highest. The trend of the change of the overall error in-
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Fig. 2.11. Evaluation of VISH, VFH and AGEX features using k-NN (when k=3).

curred in using the three 3D-point-cloud features was the same. When the value of k started

to increase from one, the overall error incurred in using the three 3D-point-cloud features

was decreased because the measurement noise from a depth sensor in the 3D point cloud

PH was averaged out. As the value of k increased, the overall error was first decreased, but

started to increase because details of a 3D point cloud PH were also averaged out when

k was too big. Overall, our proposed VISH feature was robust across a wide range of k in

k-NN.

2.3.3 Evaluation of our proposed VISH feature using SVM

In this experiment, our goal was to evaluate the accuracy of human poses that were

estimated by another common model, namely SVM, when observations were represented

by the three 3D-point-cloud features: VISH, VFH, and AGEX features. 80% of the dataset

was used as training data and 20% of the dataset was used as testing data. As SVM was

a classification method, we created class labels for each training sample in the training

data. Each class label was represented by a human-pose prototype that was the same for all
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Fig. 2.12. Comparison of VISH, VFH and AGEX features using k-NN under different
values of k.

members (training samples) belonging to that class. We used the k-means algorithm [3] to

find 1500 class labels (human-pose prototypes) in the training data.

Table 2.3 shows the quantitative results when observations were separately represented

by the three 3D-point-cloud features. A bar chart of errors of human-pose estimates in-

curred in the three 3D-point-cloud features is shown in Figure 2.13. The three bars (in

blue, red, and green colors) in the figure corresponded to HPE errors when observations

were represented by our proposed VISH features, VFH features, and AGEX features, re-

spectively. By comparing the three bars, the error incurred in using our proposed VISH

feature was the lowest among the three 3D-point-cloud features. It was consistent with the

previous results when k-NN was used in the evaluation of 3D-point-cloud features.

From Table 2.3, the overall errors incurred in using VFH and AGEX features were about

1.5 times and 2.3 times as much as the overall error incurred in using our proposed VISH

feature, respectively. The standard deviations incurred in using VFH and AGEX features

were about the same as the standard deviation incurred in using our proposed VISH feature.

From the results, it assured that our proposed VISH feature performed better than the other
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two 3D-point-cloud features. Note that the overall error and standard deviation of human

poses estimated by SVM were higher than the error of human poses estimated by k-NN.

The main reason was that in the process of creating class labels in SVM, a quantization

error was incurred in assigning a human-pose prototype to each training sample.

Table 2.3 A quantitative result of feature evaluation using SVM. Numbers on the left and
in the parentheses are errors and standard deviations (in meters), respectively.

Test case VISH VFH AGEX
0 0.036 (0.043) 0.038 (0.051) 0.069 (0.053)
1 0.072 (0.076) 0.126 (0.091) 0.122 (0.083)
2 0.031 (0.047) 0.033 (0.055) 0.074 (0.044)
3 0.071 (0.072) 0.077 (0.080) 0.101 (0.053)
4 0.021 (0.035) 0.064 (0.045) 0.103 (0.047)
5 0.039 (0.044) 0.065 (0.061) 0.075 (0.069)
6 0.040 (0.060) 0.065 (0.070) 0.101 (0.067)
7 0.034 (0.063) 0.047 (0.064) 0.133 (0.065)
8 0.055 (0.059) 0.104 (0.085) 0.164 (0.056)
9 0.019 (0.034) 0.040 (0.062) 0.123 (0.051)

10 0.059 (0.075) 0.075 (0.078) 0.138 (0.066)
11 0.015 (0.035) 0.022 (0.049) 0.164 (0.051)
12 0.030 (0.047) 0.056 (0.069) 0.146 (0.067)
13 0.030 (0.050) 0.030 (0.052) 0.099 (0.040)
14 0.048 (0.055) 0.054 (0.070) 0.103 (0.050)
15 0.027 (0.043) 0.056 (0.063) 0.144 (0.069)
16 0.023 (0.043) 0.082 (0.064) 0.084 (0.061)
17 0.079 (0.085) 0.128 (0.098) 0.202 (0.085)
18 0.056 (0.068) 0.071 (0.065) 0.077 (0.055)
19 0.051 (0.076) 0.085 (0.088) 0.151 (0.093)
20 0.071 (0.077) 0.114 (0.089) 0.140 (0.074)
21 0.101 (0.097) 0.130 (0.094) 0.173 (0.076)
22 0.064 (0.094) 0.136 (0.109) 0.194 (0.067)
23 0.071 (0.094) 0.133 (0.117) 0.143 (0.082)
24 0.138 (0.158) 0.173 (0.185) 0.204 (0.138)
25 0.098 (0.107) 0.106 (0.102) 0.149 (0.094)
26 0.072 (0.104) 0.078 (0.106) 0.158 (0.105)
27 0.135 (0.144) 0.139 (0.163) 0.201 (0.132)

Overall 0.057 (0.071) 0.083 (0.083) 0.133 (0.071)
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Fig. 2.13. Evaluation of VISH, VFH and AGEX features using SVM.

2.4 Conclusions

In this chapter, we have described the importance of features in data processing. Ro-

bust features should be informative and non-redundant in order to facilitate the process of

modeling. Variations of observations from the same human poses can be reduced when ob-

servations are represented by features. We have formulated the process of feature extraction

as a function mapping from an observation to a feature. As depth sensors become popu-

lar, 3D point clouds become common observations recently. Therefore, we mainly focus

on 3D-point-cloud observations and features. Using 3D-point-cloud features, geometric

properties of humans can be utilized for HPE.

As we are inspired by the property of spatial ordering in both visual and 3D-point-cloud

observations, we propose a 3D-point-cloud feature called viewpoint and shape feature his-

togram (VISH). It is a 3D adaptation of a HOG feature and captures the shape of a human

body. The extraction process of our proposed VISH feature is composed of 3D-point-cloud

pre-processing, hierarchical structuring, and VFH and shape feature extraction. In the pre-

processing step, methods of region-based thresholding and pseudo-residual are used to
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extract 3D points from a person. Those 3D points are then organized into a tree structure.

VFH and shape features are extracted separately from each node in a tree. A VISH feature

is formed by combining VFH and shape features from all nodes. Therefore, it preserves the

spatial ordering of a 3D point cloud of a person. The spatial ordering can capture global

and local properties of 3D points in a 3D point cloud. These properties can greatly remove

the ambiguity of symmetric human poses.

Two existing 3D-point-cloud features, namely VFH and AGEX, were implemented and

compared with our proposed VISH feature. Two common models, namely k-NN and SVM,

were used to map a 3D-point-cloud feature to a human pose. Experiment results showed

that our proposed VISH feature incurred less errors than the other two features using k-NN

and SVM. The results suggested that our proposed VISH feature could describe a 3D point

cloud more accurately for 3D HPE. The time complexity of extracting our proposed VISH

feature is asymptotically the same as that of extracting a VFH feature, which is O(n), where

n is the number of 3D points in a 3D point cloud of a human. The extraction of a VISH

feature is more efficient than the extraction of a AGEX feature, which is of time complexity

O(n logn).

In the next chapter, we will propose and describe a human-pose model that maps our

proposed 3D-point-cloud feature to a human pose. Our proposed model is different from

k-NN and SVM that we will utilize human actions to decompose human-pose space into

low-dimensional manifolds.
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3. HUMAN-POSE MODELING BASED ON HUMAN ACTIONS

3.1 Introduction

Human-pose models estimate human poses based on features of human observations.

They are important in the process of HPE because they can explore and utilize feature prop-

erties to achieve an accurate estimation of human poses. For example, a logistic-regression

model [80] can selectively adopt some dimensions of features where those dimensions have

effects on the accuracy of estimation. The model achieves that by putting more weights on

those dimensions. Meanwhile, human-pose models can include assumptions on human

poses to simplify the estimation process and achieve a fast estimation. Sometimes, as-

sumptions come from the equipment that captures human observations. For instance, most

human-pose models in motion-capturing systems are assumed that calibrated and synchro-

nized sensors, such as cameras and markers, are attached on a human body. Thus, human-

joint positions can be estimated directly from marker positions that are captured at the

same time instance. In addition, it is common that a sensor is assumed to capture human

observations at a high frame rate. Based on the assumption, the change of human poses

in human observations is continuous across time [7]. Then, we can represent the temporal

coherency of human poses by a model, such as the Gaussian dynamical model in [109].

Human poses can be estimated by using human-pose estimates at the previous frame as

initial estimates. Moreover, assumptions are usually made on the structure of a model in

order to simplify the inference process in HPE. One common structure in the literature is

the conditional random field [110]. With its tractable property, many human-pose models,

such as the deformable structure [77] and the mixture-of-parts model [30], have been built.

In general, the main component in a human-pose model is prior knowledge about hu-

man poses. We can utilize prior knowledge in deriving a human-pose model, and exploit

our belief in the process of estimation. As a result, human-pose estimates are biased to
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realistic human poses and the computation of estimation is tractable. Prior knowledge is

especially critical in the estimation process when features are not reliable in situations such

as occlusions or changes of environment condition. In those situations, features might be

missing or ambiguous because human observations are occluded or are different from the

features in a set of data for training a human-pose model. Prior knowledge could provide

more reliable information about human poses and could reduce or eliminate the negative

impact on estimating human poses. A common kind of prior knowledge is a kinematic

structure such as the length of a person’s limb or the connectivity of human joints. It re-

duces the variance of human-joint positions estimated by a human-pose model. Examples

of models using kinematic structures are the loose-limbed body model [68] and the pictorial

structure [81].

In addition to the improvement of estimation when features are unreliable, prior knowl-

edge can be used to reduce the dimensionality of human-pose space, which contains all

possible human poses for HPE. As our body is highly articulated and deformable, the

degree-of-freedom (number of human joints) of a human pose is high. In our work, the

degree-of-freedom of a human pose is 15. Human joints in a human pose are head, neck,

left/right shoulder, left/right elbow, left/right wrist, hip center, left/right hip, left/right knee

and left/right ankle. Directly modeling the human-pose space associated with a human-

pose model is complex and often intractable. However, it is a common belief that hu-

man poses lie on low-dimensional manifolds in human-pose space because many points in

human-pose space do not correspond to human poses. That belief can be considered as a

kind of prior knowledge and can be exploited in the process of estimation in order to elim-

inate unrealistic human poses and hence reduce the dimensionality of human-pose space.

For instance, a human-pose model can be formulated as a conditional model [56] that uses

person information such as the height of a person and the length of a person’s limb. Then,

a low-dimensional manifold that contains human poses of a specific human physique could

be defined and utilized in the estimation process.

Despite the variety of human-pose models in the literature, deriving them can be unified

as follows. We define the derivation of a human-pose model as the task of deriving a
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mapping Γ, which maps a feature vector f ∈ F to a human pose p ∈ P. The set F is a

set of all possible features. The set P is a set of all possible human poses. Therefore, a

human-pose model can be written as

Γ : F 7→ P. (3.1)

Each human-pose model (mapping Γ) is associated with a cost function (or a proba-

bility distribution). A cost function depends on a feature f and a human pose p. It can

encode the probability of producing human poses in P as the output of a mapping Γ. It

can also be multi-modal spatially or temporally because different human poses may have

similar features. Prior knowledge can be embedded in a cost function by defining a cost

function that increases the probability of generating plausible human poses (human poses

of particular types) as the output of a mapping Γ. When a feature f is extracted from an

observation, a human pose p is estimated by optimizing a cost function with the extracted

feature f being considered as constant. As our body is highly flexible, most cost functions

in existing human-pose models are highly non-linear and non-convex. In that case, a global

optimum is not guaranteed. Instead, a local optimum is found by some standard optimiza-

tion techniques. For example, a cost function may be linearized and a local optimum is

found by following the gradient of a cost function with respect to parameters of human

poses.

Different types of human-pose models, such as generative and discriminative models,

can be described using the formulation above. Generative models generate a number of

possible human poses, and evaluate the similarity between a feature from a possible human

pose and a feature extracted from an observation of a person. In general, a mapping Γ in a

generative model involves computations in three steps, namely human-pose representation,

feature creation, and feature matching. In the first step, a human pose is represented using

a number of parameters such as the position and orientation of body parts. Using different

values of parameters in a human-pose representation, possible human poses can be created.

Based on the generated human poses, features are generated in the second step. Usually,
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assumptions on observations are made in this step because observations in real life are hard

to generate. The difficulty comes from unexpected events. For example, the clothing of a

person is unpredictable and the background is cluttered. Finally, the generated features are

compared with features extracted from observations of a person. The similarity between

features is encoded in a form of a cost function. The output of a mapping Γ is a possible

human pose that creates features closest to features of observations.

On the other hand, a mapping Γ in a discriminative model directly estimates a human

pose from a given feature without the step of feature creation. A cost function in a dis-

criminative model is a probability distribution of human poses given a feature. The output

of a mapping Γ is the most probable human pose according to a probability distribution

(a cost function). As discriminative models do not require the creation of features, their

computation is usually faster than the computation in generative models.

Since the high degree-of-freedom of human poses induces complex human-pose mod-

els, we use knowledge about human actions as prior knowledge in order to discover low-

dimensional manifolds in human-pose space. Figure 3.1 shows the idea. In the figure, each

data point represents a human pose. Human poses coming from an action should share

some common properties that are described by a low-dimensional manifold. As the same

human pose may appear in different actions, there should be some data points that lie on

two or more low-dimensional manifolds.

Some previous works [71] [73] have been using human action as prior knowledge as

well. They showed that human action was useful in HPE. Gall et al. [71] proposed a model

for estimating human poses by computing the probability of actions based on action classi-

fication. Using the probability, a human pose was assigned in an action-specific manifold.

Yao et al. [73] proposed the appearance-based and pose-based features to classify actions

using the Hough-forest algorithm [101]. Yao et al. [74] further extended the model in [73]

into a single framework. The dimensionality of human-pose space was reduced by con-

sidering the most probable action determined by action classification. In general, a human

pose can appear in more than one action. For example, the human pose of hand waving can

appear in the actions of standing and raising both arms. Therefore, we extend this concept
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Fig. 3.1. The concept of using human actions to discover low-dimensional manifolds in
human-pose space.

in a discriminative model by considering that each human pose is originated from multiple

actions. As we will show in the experiment section, using multiple actions can lead to a

more accurate human-pose estimate than using a single action.

In this chapter, we will propose a discriminative model that utilizes human actions in

HPE. The discriminative model is called the action-mixture model (AMM). It uses a 3D-

point-cloud feature called a viewpoint-and-shape-feature-histogram (VISH) feature, which

is described in Chapter 2, as input to capture both global and local properties of a 3D point

cloud of a human. It then uses the result from action classification to represent human-pose

space using low-dimensional manifolds in estimating human poses. To avoid accumulat-

ing errors from previous frames, our proposed model uses temporal information only for

training but not for testing. Human-pose space is represented by low-dimensional mani-

folds, each of which corresponds to one action. The proposed AMM is different from the

previous works [73] [71] in that a human pose may appear in more than one action. One

limitation of the proposed AMM is that human-pose space in the proposed AMM is dis-

crete. Thus, there are quantization errors in human poses estimated by AMM. To reduce

the quantization error, a 3D-point-cloud system is proposed. The proposed 3D-point-cloud
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system is shown in Figure 3.2. It uses a kinematic model is to refine human poses estimated

by the proposed AMM. In the kinematic model, the angle of each body part is parameter-

ized by a quaternion [111] to explicitly represent the spatial relationship between body

parts. The proposed 3D-point-cloud system was tested on the Stanford TOF Motion Cap-

ture Dataset [70]. Computer simulations showed that the proposed 3D-point-cloud system

reduced the overall error and standard deviation of human-pose estimates compared with

some existing approaches.

Fig. 3.2. The proposed 3D-point-cloud system for HPE.

The structure of this chapter is as follows. Section 3.2 describes the proposed AMM,

which estimates human poses from a VISH feature. Section 3.3 describes a kinematic

model that reduce the quantization error in human-pose estimates. Experimental results are

discussed in Section 3.4. Conclusions are presented in Section 3.5.

3.2 Action-Mixture Model (AMM)

The Action-Mixture Model (AMM) is a human-pose model that takes a VISH feature

of a 3D point cloud of a human as input and estimates the corresponding human pose. We

assume that each human pose comes from an action. We also assume that a human-pose

estimate is one of the human poses in a human-pose database. Main components in AMM

are as shown in Figure 3.3. In the figure, both the action database and human-pose database

are prepared in advance. In the experiment, they were built using a benchmark dataset.

Each data in the action database contains a ground-truth human pose (a set of 15 human-

joint positions) and an action label indicating the ground-truth action that the human pose
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belongs to. Each data in the human-pose database contains a ground-truth human pose,

a VISH feature, and an action label. More details about the experimental setup can be

found in Section 3.4. For a given VISH-feature input from a person, the probability of each

human pose in the human-pose database being the human pose of the person is estimated.

We formulate the probability as a function of actions. Thus, the probability is computed

for each action. It is computed by arranging human poses in the human-pose database

according to actions that they belongs to. Meanwhile, a VISH-feature input is classified

into one or more actions using the action database. The result of action classification is the

probability of a human pose belonging to an action. Based on the probability, weighting

coefficients for each action are determined for combining the estimation results from each

action. They appear in a form of an unnormalized probability mass function (pmf). Finally,

the probability of human poses in the human-pose database being the human pose from a

given VISH-feature is computed by combining the probability for each action according to

weight coefficients. The most probable human pose in the human-pose database becomes

the output of the proposed AMM.

Fig. 3.3. Main components in the action-mixture model (AMM).

Based on the concept described above, AMM is formulated as follows. We represent

AMM as a Bayesian network. A Bayesian network is a directed acyclic graph (DAG) in
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which nodes are random variables and absence of edges represents conditional indepen-

dence assumptions on random variables. Three random variables are defined in AMM. The

first random variable, denoted by X, is an observed variable. It represents a VISH feature.

The second random variable, denoted by A, is a hidden variable. It represents an action.

The third random variable, denoted by Y , is a target variable. It represents a human pose.

We define the joint distribution of action and pose variables, conditioned on a VISH vari-

able as a product of two terms, namely the probability of an action variable, conditioned

on a VISH variable, and the base distribution that defines the probability of a human-pose

variable, conditioned on action and VISH variable. Mathematically, the joint distribution

is given by

p(a,y | x) = p(a | x)p(y | a,x), (3.2)

where x,a,y are observed values of VISH, action and pose variables, respectively. Fig-

ure 3.4 shows the DAG and the factor graph of AMM.

(a) (b)

Fig. 3.4. (a) DAG and (b) factor graph of AMM. The observed variable X is shaded.

Inference on a human-pose variable is done by first marginalizing the joint distribution

in Eq. (3.2) over an action variable. The conditional probability distribution of a human

pose that is denoted as y is given by
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p(y | x) =
N

∑
a=1

p(a,y | x), (3.3)

where N is the number of actions. Then, a human pose corresponding to a VISH feature

x is estimated by the most probable human pose according to the human-pose distribution

computed by Eq. (3.3); that is,

y∗ = arg max
y∈{y1,...,yM}

p(y | x), (3.4)

where y∗ is the most probable human pose among all human poses in the human-pose

database, yi is the i-th possible human pose that is called the i-th key pose in the human-

pose database, and M is the number of key poses.

For the sake of computing the joint distribution in Eq. (3.2), the probability of an action

variable conditioned on a VISH variable is rewritten as an unnormalized pmf divided by

a normalizing constant. Mathematically, the joint distribution in Eq. (3.2) is rewritten as

follows.

p(y | x) = 1
Z

N

∑
a=1

ga(x)p(y | a,x), (3.5)

where {ga(x)}N
a=1 is the unnormalized pmf for action classification and Z is a normalizing

constant.

As the estimation process is to find the most probable human pose among all key poses

in the human-pose database, the normalizing constant Z can be eliminated and thus is not

calculated. In other words, AMM incorporates the result from action classification to HPE

through the unnormalized pmf {ga(x)}N
a=1. Thus, the computation of the joint distribution

in Eq. (3.5) involves computations of two terms, namely the unnormalized pmf of action

classification and the base distribution of HPE in each action. In modeling the unnor-

malized pmf of action classification, the bootstrap aggregating algorithm (bagging) [112],

which improves the accuracy of classification, is used. In modeling the base distribution,
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human poses are modeled in each action. As the distribution of human poses is unknown,

it is derived based on the instance-based learning algorithm [80].

3.2.1 Action Classification

A VISH-feature input is classified by bagging classification trees. Bootstrap samples

are generated from the action database to train tree classifiers for predicting the action

associated with a VISH-feature input. The tree classifiers are then aggregated by voting.

Let φ(x,L ) be the tree classifier that is trained using the bootstrap sample L . The weight

of the HPE in each action is then modeled as the relative frequency of the action predicted

by the tree classifier over all bootstrap samples; that is,

ga(x) = EL[δ (φ(x,L )−a)], (3.6)

where EL[·] is the expectation operator over all bootstrap samples and δ (·) is defined as

δ (e) =

 1 if e = 0,

0 otherwise.
(3.7)

For each bootstrap sample L , the tree classifier φ(x,L ) is trained by the classification

and regression trees algorithm (CART). All nodes except leaves in the tree classifier are

discrete splitting functions that split the space of a single dimension, denoted as d, of the

input feature into 2 subspaces. The leaves in the tree classifier are the indices of action

classes. The splitting function depends on the twoing criterion which is given by

twoing(d,Sd≤,Sd>,S ) =
|Sd≤||Sd>|

4|S |2
×(

N

∑
i=1

∣∣∣∣∣ |Sd≤ ∩S i|
|Sd≤|

−
|Sd> ∩S i|
|Sd>|

∣∣∣∣∣
)2

,

(3.8)

where Sd≤ and Sd> are two mutually exclusive and exhaustive sets over the training set

S filtered by parent nodes, S i is the set of human poses from the i-th action in the set S
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and | · | is the cardinality of the input set. Note that the training set S at the root node is

the bootstrap sample L .

The optimal dimension d and the subspaces Sd≤,Sd> are determined by minimizing

the twoing criterion. New nodes are added repeatedly until all the poses in the training

set S belong to the same action class or the maximum tree depth is reached. Then, the

tree classifier is pruned to avoid overfitting by minimizing the cost-complexity pruning

measure, denoted as α , which is given by

α =
ε(T ′,S )− ε(T,S )

|leaves(T )|− |leaves(T ′)|
, (3.9)

where T is a tree classifier, T ′ is the tree classifier after replacing a node by the index of

the action class that the majority of human poses in the training set S belongs to, ε(T,S )

is the classification error from the tree classifier T over the training set S and leaves(T ) is

the number of leaves in the tree classifier T .

The tree classifier is pruned and stored repeatedly until the number of iterations reaches

a predefined number. Then, among all the tree classifiers, the tree classifier which mini-

mizes the classification error over a validation set of human poses is selected as the final

tree classifier φ(x,L ).

3.2.2 Base Distribution for HPE

The base distribution p(y | a,x) in Eq. (3.5) is modeled using the instance-based learn-

ing algorithm [80]. Instances are pairs of ground-truth human poses and the correspond-

ing VISH features. They are collected in advance to form a database called human-pose

database, denoted as D . The human-pose database defines the range of the base distribu-

tion. In other words, it contains all possible human-pose estimates. The base distribution

is quantized by human poses from the human-pose database, denoted as y′. In the human-

pose database, the human poses from the i-th action are grouped to form a subset of the

human-pose database, denoted as Di.
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The base distribution is estimated in two steps: estimation step and redistribution step.

The estimation step calculates the Euclidean distance between the VISH-feature input and

the VISH features from the human-pose database, and produces a probability distribution

of human poses in each action as output. The redistribution step weights the probability

distributions among all actions from the estimation step according to the likelihood of the

VISH-feature input occurred in different actions. The outputs from the two steps are then

combined to give the estimate of the base distribution. Note that the redistribution step is

different from the action classification discussed in Sectoin 3.2.1 that the redistribution step

utilizes the temporal information of actions in the human-pose database.

Estimation Step

The base distribution in Eq. (3.5) is computed through the computations of two parts.

The first-part computation is performed in the estimation step. Recall that the base distri-

bution is the probability distribution of human poses in the human-pose database being a

human-pose estimate. It is computed for each action. We expect that similar human poses

yield similar VISH features. Thus, we define the first part of the base distribution based

on the inverse of the Euclidean distance between a VISH-feature input and VISH features

of human poses in the human-pose database. Mathematically, the first part is represented

by an unnormalized probability distribution. We define the unnormalized probability of a

human pose in the i-th action as

p̃ f
i (x
′ | x) =


1

‖x−x′‖2+z when x′ ∈ Ai,

1
N .

1
‖x−x′‖2+z when x′ 6∈ Ai, ∀i = 1,2, . . . ,N,

(3.10)

where x′ is the VISH feature of a human pose in the human-pose database, i is the index

of an action, Ai is the set of VISH features that the corresponding human poses are in Di,

z is a small constant to avoid division by zero, N is the number of actions, and ‖ · ‖2 is the

Euclidean norm.
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Based on the Eq. (3.10), the unnormalized probability of a human pose is larger if a

VISH-feature input is closer to a VISH feature of a human pose in the human-pose database

in the Euclidean space. We include the factor 1
N in Eq. (3.10) to penalize the case when an

action associated with a VISH feature from the human-pose database is different from the

action of the unnormalized probability.

Based on the unnormalized probability, we can compute the probability of a human

pose by normalization. Mathematically, the probability of a human pose in the i-th action

is given by

p f
i (x
′ | x) =

p̃ f
i (x
′ | x)

∑x′∈A p̃ f
i (x′ | x)

, (3.11)

where A is the union of the feature sets A1,A2, . . . ,AN .

To illustrate the idea in the estimation step, we show an example of computing the prob-

ability of a human pose estimated in the estimation step. In the example, a person, whose

human poses is estimated, performs three actions. There are ten human poses, which are

represented by circles in the figures, in the human-pose database. Probability distributions

for the three actions are computed according to Eq. (3.11). The probability distributions of

the three actions are shown in Figures 3.5, 3.6, and 3.7. In the figures, the size of circles

represents the probability distributions. After the computation of the probability distribu-

tions, the size of circles is changed according to the probability distributions. Typically,

the size of circles in the action that corresponds to the distribution is larger than the size of

circles in other actions. It is because there is a factor of 1/N(N = 3) being multiplied to the

unnormalized probability of other actions in Eq. (3.10). The unnormalized probability of

other actions is not zero because we believe that human poses from different actions may

be similar.

Redistribution Step

In the second part, we compute another quantity that contributes to the base distribution

in Eq. (3.5). We expect that the quantity should reflect the probability of observing human

poses from different actions. Specifically, the probability of a human pose in the human-
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Fig. 3.5. An example of the computation in the estimation step for action 1. Each circle
represents a human pose in the human-pose database. The size of a circle represents the
probability calculated in the estimation step. Refer to the text for a detailed description.

Fig. 3.6. An example of the computation in the estimation step for action 2. Each circle
represents a human pose in the human-pose database. The size of a circle represents the
probability calculated in the estimation step. Refer to the text for a detailed description.

pose database should be increased after knowing that a human is performing the action that

contains the human pose. Based on the expectation, we define the quantity as the sum of

the probability distributions estimated from the estimation step weighted according to the
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Fig. 3.7. An example of the computation in the estimation step for action 3. Each circle
represents a human pose in the human-pose database. The size of a circle represents the
probability calculated in the estimation step. Refer to the text for a detailed description.

likelihood of a VISH-feature input occurred in different actions. To model the occurrence

of an action, we assume that, given the present action in a sequence of actions, the rest

of the past actions is irrelevant for predicting the future actions. With the assumption,

the weight is formulated as the stationary probability in a continuous-time Markov chain,

which is trained using VISH features in the human-pose databases.

Let X(t) be the continuous-time Markov chain with the state space I = {1,2, ...,N} for

t ≥ 0. The state space contains the indices of N actions. We assume that the Markov chain

is temporally homogeneous. Based on the assumptions above, for any s> 0, the probability

of the Markov chain being at state j at time t + s given the current and the past states could

be simplified as follows.

p(X(t + s) = j|X(s) = i,X(sn) = in, ...,X(s0) = i0)

= p(X(t) = j|X(0) = i),
(3.12)

where s0,s1, ...,sn,s are the n + 2 samples of time such that s > sn > · · · > s0 ≥ 0 and

i0, i1, ..., in, i are the corresponding states.



73

The (i, j) entry of the transition probability matrix, denoted as Q, of the Markov chain

X(t) is defined as

Q(i, j) =


lim
h→0

p(X(h)= j|X(0)=i)
h when i 6= j,

lim
h→0

p(X(h)=i|X(0)=i)−1
h when i = j.

(3.13)

For i 6= j, the transition probability measures the jump rate of the Markov chain from

state i to j. For i = j, the transition probability is the negation of the rate at which

the Markov chain leaves state i. The jump rate is estimated by modeling the transition

of actions in a Poisson process [113] using the temporal information in the human-pose

database.

Let λi j be the arrival rate of a state from i to j. The arrival rate between two actions is

calculated by the normalized dynamic time warping algorithm (DTW) [82] that measures

the similarity between two actions; that is,

λi j =


z1

DTW (i, j)+r when DTW (i, j)< τ,

0 when DTW (i, j)≥ τ,
(3.14)

where z1 is a constant, τ is a predefined threshold, DTW (i, j) is the distance between the

i-th and j-th actions calculated by the normalized DTW and r is a uniform random variable

between 0 and 1.

The normalized DTW is used because actions may be different in time or speed. Given

two actions, the normalized DTW calculates their matching cost under the optimal align-

ment by warping the two actions. The matching cost of a pair of frames in two actions is

defined as the Euclidean distance between the VISH features extracted from the 3D point

clouds in the two frames.

As one kind of action can be changed to another action at any time, we assume the

arrival of a state is equally likely at all time. Thus, if one unit of time is divided into m



74

intervals, the probability of the arrival of state j from state i in each interval is λi j
m . The

probability of the first arrival after time t can be approximated by

(1−
λi j

m
)tm −−−→

m→∞
e−λi jt . (3.15)

Therefore, the inter-arrival time is exponentially distributed with rate λi j. Hence, the (i, j)

entry of the transition probability matrix Q is given by

Q(i, j) =

 λi j when i 6= j,

−∑
N
k=1,k 6=i λik when i = j.

(3.16)

The state space I is partitioned into a minimum number, denoted as M, of mutually

exclusive and exhaustive sets such that the continuous-time Markov chain with any of the

M partitioned sets is irreducible. Let Xk(t) be the continuous-time Markov chain with the

k-th partitioned set Ik, where k = 1,2, . . . ,M. The transition probability matrix, denoted as

Qk of the Markov chain Xk(t) can be formed from the transition probability matrix Q by

deleting its rows and columns of the corresponding actions that are not in the state space of

the Markov chain Xk(t). If the Markov chain Xk(t) is positive recurrent, then the stationary

distribution of the Markov chain Xk(t), denoted as πk, can be found by solving πkQk = 0;

otherwise, the stationary distribution is set to be uniform to indicate equal importance of

each action.

The probability distributions estimated from the estimation step are then weighted ac-

cording to the stationary distribution as follows,

pa
i (x
′ | x) = πk(i) ∑

j∈Ik

p f
j (x
′ | x), i ∈ Ik, (3.17)

where πk(i) is the stationary distribution of state i in the Markov chain Xk(t).

To illustrate the idea, we show an example of the computation in the redistribution step.

The example utilizes the probability distributions that are computed in an example of the

estimation step as shown in Figures 3.5, 3.6, and 3.7. It is shown in Figure 3.8. In the



75

figure, each circle represents a human pose in the human-pose database. The size of a

circle represents the probability that is calculated in the estimation step. In this example,

there are three actions and the number of human poses in the human-pose database is 10.

We assume that the minimum number M that partitions the state space I is 3. In other

words, the k-th partitioned set Ik of the state space I is k, where k = 1,2,3. The probability

distribution in the left side of the figure is the stationary distribution of a continuous-time

Markov chain that measures the similarity of actions. Based on the probability distributions

that are computed in the estimation step, the quantity that is computed in the redistribution

step is calculated by multiplying the probability of each action specified by the stationary

distribution.

Fig. 3.8. An example of the computation in the redistribution step. Each circle represents
a human pose in the human-pose database. The size of a circle represents the probability
calculated in the estimation step. The distribution in the left is the stationary distribution of
a continuous-time Markov chain. Refer to text for more details.

After computing the probability distribution of human poses in each action in the esti-

mation step, and the probability distribution of human poses that are redistributed according

to the likelihood of a VISH-feature input occurred in different actions in the redistribution



76

step, the two probability distributions are first combined as an unnormalized base distribu-

tion. The unnormalized base distribution is then normalized to form the base distribution in

AMM. We denote the unnormalized base distribution as p̃i(y′|x). The unnormalized base

distribution is computed by linearly combining the probability distributions computed from

the two steps. Mathematically, it is given by

p̃i(y′ | x) = u f p f
i (x
′ | x)+ua pa

i (x
′ | x), (3.18)

where x′ is a VISH feature associated with a human pose y′, u f and ua are user-defined

constants. If u f is larger (smaller) than ua, the probability distribution estimated from the

estimation step will have more (less) influence on the unnormalized base distribution.

The base distribution p(y′ | a = i,x) is then derived by normalizing the unnormalized

base distribution. It is given by

p(y′ | a = i,x) =
p̃i(y′ | x)

∑y′∈Di p̃i(y′ | x)
. (3.19)

After computing the base distribution in AMM for each action, base distributions from

all actions are aggregated according to the result of action classification. Figure 3.9 shows

an example of the aggregation of base distributions to form a probability distribution of

each human pose in the human-pose database being a human pose estimated by AMM. In

the figure, circles represent human poses in the human-pose database. Their sizes represent

the probability of human poses according to the base distribution computed through the

estimation and redistribution steps. The color of each circle represents the action corre-

sponding to the base distribution. A, B, and C are probabilities of a VISH-feature input

belonging to actions 1, 2, and 3, respectively. They are also the weights in combining the

base distributions. They are computed by performing bagging, which is a method of the

action classification, on a VISH-feature input. To combine the base distributions in the

figure, base distributions are multiplied by A, B, and C and are added together. The sum is

the probability distribution of human poses in AMM. The human pose corresponding to the
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largest circle is the human-pose estimate. As we will show in the experiment, the proposed

AMM can increase the accuracy of human-pose estimates by utilizing actions in HPE.

Fig. 3.9. An example of an aggregation of base distributions in AMM. Circles represent
human poses in the human-pose database. Their sizes represent the probability of the cor-
responding human poses being a human-pose estimate. There are three actions in this
example. A, B, C are coefficients in the aggregation. They are computed by estimating
the probability of a human pose coming from the three actions through a method of action
classification called bagging.

Although AMM can increase the accuracy of human-pose estimates, human-pose esti-

mates are limited to one of the human poses in the human-pose database. In other words,

human poses are estimated in discrete space. Thus, quantization error is induced in human-

pose estimates. In the next section, we will describe a kinematic model that reduces the

quantization error.

3.3 Kinematic Model

A human pose that is estimated by our proposed AMM is one of the human poses in

the human-pose database. As human poses in the human-pose database cannot fully cover

all possible human poses in real-world situations, a human-pose estimate may contain a

quantization error. To reduce the quantization error, the spatial relationship between body
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parts of the human poses estimated by AMM is modeled by a parametric distribution to

simulate the variation.

We assume that there is an underlying probability distribution governing the position

and orientation of body parts. We define the distribution as a DAG G = (V,E) as shown in

Figure 3.10, where V corresponds to a set of vertices and E corresponds to a set of edges. In

the figure, the vertex 1 defines the probability distribution of a human pose in the human-

pose database being a human-pose estimate. Since the vertex 1 defines the probability

distribution, it is represented by a softmax random variable [80] of a human pose estimated

by AMM. Let V− =V \{1}. Each vertex s ∈V− corresponds to a body part and there is a

random variable, denoted as Os, representing the orientation of the body part with respect

to its parent in the kinematic chain that is represented by Figure 3.10. The parent of the

torso is set to be null and the orientation of the torso is measured with respect to the normal

of the floor plane. The length of each body part is assumed to be fixed and the orientation

is represented by a quaternion. As a result, Os lies on a 4D manifold.

As vertices in the DAG in Figure 3.10 are random variables, a configuration of a hu-

man (a set of orientations of body parts) is stochastic in nature. We denote a stochastic

configuration of a human as C. A stochastic configuration can be written as

C = {O2,O3, . . . ,O15}. (3.20)

Let c,o2, ...,o15 be the realization of the random variables C,O2, . . . ,O15, respectively.

Given the graph G, the probability of a configuration c can be written as

p(c) = p(c | v1) = p({o2,o3, . . . ,o15} | v1) = p(o2,o3, . . . ,o15), (3.21)

where the parentheses and the conditioning event v1 are removed for notational simplicity.

Modeling the probability distribution p(C) is generally intractable because of the high

dimensionality of human-pose space. However, we can exploit the dependencies and inde-

pendencies in the graph G to simplify the computation of the probability distribution p(C)
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Fig. 3.10. The kinematic relationship between body parts of a human. The vertices are: 1.
human pose estimated by the proposed AMM, 2. torso, 3. head, 4. left shoulder, 5. left
upper arm, 6. left lower arm, 7. right shoulder, 8. right upper arm, 9. right lower arm, 10.
left hip, 11. left upper leg, 12. left lower leg, 13. right hip, 14. right upper leg, 15. right
lower leg. Arrows represent dependencies between vertices.

based on the kinematic chain in Figure 3.10. Mathematically, the probability distribution

p(C) can be rewritten as

p(C) = ∏
s∈V−

p(Os | pa(Os)), (3.22)

where pa(·) : V− 7→V− is a mapping from a vertex to its parent in the kinematic chain and

the parent of the torso is /0 by definition.
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Using the kinematic relationship between body parts, the probability distribution in

Eq. (3.22) is tractable. For each body part, p(Os | pa(Os)) is assumed to be a Gaussian

distribution with a mean vector µs and a positive-definite variance matrix Σs; that is,

p(Os | pa(Os)) = N (µs,Σs), (3.23)

where N is a Gaussian distribution.

To find the parameters µs and Σs in the kinematic model, a refinement database, denoted

as T , is created. The parameters can then be found by maximizing the log-likelihood,

|T |

∑
n=1

log p(cn) =
|T |

∑
n=1

∑
s∈V−

log p(On
s | pa(On

s )), (3.24)

where cn is the n-th configuration in the refinement database T and On
s is the orientation

of a body part at vertex s in the n-th configuration.

When refining a human pose using the kinematic chain, body parts are divided into

observable and unobservable groups. The orientation of a body part in the observable

group can be determined by finding the orientation of the line joining the joint positions

at the two ends of the body part. The joint positions are obtained from the human pose

estimated by the AMM. Inference is made based on the orientation of the body parts in the

observable group to estimate the orientation of the body parts in the unobservable group.

Mathematically, the set of vertices in the graph G is divided into evidential (observable)

and non-evidential (unobservable) sets; that is,

V− =V−e ∪V−n and V−e ∩V−n = /0, (3.25)

where V−e is the set of evidential vertices and V−n is the set of non-evidential vertices.
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Given the orientation of the body parts in V−e , the orientation in the non-evidential

vertices can be estimated by the most likely configuration, denoted as c∗, of the probability

distribution of configuration; that is,

c∗ = argmax
c∈C, s∈V−e

p(c | os). (3.26)

Based on the factorization structure of the distribution in the kinematic model, Eq. (3.26)

can be calculated efficiently using belief propagation [89]. The orientation of body parts

that maximizes Eq. (3.22) are then converted to a human pose and averaged with the human

pose estimated from the proposed AMM to output the refined human-pose estimate.

3.4 Experimental Results

The proposed AMM and 3D-point-cloud system were implemented using the point

cloud library (PCL) [108]. They were tested on the Stanford TOF Motion Capture Dataset [70],

which contains 28 video sequences. Each video sequence corresponds to one action. The

skeleton of the subject has 15 degrees-of-freedom (human joints), namely head, neck,

left/right shoulder, left/right elbow, left/right wrist, hip center, left/right hip, left/right knee

and left/right ankle. The number of frames of the video sequences is shown in Table 4.1.

In the dataset, a subject performed different actions such as kicking and rotation, and was

captured by the Swissranger SR4000 TOF sensor. The range images were captured at 25

frames per second at a resolution of 176 × 144 pixels. The ground-truth 3D joint locations

of the subject were recorded by a commercial motion-capturing system.

Table 3.1 Total number of frames in each video sequence from the Stanford TOF Motion
Capture Dataset.

Number of frames Video index
100 0-5,8,9,14,16,18,
400 6,7,10-13,15,17,19,20-27
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When evaluating the performance of HPE, frames with missing ground-truth 3D joint

locations were ignored. The error metric, ζ , for each video sequence was defined as

ζ =
1

N f

N f

∑
s=1

1
Ns

Ns

∑
i=1

∥∥js,i− j̃s,i
∥∥

2 , (3.27)

where N f is the number of frames of the video sequence for testing, Ns is the number of

3D joint locations measured by the motion-capturing system in the s-th frame, js,i is the

ground-truth 3D location of the i-th joint in the s-th frame, j̃s,i is the estimated 3D location

of the i-th joint in the s-th frame and ‖ · ‖2 is the Euclidean norm.

The dataset was divided into 20% for building the human-pose database, 30% for build-

ing the refinement database, 40% for building the action database and 10% for testing. To

reduce the bias in dividing the dataset, the dataset was randomly divided 10 times with

different random seeds in each trial. When the dataset was randomly divided, the proposed

system was evaluated using 5-fold cross-validation. In the estimation step, the constant z in

Eq. (3.10) was set to 0.1. In the redistribution step, the constant z1 in Eq. (3.14) was set to

1. The threshold τ was calculated by subtracting the standard deviation of the values given

by DTW from the mean of the values. When estimating the unnormalized base distribution,

the constants u f and ua in Eq. (3.18) were set to 1. The non-evidential set in the kinematic

model contained the vertices of lower arms and legs.

Three tests were performed to evaluate the proposed AMM, together with the 3D-point-

cloud system that utilized both the proposed AMM and the kinematic model that was de-

scribed in Section 3.3. In the first test, the proposed AMM was compared with a human-

pose model that didn’t utilize human actions. The comparison would verify the importance

of using human actions in HPE. The performance of the proposed 3D-point-cloud system

was then compared with the proposed AMM and the human-pose model that didn’t utilize

human actions. The comparison could show the importance of the kinematic model. In

the second test, the number of actions being used in the proposed 3D-point-cloud system

was considered as a parameter. The performance of the proposed 3D-point-cloud system

was tested under different number of actions. This test could show the importance of using
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multiple actions, instead of a single action, in the proposed 3D-point-cloud system. In the

third test, the proposed 3D-point-cloud system was compared with some existing works

that utilizes the same dataset, namely the Stanford TOF Motion Capture Dataset [70]. The

test would show that the proposed 3D-point-cloud system achieved the state-of-the-art per-

formance.

3.4.1 Evaluation of AMM

To evaluate the performance of using actions and the kinematic model in HPE, three

approaches were implemented to estimate human poses. In the first approach (VISH),

human poses were estimated by the nearest neighbors using VISH features. In the second

approach (VISH+AMM), human poses were estimated by the proposed AMM using VISH

features. In the third approach, human poses were estimated by the proposed 3D-point-

cloud system.

Table 3.2 shows the errors and standard deviations of HPE incurred by the three ap-

proaches. When comparing VISH+AMM with VISH, the overall error and standard de-

viation in VISH+AMM were reduced compared with that in VISH. The reduction of the

overall error and standard deviation were about 7.9% and 7.1% respectively. It showed that

the result of action classification in the proposed AMM was useful in reducing errors of

human-pose estimates. Using the kinematic model, the proposed 3D-point-cloud system

further reduced the overall error and standard deviation of human-pose estimated by the

proposed AMM. When comparing the proposed 3D-point-cloud system with VISH+AMM,

the overall error and standard deviation in the proposed 3D-point-cloud system were re-

duced by 8.2% and 9.8%, respectively. When comparing the proposed 3D-point-cloud

system with VISH, the overall error and standard deviation of the proposed 3D-point-cloud

system were reduced by 15.5% and 16.2%, respectively. Thus, the experiment showed that

the kinematic model could reduce the quantization error of human poses estimated by the

proposed AMM.



84

Table 3.2 The errors (in meters) of HPE. Numbers on the left and in the parentheses are the
errors and standard deviations of HPE, respectively.

Trial VISH VISH+AMM Proposed System
1 0.0304 (0.0387) 0.0275 (0.0334) 0.0251 (0.0295)
2 0.0289 (0.0308) 0.0265 (0.0306) 0.0244 (0.0280)
3 0.0287 (0.0365) 0.0263 (0.0276) 0.0241 (0.0247)
4 0.0304 (0.0391) 0.0269 (0.0342) 0.0247 (0.0311)
5 0.0276 (0.0307) 0.0255 (0.0289) 0.0236 (0.0264)
6 0.0294 (0.0354) 0.0280 (0.0349) 0.0255 (0.0309)
7 0.0290 (0.0333) 0.0273 (0.0325) 0.0248 (0.0284)
8 0.0287 (0.0352) 0.0264 (0.0330) 0.0245 (0.0306)
9 0.0293 (0.0368) 0.0271 (0.0372) 0.0248 (0.0335)

10 0.0285 (0.0343) 0.0268 (0.0341) 0.0246 (0.0306)
Overall 0.0291 (0.0351) 0.0268 (0.0326) 0.0246 (0.0294)

3.4.2 Evaluation of using Multiple Actions in the Proposed 3D-Point-Cloud System

To test the efficiency of using multiple actions in the proposed 3D-point-cloud sys-

tem, the proposed 3D-point-cloud system was modified such that the number of actions

in the base distribution of the proposed AMM was considered as a parameter for HPE.

We denoted the number of actions by Na. The number of actions Na was varied from 1

(one action) to 28, which was the total number of actions in the dataset. As some actions

may occur more likely than the other, using less likely actions may not reduce the error of

human-pose estimates. Thus, the 28 actions were first sorted in a list in descending order

according to the pmf that was computed based on bagging in action classification. Then,

Na actions were selected from the first Na actions in the sorted list. As a result, more likely

actions would be selected.

Figure 3.11 shows the change of the overall error and standard deviation of human

pose estimated by the proposed 3D-point-cloud system. In the figure, when the number

of actions Na increased initially, the overall error and standard deviation incurred by the

proposed 3D-point-cloud system were decreased. The change showed that multiple actions

should be considered in the proposed 3D-point-cloud system to yield a better representa-

tion of human poses and hence increase the accuracy/precision of human-pose estimates.
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However, as the number of actions Na further increased, the overall error and standard de-

viation stopped to decrease. It was because the newly included actions in the proposed

3D-point-cloud system were less likely to be occurred. Thus, the weights that were used

to combine the base distributions in AMM were small, and those action did not reduce the

errors.

Fig. 3.11. The changes of the overall error and standard deviation of HPE using different
numbers of actions.

3.4.3 Comparison between the Proposed 3D-Point-Cloud System and Existing Works

The overall error and standard deviation of human poses estimated by the proposed

3D-point-cloud system were compared with the errors reported in some existing works

that utilized the Stanford TOF Motion Capture Dataset [70]. Table 3.3 shows the overall

errors and standard deviations incurred in those approaches. Among all the approaches, the

proposed 3D-point-cloud system incurred the lowest overall error and standard deviation.

The result showed that the result from action classification and the kinematic model could

reduce the errors in HPE.
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Note that the overall standard deviation incurred the proposed 3D-point-cloud system

was larger than the overall error because the human poses in the human-pose database for

estimating the base distributions for different actions could not fully describe the human

poses in the test dataset. Thus, for some human poses estimated by the proposed 3D-point-

cloud system, the errors were larger than the errors of other human-pose estimates.

Table 3.3 The overall errors and standard deviations of HPE using the Stanford TOF Motion
Capture Dataset [70].

Overall Error (m) Overall Standard Deviation (m)
HC and EP Method [70] 0.1 N.A.

Data-driven Hybrid Method [49] 0.0618 0.0424
Exemplar Method [50] 0.038 N.A.

Proposed 3D-Point-Cloud System 0.0246 0.0294

3.5 Conclusions

In this chapter, we have defined humna-pose models as a mapping from a feature of an

observation of a human to a human pose. We have also described the main component of

using human-pose models. The main component is to utilize prior knowledge in order to in-

crease the accuracy of human-pose estimates. This is particularly important when observa-

tions are not reliable. Then, we have exploited human actions as a form of prior knowledge

in HPE. Specifically, we have used human actions to discover low-dimensional manifolds

in human-pose space. The main idea of using human actions has been formulated in our

proposed AMM. A low-dimensional manifold for each action was described by a base dis-

tribution in the proposed AMM. A base distribution for an action is estimated through the

two steps, namely the estimation and redistribution steps. The estimation step calculates the

Euclidean distance between a VISH-feature input and VISH features extracted from obser-

vations of human poses in the human-pose database. It produces a probability distribution

of using a human pose in the human-pose database as a human-pose estimate as an out-

put for each action. The redistribution step weights the probability distributions among all

actions from the estimation step according to the likelihood of observing an VISH-feature
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input being occurred in different actions. The likelihood is estimated by bagging. The out-

puts from the two steps are then combined to form a probability distribution that measures

how likely a human pose being a human-pose estimate. The most probable human pose

becomes the human pose estimated by the proposed AMM.

As human poses estimated by the proposed AMM are in discrete space, a kinematic

model is used to model the spatial relationship of body parts in continuous space to reduce

the quantization error in the proposed AMM. However, modeling the spatial relationship

between every pair of body parts is intractable. Thus, we utilized the kinematic chain that

only encodes the spatial relationship of adjacent body parts. By combining the proposed

AMM and the kinematic model, a 3D-point-cloud system is formed.

Experimental results showed that using human actions in HPE could increase the ac-

curacy and precision of human-pose estimates. By using multiple actions in the proposed

3D-point-cloud system, the error of human-pose estimates was decreased more than the

error of human poses estimated by using a single action in the proposed 3D-point-cloud

system. The number of actions being considered in base distributions, which was defined

in the proposed AMM, could be determined adaptively by the pmf that is computed based

on action classification. The overall error and standard deviation of the proposed 3D-point-

cloud system were reduced by 15.5% and 16.2% respectively compared with a human-pose

model without using actions. The proposed 3D-point-cloud system achieved the state-of-

the-art performance.

In the next chapter, we will extend the proposed AMM by automatically learning the

prior knowledge from training data that trains a human-pose model. Specifically, we would

introduce a mechanism that designs the weights and base distributions in the proposed

AMM from training data. The main advantage of using automatic design is to eliminate

the laborious step of manual definitions in the proposed AMM. In addition, both the weights

and base distributions could be adapted automatically from training data. We will compare

the performance of human-pose model with and without the automatic design to verify the

advantage of using automatic design.
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4. NEURAL-NETWORK-BASED MODELING

4.1 Introduction

Since there are uncertainties from different sources such as noise and perceptual limita-

tions, probabilistic models are used to accommodate uncertainties. In particular, Bayesian

networks [114] [89] are commonly used because they naturally represent causal, eviden-

tial and intercausal relationships, which are indispensable to human understanding [115].

As we discuss in Chapter 3, we have built an action-mixture model (AMM) [116] [117]

to map a VISH feature (in Chapter 2) to a human pose. AMM can be considered as a

Bayesian network that models the level of uncertainty of human actions and a relationship

between human actions and HPE. Using human actions, AMM achieves the state-of-the-art

performance in HPE. By building a structure of a Bayesian network, humans can express

their beliefs about those relationships. Other examples of Bayesian networks include a

kinematic model [70] and a motion-exemplar tracking model [40] for HPE (HPE).

When building Bayesian networks, designing appropriate factors, which are condi-

tional probability distributions, is important [110]. This is because factors can change

not only probability distributions that model the level of uncertainty, but also relationships

encoded by the structures of Bayesian networks. For example, a Gaussian-mixture model

(GMM) [118] and an independent component analysis (ICA) [119] share the same struc-

ture, but relationships among random variables are different, because factors in a GMM

are multivariate Gaussian functions, while factors in an ICA are univariate Gaussian and

Laplace functions. Typically, factors are designed by humans. The designing process is

task-oriented and laborious. For instance, factors in AMM were designed according to

our proposed similarity measures (more details in Section 3.2). Factors may be designed

to simplify learning and inference computations. For example, in the motion-exemplar

tracking model [40], factors were set manually to be Gaussian functions to approximate
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dependencies between human joints so that the process of estimating human-joint posi-

tions was simplified. Although, in the literature [7] [8], it is common to manually design

factors, they could be changed when the underlying probability distributions change. For

example, a human-pose distribution is changed when an environment changes from a li-

brary to a gymnasium because running postures are observed more often at a gymnasium.

This motivates us to investigate a universal method for designing and modeling factors au-

tomatically so that they can be adapted to time-varying probability distributions in different

situations. In particular, we are interested in extending our previous work AMM on HPE,

so that factors can be designed or learned automatically. We realize that artificial neural

networks (NNs) can adapt to time-varying probability distributions based on training data.

Thus, we utilize the learning capability of NNs to learn, design and realize factors of AMM

to achieve better HPE.

Neural networks are inspired by the human brain. They consist of a number of pro-

cessing elements called neurons that are interconnected. Depending on neuron connections

and activation functions, various types of neural networks such as perceptron networks and

multilayer perceptron networks are created. Traditionally, hidden neurons have been used

as computational units for mapping between input and output. Recently, in the research

field of deep learning [86] [87], they are also interpreted as input features [120] [121] and

filters [60] [122]. In addition, hidden neurons in some neural networks [94] [96] [98] are

considered as hidden random variables that change the nature of neural networks from

deterministic to probabilistic.

Neural networks with deep network architectures have been shown to achieve the state-

of-the-art performance in HPE [47, 62–64]. They can be generally categorized into two

groups according to their usages. In the first group, NNs are used as function approxima-

tors that map observations such as images of humans or body parts to human poses. For

example, Toshev and Szegedy [63] formulated the HPE problem as a regression problem

that mapped an image of a human to a normalized human pose. A convolutional neural

network (CNN) was applied on an image to estimate human-joint positions. Then, a CNN

was built for each human joint and was applied on an image region centered at a human-
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Fig. 4.1. Neural-network-based HPE system. The proposed system takes a 3D point cloud
as input and represents it with a VISH feature. Then, the VISH feature is passed to NND-
AMM, which is a neural network built by applying our proposed mapping on AMM and
the concept of distributed representation. NND-AMM finally estimates a 3D human pose
as output.

joint estimate to refine the estimate. In the second group, parts of NNs are used to extract

features for HPE. Typically, hidden layers of NNs are used to extract features from ob-

servations through layer-wise training [86] [87]. As hidden layers are closer to the output

layer of a NN, features become more abstract. The output layer then uses extracted fea-

tures to estimate human poses. For example, Ouyang et al. [65] proposed several NNs to

extract image features. Once image features were extracted, human poses were estimated

by a NN with hidden neurons used as computational units. Although these approaches are

promising, they cannot provide insights into their network architectures. Thus, it is hard

to change the architectures to adapt to a 3D-point-cloud input, which is an input to AMM,

and model factors of AMM. We will utilize the structure and semantic meaning of random

variables in AMM, and transfer them to a NN. In particular, we will use a feedforward NN

because of the static nature of Bayesian networks. Based on AMM, the architecture of a

feedforward NN could be designed and interpreted systematically.

In this chapter, we first propose a mapping that converts a Bayesian network into a feed-

forward NN. AMM is extended by considering it as a Bayesian network and converting it

into a feedforward NN, denoted by NN-AMM, through the proposed mapping. The advan-

tages of using the proposed mapping compared with our previous work are that designing

factors is automatic based on training data for training a feedforward NN, and factors can



91

be adapted to different situations. Semantic meaning in AMM can also be transferred to the

feedforward NN so that neurons or layers of neurons have semantics. Using the proposed

mapping, a NN-based HPE system is built. The proposed system takes a 3D point cloud as

input and computes a 3D human-pose estimate (see Figure 4.1). In the proposed system,

a viewpoint-and-shape-feature-histogram (VISH) feature [104] (in Chapter 2) is extracted

from a 3D point cloud. Based on the concept of distributed representation, NN-AMM

is modified to form a scalable feedforward NN, denoted by NND-AMM. Two variants

of VISH features are generated to evaluate the adaptability of the three models, namely

AMM, NN-AMM, and NND-AMM. The first variant is produced by occluding a part of

a 3D-point-cloud input. The second variant is produced by reconstructing VISH features

from the first variant using a linear model with additive Gaussian noise. The linear model is

used because we will show that, as a special case of Bayesian networks, it is equivalent to a

feedforward NN under certain types of inference. Experiments were conducted to compare

the performance of the three models based on their accuracy of human-pose estimates and

their adaptability to the two variants of VISH features.

The structure of this chapter is as follows. Section 4.2 describes two steps, namely

structure identification and parameter learning, in the proposed mapping. Section 4.3 il-

lustrates the application of our proposed mapping on AMM and describes the modification

in NN-AMM to create NND-AMM. Section 4.4 presents the two variants of VISH fea-

tures. Experiments were conducted in Section 4.5 to test the performance of the proposed

mapping and the proposed system. Section 4.6 summarizes our results.

4.2 Mapping Mechanism

A Bayesian network is a directed acyclic graph (DAG), denoted by G , in which nodes

are random variables and absence of edges represents conditional independence assump-

tions on random variables. It defines a family of probability distributions p(X1, . . . ,Xn) that

can be expressed as

p(X1, . . . ,Xn) = Π
n
i=1 p(Xi|PaG

Xi
), (4.1)
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where Xi’s are random variables, n is the number of random variables, PaG
Xi

are parents

of Xi in G , and conditional probability distributions p(Xi|PaG
Xi
) are called factors. Factors

are interpreted as local relationships, which represent causal, evidential and intercausal

reasonings, among random variables.

To map a Bayesian network to a NN, we first represent a NN using a graph, denoted

as G n. A graph G n should encapsulate the structure and synaptic weights of a NN. We

define V n as a set of nodes that represent neurons in a NN. The i-th node is denoted as

vn
i . It is defined by the corresponding neuron type (input, hidden, or output) and activation

function, which are denoted as li and ai, respectively. We define E n as a set of edges that

represent synaptic connections and weights in a NN. The i-th edge is denoted as en
i . It

is defined by two nodes, denoted as si and ti that the i-th edge connects, and its synaptic

weight, denoted as wi. Since we can define a graph G n by defining both V n and E n, we

write G n = (V n,E n), where V n = {vn
1, . . . ,v

n
|V n|}, vn

i = (li,ai), E n = {en
1, . . . ,e

n
|E n|}, and

en
i = (si, ti,wi).

Using the graphical representation of a NN, the realization process involves defining a

graph G n according to a Bayesian network. The process is divided into two parts: structure

identification and parameter learning. In the structure identification, we identify V n and E n

except the synaptic weight wi for every en
i ∈ E n. As we will show later, a NN structure that

is created by the identification process is feedforward. During the identification process,

we can interpret a feedforward NN as a collection of interconnected feedforward NNs with

semantic meaning. Details can be found in Section 4.2.1. In the parameter learning, we

learn wi for every en
i ∈ E n. We present a part-based approach to learn parameters in a feed-

forward NN by decomposing it into semantic parts. Details can be found in Section 4.2.2.

4.2.1 Structure Identification

In order to realize a Bayesian network by a feedforward NN, the structure should be

designed such that observed variables in a Bayesian network correspond to neurons in the

input layer of a feedforward NN (input neurons), hidden variables correspond to neurons in
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the hidden layers (hidden neurons), and target variables correspond to neurons in the output

layer (output neurons). Synaptic connections should represent local relationships (factors)

in a Bayesian network.

We propose a bottom-up approach to build a feedforward NN by constructing a group

of feedforward NNs called modules. First, we represent a relationship among random vari-

ables in a factor by a module. As a consequence, each module represents only a relationship

among random variables in one factor but not others. Thus, conditional independence as-

sumptions in a Bayesian network are preserved. Figures 4.2 and 4.3 show examples of

causal, evidential and intercausal relationships, and their modules. Once the structure of

each module is defined, a NN is built by merging common neurons from different modules.

(a) (b) (c) (d)

Fig. 4.2. Examples of causal and evidential relationships between an observed random
variable b (shaded) and a target random variable a. (a) Causal relationship between random
variables a and b. (b) Evidential relationship between random variables a and b. (c) Factor
graph of the causal or evidential relationship. (d) A neural network representing the causal
or evidential relationship. a1, . . . ,an and b1, . . . ,bm are possible values of random variables
a and b when the random variables are discrete. When the random variables are continuous,
one neuron is used with its value equal to the value of each random variable. Hidden layers
can be added in the neural network if necessary.

We create V n and (si, ti) in E n by scanning each factor in a factor graph and identifying

its corresponding subgraph in a DAG of a Bayesian network. If a random variable in a

factor is discrete, we create one neuron in V n for each possible value. The activation

function of a neuron should be the softmax function because it represents a probability. If

a random variable in a factor is continuous, we create one neuron in V n to represent a real

value. The activation function of a neuron depends on the range of a random variable.
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(a) (b) (c)

Fig. 4.3. Example of an intercausal relationship between target random variables a and
b. An observed random variable c is shaded. (a) Intercausal relationship between target
random variables a and b. (b) Factor graph of the intercausal relationship. (c) A neural
network representing the intercausal relationship. a1, . . . ,an, b1, . . . ,bm, and c1, . . . ,cl are
possible values of random variables a, b, and c when the random variables are discrete.
When the random variables are continuous, one neuron is used with its value equal to
the value of each random variable. Hidden layers can be added in the neural network if
necessary.

After neurons are defined, we define synaptic connections between them by consider-

ing connections in a subgraph of each factor in a Bayesian network. There are six types

of connections. They are connections between (1) observed variables, (2) an observed

variable and a hidden variable, (3) an observed variable and a target variable, (4) hidden

variables, (5) a hidden variable and a target variable, and (6) target variables. For the first

type, the synaptic connection between input neurons is not created because neurons are ob-

served. For the second type (the third type), we always create a synaptic connection from

an input neuron to a hidden neuron (an output neuron) in order to represent the causal or

evidential relationship between an observed and a hidden variables (a target variable). For

the fourth type (the sixth type), we create synaptic connections between hidden (output)

neurons according to connections between hidden (target) variables in order to avoid cre-

ating feedback connections in a module. For the fifth type, we always create a synaptic

connection from a hidden neuron to an output neurons to represent the causal or evidential

relationship between a hidden variable and a target variable. When a module is created,

hidden layers can be added in order to represent a complex relationship. Algorithm 1 sum-

marizes the proposed bottom-up approach. A NN that represents a Bayesian network is

created by merging all modules together.
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We will prove by contradiction that a NN structure created by the proposed bottom-

up approach is feedforward. Assume there is a feedback connection in a NN. Consider

the shortest path that contains the feedback connection. The shortest path does not con-

tain input neurons because, by construction, there is no synaptic connection entering input

neurons. The shortest path does not contain both hidden and output neurons because, by

construction, there is no synaptic connections from output to hidden neurons. The shortest

path does not contain hidden (output) neurons because synaptic connections are established

according to a DAG in a Bayesian network. Thus, the shortest path does not contain any

neurons. It contradicts the assumption.

Algorithm 1 The proposed bottom-up approach for structure identification
INPUT: A DAG and a factor graph of a Bayesian network
OUTPUT: G n = (V n, E n) except the synaptic weight wi for every en

i ∈ E n

V n = E n = /0
for each factor in a factor graph of a Bayesian network do

Identify the subgraph of a DAG that corresponds to a factor
for each random variable in the subgraph do

Add neurons to V n according to the description in Section 4.2.1
end for
for each edge in the subgraph do

Add synaptic connections to E n according to the description in Section 4.2.1
end for
if a relationship of a factor is complex then

Add hidden neurons to V n

Add synaptic connections to E n

end if
end for

4.2.2 Parameter Learning

In the previous section, a bottom-up approach is presented to identify V n and E n except

synaptic weights. In this section, we focus on learning synaptic weights; that is, the weight

wi of a synaptic connection en
i ∈ E n, where i = 1,2, . . . , |E n|. We utilize the backpropaga-

tion algorithm [6] to learn synaptic weights. We assume that training data contains desired
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values of input and output neurons. Desired values of hidden neurons may or may not

be available in training data. Since a feedforward NN, in general, may have many layers,

applying the backpropagation algorithm directly to learn synaptic weights may suffer from

the vanishing-gradient problem [5]. Based on the concept of layer-wise training [86] [87],

we propose a part-based approach to learn synaptic weights by creating parts of a feedfor-

ward NN and training them sequentially using the backpropagation algorithm. Since a part

is a feedforward NN that may consist of several layers, the proposed approach is considered

as an extension of layer-wise training procedures. This extension allows each part to have

semantic meaning.

A part is defined by a subset of E n and neurons that are connected by each edge in a

subset of E n. Each part in a sequence should contain synaptic connections in the previous

part so that synaptic weights of synaptic connections in the previous part may be used as

initial estimates for training the current part. Nodes in a part are identified by first traversing

nodes in V n from each node in the previous part until a node that contains a desired value

from the training data is reached. The set of nodes in a part is then defined by the union of

the set of nodes in the previous part and the set of nodes that are on traversing paths. The

set of edges in a part is defined by a subset of E n in which each edge connects nodes in the

set of nodes in a part. The previous part of the first part is defined as a set of input neurons

in V n without any synaptic connections. Algorithm 2 summarizes the proposed part-based

approach.

4.2.3 Illustration of the Proposed Mapping

In this section, we will construct a Bayesian network and show the process of applying

the proposed mapping on a Bayesian network. As the proposed mapping performs differ-

ently depending on the type of connections that are described in Section 4.2.1, we create a

simple Bayesian network that contains all types of connections. The Bayesian network is

shown in Figure 4.4. In the Bayesian network, observed variables are O1 and O2. Hidden

variables are H1 and H2. Target variables are T1 and T2. In order to keep the illustration
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Algorithm 2 The proposed part-based approach for parameter learning
INPUT: The structure G n = (V n,E n) of a neural network
OUTPUT: Synaptic weights wi of the i-th edge in E n, where i = 1,2, . . . , |E n|

Part0 = (V n
0 = {vn

i : vn
i ∈ V n∧ li = input},E n

0 = /0)
idx = 0
repeat

idx = idx+1
Create V n

idx according to the description in Section 4.2.2
E n

idx = {e
n
i : en

i ∈ E n∧ si ∈ V n
idx∧ ti ∈ V n

idx}
Partidx = (V n

idx,E
n
idx)

until Partidx = G n

train Part0 using random initial values of synaptic weights
for i = 1 to idx do

train Parti using initial values of synaptic weights in Parti−1
end for
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straightforward, we assume that all random variables in the Bayesian network are binary.

We also do not add additional hidden layers in the NN that is created by the proposed

mapping.

(a) DAG. (b) Factor graph.

Fig. 4.4. The Bayesian network that is used for illustrating the proposed mapping. Ob-
served variables are shaded.

In structure identification, we scan each factor in the factor graph as shown in Fig-

ure 4.4(b) and create a module for each factor. Since there are six factors, there are six

modules. As each random variable is binary, two neurons are created to represent two

possible values (zero and one) of each random variable. Each neuron is denoted by the

name of a random variable with a superscript indicating the value of a random variable.

For example, the neuron that represents the zero value of the random variable O1 is de-

noted as O0
1. Based on the Algorithm 1, modules are created and shown in Figure 4.5. In

the figure, each factor is shown on the left and the corresponding module is shown on the

right. Note that when we scan the factor between observed variables O1 and O2, we do not

create any synaptic connections between input neurons because no inference is performed

on observed variables. A NN that represents the Bayesian network is created by merging

all modules together, and is shown in Figure 4.6.

In parameter learning, we consider that the training set contains desired values of input

and output neurons except hidden neurons. The first part is created by traversing the NN

from each input neuron until a neuron that contains a desired value is reached. Figure 4.7

shows the first part. The second part is created by traversing the NN from every neuron in

the first part until a neuron that contains a desired value is reached. Figure 4.8 shows the
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Fig. 4.5. Factors from the Bayesian network in Figure 4.4 and their corresponding modules
that are created by the proposed mapping. In each row, a factor is shown on the left and its
corresponding module is shown on the right.
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Fig. 4.6. The NN that is created by merging all modules in Figure 4.5.

second part. As the second part is the NN created in structure identification, no further part

is created. Parameters in the NN are learned in two steps. First, parameters in the first part

are learned. Then, they are used as initial values to train the second part.

This illustration not only shows the application of the proposed mapping on a general

Bayesian network, but also demonstrates the main advantage of using the proposed map-

ping. The main advantage is that, instead of executing the laborious process of manually

designing the six factors, we can utilize NNs to design factors automatically from training

data.

4.3 Application of the Proposed Mapping on AMM

We will first describe AMM and apply our proposed mapping on AMM to create a feed-

forward NN called NN-AMM. Then, as the number of possible human poses in NN-AMM

could be large, we will modify NN-AMM based on the concept of distributed representa-

tion to build a scalable feedforward NN called NND-AMM in the proposed NN-based HPE

system.
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Fig. 4.7. The first part of a part sequence in the process of parameter learning. It is created
by traversing every input neuron.

Fig. 4.8. The second part of a part sequence in the process of parameter learning. It is
created by traversing every neuron in the first part in Figure 4.7.

4.3.1 Action-Mixture Model

An action-mixture model (AMM) is a Bayesian network. It is designed for HPE. In

AMM, we design factors manually. As described in Chapter 3, factors of AMM are p(a|x)
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and p(y|a,x). The factor p(a|x) is a probability mass function (pmf) of a VISH feature

x belonging to an action a. It is commonly used to classify actions, and we use a typical

approach called the bootstrap aggregating algorithm (i.e., bagging) [112] to train an action

classifier. The factor p(y|a,x) is computed in two steps: estimation and redistribution steps.

The estimation step measures the likelihood of human poses spatially. The likelihood is

defined based on the Euclidean distance between VISH features such that if the distance is

small, human poses are close spatially. In addition, we increase the likelihood of all key

poses (possible poses) from an action a. It is because a human pose corresponding to a

VISH feature x should be similar to some key poses from an action a. The redistribution

step measures the likelihood of human poses based on the frequency of actions. We define

the frequency of actions as the portion of time a human pose in each action. If the frequency

of an action is higher than other actions, that action is expected to be observed more often,

and thus the likelihood of human poses in that action is higher. In the redistribution step,

we consider that human poses could be similar in different actions. Thus, observing a

human pose from an action changes not only the frequency of that action, but also the

frequency of some other actions. This phenomenon is modeled using a continuous-time

Markov chain [116] [117].

4.3.2 Neural-Network-Based Realization of Action-Mixture Model

When designing factors manually as described in Section 4.3.1, it is laborious to quan-

tify the spatial relationship about human poses and the frequency of actions. Also, manu-

ally designed factors may not represent underlying probability distributions and may not be

applicable to different situations such as different input features. Thus, in this section, we

will construct a feedforward NN, denoted by NN-AMM, based on our proposed mapping

procedure to realize AMM. First, we identify the NN-AMM structure. Based on the pro-

posed bottom-up approach in Section 4.2.1, we build a module for each factor, and merge

modules together to build the NN-AMM structure.
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To build a module of the factor p(a|x) in AMM, we assign an observed variable X

to the input layer of a module, and a hidden variable A to the output layer of a module.

Figure 4.9(a) shows the module. To build a module of the factor p(y|a,x) in AMM, we

assign an observed variable X to the input layer of a module, and add synaptic connections

from an observed variable to a hidden variable A and a target variable Y . In addition, we add

a synaptic connection from a hidden variable to a target variable to represent their causal

relationship. Figure 4.9(b) shows the module. The two modules are then merged together

to form the structure of NN-AMM, which is the same as the module in Figure 4.9(b). Note

that the accuracy of HPE in NN-AMM is similar to the accuracy in AMM, whose factors

are manually designed. Thus, we do not include any additional hidden neurons or hidden

layers in the two modules. Details about the comparison between AMM and NN-AMM

can be found in Section 4.5.

Synaptic weights in NN-AMM are learned by the proposed part-based approach in

Section 4.2.2. As defining parts depends on training data, we first describe our training data.

Our training data is the same as the one used in testing AMM in [117] because we would

like to compare the performance of AMM and NN-AMM. Each training sample contains

desired values of a VISH feature of a human, a human action and a human pose. The first

part in a part sequence is defined by scanning the layer directly connected to the input layer

of NN-AMM. The layer contains the action and pose variables. As both desired values are

available in training data, those variables, together with a VISH variable and its synaptic

connections, are selected to form a part. The part is shown in Figure 4.10(a). This part has

the meaning of action recognition, and pose estimation without using action information.

The second part is defined by scanning the next layer in NN-AMM. It contains a synaptic

connection from an action variable to a pose variable, in addition to the previous part. Thus,

the second part corresponds to NN-AMM. Figure 4.10(b) shows the second part. Once a

part sequence is defined, the first part is trained by the backpropagation algorithm followed

by the second part.
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(a)

(b)

Fig. 4.9. Modules of factors (a) p(a|x) and (b) p(y|a,x). Observed variables are shaded.
x1, · · · ,xD are elements in a VISH feature x. D is the dimension of a VISH feature.
a1, · · · ,aN and y1, · · · ,yM are possible values of the random variables A and Y , respectively.
N and M are the number of actions and key poses, respectively. In (b), the connection from
the input layer to the output layer indicates that all neurons in the input layer are connected
to every neuron in the output layer. The module in (b) is also the neural network NN-AMM
that is built by applying the proposed mapping on AMM.

4.3.3 Scalable Neural-Network-Based Realization

With semantic meaning in NN-AMM, we recognize that each neuron yi, where 1 ≤

i ≤ M, represents a key pose. Thus, NN-AMM is not scalable because the number of
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(a)

(b)

Fig. 4.10. (a) First part and (b) second part in a part sequence used in the proposed part-
based approach. Notations are the same as those in Figure 4.9.

key poses could be large. Utilizing the concept of distributed representation, we can re-

duce the number of neurons (key poses) in NN-AMM. Instead of confining a human-pose

estimate to be one key pose, we consider a human-pose estimate to be a linear combina-
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tion of key poses. Thus, we can eliminate key poses that are combination of other key

poses. The process of creating and eliminating key poses can be formulated as dictionary

learning [121] [123] [124]. In this work, we use the hierarchical-clustering method [125],

which is a common technique in dictionary learning, by considering cluster prototypes as

key poses. A feedforward NN that is modified based on NN-AMM and the concept of

distributed representation is denoted by NND-AMM. Figure 4.11 shows the NND-AMM

structure.

Fig. 4.11. The feedforward neural network NND-AMM that is built by modifying NN-
AMM using distributed representation. Notations are the same as those in Figure 4.9.
H is the number of key poses after performing the hierarchical-clustering method, and is
typically less than M. J1, . . . ,JNs are the estimated 3D human-joint locations. Ns is the
number of human joints in a 3D human-pose estimate.
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In Figure 4.11, neurons y1, · · · ,yH in a layer that is called a key-pose layer represent

cluster prototypes computed by the hierarchical-clustering method. In the hierarchical-

clustering method, we iteratively group two elements that could be key poses or clusters

with the smallest distance to form a new cluster, until there is only one cluster. Since the

grouping is repeated until all elements are clustered, it can be represented by a binary tree.

The grouping depends on a predefined distance metric between key poses and clusters, and

we define the distance of a cluster as the distance (according to a predefined distance metric)

between its children. To identify clusters to be used in the key-pose layer, we compute a

clustering-inconsistency coefficient [125] for each cluster (node) in a binary tree by

dc−mc

σc
, (4.2)

where dc is the distance of a cluster c, mc is the average distance of a cluster and its children,

and σc is the standard deviation of distances of a cluster and its children. The coefficient

is used to determine natural cluster divisions by measuring distances between elements

in a cluster. The closer the elements are, the smaller the coefficient is. We specify a

clustering-inconsistency-coefficient threshold and traverse a binary tree from the root node

in a breadth-first manner. If the clustering-inconsistency coefficient of a cluster is less than

or equal to a predefined threshold, the cluster will be selected and its descendants will not

be traversed. For each selected cluster, a cluster prototype is computed by averaging key

poses belonging to a selected cluster. Since each cluster prototype can be interpreted as

a human pose, we consider a cluster prototype as a key pose. Thus, the number of key

poses (cluster prototypes) in the key-pose layer of NND-AMM is, in general, less than the

number of key poses in NN-AMM. In the output layer, each neuron represents a human

joint and is computed by linearly combining a human joint of all cluster prototypes in the

key-pose layer.
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4.4 Variants of VISH features for adaptability testing

Two variants of VISH features are created to evaluate the adaptability of the proposed

NN-based HPE system. To create the first variant, we partially occlude an input data,

which is a 3D point cloud, and extract a VISH feature from the data. The feature is called

an occluded VISH feature. To create the second variant, we use a continuous random

variable to represent a reconstructed VISH feature. The reconstructed VISH feature should

be close to a non-occluded VISH feature that is defined as the VISH feature extracted from

the input data without occlusions. We assume that the probability density function (PDF)

of the random variable is represented by a linear model with additive Gaussian noise. Then,

we will show that the linear model is equivalent to a feedforward NN under certain types

of inference. Mathematically, we will show that a two-layer feedforward NN in which the

activation function of each neuron at the output layer is linear computes the expectation of

the linear model. Finally, the model is used to infer a non-occluded VISH feature from an

occluded VISH feature. The inferred VISH feature is the reconstructed VISH feature.

Note that the process of handling occlusions is complex. The complexity mainly comes

from two parts, namely partially-occluded-human detection and pose estimation. In the

literature, they are commonly resolved by building models that are capable of determining

whether body parts are visible or occluded. In order to determine if a body part is visible or

occluded, those models are trained from occluded training sets. Occluded training sets are

built by manually occluding parts of humans in observations. Occlusions are simulated by

removing parts of an observation in the training sets. For example, the partially-occluded-

human-detection model [126] that extends the Deformable Part Model (DPM) [127] is

trained by manually removing parts that are occluded. Figure 4.12 shows an example

of visible and occluded parts in a training set. A partially-occluded-HPE model [128] is

trained by removing parts of images in the HumanEva dataset [129]. Figure 4.13 shows

some occluded images in the dataset.

Following the concept of building occluded training sets in the literature, we create

an occluded VISH feature by removing parts of an input data at a time. As our goal of
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Fig. 4.12. An example of visible (green) and occluded (red) parts in an observation in a
training set.

Fig. 4.13. Examples of images in an occluded training set for HPE.

creating an occluded VISH feature is to test the adaptability of the NN-based HPE system,

we simplify the process of simulating occlusions by removing one cuboid at a time (details
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can be found in Section 4.4.1). This simplification does not directly produce real-world

occlusion scenarios because, in reality, more than one cuboid may be occluded at a time.

Also, we may lose visible information in a cuboid. For example, if only one human joint is

occluded but the cuboid that contains the human joint contains other visible human joints,

both visible and occluded human joints in that cuboid will be removed. However, we can

leverage this problem by defining fine-grained cuboids. Since we do not aim at solving the

occlusion problem, which is complex, in this thesis, we do not attempt to handle the two

cases described above. In addition, the inference process of creating a reconstructed VISH

feature is simplified because we want to show that there exists a model that is equivalent to

a feedforward NN.

Three types of features will be considered as observed random variables in AMM.

When it is not important to distinguish the three types, we use the notations X and x, which

are defined in Section 4.3.1, to denote a random variable and its value representing either

one of them, respectively. When it is necessary to distinguish them, we denote random

variables representing non-occluded, occluded and reconstructed VISH features by Xn,

Xo, and Xr, respectively. Their values are denoted by xn, xo, and xr, respectively.

In the following, we will describe the two variants in details. Details of extracting VISH

features can be found in [104]. In addition to the notations defined in [104], we use P i, j
H to

denote the j-th node at i-th level in a tree created in the process of hierarchical structuring.

4.4.1 Occluded VISH Feature

The process of extracting occluded VISH features is derived based on the non-occluded

VISH feature extraction [104]. During the extraction, an occlusion step is added before the

feature-extraction step. In the occlusion step, for each pre-processed 3D point cloud PH ,

one leaf node, which is to be occluded, is chosen at random (with probability 1/Nc) from the

set {PL−1,0
H ,PL−1,1

H , . . . ,PL−1,Nc−1
H } in a tree of a pre-processed 3D point cloud, where

L is the number of levels in a tree and Nc is the number of leaf nodes (L = 2 and Nc = 6

in this work). Let PL−1,k
H be the chosen leaf node. 3D points in the chosen leaf node
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PL−1,k
H are then removed to simulate the absence of 3D points when the corresponding

cuboid is occluded, i.e., PL−1,k
H = /0. During the feature-extraction step, both VFH and

shape features do not exist in the chosen leaf node PL−1,k
H because PL−1,k

H is empty. They

are thus set to zeros. Figure 4.14 shows examples of 3D point clouds after the occlusion

step.

Fig. 4.14. Occluded 3D point clouds. (a) Middle right region is occluded. (b) Middle left
region is occluded. (c) Lower right region is occluded.

When extracting non-occluded and occluded VISH features from a pre-processed 3D

point cloud PH , they are different not only in the VFH and shape features from the chosen

leaf node PL−1,k
H . Their VFH and shape features computed from ancestors of the chosen

leaf node PL−1,k
H are also different because portions of 3D points in ancestors are occluded

(empty). In addition, VFH and shape features from nodes that are 8-connected neighbors

of the chosen leaf node PL−1,k
H may be changed because those features may depend on 3D

points in an 8-connected neighborhood.
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4.4.2 Reconstructed VISH Feature

A linear model with additive Gaussian noise, which is a Bayesian network, is built to

reconstruct non-occluded VISH features from occluded VISH features, and illustrate that

it is the same as a feedforward NN under certain inferences. The linear model contains

two random variables Xr and Xo representing reconstructed and occluded VISH features,

respectively. A directed edge is established to connect the random variable Xo to the ran-

dom variable Xr because the value of random variable Xr is estimated from the value of

the random variable Xo. Figure 4.15 shows the DAG and the factor graph of the model.

(a) (b)

Fig. 4.15. (a) DAG and (b) factor graph of the linear model. The observed variable Xo is
shaded.

In the linear model, the random variable Xr is Gaussian distributed and depends linearly

on xo; that is,

xr = Wxo +ψ, (4.3)

where W is a square matrix with dimension the same as VISH features, and ψ is Gaussian

distributed with a zero mean vector and a covariance matrix R. The value of the random

variable Xr is estimated by the value with the highest probability, denoted by x̂r. It can be

shown that the value is given by

x̂r = argmax p(xr|xo) = Wxo. (4.4)
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In Eq. (4.4), we deduce that the estimate x̂r can be computed by a feedforward NN. The

feedforward NN consists of an input layer and an output layer. The input layer represents

an occluded VISH feature. Each neuron in the input layer corresponds to an element in

the feature. The output layer represents an estimate of a reconstructed VISH feature. Each

neuron in the output layer corresponds to an element in the estimate. The two layers are

fully connected and the activation function in the output layer is linear (see Figure 4.16).

Fig. 4.16. Neural network that computes the estimate of the linear model. Neurons in the
input layer are shaded. xoi is the i-th element of an occluded VISH feature xo, for 1≤ i≤D.
Similarly, xri is the i-th element of a reconstructed VISH feature xr. D is the dimension of
an occluded or reconstructed VISH feature.

4.5 Experimental Results

Experiments were conducted to evaluate the ability of designing factors using the pro-

posed mapping, the effectiveness of distributed representation, and the adaptability of using

feedforward NNs to realize AMM factors in the NN-based HPE system. The Stanford TOF

Motion Capture Dataset [70], which is a benchmark dataset for 3D HPE, was used through-

out the experiments. In the dataset, there are 28 video sequences. Each video sequence

corresponds to one action. Each frame has a human pose that has 15 degrees-of-freedom

(joints), namely head, neck, left/right shoulder, left/right elbow, left/right wrist, hip center,

left/right hip, left/right knee and left/right ankle. The number of frames of the video se-
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quences is shown in Table 4.1. In the dataset, a subject performed different actions such as

kicking and rotation, and was captured by a Swissranger SR4000 TOF sensor. The range

images were captured at 25 frames per second with a resolution of 176× 144 pixels. The

ground-truth 3D human-joint locations were recorded by a commercial motion-capturing

system.

Table 4.1 Total number of frames in each video sequence from the dataset [70].

Number of frames Video index
100 0-5,8,9,14,16,18,
400 6,7,10-13,15,17,19,20-27

Following the experimental setting in [117], the dataset was divided into 20% for es-

tablishing the human-pose database that contains key poses, 30% for validation, 40% for

training and 10% for testing. To reduce the bias in dividing the dataset, 10 trials were cre-

ated by randomly dividing the dataset with different random seeds. Each trial was tested

using 5-fold cross-validation. Parameters of AMM were set according to [117]. In the

hierarchical-clustering method, the distance metric between two key poses was defined as

the Euclidean distance, and the distance between two clusters was defined as the shortest

distance between elements from each of the two clusters.

When evaluating the HPE performance, frames with missing ground-truth 3D joint

locations were ignored. Two metrics were used to quantify the performance in two aspects.

The first metric, which is called average-joint-error metric, is a widely used metric that

measures the average error on each joint and is denoted by ζ1. It is defined as

ζ1 =
1

N f

N f

∑
s=1

1
Ns

Ns

∑
i=1

∥∥js,i− j̃s,i
∥∥

2 , (4.5)

where N f is the number of frames of the video sequence for testing, Ns is the number of 3D

human-joint locations measured by the motion-capturing system in the s-th frame, js,i and

j̃s,i are the ground-truth and the estimated 3D location of the i-th human-joint in the s-th

frame, respectively, and ‖ · ‖2 is the Euclidean norm.
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The second metric, which is called average-pose-accuracy metric, measures the pro-

portion of human-pose estimates that have all joints within an error less than a certain

Euclidean distance. It is an extremely challenging metric that allows us to easily identify

the number of human-pose estimates within an Euclidean distance from their correspond-

ing ground-truth human poses. We call human-pose estimates that have all joints within a

certain error true human-pose estimates, and other human-pose estimates false human-pose

estimates. The metric is denoted by ζ2, and is defined as

ζ2 =
1

N f

N f

∑
s=1

Ns

∏
i=1

1(‖js,i− j̃s,i‖2 < d), (4.6)

where 1(·) is an indicator function that equals to 1 when the input argument is correct and 0

otherwise, and d is the maximum Euclidean distance between a joint in a true human-pose

estimate and its corresponding ground-truth joint position. For the results below, we plot

the change of ζ2 over a range of d. In particular, we include ζ2 when d = 0.2m because we

believe it is the maximum distance to determine true human-pose estimates that are useful

in most interactive systems.

4.5.1 Ability of designing factors using the proposed mapping

We analyzed the performance of each model (AMM, NN-AMM, and NND-AMM).

As factors in AMM were designed manually based on non-occluded VISH features, the

features were used as input to the three models.

Comparison based on the average-joint-error metric ζ1

Table 4.2 shows average joint errors and standard deviations of HPE incurred in AMM,

NN-AMM, and NND-AMM when the clustering-inconsistency-coefficient threshold was

set to 0.6. Bar charts of the errors and standard deviations in different trials are shown in

Figures 4.17 and 4.18. When comparing AMM with NN-AMM, their average joint errors

and standard deviations were similar. The errors and standard deviations among 10 trials
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were different because of the random division of the dataset. The overall performance of

the 10 trials showed that NN-AMM had lower errors than AMM. The result showed that

the automatic design of factors using the proposed mapping was effective. When we com-

pared NND-AMM with AMM and NN-AMM, the number of key poses was reduced from

1214 to 836 (about 31% reduction in the number of key poses). Both the errors and stan-

dard deviations incurred in NND-AMM were the lowest because estimating combination

coefficients was relatively accurate when the number of key poses was decreased, and key

poses could be combined to generate human poses in the human-pose database. Thus, the

result showed that the distributed representation in NND-AMM could reduce the number

of key poses while having the lowest average joint error and standard deviation among the

three models.

Table 4.2 Average Joint Errors (in meters) of HPE. Numbers on the left and in the paren-
theses are the average joint errors and standard deviations of HPE, respectively.

Trial AMM NN-AMM NND-AMM
1 0.0276 (0.0338) 0.0259 (0.0310) 0.0234 (0.0261)
2 0.0267 (0.0309) 0.0269 (0.0332) 0.0241 (0.0279)
3 0.0263 (0.0277) 0.0256 (0.0268) 0.0229 (0.0224)
4 0.0267 (0.0342) 0.0261 (0.0314) 0.0239 (0.0264)
5 0.0257 (0.0288) 0.0253 (0.0292) 0.0223 (0.0218)
6 0.0281 (0.0351) 0.0272 (0.0306) 0.0240 (0.0241)
7 0.0272 (0.0325) 0.0257 (0.0300) 0.0229 (0.0263)
8 0.0263 (0.0329) 0.0265 (0.0304) 0.0238 (0.0254)
9 0.0272 (0.0372) 0.0260 (0.0328) 0.0241 (0.0290)
10 0.0270 (0.0352) 0.0257 (0.0314) 0.0235 (0.0262)

Overall 0.0269 (0.0328) 0.0261 (0.0307) 0.0235 (0.0255)

Comparison based on the average-pose-accuracy metric ζ2

Figure 4.19 shows the change of proportions of true human-pose estimates when the

maximum Euclidean distance (d) is changed from 0m to 0.5m with a step size 0.01m.

The percentages of true human-pose estimates computed by the three models when d =

0.2m are explicitly shown in the figure. When d was small (between 0m and 0.04m), the
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Fig. 4.17. Average joint errors incurred in the three models in different trials.

Fig. 4.18. Change of standard deviations of human-pose estimates in different trials.
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percentages of true human-pose estimates computed by AMM and NN-AMM were similar,

and were higher than that computed by NND-AMM. When d increased from 0.04m to

0.35m, the percentage computed by NND-AMM was higher than that of NN-AMM. The

performance of AMM was the worst among the three models. Finally, the percentage

computed by each model converged to 1. Overall, the performance of NND-AMM was

the best among the three models. The average of maximum joint errors of human poses

estimated in NND-AMM was smaller than that in AMM and NN-AMM. It was because

in a distributed representation, key poses with non-zero weights and high maximum joint

errors could be combined with key poses with non-zero weights and low maximum joint

errors to reduce the error. However, when a key pose with the lowest maximum joint error

had the largest weight, using distributed representation would yield a larger error than using

the key pose. Hence, NND-AMM performance was the worst when d was small.

Fig. 4.19. Change of proportions of true human-pose estimates with different maximum
Euclidean distances. Numbers in the legend are the percentages of true human-pose esti-
mates computed by the three models when d = 0.2m.
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4.5.2 Effectiveness of distributed representation in NND-AMM

We analyzed the performance of NND-AMM at different clustering-inconsistency-coefficient

thresholds. When the threshold was changed, the number of neurons (key poses) in the key-

pose layer of NND-AMM was changed. The variation is shown in Figure 4.20. When the

threshold was zero, the hierarchical-clustering method was not performed. In other words,

each key pose was a human pose in the human-pose database. The figure shows a de-

creasing trend in the number of key poses as the threshold increases. When the threshold

was between 0.1 and 0.7, the number of key poses was almost the same. It showed that

human poses in human-pose database contained natural clusters that were well-separated

from each other.

In general, a large threshold could reduce the number of neurons (key poses) and hence

the processing time in NND-AMM. However, errors in HPE would increase. In practice,

an optimal threshold could be selected by computing the errors over a range of thresholds

on a validation set, and compromising between the errors and the number of neurons.

Note that there was only one key pose when the threshold was bigger than or equal to

1.2. Thus, NND-AMM was only evaluated when the threshold was set between 0 to 1.1.

Figure 4.21 shows two key poses (in red) and human poses (in blue) belonging to each key

pose when the threshold was set to 1.

Comparison based on the average-joint-error metric ζ1

Figure 4.22 shows the variation of average joint errors and their standard deviations

incurred in NND-AMM when the threshold was changed from 0 to 1.1 with a step size

equal to 0.1. The errors incurred in AMM were also included as a reference for com-

parison between AMM and NND-AMM. As AMM used human poses in the human-pose

database instead of key poses computed in clustering, the errors in AMM were not affected

by the threshold. For NND-AMM, the average joint error had an increasing trend when the

threshold increased, except that it was decreased at first at the threshold 0.1 and was almost

identical until at the threshold 0.7. The reduction of error was due to two reasons. First,
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Fig. 4.20. Change of number of key poses in NND-AMM with different clustering-
inconsistency-coefficient thresholds.

the number of key poses was decreased, and thus there was a higher chance to put more

weights to key poses similar to ground-truth human poses. Second, the decrease of key

poses did not affect key poses to represent human poses in the human-pose database. As

the number of key poses was almost the same at a threshold between 0.1 and 0.7, the errors

were similar (they were not identical because the numbers of key poses in different trials

and cross-validation sets were different). Finally, as the number of key poses decreased fur-

ther, key poses could not represent human poses in the human-pose database. Therefore,

the error was increased. For the change of standard deviations, it was in general increased

when the threshold increased because the variation of key poses was increased. Overall,

the result showed that the distributed representation in NND-AMM could effectively re-

duce the number of key poses while keeping similar performance of AMM over a range of

thresholds.
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(a) (b)

Fig. 4.21. Two key poses (in red) and human poses belonging to each key pose (in blue)
when the clustering-inconsistency-coefficient threshold is set to 1.

Comparison based on the average-pose-accuracy metric ζ2

Figure 4.23 shows the performance change of NND-AMM at different thresholds. The

percentages of true human-pose estimates computed at d = 0.2m are explicitly shown in

the figure. Curves corresponding to thresholds from 0 to 0.7 were overlapped with each

other, showing that their percentages of true human-pose estimates were similar. As the

threshold continued to increase, the percentage was decreased. This was consistent with

the result evaluated with the average-joint-error metric.

4.5.3 Comparison of our proposed models with existing works

We used the same error metric (average-joint-error metric ζ1) that was used in some

existing works [70] [49] [50] and compared their performance with our proposed models
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Fig. 4.22. Error change of human poses estimated by AMM and NND-AMM with different
clustering-inconsistency-coefficient thresholds.

(AMM, NN-AMM and NND-AMM when the clustering-inconsistency-coefficient thresh-

old was set to 0.6). Table 4.3 shows the errors and standard deviations of HPE incurred in

the existing works and our proposed models. When we compared AMM and the existing

works, AMM incurred the lower error and standard deviation, showing that using human

actions could reduce errors in HPE. Both the errors and standard deviations incurred in

NND-AMM were the lowest.

4.5.4 Adaptability of the three models with different features

The adaptability of a model can be measured by its performance with different model

input because the underlying human-pose distribution depends on model input. Thus, we

compared the performance of each model when its input was changed from non-occluded

VISH features to occluded and reconstructed VISH features.
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Fig. 4.23. Change of proportions of true human-pose estimates with different maximum
Euclidean distances. The clustering-inconsistency-coefficient threshold is denoted by t.
Numbers in the legend are the percentages of true human-pose estimates computed using
different thresholds when d = 0.2m.

Table 4.3 The errors and standard deviations (S.D.) of HPE in the Stanford TOF Motion
Capture Dataset [70]. The errors and standard deviations of the existing works were ob-
tained from their papers.

Error (m) S.D. (m)
HC and EP Method [70] 0.1 N.A.

Data-driven Hybrid Method [49] 0.0618 0.0424
Exemplar Method [50] 0.038 N.A.

AMM 0.0269 0.0328
NN-AMM 0.0261 0.0307

NND-AMM 0.0235 0.0255

Comparison based on the average-joint-error metric ζ1

Table 4.4 shows the performance of each model based on the average joint error ζ1.

Each column shows the errors incurred in the three models with a specific type of VISH

features, namely, non-occluded, occluded and reconstructed VISH features. In each model,

the error corresponding to the occluded VISH features was the highest compared with
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errors corresponding to non-occluded and reconstructed VISH features because occlusions

caused missing features. Reconstructed VISH features could infer the missing features

and thus yielded lower errors compared with occluded VISH features. For each type of

features, AMM performed the worst and NND-AMM performed the best. It was because

one factor in AMM was designed manually to measure the Euclidean distance between

two VISH features. When VISH features were occluded, the factor couldn’t adapt itself

and the Euclidean distance between features was not a reasonable measure. Thus, errors

in AMM were increased almost two times when the input was changed from non-occluded

to occluded features. On the other hand, factors in NN-AMM and NND-AMM could be

adapted automatically. Thus, errors of the two models were increased about 1.5 times.

Table 4.4 Average Joint Errors (in meters) of HPE with different VISH features. Numbers
on the left and in the parentheses are the average joint errors and standard deviations of
HPE, respectively.

Model Non-occluded Occluded Reconstructed
AMM 0.0269 (0.0328) 0.0526 (0.0628) 0.0371 (0.0430)

NN-AMM 0.0261 (0.0307) 0.0390 (0.0446) 0.0366 (0.0427)
NND-AMM 0.0235 (0.0255) 0.0346 (0.0360) 0.0336 (0.0339)

Comparison based on the average-pose-accuracy metric ζ2

Figure 4.24 shows the performance of each model with different types of features as

input. The percentages of true human-pose estimates computed by the three models when

d = 0.2m are explicitly shown in the figure. The result was consistent with the previous

result evaluated on the average-joint-error metric ζ1. Overall, the performance of AMM

with occluded VISH features was the worst. Also, AMM improved the performance the

most when its input was changed from occluded to reconstructed VISH features. This

change showed the drawback of designing factors manually in AMM. On the other hand,

the performance of NND-AMM was the best when using occluded and reconstructed VISH

features.
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Fig. 4.24. Change of proportions of true human-pose estimates with different features.
Non-occl, occl and recons are abbreviations for non-occluded, occluded and reconstructed
VISH features, respectively. Numbers in the legend are the percentages of true human-pose
estimates when d = 0.2m.

4.6 CONCLUSIONS

In this chapter, we have identified shortcomings of designing factors manually in a

Bayesian network. The shortcomings are that (1) the design process is laborious and (2)

factors may not represent the underlying probability distributions. These shortcomings ex-

ist in the action-mixture model (AMM), which is described in Chapter 3. Specifically, by

considering AMM as a Bayesian network, factors in AMM are the pmf of action classifica-

tion and base distributions. They are designed manually by incorporating human actions in

HPE. Although AMM has been shown to outperform some existing works, they may still

not represent the underlying distributions.

Being motivated by the shortcomings, we have proposed a mapping that realizes a

Bayesian network by a feedforward NN. Based on the proposed mapping, factors can be

designed automatically from training data. The proposed mapping eliminates the laborious

step of designing factors manually. It consists of two steps, namely structure identifica-
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tion and parameter learning. In the structure identification, a bottom-up approach has been

presented to build a feedforward NN with modules that represent factors of a Bayesian net-

work. In the parameter learning, a part-based approach has been presented to learn synaptic

weights by decomposing a feedforward NN into parts. This way each part contains seman-

tic meaning and synaptic weights in one part can be used as initial weights for training the

following part in a part sequence.

Using the proposed mapping, we have extended our previous work on AMM and built

NN-AMM. Through the realization, the learning capability and adaptability of NNs can be

transferred to AMM. Also, the proposed mapping designs and interprets a feedforward-NN

architecture systematically based on the semantic meaning of random variables in AMM.

A NN-based HPE system has been presented by building a scalable NND-AMM based on

NN-AMM. In the system, key poses are represented by cluster prototypes that are deter-

mined using the hierarchical-clustering method. Human poses are estimated using a linear

combination of cluster prototypes.

The performance of each model (AMM, NN-AMM, and NND-AMM) was analyzed.

Both the errors incurred in AMM and NN-AMM were similar, showing that the proposed

mapping could effectively design factors of AMM automatically. The error incurred in

NND-AMM was the lowest among our proposed models and some existing works, even

though the number of key poses in NND-AMM was lower than that in AMM and NN-

AMM. The adaptability of NND-AMM was tested by comparing its error with the errors

incurred in AMM and NN-AMM using non-occluded, occluded and reconstructed VISH

features. The results showed that both NN-AMM and NND-AMM could adapt to differ-

ent features. This validated the adaptability of using feedforward NNs to design factors

automatically.
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5. CONCLUSIONS AND FUTURE RESEARCH

5.1 Summary and Conclusions

In this thesis, we focused on estimating human poses from observations that were cap-

tured by a stationary depth sensor. We explored methodologies for solving the HPE prob-

lem, and achieved contributions mainly in two aspects: feature extraction and human-pose

modeling.

In the feature-extraction aspect, our research effort centered on reducing feature ambi-

guity. We used a depth sensor to capture an observation, which was a 3D point cloud. From

a 3D point cloud, a 3D-point-cloud feature VISH, which utilized the geometric property

of a 3D point cloud, was proposed to represent an observation of a person. The proposed

feature could be considered as a 3D adaptation of HOG. It contained the geometric struc-

ture of a 3D point cloud by arranging 3D points into a tree structure, which preserved the

global and local properties of 3D points. It was derived through the steps of 3D-point-

cloud preprocessing, hierarchical structuring and feature extraction. In the pre-processing

step, region-based thresholding and pseudo-residual were used to stabilize a 3D point cloud

from a person. The stable 3D point cloud was then organized into a tree structure. The 3D

orientation (pan, tilt and yaw angles) and shape features were extracted from each node in

the tree to describe the geometric distribution of 3D points. VISH was derived by com-

bining all the features and therefore preserved the spatial ordering of the stable 3D point

cloud. The proposed feature was evaluated on a benchmark dataset and compared with two

existing geometric features. Experimental results showed that the proposed feature had

the lowest overall error in HPE, and the tree structure (spatial ordering) was particularly

important to remove the ambiguity of symmetric 3D human poses.

When modeling human poses, we first defined factors manually in order to express

our beliefs in HPE. Then, we automated the process of designing factors by using training
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data. In the case of designing factors manually, we proposed a non-parametric action-

mixture model (AMM) that estimated human poses using the result of action classification.

Based on the concept of distributed representation, high-dimensional human-pose space

was represented using low-dimensional manifolds. In AMM, human poses in each man-

ifold were modeled using a base distribution without making stronger assumptions about

the nature of the human-pose distribution compared with other parametric models such as

an exponential family of distributions. Instead, a base distribution was estimated using

an instance-based learning algorithm that measured the similarity of VISH features in the

estimation step and frequency of actions in the redistribution step. The action associated

with a VISH feature was then classified by the bootstrap aggregating algorithm (bagging)

to determine weighting coefficients in combining low-dimensional manifolds. As human

poses estimated by the proposed AMM were in discrete space, a kinematic model was

used to model the spatial relationship between body parts in continuous space to reduce the

quantization error in AMM. Computer-simulation results showed that using multiple low-

dimensional manifolds could represent human-pose space and increase the accuracy and

precision of human-pose estimates. The overall error and standard deviation were reduced

compared with existing approaches without action classification.

As manually designing factors was laborious and yet, the designed factors might not

represent the underlying probability distributions, we proposed to use a neural network

to automatically design factors in AMM. AMM was extended by realizing it using NN-

AMM. The realization introduced the neural-network adaptability to AMM so that factors

of AMM could be designed automatically by using NN-AMM. It also introduced the se-

mantic meaning of random variables in AMM to NN-AMM so that the network architec-

ture of NN-AMM could be designed and interpreted systematically. The realization process

consisted of structure identification and parameter learning. In the structure identification,

a bottom-up approach was proposed to build NN-AMM with modules that represented

factors of AMM. In the parameter learning, a part-based approach was proposed to learn

synaptic weights by decomposing NN-AMM into parts. With this approach, parts con-

tained semantic meaning, and synaptic weights in one part could be used as initial weights
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for training the following part in a part sequence. As the number of key poses in NN-AMM

could be large, NND-AMM was created by representing key poses using cluster prototypes

that were determined using the hierarchical-clustering method. Based on the concept of

distributed representation, human poses were estimated using a linear combination of clus-

ter prototypes. Thus, NND-AMM was scalable. In the experiment, the performance of

AMM and NN-AMM was similar, showing that the realization process could effectively

design factors of AMM automatically. Human poses estimated by NND-AMM were more

accurate than human poses estimated by AMM and NN-AMM even though the number of

key poses in NND-AMM was less than that in AMM and NN-AMM. Existing works were

compared with NND-AMM and the error incurred in NND-AMM was the lowest.

5.2 Future Research

The study of feature extraction and human-pose modeling using a stationary depth sen-

sor can be extended to the case when observations are captured by a moving depth sensor.

The extension has a broader impact on human-robot interaction as robots are often mounted

with depth sensors. It is a challenging research topic. We believe there are three compo-

nents along the direction of the extension. The three components are:

• HPE in the stationary case. When a moving depth sensor is capturing a scene, the

viewpoint of the sensor in each frame can be considered as the viewpoint of a station-

ary depth sensor. Human poses can then be estimated using methods proposed in this

thesis. However, the viewpoint of a moving depth sensor may be changing among

frames. In some frames, the sensor may not be facing towards the person of interest.

To test how different viewpoints affect HPE, we could mount a depth sensor on a

mobile/humanoid robot and move the robot randomly around the person of interest.

The sensor will then be at different distances and angles from the person. We expect

that the body size of the person in the 3D point cloud captured by the sensor will be

altered when the distance between the sensor and the person changes. Also, in some

frames, the person may not be captured by the sensor. Proposed methods in this the-
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sis could be extended to handle the two cases above or determine the viewpoint of

the sensor such that the two cases above can be avoided.

• Human-pose prediction. After the current human pose is estimated, a human pose

at a future time should be predicted so that a robot with a depth sensor will have

enough time to move to the position and orientation determined by the component of

best-viewpoint determination below. If the future time is short, the predicted human

pose should be close to the current human pose. However, the prediction problem is,

in general, a difficult problem because human is highly articulated. For example, if

the future time is long enough, a person can move through a wide range of human

poses. We could consider the human motion, such as walking, of a person is known

in advance so that human poses could be predicted by matching the current human

pose in the motion.

• Best-viewpoint determination. Since the viewpoint of a moving depth sensor can be

changed over time, we expect that the viewpoint can be used to increase the accuracy

of HPE. In this aspect, we proposed a framework [130] that determined the best view-

point by directly mapping a human pose to the best viewpoint without human-body

reconstruction. The proposed framework consisted of four stages: 3D-point-cloud

pre-processing, viewpoint instantiation, feature extraction and pose estimation, and

viewpoint evaluation. The 3D point cloud of a human captured by depth sensors was

first extracted and filtered. The viewpoints of the depth sensors were instantiated us-

ing the finite camera model. VISH features were then extracted from depth images

generated from instantiated viewpoints. Each viewpoint was evaluated for every hu-

man pose estimated by k-NN based on the matching of the VISH features. Experi-

mental results showed that different viewpoints affected the accuracy of human-pose

estimates. The maximum reductions of the mean errors (standard deviations) for two

subjects were about 30% (46%) and 23% (41%), respectively. Although the proposed

framework could reduce the mean errors, the possible viewpoints were computed in

advance in the training phase and they were in discrete space. The relationship be-
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tween the angle of a person facing and the best viewpoint of the sensor should be

investigated so that the possible viewpoints could be computed on-the-fly and the

mapping can be extended from discrete space to continuous space.
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