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Resumen

El problema de localización y construcción simultánea de mapas (del inglés Simultaneous
Localization and Mapping, abreviado SLAM) consiste en localizar un sensor en un mapa
que se construye en ĺınea. La tecnoloǵıa de SLAM hace posible la localización de un robot
en un entorno desconocido para él, procesando la información de sus sensores de a bordo y
por tanto sin depender de infraestructuras externas. Un mapa permite localizarse en todo
momento sin acumular deriva, a diferencia de una odometŕıa donde se integran movimientos
incrementales. Este tipo de tecnoloǵıa es cŕıtica para la navegación de robots de servicio y
veh́ıculos autónomos, o para la localización del usuario en aplicaciones de realidad aumentada
o virtual.

La principal contribución de esta tesis es ORB-SLAM, un sistema de SLAM monocular
basado en caracteŕısticas que trabaja en tiempo real en ambientes pequeños y grandes, de
interior y exterior. El sistema es robusto a elementos dinámicos en la escena, permite cerrar
bucles y relocalizar la cámara incluso si el punto de vista ha cambiado significativamente, e
incluye un método de inicialización completamente automático. ORB-SLAM es actualmente
la solución más completa, precisa y fiable de SLAM monocular empleando una cámara como
único sensor. El sistema, estando basado en caracteŕısticas y ajuste de haces, ha demostrado
una precisión y robustez sin precedentes en secuencias públicas estándar.

Adicionalmente se ha extendido ORB-SLAM para reconstruir el entorno de forma semi-
densa. Nuestra solución desacopla la reconstrucción semi-densa de la estimación de la trayec-
toria de la cámara, lo que resulta en un sistema que combina la precisión y robustez del SLAM
basado en caracteŕısticas con las reconstrucciones más completas de los métodos directos.
Además se ha extendido la solución monocular para aprovechar la información de cámaras
estéreo, RGB-D y sensores inerciales, obteniendo precisiones superiores a otras soluciones del
estado del arte. Con el fin de contribuir a la comunidad cient́ıfica, hemos hecho libre el código
de una implementación de nuestra solución de SLAM para cámaras monoculares, estéreo y
RGB-D, siendo la primera solución de código libre capaz de funcionar con estos tres tipos de
cámara.
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Abstract

Simultaneous Localization and Mapping (SLAM) is the problem of localizing a sensor in a
map that is built online. SLAM technology can enable robot localization in unknown envi-
ronments by processing onboard sensors and therefore not relying on external infrastructure.
A map allows to continually localize in the same environment without accumulating drift,
in contrast to odometry approaches where incremental motion is integrated over time. Such
technology is critical for the navigation of service robots and autonomous vehicles, or to
localize a user in virtual or augmented reality applications.

The main contribution of this thesis is ORB-SLAM, a feature-based monocular SLAM
system that operates in real time, in small and large, indoor and outdoor environments. The
system is robust to severe motion clutter, allows wide baseline loop closing and relocalization,
and includes full automatic initialization. ORB-SLAM is currently the most complete, accu-
rate and reliable solution for SLAM using a monocular camera as single sensor. This system
being based on features and bundle adjustment, has demonstrated unprecedented accuracy
and robustness in standard public datasets.

A further contribution is an extension of ORB-SLAM to perform semi-dense reconstruc-
tions. We decouple the semi-dense reconstruction from the camera trajectory estimation,
resulting in a system that combines the accuracy and robustness of feature-based SLAM
with the more complete reconstruction of direct methods. We have also extended the origi-
nal monocular solution to exploit the information from stereo, RGB-D and inertial sensors,
achieving accuracy results beyond other state-of-the-art solutions. To the benefit of the sci-
entific community, we have made open-source an implementation of our proposed SLAM
solution for monocular, stereo and RGB-D cameras, which is the first-of-its-kind.
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Chapter 1

Introduction

1.1 Visual Simultaneous Localization and Mapping

Imagine a robot that has to perform a task in an unknown environment, as a cleaning robot
in a house or a surveillance drone in an installation. In order to succeed in the mission the
robot needs to localize itself in this environment. There might exist an external infrastructure
to localize the robot, as a motion capture or global positioning system (GPS). However these
systems might be expensive, non-available or not as accurate as required. It is desirable
that localization is performed, as animals and humans do, by processing information from
onboard sensors.

The simplest method to localize a robot is to process the sensor information to compute
incremental motion, which is called odometry. This allows to retrieve the trajectory of the
robot, which will inevitably accumulate error making the estimated trajectory to drift from
the real trajectory performed by the robot. Odometry techniques are suitable for short-term
motion estimation, but for long-term operation in the same environment one would desire
to have a map that allows drift-free localization. Mapping is the process of creating a
map from onboard sensors given that localization is known. However in order to localize
the robot we have introduced the necessity of having a map. This problem is known as
Simultaneous Localization and Mapping (SLAM), where we aim to solve localization
and mapping simultaneously. This problem involves several challenging subproblems:

� Initialization. As we aim to solve both mapping and localization at the same time,
this is the problem of localizing the robot during the first moments when there is no
map. Depending on the sensor this can be straightforward (e.g. stereo cameras, lasers)
or very challenging (e.g. monocular cameras).

� Loop closing. SLAM and odometry techniques behave similarly in exploratory tra-
jectories. However the map created by SLAM can be used to estimate the drift ac-
cumulated in exploration when returning to an already mapped environment. This
loop closing capability requires an specific mechanism to detect loops and to correct
them and its effectiveness is directly related to the richness of the sensor information
to discriminate among visited locations.
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� Relocalization. Localization is typically performed by predicting the current loca-
tion of the robot from a previous state and finding correspondences between sensor
measurements and the map. This process can fail for instance if the prediction made
assumptions on the motion of the robot that are violated, or correspondences to the
map cannot be found due to an occlusion of the sensor. In such events, a relocaliza-
tion method is needed to find the location of the robot in the map without a prior
prediction. This is also the problem of finding the initial location of the robot in the
map when the robot is powered on in an already mapped environment. Relocalization
also allows to perform mapping in several sessions. Again relocalization is more or less
challenging depending on the sensor information being more or less rich to recognize
the environment.

� Map reuse. A map can represent many aspects of the environment, like structure,
semantics, topology, etc. However the main purpose of a map for SLAM is to localize
the robot in it. Therefore when the robot is traversing an already mapped region, it
should not duplicate the map but localize using the already existing map. The key
problem here is how to determine which portion of the map has to be active to search
for correspondences for localization in an scalable manner, which become critical for
large scale operation. Relocalization and loop detection play an important role in
determining this active portion of the map.

� Real-time. The goal of SLAM is to provide localization and map information to the
robot so that it can be used to accomplish its mission. Therefore all algorithms have
real-time constraints, and should scale well both in long-term and large-scale operation.

� Robustness. Finding correspondences between sensor measurements and the map can
almost inevitably introduce wrong correspondences. SLAM techniques usually assume
a static world and mapping dynamic elements can deteriorate accuracy or even make
the system to fail. Therefore the SLAM system has to incorporate mechanisms to
detect or reduce the impact of these outlier correspondences. Robustness also concerns
the precision of the relocalization and loop detection method.

Among the sensors that provide information from the external world, known as extero-
ceptive sensors, vision is probably the most promising alternative. Cameras are passive
sensors, at least traditional cameras (i.e. no RGB-D sensors), which means that they observe
the world without altering it, in contrast to active sensors that require for example to send
a signal and measure its reflection. Cameras are also relatively inexpensive and compact.
We have the evidence that humans and many animals use vision as primary sensor to move
through space and recognize places. In this sense, a single image contains a vast amount of
information of the environment that can be used for place recognition, which is critical
for loop detection and relocalization. Therefore visual SLAM, where a vision system is
the main sensor, has been strongly developed in the last decade. In this thesis we aim to
make our contribution to the advancement of the state-of-the-art of this field, which has
great potential to enable life-changing technologies like autonomous vehicles, service robots
or virtual and augmented reality applications.
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In the following sections we introduce some basic mathematical formulations regarding
sensors and optimization methods used in visual SLAM, we present the contributions of this
work and the associated publications, open-source software and other dissemination.

1.2 Sensors for Visual SLAM

In this section we describe the main sensors for visual SLAM. A list of advantages and
drawbacks of each sensor is shown in Table 1.1. The most common types of cameras for
visual SLAM are shown in Fig. 1.1.

Table 1.1: Sensors for visual SLAM

Sensor Advantages Drawbacks
Monocular � Smallest � Scale is unobservable

� Lowest power consumption � Scale drift
� Cheapest � 3D only from multi-view
� Minimal calibration � No mapping under pure rotations

� Non-trivial SLAM initialization
Stereo � 3D from one stereo frame � More processing per frame

� Trivial SLAM initialization � Extrinsic calibration
RGB-D � Directly provide dense depth map � Active sensor (interference)

� Trivial SLAM initialization � Only indoors
� Dense maps � Complex calibration

� Power consumption
IMU � Inter-frame motion estimation � Varying sensor biases

� Pitch and roll are observable � Gravity must be compensated
� Scale for monocular SLAM � Observability issues

� Visual-inertial calibration
� Synchronization

(a) Monocular (b) Stereo (c) RGB-D

Figure 1.1: Different camera modalities for visual SLAM.
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1.2.1 Monocular Camera

Monocular cameras are mainly composed of the image sensor and lens. We assume that the
camera can be accurately modeled as a pinhole camera [28], once lens distortion has been
removed, so that a 3D point XC ∈ R3 in the camera coordinate reference system C is projected
into 2D pixel coordinates x with the projection function πm : R3 → R2:

x = πm (XC) =

[
fx

X
Z

+ cx

fy
Y
Z

+ cy

]
, XC = [X, Y, Z]T , x = [u, v]T , (1.1)

where fx and fy are the horizontal and vertical focal lengths, and cx and cy the horizontal and
vertical coordinates of the principal point. These are intrinsic calibration parameters that can
be computed from several images of a known calibration pattern. The camera coordinate
system C has its origin at the optical center. With respect to the image, the Z axis is
looking forward, the X axis is horizontal and points to the right, and the Y axis is vertical
and points downwards. The projection function π assumes no distortion introduced by the
lens. In practice distortion effects exist and have to be modeled so that one can transform
from distorted to undistorted coordinates. Well known software and libraries like Matlab
or OpenCV include toolboxes for camera calibration, including distortion. In this thesis we
focus on cameras having a field of view (FOV) up to ∼ 100◦, for omnidirectional cameras and
fisheye with very wide FOV, there exist more sophisticated mathematical models [70]. Global
shutter cameras, which capture the full image at the same instant, are common in industry
and when especially designed for computer vision, but consumer cameras are typically rolling
shutter cameras, where pixel rows are captured at different time instants. Rolling shutter
cameras produce artifacts when the camera or elements in the scene are moving, and reduce
the accuracy of visual SLAM if not properly modeled. Modeling rolling shutter effect is out
of the scope of this thesis, and we refer the reader to recent works such as [63] or [34].

Monocular cameras cannot observe the true scale of the world, and therefore monocular
SLAM can only estimate the map and camera trajectory up to scale. In addition scale can
drift and make distant portions of the map to be at different scales. Additional sources of
information like IMU or known distances in the map are required to scale the solution.

1.2.2 Stereo Camera

Stereo cameras are composed of two rigidly attached cameras. Ideally both cameras are
hardware synchronized so that image capturing is triggered at the same time. Depth can
be estimated from just one stereo frame by finding correspondences between left and right
pixels. To this end, in addition to intrinsic calibration of both cameras, the rotation and
translation between both cameras have to be calibrated by processing several stereo frames
of a calibration pattern. OpenCV also has a module for stereo calibration. The distance
between both cameras, known as the baseline b, along with focal length and image resolution
will determine the depth range at which depth estimation is accurate. As a rule of thumb
depth can be accurately estimated if it is less than 40 times the stereo baseline [64]. In order
to facilitate stereo matching, images are typically rectified, removing distortion and rotating
them so that the epipolar lines are horizontal, i.e. the correspondence of a pixel in the left
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image lies on the same row in the right image. The projection function for a rectified stereo
camera πs : R3 → R3 is defined as follows:

x = πs (XC) =


fx

X
Z

+ cx

fy
Y
Z

+ cy

fx
X−b
Z

+ cx

 , XC = [X, Y, Z]T , x = [uL, vL, uR]T , (1.2)

where (uL, vL) are the coordinates in the left image and uR is the horizontal coordinate in
the right image. The vertical coordinates in both images are the same, vR = vL. We assume
here that left and right cameras have the same intrinsic parameters after rectification.

1.2.3 RGB-D Camera

RGB-D cameras are the combination of a monocular RGB camera and a depth sensor, based
on structured light or time of flight. By knowing the intrinsic calibration of the camera
and extrinsic calibration between the camera and depth sensor, the measured depth can be
registered into a depth map with 1:1 pixel correspondences to the RGB image. That implies
that for every pixel in the image we know its depth without needing to perform a stereo
matching as in the case of the stereo camera. However due to the nature of the depth sensor
their use is restricted to indoors and the depth range is limited.

1.2.4 Inertial Measurement Unit

Inertial Measurement Units (IMU) are proprioceptive sensors composed of a gyroscope that
measures the angular velocity, and an accelerometer that measures the linear acceleration
of the sensor. While vision observes the external world, an IMU provides information of
self-motion, which makes both sensors complementary. IMU can be used to estimate the
motion between camera frames or to estimate the metric scale of monocular SLAM. Gravity
can also be estimated which makes absolute pitch and roll observable.

The IMU, whose reference we denote with B, measures the acceleration aB and angular
velocity ωB of the sensor at regular intervals ∆t, typically at hundreds of Hertzs. In addition
to sensor noise, both measurements are affected by slowly varying biases ba and bg of the
accelerometer and gyroscope respectively. Moreover the accelerometer is subject to gravity
gW and one needs to subtract its effect to compute the motion. The discrete evolution of the
IMU orientation RWB ∈ SO(3), position WpB and velocity WvB, in the world reference W, can be
computed as follows [21]:

Rk+1
WB = Rk

WB Exp
((
ωkB − bkg

)
∆t
)

Wv
k+1
B = Wv

k
B + gW∆t+ Rk

WB

(
akB − bka

)
∆t

Wp
k+1
B = Wp

k
B + Wv

k
B∆t+

1

2
gW∆t

2 +
1

2
Rk

WB

(
akB − bka

)
∆t2,

(1.3)

where Exp is the exponential map for 3D rotation group SO(3) [21].
In order to fuse IMU and vision, both sensors should ideally be hardware synchronized

so measurements from both sensors are timestamped with the same clock and without drift.
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Moreover both sensors have to be extrinsically calibrated to know the transformation TCB =
[RCB|CpB] between the reference of the camera and the IMU sensor [24].

1.3 Solving Visual SLAM

Given a stream of images by a vision sensor the question is how to exploit its information to
perform visual SLAM. There are two main approaches: feature-based and direct methods.

1.3.1 Feature-based Methods and Bundle Adjustment

Feature-based methods process the images to extract distinctive interest points (keypoints)
that can be reliably and repeatedly detected in images of the same scene ideally under dif-
ferent viewpoints and illumination conditions. A descriptor, typically a vector of binary or
real values of a certain length, is computed for each keypoint by operating on a patch of
pixels around the keypoint. This allows to match keypoints across images just by comparing
their descriptors. The combination of a keypoint and its descriptor is called a feature. Once
features have been extracted, the image can be discarded as feature-based methods only op-
erate on these features. The advantage is that features are geometric entities that are easy
to match and manipulate to compute initial solutions for geometry problems that are impor-
tant in visual SLAM, like triangulation, epipolar geometry, the Perspective-n-Point (PnP)
problem, and rigid body or similarity transformation between reference systems. Moreover
feature-based optimizations are based on minimizing the reprojection error which is a geo-
metric error with good convergence properties. Given a correspondence between a 3D point
in world coordinates XW and a 2D keypoint xC in a monocular camera, the reprojection error
eproj is computed as follows:

eproj = xC − πm (RCWXW + CpW) , (1.4)

where RCW ∈ SO(3) and CpW are the rotation and translation of the inverse of the camera
pose, which transforms points from world to camera coordinates.

The optimization of the positions of a set of points P and the poses of a set of cameras C,
minimizing the reprojection error, is called Bundle Adjustment (BA) [84] and it is the core
optimization performed in modern feature-based visual SLAM:

{Xj
W,R

i
CW, Cp

i
W | ∀j ∈ P , ∀i ∈ C} = argmin

Xj
W ,R

i
CW,Cp

i
W

∑
i,j

ρ
(∥∥xji − πm (Ri

CWX
j
W + Cp

i
W

)∥∥2

Σj
i

)
, (1.5)

where xji is the keypoint associated to 3D point Xj
W in camera i, Σj

i is the covariance of the
location of keypoint xji on the image of camera i, ‖·‖Σ is the mahalanobis distance, and ρ is a
robust cost function to downweight outlier correspondences. We use the Huber cost function
in our implementations.

The main limitation of these approaches is precisely that they can only exploit visual
information where features, typically corners, can be extracted. Lack of texture or motion
blur can make a feature-based method to fail or perform very poorly. In addition the map
generated by a feature-based approach is a sparse set of points with little use for other robotic
tasks other than localization.
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1.3.2 Direct Methods and the Photometric Error

Direct approaches use directly the sensor measurements, in this case the pixel intensity on
the image. A direct method can be dense [60], if all pixels on the image are used, semi-dense
[17] if only pixels with high gradient are considered, or sparse [16] if it only uses a small
set of pixels on the image. These methods are able to exploit visual information without
relying on keypoint detectors, and therefore are expected to be more accurate and robust
when there is little texture in the scene or blur on the image. The reconstruction of direct
SLAM consists in computing the depth associated to each pixel on selected cameras. The
optimization is based on minimizing the photometric error. Given the 2D coordinates of a
pixel x with estimated depth d on camera i, the photometric error ephoto when the pixel is
observed in camera j is defined as follows:

ephoto = Ii(x)− Ij
(
πm
(
Rj

CW

(
Ri

WCπ
−1
m (x, d) + Wp

i
C

)
+ Cp

j
W

))
, (1.6)

where I : R2 → R+ is the function that returns the interpolated pixel intensity on the image
for a given pixel position. π−1

m : R2×R→ R3 is the inverse projection function that computes
the 3D location XC of a 2D point x in the image, given its depth d:

XC = π−1
m (x, d) =


d u−cx

fx

d v−cy
fy

d

 , XC = [X, Y, Z]T , x = [u, v]T . (1.7)

The photometric error (1.6) assumes lambertian surfaces, no gain or exposure changes
between images, and no lens artifacts like vignetting. The recent sparse visual odometry
work of Engel et al. [16] shows how to incorporate photometric calibration and exposure
information in the photometric error. A photometric bundle adjustment, where several cam-
eras and associated depth maps are jointly optimized to minimize the photometric error,
is too computationally expensive for real-time SLAM in the case of dense and semi-dense
approaches, which impose smoothness priors on the depth maps. Engel et al. [16] shows
that by operating on a sparse set of pixels per image and without smoothness priors it is
affordable to perform a sliding window photometric bundle adjustment in real-time and in
standard CPUs.

The main limitation of dense and semi-dense approaches compared to a sparse direct
approach is the computational complexity that forbids to jointly optimize in real-time struc-
ture and cameras, which reduce the achievable accuracy of these methods. In general direct
optimizations only work if the initial seed for the optimization is close to the optimal, due to
the nature of the photometric error. The reprojection of a pixel has to be close to the optimal
projection so that the intensity gradients on the image can guide the optimization to its true
location. To mitigate this problem, direct methods use image pyramids, but still the basin
of convergence is narrower than for feature-based methods. This makes these methods more
sensitive to rolling shutter or low frame-rate. Finally direct methods cannot provide initial
solutions to geometry problems and rely on features to detect loops, compute the associated
drift, or relocalize the camera.
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1.3.3 Pose Graph Optimization

Bundle adjustment might be very expensive in large maps, moreover if the initial solution is
far from the optimum. This is the case of loop closing, where the drift accumulated in the
loop trajectory makes the state of the map to be far from the optimal and globally consistent
map. An approximation of the bundle adjustment solution is to discard the structure and
optimize only the camera poses, minimizing the relative transformation error. Given the
pose of two cameras Ti

CW ∈ SE(3) and Tj
CW ∈ SE(3), and a measurement of the relative

transformation T̂ij
CC ∈ SE(3), the relative transformation error erel is:

erel(i, j) = LogSE(3)

(
T̂ij

CCT
j
CWT

i−1

CW

)
, (1.8)

where LogSE(3) is the logarithm map [73] that transforms from the manifold SE(3) to the
tangent space which is locally Euclidean. In the monocular case, as there is scale drift, the
poses and relative transformation errors are defined in terms of similarity transformations
Sim(3) [75]. Given a set of edges in the pose graph X , we define the cost to be minimized
by the pose graph optimization:

C =
∑

(i,j)∈X

ρ
(
‖erel(i, j)‖2

Σij

)
. (1.9)

After a pose graph optimization one can perform some iterations of bundle adjustment
to get the optimal solution, which now will converge faster as the pose-graph optimization
output is close to the optimum.

1.3.4 Non-Linear Optimization

Bundle adjustment and pose graph optimization are non-linear optimizations that can be
solved using the standard Gauss-Newton method, and variants like Levenberg-Marquadt.
Given a minimization problem of the form:

x = argmin
x

C(x) =
∑
k

ρ
(
‖ek(x)‖2

Σk

)
, (1.10)

the solution can be found by iteratively solving the normal equations:(
JTWJ

)
∆x = −JTWe , (1.11)

where the hessian JTWJ and gradient JTe are computed as follows:

JTWJ =
∑
k

JTkWkJk

JTWe =
∑
k

JTkWkek

Jk =
∂ek(x + ∆x)

∂∆x
,

(1.12)
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where Wk are the weights computed from the robust cost function ρ and the covariance of
the measurements [84]. When dealing with camera poses or rotations the ∆x is computed
on the tangent space of the associated manifold. For example, if we are optimizing a rotation
R ∈ SO(3) we would compute an increment as RExp(δθ) and the Jacobians Jk would be
computed with respect to an increment δθ in the tangent space.

For more information about how to efficiently solve bundle adjustment we refer the reader
to [84]. Non-linear optimization on manifolds SE(3), SO(3) and Sim(3) is greatly explained
in [73] and a very clear description for SO(3) is given in [21]. In all our implementations we
have used the C++ optimization package g2o [38], which is a flexible tool for optimization
problems that can be represented as a graph.

1.4 Contributions

This thesis focus on investigating solutions for real-time, robust and accurate visual SLAM
using monocular, stereo, RGB-D and inertial sensors, with the capability of loop closing,
relocalization and map reuse. In particular we made the following contributions:

� A place recognition method for real-time loop detection and relocalization
[54]. The method is based on DBoW2 [25] using ORB features [69] and is able to
retrieve in less than 40ms the best image match in a keyframe database of 10K images.
Our experiments show that a relocalization based on this method can handle scale
changes between 0.4 and 2.9, any rotation around the optical axis, and an angular
deviation of the optical axis up to 59 degrees to a given keyframe in the database.
The method and evaluation is presented in Chapter 3. An improved version using
covisibility information is presented in Chapter 4. We have use this place recognition
module in all our visual SLAM approaches, with the same ORB vocabulary, achieving
excellent results.

� ORB-SLAM [53]. A feature-based system which is currently the most reliable and
complete solution for monocular SLAM, including a robust automatic initialization,
loop closing and relocalization. The system operates in real-time in large environments
and is able to process sequences from hand-held cameras, cars, ground robots or drones.
We extensively evaluate the solution in 27 public sequences achieving unprecedented
accuracy and robustness. Moreover we have made our implementation open-source.
We describe ORB-SLAM and present the evaluation in Chapter 4.

� A probabilistic semi-dense mapping method [55], which, integrated in ORB-
SLAM, results in a novel SLAM system that combines the high localization accuracy
of feature-based approaches and the semi-dense reconstruction of direct methods. This
system is described in Chapter 5.

� ORB-SLAM2 [56]. This is the first open-source SLAM solution for monocular, stereo
and RGB-D cameras. Our RGB-D results show that by using bundle adjustment we
achieve more accuracy than state-of-the-art implementations based on ICP or direct
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methods. By using close and far stereo points, and monocular observations in the
bundle adjustment, our stereo results are more accurate than the state-of-the-art direct
stereo SLAM. ORB-SLAM2 is described in Chapter 6.

� Visual-inertial monocular ORB-SLAM [57]. This is to the best of our knowledge
the first tightly-coupled keyframe-based SLAM solution able to metrically close loops
in real-time and reuse its map, to achieve drift-free localization in already mapped
environments. We also propose a novel IMU initialization method, which computes the
scale, the gravity direction, the velocity, and gyroscope and accelerometer biases, in a
few seconds with high accuracy. We test our system in the 11 sequences of a recent
micro-aerial vehicle public dataset achieving a typical scale factor error of 1% and
centimeter precision. We compare to the state-of-the-art in visual-inertial odometry in
sequences with revisiting, proving the better accuracy of our method due to map reuse
and no drift accumulation. The system is described in Chapter 7.

1.5 Dissemination

1.5.1 Peer-Reviewed Publications

The research developed in this thesis has resulted in the following peer-reviewed publications:

� Raúl Mur-Artal and Juan D. Tardós. “Fast Relocalisation and Loop Closing in Keyframe-
Based SLAM”. IEEE International Conference on Robotics and Automation (ICRA).
Hong Kong, China, June 2014.

� Raúl Mur-Artal and Juan D. Tardós. “ORB-SLAM: Tracking and Mapping Recogniz-
able Features”. RSS 14 Workshop on Multi VIew Geometry in RObotics (MVIGRO).
Berkeley, USA, July 2014.

� Raúl Mur-Artal and Juan D. Tardós. “Probabilistic Semi-Dense Mapping from Highly
Accurate Feature-Based Monocular SLAM”. Robotics: Science and Systems (RSS).
Rome, Italy, July 2015.

� Raúl Mur-Artal, J. M. M. Montiel and Juan D. Tardós. “ORB-SLAM: A Versatile and
Accurate Monocular SLAM System”. IEEE Transactions on Robotics, vol. 31, no. 5,
pp. 1147-1163, October 2015. (2015 IEEE Transactions on Robotics Best Paper
Award).

� Raúl Mur-Artal, and Juan D. Tardós. “Visual-Inertial Monocular SLAM with Map
Reuse”. IEEE Robotics and Automation Letters, 2017. (Accepted for publication).

The following publication is under review:

� Raúl Mur-Artal, and Juan D. Tardós. “ORB-SLAM2: an Open-Source SLAM System
for Monocular, Stereo and RGB-D Cameras”. ArXiv preprint arXiv:1610.06475, 2016.
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1.5.2 Open-Source Software

We have released the following open-source software:

� ORB-SLAM (https://github.com/raulmur/ORB_SLAM),

A Versatile and Accurate Monocular SLAM

� ORB-SLAM2 (https://github.com/raulmur/ORB_SLAM2),

Real-Time SLAM for Monocular, Stereo and RGB-D Cameras, with Loop Detection
and Relocalization Capabilities.

The Universidad de Zaragoza has licensed the software to companies in Asia, Europe and
America for its commercial exploitation in the fields of Robotics, Augmented and Virtual
Reality.

1.5.3 Videos

Demonstrating videos of ORB-SLAM:

� KITTI 00: https://youtu.be/8DISRmsO2YQ

� KITTI 05: https://youtu.be/sr9H3ZsZCzc

� fr3 office: https://youtu.be/_9VcvGybsDA

� fr3 walking halfsphere: https://youtu.be/ZdxgIbd7nhI

Demonstrating video of ORB-SLAM with semi-dense mapping:

� TUM RGB-D dataset: https://youtu.be/HlBmq70LKrQ

Demonstrating videos of ORB-SLAM2:

� Overview: https://youtu.be/ufvPS5wJAx0

� Tsukuba: https://youtu.be/dF7_I2Lin54

Demonstrating videos of visual-inertial ORB-SLAM:

� EuRoC MH05: https://youtu.be/JXRCSovuxbA

� EuRoC V102: https://youtu.be/rdR5OR8egGI
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1.5.4 Invited Talks

Some of the contents of this thesis have been presented in the following invited talks:

� Juan D. Tardós. “ORB-SLAM: a Real-Time Accurate Monocular SLAM System”.
Qualcomm Augmented Reality Lecture Series. Vienna, Austria, June 2015.

� Juan D. Tardós. “Visual SLAM: Feature-Based .vs. Direct Methods”. The Problem of
Mobile Sensors Workshop at RSS, Rome, Italy, July 2015.

� Raúl Mur-Artal. “Should we still do sparse feature based SLAM?”. The Future of
Real-Time SLAM Workshop at ICCV, Santiago, Chile, December 2015.

� Juan D. Tardós. “Feature-Based Visual SLAM”. SLAM Tutorial at ICRA, Stockholm,
Sweden, May 2016.
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Chapter 2

Related Work

2.1 Place Recognition

The survey by Williams et al. [88] compared several approaches for place recognition and
concluded that techniques based on appearance, that is image to image matching, scale better
in large environments than map to map or image to map methods. Within appearance based
methods, bags of words techniques [62], such as the probabilistic approach FAB-MAP by
Cummins and Newman [12], are to the fore because of their high efficiency. DBoW2 by
Gálvez-López and Tardós [25] used for the first time bags of binary words obtained from
BRIEF descriptors [7] along with the very efficient FAST keypoint detector [68]. This reduced
in more than one order of magnitude the time needed for feature extraction, compared to
SURF [2] and SIFT [45] features that were used in bags of words approaches so far. Although
the system demonstrated to be very efficient and robust, the use of BRIEF, neither rotation
nor scale invariant, limited the system to in-plane trajectories and loop detection from similar
viewpoints. In Chapter 3 we propose a bag of words place recognizer built on DBoW2 with
ORB [69] features. ORB are binary while being invariant to rotation and scale (in a certain
range), resulting in a very fast recognizer with good invariance to viewpoint. We demonstrate
in Section 3.2 the high recall and robustness of a secuential loop detector using this recognizer
in four different datasets, requiring less than 39ms (including feature extraction) to retrieve
a loop candidate from a 10K image database. In Section 3.3 we analyze the invariance to
viewpoint changes of a relocalization method based on this place recognizer, showing that it
tolerates scale changes from 0.36 to 2.93, any rotation around the optical axis, and up to 59
degrees of deviation from the optical axis. In Chapter 4 we improve this place recognizer,
using covisibility information and returning several hypotheses when querying the database
instead of just the best match, and embeed it on our own Visual SLAM pipeline to perform
relocalization and loop detection.

2.2 Monocular Initialization

Monocular SLAM requires a procedure to create an initial map because depth cannot be
recovered from a single image. One way to solve the problem is to initially track a known
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structure [13]. In the context of filtering approaches, points can be initialized with high
uncertainty in depth using an inverse depth parametrization [9], which hopefully will later
converge to their real positions. The recent semi-dense work of Engel et al. [17], follows a
similar approach initializing the depth of the pixels to a random value with high variance.

Initialization methods based on multiple view geometry [28] compute the camera motion
between two frames and triangulate an initial map. These methods either assume a dominant
plane in the scene, like in [23, 36], and recover the relative camera pose from a homography
using the method of Faugeras et al.[20], or like [42, 81], compute an essential matrix that
models planar and general scenes, using the five-point algorithm of Nister [61], which requires
to deal with multiple solutions. Both [20] and [61] methods are not well constrained under
low parallax and suffer from a twofold ambiguity solution if all points of a planar scene are
closer to one of the camera centers [43]. On the other hand if a non-planar scene is seen
with parallax, a unique fundamental matrix can be computed with the eight-point algorithm
[28] and the relative camera pose can be recovered without ambiguity. However planar or
low-parallax configurations are degenerated cases for the eight-point algorithm an can yield
catastrophic results if not detected.

We present in Section 4.2 a new automatic approach based on model selection between a
homography for planar scenes and a fundamental matrix for non-planar scenes. A statistical
approach to model selection was proposed by Torr et al. [82]. Under a similar rationale
we have developed a heuristic initialization algorithm that takes into account the risk of
selecting a fundamental matrix in close to degenerate cases (i.e. planar, nearly planar, and
low parallax), favoring the selection of the homography. In the planar case, for the sake
of safe operation, we refrain from initializing if the solution has a twofold ambiguity, as a
corrupted solution could be selected. Our proposed method delays initialization until the
method returns a unique solution with significant parallax.

2.3 Monocular SLAM

Monocular SLAM was initially solved by filtering [8, 9, 13, 14]. In that approach every frame
is processed by the filter to jointly estimate the map landmark locations and the camera
pose. It has the drawbacks of wasting computation in processing consecutive frames with
little new information for map refinement and the accumulation of linearization errors. On
the other hand keyframe-based approaches [36, 51] estimate the map using only selected
frames (keyframes) allowing to perform more costly but accurate bundle adjustment [84]
optimizations, as mapping is not tied to frame-rate. Strasdat et al.[76] demonstrated that
keyframe-based techniques are more accurate than filtering for the same computational cost.

The most representative keyframe-based SLAM system is probably PTAM by Klein and
Murray [36]. It was the first work to introduce the idea of splitting camera tracking and
mapping in parallel threads, and demonstrated to be successful for real time augmented
reality applications in small environments. The original version was later improved with
edge features, a rotation estimation step during tracking and a better relocalization method
[37]. The map points of PTAM correspond to FAST corners matched by patch correlation.
This makes the points only useful for tracking but not for place recognition. In fact PTAM
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does not detect large loops, and the relocalization is based on the correlation of low resolution
thumbnails of the keyframes, yielding a low invariance to viewpoint.

Strasdat et al.[75] presented a large scale monocular SLAM system with a front-end based
on optical flow implemented on a GPU, followed by FAST feature matching and motion-only
BA, and a back-end based on sliding-window BA. Loop closures were solved with a pose
graph optimization with similarity constraints (7DoF), that was able to correct the scale
drift appearing in monocular SLAM. From this work we take the idea of loop closing with
7DoF pose graph optimization and apply it to the Essential Graph defined in Section 4.1.4

Strasdat et al.[74] adapted the front-end of PTAM to perform tracking in a local map
retrieved from a covisibility graph, instead of the full map as done in the original approach.
They proposed a double window optimization back-end that continuously performs BA in
the inner window, and pose graph in a limited-size outer window. However, loop closing is
only effective if the size of the outer window is large enough to include the whole loop. In
our monocular SLAM system, described in Chapter 4 , we take advantage of the excellent
ideas of using a local map based on covisibility, and building the pose graph from the co-
visibility graph, but apply them in a totally redesigned front-end and back-end. Another
difference is that, instead of using specific features for loop detection (SURF), we perform
the place recognition on the same tracked and mapped features, obtaining robust frame-rate
relocalization and loop detection.

Pirker et al.[66] proposed CD-SLAM, a very complete system including loop closing,
relocalization, large scale operation and efforts to work on dynamic environments. However
map initialization is not mentioned. The lack of a public implementation does not allow us
to perform a comparison of accuracy, robustness or large-scale capabilities.

The visual odometry of Song et al. [72] uses ORB features for tracking and a temporal
sliding window BA back-end. In comparison our system is more general as they do not have
global relocalization, loop closing and do not reuse the map. They are also using the known
distance from the camera to the ground to limit monocular scale drift.

Lim et al.[42] use BRIEF features for tracking, mapping and loop detection. However the
choice of BRIEF limits the system to in-plane trajectories. Their system only tracks points
from the last keyframe so the map is not reused if revisited (similar to a visual odometry)
and has the problem of growing unbounded. We compare qualitatively our results with this
approach in Section 4.6.5.

The work of Engel et al.[17], known as LSD-SLAM, is a direct SLAM able to build large
scale semi-dense maps. Their results are very impressive as the system is able to operate in
real time, without GPU acceleration, building a semi-dense map, with more potential appli-
cations for robotics than the sparse output generated by feature-based SLAM. Nevertheless
they still need features for loop detection and their camera localization accuracy is signif-
icantly lower than in our system and PTAM, as we show experimentally in Section 4.6.2.
This surprising result is discussed in Section 4.7.2.

In a halfway between direct and feature-based methods is the semi-direct visual odometry
SVO of Forster et al. [23]. Without requiring to extract features in every frame they are able
to operate at high frame-rates obtaining impressive results in quadracopters. However as a
visual odometry the method is neither able to reuse its map nor to close loops.

Regarding keyframe selection, it is clear that running BA with all the points and all the
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frames is not feasible in real-time. The work of Strasdat et al. [76] showed that the most cost-
effective approach is to keep as much points as possible, while keeping only non-redundant
keyframes. The PTAM approach was to insert keyframes very cautiously to avoid an excessive
growth of the computational complexity. This restrictive keyframe insertion policy makes
the tracking fail in hard exploration conditions. Our survival of the fittest strategy achieves
unprecedented robustness in difficult scenarios by inserting keyframes as quickly as possible,
and removing later the redundant ones, to avoid the extra cost.

2.4 Stereo SLAM

A remarkable early stereo SLAM system was the work of Paz et al.[64]. Based on Con-
ditionally Independent Divide and Conquer EKF-SLAM it was able to operate in larger
environments than other approaches at that time. Most importantly, it was the first stereo
SLAM exploiting both close and far points (i.e. points whose depth cannot be reliably esti-
mated due to little disparity in the stereo camera), using an inverse depth parametrization
[9] for the latter. They empirically showed that points can be reliably triangulated if their
depth is less than ∼40 times the stereo baseline. In this work we follow this strategy of
treating in a different way close and far points, as explained in Section 6.1.1.

Most modern stereo SLAM systems are keyframe-based [76] and perform BA optimization
in a local area to achieve scalability. The work of Strasdat et al. [74] performs a joint
optimization of BA (point-pose constraints) in an inner window of keyframes and pose-graph
(pose-pose constraints) in an outer window. By limiting the size of these windows the method
achieves constant time complexity, at the expense of not guaranteeing global consistency. The
RSLAM of Mei et al. [49] uses a relative representation of landmarks and poses and performs
relative BA in an active area which can be constrained for constant-time. RSLAM is able to
close loops which allow to expand active areas at both sides of a loop, but global consistency
is not enforced. The recent S-PTAM by Pire et al. [65] performs local BA, however it lacks
large loop closing. Similar to these approaches our stereo visual SLAM, described in Chapter
6, performs BA in a local set of keyframes so that the complexity is independent of the map
size and can operate in large environments. However our goal is to build a globally consistent
map. Our system aligns first both sides of the loop, similar to RSLAM, so that the tracking
is able to continue localizing using the old map and then performs in parallel a pose-graph
optimization that minimizes the drift accumulated in the loop, followed by full BA.

The recent Stereo LSD-SLAM of Engel et al. [18] is a semi-dense direct approach that
minimizes photometric error in image regions with high gradient. Not relying on features,
the method is expected to be more robust to motion blur or poorly-textured environments.
However as a direct method its performance can be severely degraded by unmodeled effects
like rolling shutter or non-lambertian reflectance.

2.5 RGB-D SLAM

One of the earliest and most famed RGB-D SLAM systems was the KinectFusion by New-
combe et al. [59]. This method fused all depth data from the sensor into a volumetric dense
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model that was used to track the camera pose using ICP. This system was limited to small
workspaces due to its volumetric representation and the lack of loop closing. Kintinuous by
Whelan et al. [86] was able to operate in large environments by using a rolling cyclical buffer
and included loop closing using place recognition and pose graph optimization.

Probably the first popular open-source system was the RGB-D SLAM of Endres et al.
[15]. This is a feature-based system, whose front-end computes frame-to-frame motion by
feature matching and ICP. The backend performs pose-graph optimization with loop closure
constraints from a heuristic search. Similarly the back-end of DVO-SLAM of Kerl et al. [35]
optimizes a pose-graph where keyframe-to-keyframe constraints are computed from a visual
odometry that minimizes both photometric and depth error. DVO-SLAM also searches for
loop candidates in a heuristic fashion over all previous frames, instead of relying on place
recognition.

The recent ElasticFusion by Whelan et al. [87] builds a surfel-based map of the environ-
ment. This is a map-centric approach that forget poses and performs loop closing applying
a non-rigid deformation to the map, instead of a standard pose-graph optimization. The de-
tailed reconstruction and localization accuracy of this system is impressive, but the current
implementation is limited to room-size maps as the complexity scales with the number of
surfels in the map.

As proposed by Strasdat et al. [74] we use depth information to synthesize a stereo
coordinate for extracted features on the image. This way our visual SLAM system, described
in Chapter 6 is agnostic about the input being stereo or RGB-D. Differently to all above
methods our back-end is based on bundle adjustment and builds a globally consistent sparse
reconstruction. Therefore our method is lightweight and works with standard CPUs. Our
goal is long-term and globally consistent localization instead of building the most detailed
dense reconstruction. However from the highly accurate keyframe poses one could fuse depth
maps and get accurate reconstruction on-the-fly in a local area or post-process the depth
maps from all keyframes after a full BA and get an accurate 3D model of the whole scene.

2.6 Visual-Inertial SLAM

Visual-inertial fusion has been a very active research topic in the last years. The recent
research is focused on tightly-coupled (i.e. joint optimization of all sensor states) visual-
inertial odometry, using keyframe-based non-linear optimization, such as the relevant works
of Indelman et al. [30], Leutenegger et al. [41], Usenko et al. [85], Forster et al. [21]
and Concha et al. [10], or filtering, such as the relevant works of Mourikis and Roumeliotis
[52], Wu et al. [89] and Bloesch et al. [4]. Nevertheless these approaches are only able
to compute incremental motion and lack the capability to close loops and reuse a map of
an already mapped environment. This implies that estimated trajectory accumulates drift
without bound, even if the sensor is always localizing in the same environment. This is due to
the marginalization of past states to maintain a constant computational cost [4, 41, 52, 85, 89],
or the use of full smoothing [21, 30], with an almost constant complexity in exploration but
that can be as expensive as a batch method in the presence of loop closures [32]. The method
of Jones and Soatto [31], based on filtering, is able to close loops topologically and reuse its
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map, however global metric consistency is not enforced in real-time. Recently Lynen et al.
[47] presented a very well engineered system to perform visual-inertial tracking in a given
map which was built offline.

Building on the preintegration of Lupton and Sukkarieh [46], its application to the SO(3)
manifold by Forster et al. [21] and its factor graph representation by Indelman et al. [30],
we present in Chapter 7, Visual-Inertial ORB-SLAM, to the best of our knowledge the first
keyframe-based Visual-Inertial SLAM that is able to metrically close loops in real-time and
reuse the map that is being built online. Following the approach of ORB-SLAM, which we
present in Chapter 4 and that is inspired by the work of Klein and Murray [36], our tracking
optimizes the current frame assuming a fixed map, and our backend performs local Bundle
Adjustment (BA), optimizing a local window of keyframes, including an outer window of
fixed keyframes. In contrast to full smoothing, this approach allows for a constant time
local BA, and by not marginalizing past states, we are able to reuse them. We detect large
loops using place recognition and correct them using a lightweight pose-graph optimization,
followed by full BA in a separate thread, not to interfere with real-time operation.

34



Chapter 3

Place Recognition with ORB Features

One key ability of any visual SLAM system is to recognize already mapped environments.
This allows the system to relocalize the sensor after a tracking failure, which might happen
due to an occlusion or an abrupt movement, and to detect trajectory loops which can be
used to correct the error accumulated during exploration. In this Chapter we propose a
place recognition method building on DBoW2 [25] in combination with ORB [69] features,
for the tasks of sequential loop detection and relocalization. ORB are binary features which
are fast to extract and match, while they are rotation invariant and scale invariant in a
range. We build on this place recognition approach for the loop detection and relocalization
of ORB-SLAM that we present in Chapter 4.

3.1 Review of DBoW2

In order to detect if an image corresponds to a revisited place, bag of words techniques
summarize the content of an image by the visual words it contains. These visual words cor-
respond to a discretization of the descriptor space, known as the visual vocabulary. DBoW2
creates a vocabulary structured as a tree [62], in an offline step over a big set of descriptors,
extracted from a training image dataset.

Processing a new image consist in extracting keypoints and their descriptors, which are
assigned to a visual word traversing the precomputed vocabulary tree. As descriptors are
binary, distances are computed by the Hamming distance. The result is a bag of words
vector, containing the term frequency - inverse document frequency (tf-idf) score for each
word present in the image. This score is higher as more frequent is a word in the image and
less it was in the training dataset. This bag of words vector is then compared against the
bag of words vectors of the images in the database that is incrementally build. To speed up
the search on the database, DBoW2 maintains an inverse index, which stores for each word,
in which images it appeared.

The similarity between two bag of word vectors v1 and v2 is the L1-score:

s(v1,v2) = 1− 1

2

∣∣∣∣ v1

|v1|
− v2

|v2|

∣∣∣∣ (3.1)
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This score is normalized with the score one would expect to get for an image showing the
same place. For loop detection in a video sequence a reference score can be computed from
the previous image:

η(vi,vj) =
s(vi,vj)

s(vi,vi−1)
(3.2)

Images in the database close in time may have similar scores. DBoW2 takes advantage
of it, grouping images close in time and computing only one score for the group, which is
the sum of the individual scores. Individual scores have to be higher than a threshold α to
be considered. Once the database is searched, the group with the highest score is selected
and the image with the maximum individual score is considered as a loop candidate for the
query image.

A loop candidate in order no to be rejected has to be consistent with k previous queries. It
means that the groups with the highest scores for the last k images must form an overlapping
sequence. This temporal consistency test improves the robustness as a loop is only accepted
if supported by enough evidence.

Finally a loop candidate is accepted if it passes a geometrical check, which consists in
computing a fundamental matrix with RANSAC [28]. The search for initial correspondences
is performed exhaustively but only between those features that belong to the same node at
a level l of the vocabulary tree. The database uses a direct index that stores for each feature
in an image the node at level l it belongs.

3.2 Place Recognition with ORB

In this section we propose a place recognition in image sequences based on DBoW2 with
ORB features. We rely on the ORB extractor of OpenCV library and extract 1000 keypoints
at 8 scale levels with a scale factor of 1.2. We create the visual vocabulary in an offline step
with the large dataset Bovisa 2008-09-01 [5]. This dataset is a sequence with outdoors and
indoors areas, yielding a vocabulary that will provide good results in both scenarios. We
build a vocabulary of 6 levels and 10 clusters per level, getting one million words. Such a big
vocabulary is suggested in [25] to be efficient for recognition in large image databases.

The initial correspondences of ORB features between two images are computed by ex-
haustive descriptor comparison between features that belong to the same node at level 4 in
the vocabulary tree (counting from leaves up), and applying a nearest neighbor ratio of 0.6.
We propose the use of an orientation consistency test to filter out wrong correspondences, im-
proving the robustness and speeding up the geometrical verification. For each initial match,
we compute the rotation increment between the ORB keypoints in both images, voting for
rotations discretized in 60 bins, which we found suitable in our experiments to discard most of
the outliers. Only those correspondences of the three most voted rotations will be accepted.
An example of this orientation consistency test is shown in Fig. 3.1.

In order to evaluate the performance of our place recognizer, we run it in four image
sequences, NewCollege [71], Bicocca25b [5], Malaga6L [3] and CityCentre [11]. We measure
the recall and precision of the loops detected, processing the sequences at the same frequency
as in [25] and with the same geometrical test (fundamental matrix with RANSAC) in order
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(a) Putative matches.

(b) Discarded matches by orientation consistency test.

Figure 3.1: Example of the orientation consistency test to reject outlier matches between
oriented keypoints.

to make comparisons. In our geometrical test we include our orientation consistency test.
Experiments were performed in an Intel Core i5 @ 2.30 GHz computer with the parameters
shown in Table 3.1.

The results of our proposed loop detector and the results provided in [25] for DBoW2
with BRIEF and FAB-MAP 2.0 (only for two of the datasets) are shown in Table 3.2. Our
proposed loop detector achieves high recall in all datasets with no false positives (100 %
precision). Our results are better than the original results with BRIEF in all sequences,
by the exception of Bicocca25b. This can be explained because Bicocca25b is an indoor
sequence where loop events have a very similar point of view, in such case a descriptor
neither invariant to rotation nor to scale is expected to get better results. On the other
hand NewCollege, Malaga6L and CityCentre are outdoor sequences where there exist bigger
viewpoint differences at loop events, and therefore ORB, rotation invariant and scale aware,
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Table 3.1: Loop Detector Parameters

DBoW2 parameters ORB parameters

Temporal consistency (k): 3 Number of features: 1000
Score threshold (α): 0.3 Scale levels: 8
Direct index level (l): 4 Scale factor: 1.2
Nearest. neighbor ratio: 0.6

Visual vocabulary

Vocabulary tree levels: 6
Vocabulary clusters/level: 10

Table 3.2: Comparison with the results provided in [25].

Proposed DBoW2 FAB-MAP 2

Dataset Precision Recall Precision Recall Precision Recall

NewCollege 100% 70% 100% 56% - -

Bicocca25b 100% 77% 100% 81% - -

Malaga6L 100% 82% 100% 74% 100% 69%

CityCentre 100% 43% 100% 31% 100% 39%

performs better. Our approach gets also higher recall than FAB-MAP 2.0 in Malaga6L and
CityCentre. Figure 3.2 shows the robot trajectories in each dataset and the loops detected
by our proposed loop detector.

In order to complete the performance analysis of this loop detector, we ran it in a 10K
image sequence from NewCollege and measured the extraction time of ORB features and the
time spent to retrieve the best match when querying the database (not including geometrical
test). Times are shown in Fig. 3.3. ORB extraction is performed in 13.3 ms on average, and
image retrieval in less than 25 ms for a database containing 10K images. This makes the
proposed method suitable for real-time place recognition in large maps.

3.3 Viewpoint Invariance

The purpose of this experiment is to evaluate the robustness to viewpoint change of a relo-
cation system built on the place recognition presented in the previous section. Specifically
we measure the change in scale, the in-plane rotation and the change in viewpoint angle. We
start from the reconstruction of a wall with several textured posters using PTAM [36], the
mapping is then disabled, and the camera is occluded and moved to another place and we
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(a) NewCollege (b) Bicocca25b (c) CityCentre (d) Malaga6L

Figure 3.2: Loop detection results in each dataset. The trajectory is drawn in red when a
loop is detected.
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Figure 3.3: Execution times for 10K images from NewCollege.

try to relocalize it.

The relocalization method consists firstly in matching the current frame with a keyframe
created by PTAM, which are stored in the database of DBoW2. We use the same ORB
settings and vocabulary described in the previous section. Once there is a keyframe candidate,
we search for correspondences between ORB in the current frame and the keyframe candidate.
In order to compute the camera pose by using a Perspective-n-Point (PnP) algorithm, we need
the 3D location for the ORB in the keyframe. As ORB features used for place recognition are
different from the features used by PTAM for mapping we do not have 3D information for
ORB in the keyframe, therefore we interpolate the depth of each ORB feature with its three
nearest PTAM tracked features in the keyframe. All those ORB features that are further
away than 10 pixels from a tracked feature are discarded, as interpolation might be poor.
After this step we have a set of 2D (current frame) to 3D (keyframe) point correspondences.
We then use a RANSAC scheme, selecting at each iteration four correspondences and solving
a P4P problem [40], which returns a camera pose. If RANSAC is able to find a camera
pose supported by more than 40% of the initial correspondences (but at less 20 inliers), in
less than 178 iterations (99% of success), then the relocalization is considered successful.
The camera pose is refined using all inliers, and recomputing it once again if more inliers
are found. Fig. 3.4 shows the results of the experiments showing the PnP inliers for each
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Figure 3.4: On the left: PnP inliers at each relocalistation. On the right: an example for
each experiment. Blue lines are the inlier correspondences.

case. Our system can handle scale changes between 0.36 and 2.93, any in-plane rotation, and
the camera can relocate to a keyframe with an angle difference in the optical axis up to 59
degrees. This results are only indicative as they can vary with the scene properties (textures,
object distribution, etc.).

3.4 Discussion

In this chapter we have proposed a place recognition method based on DBoW2 and ORB
features with a novel orientation consistency test. The results of this place recognition for
loop detection in image sequences, presented in Section 3.2 outperform other state-of-the-
art approaches. We have also evaluated in Section 3.3 the invariance to viewpoint of a
relocalization method based on this place recognition achieving very satisfactory results with
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an invariance to scale between 0.36 and 2.93, any in-plane rotation, and an angle difference in
the optical axis up to 59 degrees. We also integrated the loop detection and relocalization in
PTAM and showed its good real-time performance in [54]. Based on this promising results we
build on this place recognition in Chapter 4 and integrate it in all the visual SLAM systems
described in this thesis. One of our main improvements that are explained in Section 4.1.5
is the use of covisibility information instead of temporal information. The place recognition
described in this chapter groups images in the database by temporal order to boost the recall
when querying the database. This is suitable for video sequences where the image database
is built by sampling images at a regular interval and for trajectories with only one revisit.
However when applied in a visual SLAM framework where the camera can continually revisit
the same environment, the keyframe database might contain several keyframes of the same
scene inserted at very different times. Therefore images should be grouped by covisibility of
the same scene instead of by temporal ordering.

We have tested our visual SLAM approaches in the well-known public NewCollege [71],
TUM RGB-D [78], KITTI [26] and EuRoC [6] datasets, and in hand-held demonstrations
in many different environments, achieving excellent loop detection performance and exhibit-
ing a bullet-proof relocalization. Moreover we have always used the same ORB vocabulary,
which containing 1 million words, demonstrates that when the vocabulary is large it can be
successfully applied to any environment. However, while the precision of the loop detector is
very high, it can potentially detect false loop closures in very repetitive man-made environ-
ments that would result in map corruption. Although we have not addressed this problem in
this thesis, we consider that loop closing strategies have to be robustified against false loop
closures [39, 80].
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Chapter 4

Monocular ORB-SLAM

Bundle Adjustment (BA) is known to provide accurate estimates of camera localizations as
well as a sparse geometrical reconstruction [28, 84], given that a strong network of matches
and good initial guesses are provided. For long time this approach was considered unaf-
fordable for real time applications such as visual SLAM. Nowadays we know that to achieve
accurate results at non-prohibitive computational cost, a real time SLAM algorithm has to
provide BA with:

� Corresponding observations of scene features (map points) among a subset of selected
frames (keyframes).

� As complexity grows with the number of keyframes, their selection should avoid unnec-
essary redundancy.

� A strong network configuration of keyframes and points to produce accurate results,
that is, a well spread set of keyframes observing points with significant parallax and
with plenty of loop closure matches.

� A good initial estimation of the keyframe poses and point locations for the non-linear
optimization.

� A local map where to focus optimization in exploration, to achieve scalability.

� The ability to perform fast global optimizations (e.g. pose graph) to close loops in
real-time.

The first real time application of BA was the visual odometry work of Mouragon et
al.. [51], followed by the ground-breaking SLAM work of Klein and Murray [36], known
as Parallel Tracking and Mapping (PTAM). This algorithm, while limited to small scale
operation, provides simple but effective methods for keyframe selection, feature matching,
point triangulation, camera localization for every frame, and relocalization after tracking
failure. Unfortunately several factors severely limit its application: lack of loop closing and
adequate handling of occlusions, low invariance to viewpoint of the relocalization and the
need of human intervention for map bootstrapping.
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In this chapter we build on the main ideas of PTAM, the place recognition work of Gálvez-
López and Tardós [25], the scale-aware loop closing of Strasdat et al. [75] and the use of
covisibility information for large scale operation [50, 74], to design from scratch ORB-SLAM,
a novel monocular SLAM system whose main contributions are:

� Use of the same features for all tasks: tracking, mapping, relocalization and loop closing.
This makes our system more efficient, simple and reliable. We use ORB features [69]
which allow real-time performance without GPUs, providing good invariance to changes
in viewpoint and illumination.

� Real time operation in large environments. Thanks to the use of a covisibility graph,
tracking and mapping is focused in a local covisible area, independent of global map
size.

� Real time loop closing based on the optimization of a pose graph that we call the
Essential Graph. It is built from a spanning tree maintained by the system, loop
closure links and strong edges from the covisibility graph.

� Real time camera relocalization with significant invariance to viewpoint and illumina-
tion. This allows recovery from tracking failure and also enhances map reuse.

� A new automatic and robust initialization procedure based on model selection that
permits to create an initial map of planar and non-planar scenes.

� A survival of the fittest approach to map point and keyframe selection that is generous
in the spawning but very restrictive in the culling. This policy improves tracking
robustness, and enhances lifelong operation because redundant keyframes are discarded.

We present an extensive evaluation in popular public datasets from indoor and outdoor
environments, including hand-held, car and robot sequences. To the best of our knowledge,
this is the most complete and reliable solution to monocular SLAM, and for the benefit of
the community we make the source code public, see Section 1.5.

4.1 System Overview

4.1.1 Feature Choice

One of the main design ideas in our system is that the same features used by the mapping
and tracking are used for place recognition to perform frame-rate relocalization and loop
detection. This makes our system efficient and avoids the need to interpolate the depth of the
recognition features from near SLAM features as in previous works [74, 75]. We want features
that need for extraction much less than 33ms per image without using GPU, which excludes
the popular SIFT (∼ 300ms) [45], SURF (∼ 300ms) [2] or the recent A-KAZE (∼ 100ms)
[1]. To obtain general place recognition capabilities, we require rotation invariance, which
excludes BRIEF [7] and LDB [90].
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Figure 4.1: ORB-SLAM system overview, showing all the steps performed by the tracking,
local mapping and loop closing threads. The main components of the place recognition
module and the map are also shown.

We chose ORB [69], which are oriented multi-scale FAST corners with a 256 bits descriptor
associated. They are extremely fast to compute and match, while they have good invariance
to viewpoint. This allows to match them from wide baselines, boosting the accuracy of BA.
We already shown the good performance of ORB for place recognition in Chapter 3. While
our current implementation make use of ORB, the techniques proposed are not restricted to
these features.

4.1.2 System Threads

Our system, see an overview in Fig. 4.1, incorporates three threads that run in parallel:
tracking, local mapping and loop closing. The tracking is in charge of localizing the camera
with every frame and deciding when to insert a new keyframe. We perform first an initial
feature matching with the previous frame and optimize the pose using motion-only BA. If the
tracking is lost (e.g. due to occlusions or abrupt movements), the place recognition module
is used to perform a global relocalization. Once there is an initial estimation of the camera
pose and feature matchings, a local visible map is retrieved using the covisibility graph of
keyframes that is maintained by the system, see Fig. 4.2a and Fig. 4.2b. Then matches
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(a) KeyFrames (blue), Current Camera (green),
MapPoints (black, red), Current Local MapPoints
(red)

(b) Covisibility Graph

(c) Spanning Tree (green) and Loop Closure (red) (d) Essential Graph

Figure 4.2: Reconstruction and graphs in the sequence fr3 long office household from the
TUM RGB-D Benchmark [78].

with the local map points are searched by reprojection, and camera pose is optimized again
with all matches. Finally the tracking thread decides if a new keyframe is inserted. All the
tracking steps are explained in detail in Section 4.3. The novel procedure to create an initial
map is presented in Section 4.2.

The local mapping processes new keyframes and performs local BA to achieve an optimal
reconstruction in the surroundings of the camera pose. New correspondences for unmatched
ORB in the new keyframe are searched in connected keyframes in the covisibility graph to
triangulate new points. Some time after creation, based on the information gathered during
the tracking, an exigent point culling policy is applied in order to retain only high quality
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points. The local mapping is also in charge of culling redundant keyframes. We explain in
detail all local mapping steps in Section 4.4.

The loop closing searches for loops with every new keyframe. If a loop is detected, we
compute a similarity transformation that informs about the drift accumulated in the loop.
Then both sides of the loop are aligned and duplicated points are fused. Finally a pose
graph optimization over similarity constraints [75] is performed to achieve global consistency.
The main novelty is that we perform the optimization over the Essential Graph, a sparser
subgraph of the covisibility graph which is explained in Section 4.1.4. The loop detection
and correction steps are explained in detail in Section 4.5.

We use the Levenberg-Marquardt algorithm implemented in g2o [38] to carry out all
optimizations.

4.1.3 Map Management

Each map point p stores:

� Its 3D position XW in the world coordinate system W.

� The viewing direction n, which is the mean unit vector of all its viewing directions (the
rays that join the point with the optical center of the keyframes that observe it).

� A representative ORB descriptor D, which is the associated ORB descriptor whose
hamming distance is minimum with respect to all other associated descriptors in the
keyframes in which the point is observed.

� The maximum dmax and minimum dmin distances at which the point can be observed,
according to the scale invariance limits of the ORB features.

Each keyframe K stores:

� The camera pose TCW ∈ SE(3), which is a rigid body transformation that transforms
points from the world to the camera coordinate system.

� The camera intrinsics, including focal length and principal point.

� All the ORB features extracted in the frame, associated or not to a map point, whose
coordinates are undistorted if a distortion model is provided.

Map points and keyframes are created with a generous policy, while a later very exigent
culling mechanism is in charge of detecting redundant keyframes and wrongly matched or not
trackable map points. This permits a flexible map expansion during exploration, which boosts
tracking robustness under hard conditions (e.g. rotations, fast movements), while its size is
bounded in continual revisits to the same environment, i.e. lifelong operation. Additionally
our maps contain very few outliers compared to PTAM, at the expense of containing less
points. Culling procedures of map points and keyframes are explained in Sections 4.4.2 and
4.4.5 respectively.
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4.1.4 Covisibility Graph and Essential Graph

Covisibility information between keyframes is very useful in several tasks of our system, and
is represented as an undirected weighted graph as in [74]. Each node is a keyframe and an
edge between two keyframes exists if they share observations of the same map points (at
least 15), being the weight θ of the edge the number of common map points.

In order to correct a loop we perform a pose graph optimization [75] that distributes the
loop closing error along the graph. In order not to include all the edges provided by the
covisibility graph, which can be very dense, we propose to build an Essential Graph that
retains all the nodes (keyframes), but less edges, still preserving a strong network that yields
accurate results. The system builds incrementally a spanning tree from the initial keyframe,
which provides a connected subgraph of the covisibility graph with minimal number of edges.
When a new keyframe is inserted, it is included in the tree linked to the keyframe which shares
most point observations, and when a keyframe is erased by the culling policy, the system
updates the links affected by that keyframe. The Essential Graph contains the spanning
tree, the subset of edges from the covisibility graph with high covisibility (θmin = 100),
and the loop closure edges, resulting in a strong network of cameras. Fig. 4.2 shows an
example of a covisibility graph, spanning tree and associated essential graph. As shown in
the experiments of Section 4.6.5, when performing the pose graph optimization, the solution
is so accurate that an additional full bundle adjustment optimization barely improves the
solution. The efficiency of the essential graph and the influence of the θmin is explored at the
end of Section 4.6.5.

4.1.5 Bags of Words Place Recognition

The system has embedded a bags of words place recognition module, based on DBoW2
[25], to perform loop detection and relocalization. Visual words are just a discretization of
the descriptor space, which is known as the visual vocabulary. The vocabulary is created
offline with the ORB descriptors extracted from a large set of images. If the images are
general enough, the same vocabulary can be used for different environments getting a good
performance, as shown in Chapter 3. The system builds incrementally a database that
contains an invert index, which stores for each visual word in the vocabulary, in which
keyframes it has been seen, so that querying the database can be done very efficiently. The
database is also updated when a keyframe is deleted by the culling procedure.

Because there exists visual overlap between keyframes, when querying the database there
will not exist a unique keyframe with a high score. The original DBoW2 took this overlapping
into account, adding up the score of images that are close in time. This has the limitation of
not including keyframes viewing the same place but inserted at a different time. Instead we
group those keyframes that are connected in the covisibility graph. In addition our database
returns all keyframe matches whose scores are higher than the 75% of the best score.

An additional benefit of the bags of words representation for feature matching was re-
ported in [25]. When we want to compute the correspondences between two sets of ORB
features, we can constraint the brute force matching only to those features that belong to the
same node in the vocabulary tree at a certain level (we select the second out of six), speeding
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up the search. We use this trick when searching matches for triangulating new points, and
at loop detection and relocalization. We also refine the correspondences with the orientation
consistency test, explained in Section 3.2, that discards outliers ensuring a coherent rotation
for all correspondences.

4.2 Automatic Map Initialization

The goal of the map initialization is to compute the relative pose between two frames to
triangulate an initial set of map points. This method should be independent of the scene
(planar or general) and should not require human intervention to select a good two-view
configuration, i.e. a configuration with significant parallax. We propose to compute in
parallel two geometrical models, a homography assuming a planar scene and a fundamental
matrix assuming a non-planar scene. We then use a heuristic to select a model and try to
recover the relative pose with a specific method for the selected model. Our method only
initializes when it is certain that the two-view configuration is safe, delaying the initialization
if detecting low-parallax or the well-known twofold planar ambiguity [43]. The steps of our
algorithm are:

1. Find initial correspondences:

Extract ORB features (only at the finest scale) in the current frame Fc and search for
matches xc ↔ xr in the reference frame Fr. If not enough matches are found, reset the
reference frame.

2. Parallel computation of the two models:

Compute in parallel threads a homography Hcr and a fundamental matrix Fcr:

xc = Hcr xr xTc Fcr xr = 0 (4.1)

with the normalized DLT and 8-point algorithms respectively as explained in [28] inside
a RANSAC scheme. To make the procedure homogeneous for both models, the number
of iterations is prefixed and the same for both models, along with the points to be used
at each iteration, 8 for the fundamental matrix, and 4 of them for the homography. At
each iteration we compute a score SM for each model M (H for the homography, F for
the fundamental matrix):

SM =
∑
i

(
ρM
(
d2
cr(x

i
c,x

i
r,M)

)
+ ρM(d2

rc

(
xic,x

i
r,M)

))
ρM(d2) =

{
Γ− d2 if d2 < TM

0 if d2 ≥ TM

(4.2)

where d2
cr and d2

rc are the symmetric transfer errors [28] from one frame to the other.
TM is the outlier rejection threshold based on the χ2 test at 95% (TH = 5.99, TF = 3.84,
assuming a standard deviation of 1 pixel in the measurement error). Γ is defined equal
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to TH so that both models score equally for the same d in their inlier region, again to
make the process homogeneous.

We keep the homography and fundamental matrix with highest score. If no model
could be found (not enough inliers), we restart the process again from step 1.

3. Model selection:

If the scene is planar, nearly planar or there is low parallax, it can be explained by a
homography. However a fundamental matrix can also be found, but the problem is not
well constrained [28] and any attempt to recover the motion from the fundamental ma-
trix would yield wrong results. We should select the homography as the reconstruction
method will correctly initialize from a plane or it will detect the low parallax case and
refuse the initialization. On the other hand a non-planar scene with enough parallax
can only be explained by the fundamental matrix, but a homography can also be found
explaining a subset of the matches if they lie on a plane or they have low parallax (they
are far away). In this case we should select the fundamental matrix. We have found
that a robust heuristic is to compute:

RH =
SH

SH + SF
(4.3)

and select the homography if RH > 0.45, which adequately captures the planar and
low parallax cases. Otherwise, we select the fundamental matrix.

4. Motion and Structure from Motion recovery:

Once a model is selected we retrieve the motion hypotheses associated. In the case of the
homography we retrieve 8 motion hypotheses using the method of Faugeras et al. [20].
The method proposes cheriality tests to select the valid solution. However these tests
fail if there is low parallax as points easily go in front or back of the cameras, which could
yield the selection of a wrong solution. We propose to directly triangulate the eight
solutions, and check if there is one solution with most points seen with parallax, in front
of both cameras and with low reprojection error. If there is not a clear winner solution,
we do not initialize and continue from step 1. This technique to disambiguate the
solutions makes our initialization robust under low parallax and the twofold ambiguity
configuration, and could be considered the key of the robustness of our method.

In the case of the fundamental matrix, we convert it in an essential matrix using the
calibration matrix K:

Erc = KT Frc K (4.4)

and then retrieve 4 motion hypotheses with the singular value decomposition method
explained in [28]. We triangulate the four solutions and select the reconstruction as
done for the homography.

5. Bundle adjustment:

Finally we perform bundle adjustment to refine the initial reconstruction.

50



Figure 4.3: PTAM (top), LSD-SLAM (middle) and ORB-SLAM (bottom) after initialization
in NewCollege[71]. PTAM and LSD-SLAM initialized a wrong planar solution while ORB-
SLAM automatically initialized from the fundamental matrix when detected enough parallax.
Depending on which keyframes are manually selected, PTAM is also able to initialize well.

An example of a challenging initialization in the outdoor NewCollege robot sequence [71]
is shown in Fig. 4.3. It can be seen how PTAM and LSD-SLAM have wrongly initialized all
points in a plane, while our method has automatically waited until there is enough parallax,
initializing correctly from the fundamental matrix.
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4.3 Tracking

In this section we describe the steps of the tracking thread that are performed with every
frame. The camera pose optimizations, mentioned in several steps, consist in motion-only
BA, a variant of the generic BA (1.5), where the camera pose TCW = [RCW|CpW] is optimized
to minimize the reprojection error between 3D points XW matched to 2D keypoints xc:

{RCW, CpW} = argmin
RCW,CpW

∑
j

ρ
(∥∥xjC − πm (RCWX

j
W + CpW

)∥∥2

Σj

)
(4.5)

4.3.1 ORB Extraction

We extract FAST corners at 8 scale levels with a scale factor of 1.2. For image resolutions
from 512 × 384 to 752 × 480 pixels we found suitable to extract 1000 corners, for higher
resolutions, as the 1241× 376 in the KITTI dataset [26] we extract 2000 corners. In order to
ensure an homogeneous distribution we divide each scale level in a grid, trying to extract at
least 5 corners per cell. Then we detect corners in each cell, adapting the detector threshold
if not enough corners are found. The amount of corners retained per cell is also adapted
if some cells contains no corners (textureless or low contrast). The orientation and ORB
descriptor are then computed on the retained FAST corners. The ORB descriptor is used in
all feature matching, in contrast to the search by patch correlation in PTAM.

4.3.2 Initial Pose Estimation from Previous Frame

If tracking was successful for the last frame, we use a constant velocity motion model to
predict the camera pose and perform a guided search of the map points observed in the last
frame. If not enough matches were found (i.e. motion model is clearly violated), we use a
wider search of the map points around their position in the last frame. The pose is then
optimized with the found correspondences.

4.3.3 Initial Pose Estimation via Global Relocalization

If the tracking is lost, we convert the frame into bag of words and query the recognition
database for keyframe candidates for global relocalization. We compute correspondences
with ORB associated to map points in each keyframe, as explained in section 4.1.5. We then
perform alternatively RANSAC iterations for each keyframe and try to find a camera pose
using the PnP algorithm [40]. If we find a camera pose with enough inliers, we optimize the
pose and perform a guided search of more matches with the map points of the candidate
keyframe. Finally the camera pose is again optimized, and if supported with enough inliers,
tracking procedure continues.

4.3.4 Track Local Map

Once we have an estimation of the camera pose and an initial set of feature matches, we can
project the map into the frame and search more map point correspondences. To bound the
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complexity in large maps, we only project a local map. This local map contains the set of
keyframes K1, that share map points with the current frame, and a set K2 with neighbors
to the keyframes K1 in the covisibility graph. The local map also has a reference keyframe
Kref ∈ K1 which shares most map points with the current frame. Now each map point seen
in K1 and K2 is searched in the current frame as follows:

1. Compute the map point projection x in the current frame. Discard if it is outside the
image bounds.

2. Compute the angle between the current viewing ray v and the map point mean viewing
direction n. Discard if v · n < cos(60◦).

3. Compute the distance d from map point to camera center. Discard if it is out of the
scale invariance region of the map point d /∈ [dmin, dmax].

4. Compute the scale in the frame by the ratio d/dmin.

5. Compare the representative descriptor D of the map point with the still unmatched
ORB features in the frame, at the predicted scale, and near x, and associate the map
point with the best match.

The camera pose is finally optimized with all the map points found in the frame.

4.3.5 New Keyframe Decision

The last step is to decide if the current frame is spawned as a new keyframe. As there is a
mechanism in the local mapping to cull redundant keyframes, we will try to insert keyframes
as fast as possible, because that makes the tracking more robust to challenging camera
movements, typically rotations. To insert a new keyframe all the following conditions must
be met:

1. More than 20 frames must have passed from the last global relocalization.

2. Local mapping is idle, or more than 20 frames have passed from last keyframe insertion.

3. Current frame tracks at least 50 points.

4. Current frame tracks less than 90% points than Kref .

Instead of using a distance criterion to other keyframes as PTAM, we impose a minimum
visual change (condition 4). Condition 1 ensures a good relocalization and condition 3 a good
tracking. If a keyframe is inserted when the local mapping is busy (second part of condition
2), a signal is sent to stop local bundle adjustment, so that it can process as soon as possible
the new keyframe.
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4.4 Local Mapping

In this section we describe the steps performed by the local mapping with every new keyframe
Ki.

4.4.1 Keyframe Insertion

At first we update the covisibility graph, adding a new node for Ki and updating the edges
resulting from the shared map points with other keyframes. We then update the spanning
tree linking Ki with the keyframe with most points in common. We then compute the bags of
words representation of the keyframe, that will help in the data association for triangulating
new points.

4.4.2 Recent Map Point Culling

Map points, in order to be retained in the map, must pass a restrictive test during the
first three keyframes after creation, that ensures that they are trackable and not wrongly
triangulated, i.e due to spurious data association. A point must fulfill these two conditions:

1. The tracking must find the point in more than the 25% of the frames in which it is
predicted to be visible.

2. If more than one keyframe has passed from map point creation, it must be observed
from at least three keyframes.

Once a map point have passed this test, it can only be removed if at any time it is observed
from less than three keyframes. This can happen when keyframes are culled and when local
bundle adjustment discards outlier observations. This policy makes our map contain very
few outliers.

4.4.3 New Map Point Creation

New map points are created by triangulating ORB from connected keyframes Kc in the
covisibility graph. For each unmatched ORB in Ki we search a match with other unmatched
point in other keyframe. This matching is done as explained in Section 4.1.5 and discard
those matches that do not fulfill the epipolar constraint. ORB pairs are triangulated, and to
accept the new points, positive depth in both cameras, parallax, reprojection error and scale
consistency are checked. Initially a map point is observed from two keyframes but it could be
matched in others, so it is projected in the rest of connected keyframes, and correspondences
are searched as detailed in section 4.3.4.

4.4.4 Local Bundle Adjustment

The local BA optimizes a local window of keyframes KL formed by the currently processed
keyframe Ki and all the keyframes connected to it in the covisibility graph Kc, and all the
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map points PL seen by those keyframes. All other keyframes KF that see those points but
are not connected to the currently processed keyframe are included in the optimization but
remain fixed. The local BA optimization is a special case of the generic BA (1.5):

{Xp
W,R

l
CW, Cp

l
W|p ∈ PL, l ∈ KL} = argmin

Xp
W ,R

l
CW,Cp

l
W

∑
k∈KL∪KF

∑
j∈Pk

ρ
(∥∥xjk − πm (Rk

CWX
j
W + Cp

k
W

)∥∥2

Σj
k

)
(4.6)

where Σj
k is the covariance of the position of the keypoint matched to 3D point Xj in keyframe

Kk, which depends on the scale at which the keypoint was detected. Pk ⊂ PL is the set of
points observed in keyframe k. Observations that are marked as outliers by the Huber cost
function ρ are discarded at the middle and at the end of the optimization.

4.4.5 Local Keyframe Culling

In order to maintain a compact reconstruction, the local mapping tries to detect redundant
keyframes and delete them. This is beneficial as bundle adjustment complexity grows with the
number of keyframes, but also because it enables lifelong operation in the same environment
as the number of keyframes will not grow unbounded, unless the visual content in the scene
changes. We discard all the keyframes in Kc whose 90% of the map points have been seen
in at least other three keyframes in the same or finer scale. The scale condition ensures that
map points maintain keyframes from which they are measured with most accuracy. This
policy was inspired by the one proposed in the work of Tan et al. [81], where keyframes were
discarded after a process of change detection.

4.5 Loop Closing

The loop closing thread takes Ki, the last keyframe processed by the local mapping, and
tries to detect and close loops. The steps are next described.

4.5.1 Loop Detection

At first we compute the similarity between the bag of words vector of Ki and all its neighbors
in the covisibility graph (θmin = 30) and retain the lowest score smin. Then we query the
recognition database and discard all those keyframes whose score is lower than smin. This is a
similar operation to gain robustness as the normalizing score in DBoW2, which is computed
from the previous image, but here we use covisibility information. In addition all those
keyframes directly connected to Ki are discarded from the results. To accept a loop candidate
we must detect consecutively three loop candidates that are consistent (keyframes connected
in the covisibility graph). There can be several loop candidates if there are several places
with similar appearance to Ki.
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4.5.2 Similarity Transformation

In monocular SLAM there are seven degrees of freedom in which the map can drift, three
translations, three rotations and a scale factor [75]. Therefore to compute the error accu-
mulated in the loop trajectory we need to estimate a similarity transformation SilCC from the
current keyframe Ki to the loop keyframe Kl. A similarity transformation S has the following
structure:

S =

[
sR p
01×3 1

]
(4.7)

where s ∈ R+ is a scale factor, R ∈ SO(3) is a rotation matrix and p ∈ R3 is a translation
vector. We use the computation of this similarity as geometrical validation of the loop.

We first compute correspondences between ORB associated to map points in the current
keyframe and the loop candidate keyframes, following the procedure explained in section
4.1.5. At this point we have 3D to 3D correspondences for each loop candidate. We al-
ternatively perform RANSAC iterations with each candidate, trying to find a similarity
transformation using the method of Horn [29]. If we find a similarity SilCC = [silRil|ipl] with
enough inliers, we optimize it by minimizing the reprojection error on both images:

sil,Ril, ipl = argmin
sil,Ril,ipl

n∑
j=1
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(4.8)

where n is the number of matched ORB, ρ is the Huber function, Xj
i and Xj

l are the 3D
position of matched map points in their respective camera coordinates, x is the keypoint
location in the image, Σ is the covariance of the keypoint, and πm is the projection function
(1.1). After the optimization we perform a guided search of more correspondences. We
optimize it again and, if SilCC is supported by enough inliers, the loop with Kl is accepted.

4.5.3 Loop Fusion

The first step in the loop correction is to fuse duplicated map points and insert new edges
in the covisibility graph that will attach the loop closure. At first the current keyframe pose
is corrected with the estimated similarity transformation and this correction is propagated
to all the neighbors of Ki, concatenating transformations, so that both sides of the loop get
aligned. All map points seen by the loop keyframe and its neighbors are projected into Ki

and its neighbors and matches are searched in a narrow area around the projection, as done
in Section 4.3.4. All those map points matched and those that were inliers in the computation
of the similarity transformation are fused. All keyframes involved in the fusion will update
their edges in the covisibility graph effectively creating edges that attach the loop closure.

4.5.4 Essential Graph Optimization

To effectively close the loop, we perform a pose graph optimization over the Essential Graph,
described in Section 4.1.4, that distributes the loop closing error along the graph. The
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optimization is performed over similarity transformations to correct the scale drift [75]. The
error terms and cost function are detailed in Section 1.3.3. After the optimization each map
point is transformed according to the correction of one of the keyframes that observes it.

4.6 Experiments

We have performed an extensive experimental validation of our system in the large robot se-
quence of NewCollege [71], evaluating the general performance of the system, in 16 hand-held
indoor sequences of the TUM RGB-D benchmark [78], evaluating the localization accuracy,
relocalization and lifelong capabilities, and in 10 car outdoor sequences from the KITTI
dataset [26], evaluating real-time large scale operation, localization accuracy and efficiency
of the pose graph optimization.

Our system runs in real time and processes the images exactly at the frame rate they
were acquired. We have carried out all experiments with an Intel Core i7-4700MQ (4 cores
@ 2.40GHz) and 8Gb RAM. ORB-SLAM has three main threads, that run in parallel with
other tasks from the operating system, which introduces some randomness in the results. For
this reason, in some experiments, we report the median from several runs.

4.6.1 System Performance in the NewCollege Dataset

The NewCollege dataset [71] contains a 2.2km sequence from a robot traversing a campus
and adjacent parks. The sequence is recorded by a stereo camera at 20 fps and a resolution
of 512×382 pixels. It contains several loops and fast rotations that makes the sequence quite
challenging for monocular vision. To the best of our knowledge there is no other monocular
system in the literature able to process this whole sequence. For example Strasdat et al.
[74], despite being able to close loops and work in large scale environments, only showed
monocular results for a small part of this sequence.

As an example of our loop closing procedure we show in Fig. 4.4 the detection of a loop
with the inliers that support the similarity transformation.

Fig. 4.5 shows the reconstruction before and after the loop closure. The local map is
shown in red, which after the loop closure extends along both sides of the loop closure. The
whole map after processing the full sequence at its real frame-rate is shown in Fig. 4.6. The

Figure 4.4: Example of loop detected in the NewCollege sequence. We draw the inlier
correspondences supporting the similarity transformation found.
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Figure 4.5: Map before and after a loop closure in the NewCollege sequence. The loop closure
match is drawn in blue, the trajectory in green, and the local map for the tracking at that
moment in red. The local map is extended along both sides of the loop after it is closed.

Figure 4.6: Reconstruction of the full sequence of NewCollege. The bigger loop on the right
is traversed in opposite directions and no visual loop closures were found.

big loop on the right does not perfectly align because it was traversed in opposite directions
and the place recognizer was not able to find loop closures.

We have extracted statistics of the times spent by each thread in this experiment. Table
4.1 shows the results for the tracking and the local mapping. Tracking works at frame-rates
around 25-30Hz, being the most demanding task to track the local map. If needed this time
could be reduced limiting the number of keyframes that are included in the local map. In
the local mapping thread the most demanding task is local bundle adjustment. The local
BA time varies if the robot is exploring or in a well mapped area, because during exploration
bundle adjustment is interrupted if tracking inserts a new keyframe, as explained in section
4.3.5. In case of not needing new keyframes local bundle adjustment performs a generous
number of prefixed iterations.

Table 4.2 shows the results for each of the 6 loop closures found. It can be seen how the
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Table 4.1: Tracking and Mapping times in NewCollege

Thread Operation Median (ms) Mean (ms) Std (ms)

TRACKING

ORB extraction 11.10 11.42 1.61

Initial Pose Est. 3.38 3.45 0.99

Track Local Map 14.84 16.01 9.98

Total 30.57 31.60 10.39

LOCAL MAPPING

KeyFrame Insertion 10.29 11.88 5.03

Map Point Culling 0.10 3.18 6.70

Map Point Creation 66.79 72.96 31.48

Local BA 296.08 360.41 171.11

KeyFrame Culling 8.07 15.79 18.98

Total 383.59 464.27 217.89

Table 4.2: Loop closing times in NewCollege

Loop Detection (ms) Loop Correction (s)

Loop KeyFrames
Essential
Graph
Edges

Candidates
Detection

Similarity
Transf.

Fusion
Essential
Graph
Optim.

Total (s)

1 287 1347 4.71 20.77 0.20 0.26 0.51

2 1082 5950 4.14 17.98 0.39 1.06 1.52

3 1279 7128 9.82 31.29 0.95 1.26 2.27

4 2648 12547 12.37 30.36 0.97 2.30 3.33

5 3150 16033 14.71 41.28 1.73 2.80 4.60

6 4496 21797 13.52 48.68 0.97 3.62 4.69

loop detection increases sublinearly with the number of keyframes. This is due to the efficient
querying of the database that only compare the subset of images with words in common,
which demonstrates the potential of bag of words for place recognition. Our Essential Graph
includes edges around 5 times the number of keyframes, which is a quite sparse graph.
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4.6.2 Localization Accuracy in the TUM RGB-D Dataset

The TUM RGB-D dataset [78] is excellent to evaluate the accuracy of camera localization as
it provides several sequences with accurate ground truth obtained with an external motion
capture system. We have discarded all those sequences that we consider that are not suitable
for pure monocular SLAM systems, as they contain strong rotations, no texture or no motion.

For comparison we have also executed LSD-SLAM [17] and PTAM [36]. We compare
also with the trajectories generated by RGBD-SLAM [15] which are provided for some of
the sequences in the website of the dataset. In order to compare ORB-SLAM, LSD-SLAM
and PTAM with the ground truth, we align the keyframe trajectories using a similarity
transformation, as scale is unknown, and measure the absolute trajectory error (ATE) [78].
In the case of RGBD-SLAM we align the trajectories with a rigid body transformation, but
also a similarity to check if the scale was well recovered. LSD-SLAM initializes from random
depth values and takes time to converge, therefore we have discarded the first 10 keyframes
when comparing to the ground truth. For PTAM we manually selected two frames from
which we get a good initialization. Table 4.3 shows the median results over 5 executions
in each of the 16 selected sequences. Trajectories for RGBD-SLAM are aligned with 6DoF
and 7DoF (results between brackets). X means that the tracking is lost at some point and a
significant portion of the sequence is not processed by the system.

Table 4.3: Keyframe Localization Error Comparison in the TUM RGB-D Dataset

Absolute KeyFrame Trajectory RMSE (cm)

ORB-SLAM PTAM LSD-SLAM RGBD-SLAM

fr1 xyz 0.90 1.15 9.00 1.34 (1.34)
fr2 xyz 0.30 0.20 2.15 2.61 (1.42)
fr1 floor 2.99 X 38.07 3.51 (3.51)
fr1 desk 1.69 X 10.65 2.58 (2.52)

fr2 360 kidnap 3.81 2.63 X 393.3 (100.5)
fr2 desk 0.88 X 4.57 9.50 (3.94)

fr3 long office 3.45 X 38.53 -
fr3 nstr tex far planar ambiguity 4.92 / 34.74 18.31 -

fr3 nstr tex near 1.39 2.74 7.54 -
fr3 str tex far 0.77 0.93 7.95 -

fr3 str tex near 1.58 1.04 X -
fr2 desk person 0.63 X 31.73 6.97 (2.00)

fr3 sit xyz 0.79 0.83 7.73 -
fr3 sit halfsph 1.34 X 5.87 -
fr3 walk xyz 1.24 X 12.44 -

fr3 walk halfsph 1.74 X X -

It can be seen that ORB-SLAM is able to process all the sequences, except the sequence
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fr3 nostructure texture far (fr3 nstr tex far). This is a planar scene that because of the
camera trajectory with respect to the plane has two possible interpretations, i.e. the twofold
ambiguity described in [43]. Our initialization method detects the ambiguity and for safety
refuses to initialize. PTAM initializes selecting sometimes the true solution and others the
corrupted one, in which case the error is unacceptable. We have not noticed two different
reconstructions from LSD-SLAM but the error in this sequence is very high. In the rest of
the sequences, PTAM and LSD-SLAM exhibit less robustness than our method, loosing track
in eight and three sequences respectively. In terms of accuracy ORB-SLAM and PTAM are
similar in open trajectories, while ORB-SLAM achieves higher accuracy when detecting large
loops as in fr3 nostructure texture near withloop (fr3 nstr tex near). The most surprising
results is that both PTAM and ORB-SLAM are clearly more accurate than LSD-SLAM and
RGBD-SLAM. One of the possible causes can be that they reduce the map optimization to a
pose-graph optimization were sensor measurements are discarded, while we perform bundle
adjustment and jointly optimize cameras and map over sensor measurements, which is the
gold standard algorithm to solve structure from motion [28]. We further discuss this result
in Section 4.7.2. Another interesting result is that LSD-SLAM seems to be less robust to
dynamic objects than our system as seen in fr2 desk with person and fr3 walking xyz.

We have noticed that RGBD-SLAM has a bias in the scale in fr2 sequences, as aligning
the trajectories with 7 DoF significantly reduces the error. Finally it should be noted that
Engel et al. [17] reported that PTAM has less accuracy than LSD-SLAM in fr2 xyz with an
RMSE of 24.28cm. However, the paper does not give enough details on how those results
were obtained, and we have been unable to reproduce them.

4.6.3 Relocalization in the TUM RGB-D Dataset

We perform two relocalization experiments in the TUM RGB-D dataset. In the first exper-
iment we build a map with the first 30 seconds of the sequence fr2 xyz and perform global
relocalization with every successive frame and evaluate the accuracy of the recovered poses.
We perform the same experiment with PTAM for comparison. Fig. 4.7 shows the keyframes
used to create the initial map, the poses of the relocalized frames and the ground truth for
those frames. It can be seen that PTAM is only able to relocalize frames which are near
to the keyframes due to the little invariance of its relocalization method. Table 4.4 shows
the recall and the error with respect to the ground truth. ORB-SLAM accurately relocalizes
more than the double of frames than PTAM. In the second experiment we create an initial
map with sequence fr3 sitting xyz and try to relocalize all frames from fr3 walking xyz. This
is a challenging experiment as there are big occlusions due to people moving in the scene.
Here PTAM finds no relocalizations while our system relocalizes 78% of the frames, as can
be seen in Table 4.4. Fig. 4.8 shows some examples of challenging relocalizations performed
by our system in these experiments.
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Figure 4.7: Relocalization experiment in fr2 xyz. Map is initially created during the first
30 seconds of the sequence (KFs). The goal is to relocalize subsequent frames. Successful
relocalizations (R) of our system and PTAM are shown. The ground truth (GT) is only
shown for the frames to relocalize.

Table 4.4: Results for the relocalization experiments

Initial Map Relocalization

System KFs RMSE (cm) Recall (%) RMSE (cm) Max. Error (cm)

fr2 xyz. 2769 frames to relocalize

PTAM 37 0.19 34.9 0.26 1.52

ORB-SLAM 24 0.19 78.4 0.38 1.67

fr3 walking xyz. 859 frames to relocalize

PTAM 34 0.83 0.0 - -

ORB-SLAM 31 0.82 77.9 1.32 4.95
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Figure 4.8: Example of challenging relocalizations (severe scale change, dynamic objects)
that our system successfully found in the relocalization experiments.

4.6.4 Lifelong Experiment in the TUM RGB-D Dataset

Previous relocalization experiments have shown that our system is able to localize in a map
from very different viewpoints and robustly under moderate dynamic changes. This property
in conjunction with our keyframe culling procedure allows to operate lifelong in the same
environment under different viewpoints and some dynamic changes.

In the case of a completely static scenario our system is able to maintain the number of
keyframes bounded even if the camera is looking at the scene from different viewpoints. We
demonstrate it in a custom sequence were the camera is looking at the same desk during 93
seconds but performing a trajectory so that the viewpoint is always changing. We compare
the evolution of the number of keyframes in our map and those generated by PTAM in Fig.
4.9. It can be seen how PTAM is always inserting keyframes, while our mechanism to prune
redundant keyframes makes its number to saturate.

While the lifelong operation in a static scenario should be a requirement of any SLAM
system, more interesting is the case where dynamic changes occur. We analyze the behavior
of our system in such scenario by running consecutively the dynamic sequences from fr3 :
sitting xyz, sitting halfsphere, sitting rpy, walking xyz, walking halfspehere and walking rpy.
All the sequences focus the camera to the same desk but perform different trajectories, while
people are moving and change some objects like chairs. Fig. 4.10a shows the evolution of the
total number of keyframes in the map, and Fig. 4.10b shows for each keyframe its frame of
creation and destruction, showing how long the keyframes have survived in the map. It can
be seen that during the first two sequences the map size grows as all the views of the scene are
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being seen for the first time. In Fig. 4.10b we can see that several keyframes created during
these two first sequences are maintained in the map during the whole experiment. During
the sequences sitting rpy and walking xyz the map does not grow, because the map created
so far explains well the scene. In contrast, during the last two sequences, more keyframes are
inserted showing that there are some novelties in the scene that were not yet represented,
due probably to dynamic changes. Finally Fig. 4.10c shows a histogram of the keyframes
according to the time they have survived with respect to the remaining time of the sequence
from its moment of creation. It can be seen that most of the keyframes are destroyed by the
culling procedure soon after creation, and only a small subset survive until the end of the
experiment. On one hand, this shows that our system has a generous keyframe spawning
policy, which is very useful when performing abrupt motions in exploration. On the other
hand the system is eventually able to select a small representative subset of those keyframes.

In these lifelong experiments we have shown that our map grows with the content of the
scene but not with the time, and that is able to store different version of the scene when
there are changes, which could be useful to analyze dynamic changes.
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Figure 4.9: Lifelong experiment in a static environment where the camera is always looking
at the same place from different viewpoints. PTAM is always inserting keyframes, while
ORB-SLAM is able to prune redundant keyframes and maintains a bounded-size map.
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Figure 4.10: Lifelong experiment in a dynamic environment from the TUM RGB-D Bench-
mark.
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4.6.5 Large Scale and Large Loop Closing in the KITTI Dataset

The odometry benchmark from the KITTI dataset [26] contains 11 sequences from a car
driven around a residential area with accurate ground truth. This is a very challenging
dataset for monocular vision due to fast rotations, areas with lot of foliage, which make more
difficult data association, and relatively high car speed, being the sequences recorded at 10
fps. We play the sequences at the real frame-rate they were recorded and ORB-SLAM is
able to process all the sequences by the exception of sequence 01 which is a highway with
few trackable close objects. Sequences 00, 02, 05, 06, 07, 09 contain loops that were correctly
detected and closed by our system. Sequence 09 contains a loop that can be detected only
in a few frames at the end of the sequence, and our system not always detects it (the results
provided are for the executions in which it was detected).

Qualitative comparisons of our trajectories and the ground truth are shown in Fig. 4.11
and Fig. 4.12. As in the TUM RGB-D benchmark we have aligned the keyframe trajectories
of our system and the ground truth with a similarity transformation. We can compare
qualitatively our results from Fig. 4.11 and Fig. 4.12 with the results provided for sequences
00, 05, 06, 07 and 08 by the recent monocular SLAM approach of Lim et al. [42] in their
figure 10. ORB-SLAM produces clearly more accurate trajectories for all those sequences by
the exception of sequence 08 in which they seem to suffer less drift.

Table 4.5 shows the median RMSE error of the keyframe trajectory over five executions
in each sequence. We also provide the dimensions of the maps to put in context the errors.
The results demonstrate that our system is very accurate being the trajectory error typically
around the 1% of its dimensions, sometimes less as in sequence 03 with an error of the 0.3%
or higher as in sequence 08 with the 5%. In sequence 08 there are no loops and drift cannot
be corrected, which makes clear the need of loop closures to achieve accurate reconstructions.

In this experiment we have also checked how much the reconstruction can be improved
by performing 20 iterations of full BA, see Section 1.3.1 for details, at the end of each
sequence. We have noticed that some iterations of full BA slightly improves the accuracy in
the trajectories with loops but it has negligible effect in open trajectories, which means that
the output of our system is already very accurate. In any case if the most accurate results
are needed our algorithm provides a set of matches, which define a strong camera network,
and an initial guess, so that full BA converge in few iterations.

Finally we show the efficacy of our loop closing approach and the influence of the θmin to
include edges in the essential graph. We have selected the sequence 09 (a very long sequence
with a loop closure at the end), and in the same execution we have evaluated different loop
closing strategies. In table 4.6 we show the keyframe trajectory RMSE and the time spent
in the optimization in different cases: without loop closing, if we directly apply a full BA
(20 or 100 iterations), if we apply only pose graph optimization (10 iterations with different
number of edges) and if we apply pose graph optimization and full BA afterwards. The
results clearly show that before loop closure, the solution is so far from the optimal, that
BA has convergence problems. Even after 100 iterations still the error is very high. On the
other hand essential graph optimization shows fast convergence and more accurate results.
It can be seen that the choice of θmin has not significant effect in accuracy but decreasing the
number of edges the time can be significantly reduced. Performing an additional BA after
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the pose graph optimization slightly improves the accuracy while increasing substantially the
time.
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Figure 4.11: Sequences 00 and 05 from the KITTI dataset. Top: points and keyframe
trajectory. Center: trajectory and ground truth. Bottom: trajectory after 20 iterations of
full BA.
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(b) Sequence 03
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(c) Sequence 04
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(f) Sequence 08
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(g) Sequence 09
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Figure 4.12: ORB-SLAM keyframe trajectories in the KITTI dataset.
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Table 4.5: Results of our system in the KITTI dataset.

ORB-SLAM + full BA (20 its.)

Sequence Dimension (m×m) KFs RMSE (m) RMSE (m) BA time (s)

KITTI 00 564× 496 1391 6.68 5.33 24.83

KITTI 01 1157× 1827 X X X X

KITTI 02 599× 946 1801 21.75 21.28 30.07

KITTI 03 471× 199 250 1.59 1.51 4.88

KITTI 04 0.5× 394 108 1.79 1.62 1.58

KITTI 05 479× 426 820 8.23 4.85 15.20

KITTI 06 23× 457 373 14.68 12.34 7.78

KITTI 07 191× 209 351 3.36 2.26 6.28

KITTI 08 808× 391 1473 46.58 46.68 25.60

KITTI 09 465× 568 653 7.62 6.62 11.33

KITTI 10 671× 177 411 8.68 8.80 7.64

Table 4.6: Comparison of loop closing strategies in KITTI 09.

Method Time (s) Graph Edges RMSE (m)

Without Loop Closure - - 48.77

Full BA (20 iterations) 14.64 - 49.90

Full BA (100 iterations) 72.16 - 18.82

Essential Graph (θmin = 200) 0.38 890 8.84

Essential Graph (θmin = 100) 0.48 1979 8.36

Essential Graph (θmin = 50) 0.59 3583 8.95

Essential Graph (θmin = 15) 0.94 6663 8.88

Essential Graph (θmin = 100)
+ full BA (20 iterations)

13.40 1979 7.22

69



100 0 100 200 300
x [m]

200

100

0

100

200

300

400

500

600

y 
[m

]

Ground truth
Estimated

(a) Without Loop Closing

100 0 100 200 300
x [m]

200

100

0

100

200

300

400

500

600

y 
[m

]

Ground truth
Estimated

(b) Full BA (20 iterations)

100 0 100 200 300
x [m]

200

100

0

100

200

300

400

500

600

y 
[m

]

Ground truth
Estimated

(c) Essential Graph (θmin = 100)

100 0 100 200 300
x [m]

200

100

0

100

200

300

400

500

600

y 
[m

]

Ground truth
Estimated

(d) Essential Graph (θmin = 100) + Full BA (20 itera-
tions)

Figure 4.13: Comparison of different loop closing strategies in KITTI 09.

4.7 Discussion

4.7.1 Conclusions

In this chapter we have presented a new monocular SLAM system with a detailed description
of its building blocks and an exhaustive evaluation in public datasets. Our system has
demonstrated that it can process sequences from indoor and outdoor scenes and from car,
robot and hand-held motions. The accuracy of the system is typically below 1 cm in small
indoor scenarios and of a few meters in large outdoor scenarios (once we have aligned the
scale with the ground truth).

PTAM by Klein and Murray [36] has been considered the most accurate SLAM method
from monocular video in real time. It is not coincidence that the backend of PTAM was
bundle adjustment, which is well known to be the gold standard method for the offline
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Structure From Motion problem [28]. One of the main successes of PTAM, and the earlier
work of Mouragnon [51], was to bring that knowledge into the robotics SLAM community
and demonstrate its real time performance. The main contribution of our work is to expand
the versatility of PTAM to environments that are intractable for that system. To achieve
this, we have designed from scratch a new monocular SLAM system with some new ideas and
algorithms, but also building on excellent works developed in the past few years, such as the
loop detection of Gálvez-López and Tardós [25], the loop closing procedure and covisibility
graph of Strasdat et al. [74, 75], the optimization framework g2o by Kuemmerle et al. [38]
and ORB features by Rubble et al. [69]. To the best of our knowledge, no other system has
demonstrated to work in as many different scenarios and with such accuracy. Therefore our
system is currently the most reliable and complete solution for monocular SLAM. Our novel
policy to spawn and cull keyframes, permits to create keyframes every few frames, which are
eventually removed when considered redundant. This flexible map expansion is really useful
in poorly conditioned exploration trajectories, i.e. close to pure rotations or fast movements.
When operating repeatedly in the same environment, the map only grows if the visual content
of the scene changes, storing a history of its different visual appearances. Interesting results
for long-term mapping could be extracted analyzing visual changes among keyframes of the
same place inserted at different times.

Finally we have also demonstrated that ORB features have enough recognition power to
enable place recognition from severe viewpoint change. Moreover they are so fast to extract
and match (without the need of multi-threading or GPU acceleration) that enable real time
accurate tracking and mapping.

4.7.2 Sparse/Feature-based vs. Dense/Direct Methods

Recent real-time monocular SLAM algorithms such as DTAM [60] and LSD-SLAM [17] are
able to perform dense or semi dense reconstructions of the environment, while the camera
is localized by optimizing directly over image pixel intensities. These direct approaches do
not need feature extraction and thus avoid the corresponding artifacts. They are also more
robust to blur, low-texture environments and high-frequency texture like asphalt [44]. Their
denser reconstructions, as compared to the sparse point map of our system or PTAM, could
be more useful for other tasks than just camera localization.

However, direct methods have their own limitations. Firstly, these methods assume a
surface reflectance model that in real scenes produces its own artifacts. The photometric
consistency limits the baseline of the matches, typically narrower than those that features
allow. This has a great impact in reconstruction accuracy, which requires wide baseline ob-
servations to reduce depth uncertainty. Direct methods are quite affected by rolling-shutter,
auto-gain and auto-exposure artifacts (as in the TUM RGB-D Benchmark), unless they are
correctly modeled. In addition direct methods are in general very computationally demand-
ing, therefore the map is just incrementally expanded as in DTAM, or map optimization is
reduced to a pose graph, discarding all sensor measurements as in LSD-SLAM. Finally as
direct methods rely on intensity gradients, initial solutions for the optimization need to be
close to the true solution to converge, which reduce the robustness in case of low frame-rate
or sudden movements.
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In contrast, feature-based methods are able to match features with a wide baseline, thanks
to their good invariance to viewpoint and illumination changes. Bundle adjustment jointly
optimizes camera poses and points over sensor measurements. In the context of structure
and motion estimation, Torr and Zisserman [83] already pointed the benefits of feature-based
against direct methods. In this work we provide experimental evidence (see Section 4.6.2) of
the superior accuracy of feature-based methods in real-time SLAM.

A very promising work is the recent work of Engel et al. [16] which proposes a sparse
direct approach for visual odometry. Not using a geometry prior, compared to DTAM or
LSD-SLAM, it is able to perform for the first time photometric bundle adjustment over a
sparse and well-distributed set of points on selected keyframes. The method has excellent
robustness and accuracy when using photometric calibration with global shutter cameras.

We consider that the future of monocular SLAM should incorporate the best of both
feature-based and direct approaches.
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Chapter 5

Probabilistic Semi-Dense Mapping

In the previous chapter we have presented ORB-SLAM, a novel feature-based monocular
SLAM system, which operates in real-time in indoor and outdoor environments, being able
to relocalize and close loops from significantly different viewpoints and with a robust map
bootstrapping. After the excellent DTAM [60] and LSD-SLAM [17] direct SLAM systems,
there is the extended believe in the community that direct methods are more robust as not
relying on feature detection, and are more accurate because they used more information from
the images. Surprisingly, our evaluation in Chapter 4 shows the opposite. However ORB-
SLAM as a feature-based method, produces a sparse map of the environment which is very
good for camera localization but of little use to describe the environment. Therefore in this
chapter we aim to densify the reconstruction of ORB-SLAM.

Some previous works have proposed dense reconstruction methods using GPUs, built
over feature-based SLAM [58, 77] or visual odometry algorithms [67]. Following a similar
approach, in this chapter we propose a probabilistic semi-dense mapping module to perform
in real-time, without requiring GPU acceleration, rich semi-dense reconstructions. One of
the main novelties of our semi-dense mapping method is that instead of using many sub-
sequent frames to filter the inverse depth of a reference frame [17, 19, 67], we perform the
reconstruction over keyframes, which are very well localised by local bundle adjustment, and
pose graph optimization after a loop closure. This allows to obtain high quality and accurate
reconstructions. If the highest accuracy is desired, the reconstruction can also be performed
at the end of the session in few seconds after a full bundle adjustment.

Our stereo correspondence search and inverse depth uncertainty derivation is based on
[19]. However we search correspondences between keyframes (wider baselines) and therefore
we have to deal with potentially more outliers, due to occlusions or multiple similar pixels.
To gain robustness, in addition to the photometric similarity, we compare the magnitude and
orientation of the image gradient, and propose a novel measurement fusion. We also propose
an inter -keyframe depth consistency check that discards most of the outliers, see an example
in Fig. 5.3. In contrast to [19], our formulation does not make assumptions of small rotations
in the derivation of the inverse depth uncertainty.

73



  

Frame

TRACKING

Extract
ORB

Initial Pose Estimation
from last frame or 

Relocalisation

Track
Local Map

New KeyFrame
Decision

Local BA

Recent
MapPoints

Culling

KeyFrame
Insertion

New Points
Creation

Local
KeyFrames

Culling

KeyFrame

LOOP CLOSING

Loop
Detection

Loop
Fusion

Visual 
Vocabulary

Recognition
Database

PLACE 
RECOGNITION

L
O

C
A

L
 M

A
P

P
IN

G

MAP

MapPoints

Covisibility
Graph

KeyFrames

Essential Graph 
OptimizationS

E
M

I-
D

E
N

S
E

 M
A

P
P

IN
G

Intra-Keyframe
Inverse Depth

Smoothing

Hypothesis
Fusion

Inter-Keyframe
Inverse Depth

Smoothing

Epipolar 
Search

Monocular ORB-SLAM

Stereo
Search

Constraining

Figure 5.1: Our system including the three threads of ORB-SLAM, tracking, local mapping
and loop closing, and the semi-dense mapping thread proposed in this chapter.

5.1 Method

Our system includes the three original threads of ORB-SLAM, which compute the camera
trajectory and create a sparse map that is used for localization. In this chapter we propose
a semi-dense mapping thread, as seen in Fig. 5.1, that processes the keyframes to create
a semi-dense reconstruction of the environment. This semi-dense reconstruction is used to
describe the environment but not for camera localization. The outline of our semi-dense
mapping method is the following:

1. Each keyframe Ki is processed from scratch. Every pixel in a high gradient area is
searched along the epipolar line on N neighbor keyframes, yielding N inverse depth
hypotheses.

2. Each inverse depth hypothesis is represented by a gaussian distribution that takes into
account the image noise, the parallax and the ambiguity in the matching. We consider
that the keyframe poses are well localised and do not take into account their uncertainty.

3. Because the baseline is wide between keyframes the search range along the epipolar line
is large. To deal with outlier measurements, due to similar pixels or occlusions, we fuse
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the maximum subset of the N hypotheses that are mutually compatible. Each pixel p
of the inverse depth map is then characterized with a gaussian distribution N (ρp, σ

2
ρp).

4. As proposed in [19], a smoothing step is then applied to the inverse depth map so
that a pixel is averaged with its neighbors. If a pixel inverse depth distribution is not
compatible with its neighbors it is discarded.

5. After the neighbor keyframes have also computed their respective inverse depth maps,
consistency in the per-pixel depths is checked across neighbor keyframes to discard
outliers and the final depth is refined by optimization.

5.1.1 Stereo Search Constraints

Our feature-based SLAM system provides useful information to constrain the search of pixel
correspondences to compute the inverse depth map. On one hand keyframes have associated
tracked ORB features with known depth, which renders us the maximum ρmax and minimum
ρmin expected inverse depths of the scene. This provides a prior N (ρ0, σ

2
ρ0

), with ρmax =
ρ0 + 2σρ0 and ρmin = ρ0 − 2σρ0 , for the inverse depth search, as illustrated in Fig. 5.2.

In addition using the covisibility graph we can retrieve the set of N keyframes K, which
share most map point observations with Ki, and focus the stereo search in those keyframes.
Keyframes are processed with a small delay (around 10 keyframes) so that they can be recon-
structed using also future keyframes to get a better reconstruction. This is also convenient
as local BA optimizes recent keyframes, potentially interfering with this semi-dense mapping
thread.

p

Figure 5.2: Epipolar constrained search of a pixel in a neighbor keyframe given a prior inverse
depth distribution.
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5.1.2 Epipolar Search

Each pixel p of Ki with gradient magnitude greater than a threshold λG is searched along
the epipolar line lj on each keyframe Kj ∈ K, constrained to the segment between ρmin and
ρmax. The epipolar line is computed from the fundamental matrix Fji [28], and for the sake
of simplicity in the rest we parametrize it as a function of the horizontal coordinate uj:

x>j Fjixp = x>j lj = 0 → vj = m · uj + n (5.1)

In contrast to [19] (narrow baseline frames), our search along the epipolar line is larger (wider
baseline keyframes) and we need to take special care of outliers. Therefore, in addition to
comparing the intensity I, we propose to compare the magnitude G and orientation Θ of the
image gradient.

The pixel p is characterized by an intensity value Ip, a gradient magnitude Gp and orien-
tation Θp, and the goal is to find its best correspondence on lj. Firstly the pixels pj ∈ lj not
fulfilling the following conditions are not considered:

� pj must lie in a high gradient area, that is G(uj) > λG.

� The ambiguity of a match is related to the intensity gradient along the epipolar line [19].
Therefore the gradient direction must not be perpendicular to the epipolar line, that is
|Θ(uj)−ΘL ± π| < λL, with ΘL the epipolar line angle (considering both directions).

� The gradient orientation of pj must be similar, that is |Θ(uj) − (Θpi + ∆θj,i)| < λθ,
where ∆θj,i is the in-plane rotation between keyframe images, which is computed from
the median rotation of corresponding ORB between both keyframes.

These conditions discard most of the points of the epipolar line, reducing potential mis-
matches. To compare the remaining points we define a similarity error e(uj):

e(uj) =
r2
I

σ2
I

+
r2
G

σ2
G

, rI = Ip − I(uj), rG = Gp −G(uj) (5.2)

where rI is the photometric error and rG is the gradient magnitude error; σI and σG are
the standard deviation of the intensity and gradient respectively. Because the gradient is a
function of the intensity their noise are related σ2

G = θσ2
I with θ = 0.23 if using the Scharr

operator to compute the image derivatives (θ < 1 as the Scharr operator performs an average
reducing the noise). With this relation the similarity error is:

e(uj) = (r2
I +

1

θ
r2
G)

1

σ2
I

(5.3)

We select the pixel at coordinate u0 that minimizes this error, with residuals rI0 and rG0 .
We can then compute the derivate of the error:

∂e

∂uj
=
−2(rI g + 1

θ
rG q)

σ2
I

(5.4)
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where g is the intensity gradient and q is the derivate of the intensity gradient magnitude,
both along the epipolar line:

g ≈ I(uj + 1)− I(uj − 1)

2
, q ≈ G(uj + 1)−G(uj − 1)

2
(5.5)

Performing a first order taylor approximation of the residuals (5.2) and equaling to zero
the similarity error derivate (5.4) we can retrieve the pixel correspondence with subpixel
precision:

u∗0 = u0 +
g(u0)rI(u0) + 1

θ
q(u0)rG(u0)

g2(u0) + 1
θ
q2(u0)

(5.6)

Now we can derive the uncertainty of u∗0 from the intensity noise σ2
I by error propagation,

for simplicity considering only the noise in the residuals rI(u0) and rG(u0):

σ2
u∗0

=
2σ2

I

g2(u0) + 1
θ
q2(u0)

(5.7)

This uncertainty tell us that a match is more reliable as higher is the gradient along the
epipolar of the quantities involved in the similarity measure (5.2), in our case the intensity
and the image gradient magnitude.

Now we need to propagate the uncertainty of the match σ2
u∗0

to the uncertainty in the

inverse depth σ2
ρp . The inverse depth ρp of pixel p in Ki is a function of the position in the

epipolar line uj (which can be derived from the formula of the projection of a 3D world point
into a camera image [28]):

ρp(uj) =
rjiz X̄p(uj − cx)− fx rjix X̄p

−tjiz (uj − cx) + fx t
ji
x

(5.8)

where rjiz and rjix are the third and first row of the rotation Rji, t
ji
z and tjix are the third and

first elements of the translation jpi, X̄p = K−1 xp is the unary ray trough pixel p as seen in
Fig. 5.2, being K the calibration matrix, and fx and cx are the focal and the principal point.
Using equation (5.8) we form the inverse depth hypothesis N (ρj, σ

2
ρj

), as follows:

ρj = ρp(u
∗
0)

σρj = max(|ρp(u∗0 + σu∗0)− ρj|, |ρp(u∗0 − σu∗0)− ρj|)
(5.9)

Note that our uncertainity propagation is general, in contrast to the assumption of small
rotations in [19].

5.1.3 Inverse Depth Hypothesis Fusion

At this point we have a set of inverse depth hypotheses for the pixel p. The number of
hypotheses can be less than N as the epipolar line segment between ρmin and ρmax could lie
entirely out of some of the keyframes or no pixel fulfills the conditions described in section
5.1.2. In addition some of the hypotheses can be outliers due to several similar pixels or
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occlusions. We therefore search for at least λN compatible hypotheses. The compatibility
between two hypotheses a, b is tested with the χ2 test at 95%:

(ρa − ρb)2

σ2
a

+
(ρa − ρb)2

σ2
b

< 5.99 (5.10)

Selecting at each time a hypothesis we check the compatibility with the rest of hypotheses.
If the best combination gives n > λN compatible measures, they are fused, yielding the inverse
depth distribution N (ρp, σ

2
ρp) for the pixel p:

ρp =

∑
n

1
σ2
ρj

ρj∑
n

1
σ2
ρj

, σ2
ρp =

1∑
n

1
σ2
ρj

(5.11)

5.1.4 Intra-Keyframe Depth Checking, Smoothing and Growing

After we have computed the semi-dense inverse depth map of the keyframe we perform an
outlier removal, smoothing and growing step as proposed in [19]. To retain the inverse depth
measurement of a pixel its inverse depth distribution must be supported by at least 2 of
its 8 pixel neighbors pi,n as described in (5.10). The inverse depth of those retained pixels
is averaged by their compatible neighbors using (5.11), but fixing the standard deviation
to the minimum of the neighbors. This step smooths the reconstruction, while preserving
edges, as only compatible measurements are averaged. Those pixels, in a high gradient area
that do not have an inverse depth measurement but are surrounded by at least two pixels
with compatible distributions, are also assigned an average inverse depth (with the minimum
standard deviation). This grows the reconstruction getting more density.

5.1.5 Inter-Keyframe Depth Checking and Smoothing

Once the inverse depth maps of the neighbors of Ki have been computed, we check with them
the consistency of each inverse depth distribution in the inverse depth map of Ki. For each
pixel p of Ki with an associated inverse depth ρp, we project the corresponding 3D point into
each neighbor keyframe Kj and propagate the inverse depth as follows:

xj = πm

(
Rji

1

ρp
X̄p + jpi

)
ρj =

ρp

rjiz X̄p + ρp t
ji
z

(5.12)

As the projection xj will not coincide with an integer pixel coordinate, we look in the 4
neighbor pixel pj,n around xj for a compatible inverse depth as follows:

(ρj − ρj,n)2

σ2
ρj,n

< 3.84 (5.13)
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To retain the inverse depth distribution of a pixel p, at least one compatible pixel pj,n must
be found in at least λN neighbor keyframes.

Finally we perform a gauss-newton step that minimizes the depth difference in all com-
patible pixels:

d∗p = min
dp

∑
j,n

(dj,n − dp rjiz X̄p − tjiz )2 1

d4
j,nσ

2
ρj,n

(5.14)

We optimize the depth instead of its inverse because the propagation equation (5.12) is linear
in depth an the optimal d∗p is reached in one iteration. The denominator of (5.14) comes from
uncertainity propagation of the inverse depth to depth.

5.2 Experimental Evaluation

In this section we present several experiments to show the performance of our semi-dense
mapping approach. We have performed all experiments in a laptop with an Intel i7-4700MQ
processor, which allows to run simultaneously 8 threads. Our feature-based ORB-SLAM and
the semi-dense module are implemented in C++ and run in the Robot Operating System
(ROS). The feature-based SLAM system uses 3 threads (the tracking, local mapping and loop
closing), while ROS will probably make use of at least 1 additional thread. Therefore in the
online setting, the semi-dense mapping module makes use of 4 threads for multi-threading
optimization. All operations described in section 5.1 are independent for each pixel and
therefore can be parallelized. The values for the parameters of the semi-dense module were
set as follows: N = 7, σI = 20, λG = 8, λL = 80◦, λθ = 45◦ and λN = 3.

5.2.1 The importance of removing outliers

One of the main characteristics of our semi-dense mapping method is that stereo correspon-
dences are searched between keyframes with wide baseline. This can produce the appearance
of outliers due to occlusions or multiple similar pixels. Although each inverse depth value has
an associated uncertainty, imposing a restrictive variance threshold is not enough to remove
outliers that could have similar uncertainty than inliers. This motivated the inclusion of an
inter-keyframe depth consistency checking, see Section 5.1.5, to detect and remove outliers.
Fig. 5.3 shows a semi-dense reconstruction of a planar scene that consists of several posters
on the floor. First row of the figure shows the top and side views of the reconstruction without
applying any outlier detection, which results in a solution with many outliers. Second row
is the same reconstruction, but retaining only the pixels that have an inverse depth variance
below a threshold, which reduces the number of outliers but not completely. Third row is
the original reconstruction with the inter-keyframe outlier removal, but without a variance
threshold, and almost all outliers have been removed. The best solution is shown in the
fourth row with both a variance threshold and the inter-keyframe checking.
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Figure 5.3: Example of outlier removal in fr2 nostructure texture near with loop (TUM
RGB-D Dataset [78]). Description in text.
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5.2.2 Accuracy

In Chapter 4 we performed an extensive evaluation of ORB-SLAM, in terms of keyframe pose
accuracy. We used the TUM RGB-D Benchmark [78] as it provided several sequences with
accurate ground-truth camera localization from an external motion capture system. Despite
the dataset is quite exigent for monocular SLAM (e.g. limited field of view, blur, strong
rotations), we achieved a typical RMSE error in the keyframe position around 1cm, and in
some sequences as the fr2 xyz only 3 mm. We compared our results in 16 sequences with the
state-of-the-art direct SLAM, LSD-SLAM [17], and surprisingly we obtained higher accuracy
(around 5 times better) and higher robustness, as LSD-SLAM was not able to process all
sequences.

To test our semi-dense mapping method we have selected 4 of the sequences in which the
camera motion allows to recover a detailed reconstruction. Still those sequences where not
recorded with care for semi-dense/dense reconstruction as it was not the goal. An analysis
of suitable camera movements for this kind of reconstructions can be found in [22]. Left
and middle columns of Fig. 5.4 shows different viewpoints of each reconstruction. It can
be seen how the reconstruction contains very few outliers, while the point density is enough
to recognize different objects as seen in Fig.5.5. The accuracy of the reconstruction can be
noticed in the straight contours of the the desk in fr2 desk (first row), the scene planarity
in fr3 nostructure texture near with loop (second row), and the readable text in sequence
fr3 structure texture near (last row). In the sequence fr3 long office household (third row)
there is a close approximation of the camera to the teddy bear that introduce more error
than normal drift accumulation. Therefore the pose graph optimization performed at the
loop closure at the end of the sequence cannot completely compensate this error. The result
is that the desk contours do not completely align, despite in general the reconstruction being
quite accurate. Running the reconstruction offline after full BA yields a perfectly aligned
and accurate solution.

Table 5.1 shows the median times per keyframe and total reconstruction times for each
sequence. It can be seen that the system operates in real-time as the total time spent by the
semi-dense mapping module is less than the total sequence length. However it is important to
remind that the reconstruction is always with some seconds delay to permit the reconstruction
of a keyframe with future keyframes and to avoid interferences of the local BA. Variations in
time depend mainly on the amount of high gradient pixels in the keyframes.

To compare we have executed LSD-SLAM in the same sequences (right column of Fig.
5.4). The reconstruction of fr2 desk is similar to ours. In fr3 nostructure texture near with loop
the loop at the end of the sequence is not closed and posters do not perfectly align. The
reconstruction of fr3 long office household is broken in one of the sides of the desk as it is
highlighted, because the reconstruction is severely corrupted after the close camera approxi-
mation to the teddy bear and the loop closure can only partially mitigate the error. Finally
in sequence fr3 structure texture near the tracking fails after a rotation at the beginning of
the sequence.
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Figure 5.4: Left and middle columns: our semi-dense reconstructions in TUM RGB-D
Dataset [78]. Right: LSD-SLAM [17]. Variance thresholds have been adapted in both sys-
tems to show the reconstructions as clean as possible. Reconstructions from LSD-SLAM
have been taken from its grayscale visualizer subtracting the background color.
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Table 5.1: Online reconstruction times for the sequences in Fig. 5.4 (in row order).

Time per Keyframe seq.1 seq. 2 seq.3 seq. 4

Inverse Depth Map Estimation (ms) 234 232 268 170

Intra-Keyframe Smoothing (ms) 28 25 31 24

Inter -Keyframe Smoothing (ms) 151 128 154 119

Total (ms) 425 376 451 308

Reconstruction Time (s) 65.2 37.0 67.1 14.3

Sequence Length (s) 98.8 56.6 87.1 37.0

Figure 5.5: Example of reconstructed objects that are easily recognizable.
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Figure 5.6: Example of a dynamic scene. At the bottom it can be seen that there is a
person changing object positions. Both our reconstruction and LSD-SLAM are shown for
comparison.
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5.2.3 Dynamic Scenes

In this experiment we have run our system in the sequence fr2 desk with person. This is a desk
sequence where a person is moving and changes some object positions. Our SLAM system
is robust under those dynamic elements, achieving a RMSE error in the keyframe positions
of 6.3mm. Because the semi-dense mapping operates over the keyframes, only objects that
have remained static in several keyframes are reconstructed. The whole reconstruction is
shown in Fig. 5.6. It can be seen that low dynamic changes (final positions of an object) are
present in the reconstruction while static elements (e.g. the desk contour) are well defined.

We have also executed LSD-SLAM in this sequence to compare. It can be seen in Table
4.3 the low accuracy achieved in this sequence. The reconstruction is also shown in Fig. 5.6,
where the point clouds of the first 30 keyframes of the sequence are not shown as they were
very wrongly positioned. Still the overall reconstruction contains many outliers.

5.3 Discussion

In this chapter we have presented a novel probabilistic semi-dense mapping module for our
ORB-SLAM framework to perform in real-time, in a conventional computer and without
GPU, rich semi-dense reconstructions. The semi-dense mapping operates over keyframes,
which are very well localised due to local BA and pose graph optimization at loop closing,
allowing to obtain high quality reconstructions. The search of pixel correspondences in wide
baseline keyframes motivated a novel inverse-depth hypothesis fusion and an inter -keyframe
outlier detection mechanism, which checks the depth consistency across keyframes, resulting
in clean reconstructions with very few outliers. Our correspondence search and inverse depth
uncertainty derivation is based on [19], adding the image gradient magnitude and orienta-
tion in the comparison, and deriving the equations without narrow baseline assumptions, as
we operate on keyframes. Figure 5.3 showed that our probabilistic uncertainty model and
the novel inter-keyframe outlier detection significantly improves the reconstruction quality,
irrespective of the keyframe poses, which is one of the main contributions of this paper. The
main limitation of our approach is that the semi-dense reconstruction is obtained with a few
keyframes delay, and it is not used for camera tracking.
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Chapter 6

Stereo and RGB-D ORB-SLAM
(ORB-SLAM2)

In previous chapters we have seen that visual SLAM can be performed by using just a
monocular camera, which is the cheapest and smallest sensor setup. However as depth
is not observable from just one camera, the scale of the map and estimated trajectory is
unknown. In addition the system bootstrapping require multi-view or filtering techniques to
produce an initial map as it cannot be triangulated from the very first frame. Last but not
least, monocular SLAM suffers from scale drift and may fail if performing pure rotations in
exploration. By using a stereo or an RGB-D camera all these issues can be solved, allowing
for the most reliable visual SLAM solutions.

In this chapter we built on our monocular ORB-SLAM, described in Chapter 4, and
propose ORB-SLAM2 with the following contributions:

� The first open-source SLAM system for monocular, stereo and RGB-D cameras, in-
cluding loop closing, relocalization and map reuse.

� Our RGB-D results show that by using bundle adjustment we achieve more accuracy
than state-of-the-art methods based on ICP or photometric and depth error minimiza-
tion.

� By using close and far stereo points and monocular observations our stereo results are
more accurate than the state-of-the-art direct stereo SLAM.

� A lightweight localization mode that can effectively reuse the map with mapping dis-
abled.

6.1 System description

Fig. 6.1 shows an overview of ORB-SLAM2 for stereo and RGB-D cameras, which is built
on our monocular feature-based ORB-SLAM, described in Chapter 4. The system has three
main parallel threads: 1) the Tracking to localize the camera with every frame by finding
feature matches to the local map and minimizing the reprojection error applying motion-only
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(a) System Threads and Modules.

(b) Input pre-processing

Figure 6.1: ORB-SLAM2 overview. The tracking thread pre-process the stereo or RGB-D
input so that the rest of the system operates independently of the input sensor. Although it
is not shown here, ORB-SLAM2 also works with monocular as described in Chapter 4.

BA, 2) the Local Mapping to manage the local map and optimize it, performing local BA,
3) the Loop Closing to detect large loops and correct the accumulated drift by performing a
pose-graph optimization. This thread launches a fourth thread to perform full BA after the
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pose-graph optimization, to compute the optimal structure and motion solution.

The system has embedded a Place Recognition module based on DBoW2 [25] for relo-
calization, in case of tracking failure (e.g. an occlusion) or for reinitialization in an already
mapped scene, and for loop detection. The system maintains a covisibiliy graph [74] that
links any two keyframes observing common points and a minimum spanning tree connecting
all keyframes. These graph structures allow to retrieve local windows of keyframes, so that
Tracking and Local Mapping operate locally, allowing to work on large environments, and
serve as structure for the pose-graph optimization performed when closing a loop.

The system uses the same ORB features [69] for tracking, mapping and place recognition
tasks. These features are robust to rotation and scale and present a good invariance to camera
auto-gain and auto-exposure, and illumination changes. Moreover they are fast to extract
and match allowing for real-time operation and show good precision/recall performance in
bag-of-word place recognition, as shown in Chapter 3.

In the rest of this section we present how stereo/depth information is exploited and which
elements of the system are affected.

6.1.1 Monocular, Close Stereo and Far Stereo Keypoints

ORB-SLAM2, as a feature-based method, preprocesses the input to extract features at salient
keypoint locations, as shown in Fig. 6.1b. The input images are then discarded and all system
operations are based on these features, so that the system is independent on the sensor being
stereo or RGB-D. Our system handles monocular and stereo keypoints, which are further
classified as close or far.

Stereo keypoints are defined by three coordinates xs = (uL, vL, uR), being (uL, vL) the
coordinates on the left image and uR the horizontal coordinate in the right image. For stereo
cameras, we extract ORB in both images and for every left ORB we search for a match in
the right image. This can be done very efficiently assuming stereo rectified images, so that
epipolar lines are horizontal. We then generate the stereo keypoint with the coordinates of
the left ORB and the horizontal coordinate of the right match, which is subpixel refined by
patch correlation. For RGB-D cameras, we extract ORB features on the image channel and,
as proposed by Strasdat et al. [74], we synthesize a right coordinate uR for each feature,
using the associated depth value d in the registered depth map channel, and the baseline
brgbd between the structured light projector and the infrared camera, which for Kinect and
Asus Xtion cameras we approximate to 8cm:

uR = u− fxbrgbd
d

(6.1)

where u is the undistorted horizonatal coordinate of the keypoint in the image and fx is the
horizontal focal length.

A stereo keypoint is classified as close if its associated depth is less than 40 times the
stereo/RGB-D baseline, as suggested in [64], otherwise it is classified as far. Close keypoints
can be safely triangulated from one frame, as depth is reliably estimated, and provide scale,
translation and rotation information. On the other hand far points provide accurate rotation
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information but weaker scale and translation information. We triangulate far points when
they are supported by multiple views.

Monocular keypoints are defined by two coordinates xm = (uL, vL) on the left image
and correspond to all those ORB for which a stereo match could not be found or that have
an invalid depth value in the RGB-D case. These points are only triangulated from multiple
views and do not provide scale information, but contribute to the rotation and translation
estimation.

6.1.2 System Bootstrapping

One of the main benefits of using stereo or RGB-D cameras is that, by having depth infor-
mation from just one frame, we do not need a specific structure from motion initialization as
in the monocular case. At system startup we create a keyframe with the first frame, set its
pose to the origin, and create an initial map from all stereo keypoints.

6.1.3 Bundle Adjustment with Monocular and Stereo Constraints

Our system performs bundle adjustment to optimize the camera pose in the Tracking (motion-
only BA), to optimize a local window of keyframes and points in the Local Mapping (local
BA), and after a loop closure to optimize all keyframes and points (full BA). We use the
Levenberg-Marquadt implementation in g2o [38].

Motion-only BA optimizes the camera orientation RCW ∈ SO(3) and position CpW ∈ R3,
minimizing the reprojection error between matched 3D points Xi

W ∈ R3 in world coordinates
and keypoints xi(·), either monocular xim ∈ R2 or stereo xis ∈ R3:

{RCW, CpW} = argmin
RCW,CpW

∑
i

ρ
(∥∥xi(·) − π(·)

(
RCWX

i
W + CpW

)∥∥2

Σi

)
(6.2)

where ρ is the robust Huber cost function and Σi the covariance matrix associated to the
scale of the keypoint. The projection functions π(·), monocular πm and rectified stereo πs,
are defined in Section 1.2.

Local BA optimizes a set of covisible keyframes KL and all points seen in those keyframes
PL. All other keyframes KF , not in KL, observing points in PL contribute to the cost function
but remain fixed in the optimization. Defining Pk as the set of points in PL observed in
keyframe k, the optimization problem is the following:

{Xp
W,R

l
CW, Cp

l
W|p ∈ PL, l ∈ KL} = argmin

Xp
W ,R

l
CW,Cp

l
W

∑
k∈KL∪KF

∑
j∈Pk

ρ
(∥∥xjk − π(·)

(
Rk

CWX
j
W + Cp

k
W

)∥∥2

Σj
k

)
(6.3)

where π(·) is the monocular or stereo projection function depending on the matched keypoint

xjk being monocular or stereo.

Full BA is the specific case of local BA, where all keyframes and points in the map are
optimized, except the origin keyframe that is fixed to eliminate the gauge freedom.
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Figure 6.2: Green points have a depth less than 40 times the stereo baseline, while blue
points are further away. In this kind of sequences it is important to insert keyframes very
often so that the amount of close points allows for accurate translation estimation. Far points
contribute to estimate orientation but provide weak information for translation and scale.

6.1.4 Loop Closing and Full BA

Loop closing is performed in two steps, firstly a loop has to be detected and validated,
and secondly the loop is corrected optimizing a pose-graph. In contrast to monocular ORB-
SLAM, where scale drift may occur [75], the stereo/depth information makes scale observable
and the geometric validation and pose-graph optimization no longer require dealing with scale
drift and are based on rigid body transformations instead of similarities.

In ORB-SLAM2 we have incorporated a full BA optimization after the pose-graph to
achieve the optimal solution. This optimization might be very costly and therefore we perform
it in a separate thread, allowing the system to continue creating map and detecting loops.
However this brings the challenge of merging the bundle adjustment output with the current
state of the map. If a new loop is detected while the optimization is running, we abort
the optimization and proceed to close the loop, which will launch the full BA optimization
again. When the full BA finishes, we need to merge the updated subset of keyframes and
points optimized by the full BA, with the non-updated keyframes and points that where
inserted while the optimization was running. This is done by propagating the correction of
updated keyframes (i.e. the transformation from the non-optimized to the optimized pose)
to non-updated keyframes through the spanning tree. Non-updated points are transformed
according to the correction applied to their reference keyframe.

6.1.5 Keyframe Insertion

ORB-SLAM2 follows the policy introduced in monocular ORB-SLAM of inserting keyframes
very often and culling redundant ones afterwards. The distinction between close and far
stereo points allows us to introduce a new condition for keyframe insertion, which can be
critical in challenging environments where a big part of the scene is far from the stereo sensor,
as shown in Fig. 6.2. In such environment we need to have a sufficient amount of close points
to accurately estimate translation, therefore if the number of tracked close points drops below
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τt and the frame could create at least τc new close stereo points, the system will insert a new
keyframe. We empirically found that τt = 100 and τc = 70 works well in all our experiments.

6.1.6 Localization Mode

We incorporate a localization mode which can be useful for lightweight long-term localization
in well mapped areas, as long as there are not significant changes in the environment. In
this mode the Local Mapping and Loop Closing threads are deactivated and the camera
is continuously localized by the Tracking using relocalization if needed. In this mode the
tracking leverages visual odometry matches and matches to map points. Visual odometry
matches are matches between ORB in the current frame and 3D points created in the previous
frame from the stereo/depth information (i.e. we do not create these point when using a
monocular input). These matches make the localization robust to unmapped regions, but
drift can be accumulated. Map point matches ensure drift-free localization to the map.

6.2 Evaluation

We have evaluated ORB-SLAM2 in three popular datasets and compared to other state-
of-the-art SLAM systems, using always results published by the original authors. We have
run ORB-SLAM2 in an Intel Core i7-4790 desktop computer with 16Gb RAM, being the
average processing time of the tracking always below the sensor’s frame-rate. We have run
each sequence 5 times and show always median results, to account for the non-deterministic
nature of the multi-threading system. Our open-source implementation includes calibration
and instructions to run the system in all these datasets.

6.2.1 KITTI Dataset

The KITTI dataset [26] contains stereo sequences recorded from a car in urban and highway
environments. The stereo sensor has a ∼54cm baseline and works at 10Hz with a resolution
before rectification of 1392×512 pixels. Sequences 00, 02, 05, 06, 07 and 09 contain loops. Our
ORB-SLAM2 detects all loops and is able to reuse its map afterwards, except for sequence 09
where the loop happens in very few frames at the end of the sequence. Table 6.1 shows results
in the 11 training sequences, which have public ground-truth, compared to the state-of-the-
art Stereo LSD-SLAM [18], to our knowledge the only stereo SLAM showing detailed results
for all sequences. We use two different metrics, the absolute translation RMSE tabs proposed
in [78], and the average relative translation trel and rotation rrel errors proposed in [26]. Our
system outperforms Stereo LSD-SLAM in most sequences, and achieves in general a relative
error lower than 1%. The sequence 01, see Fig. 6.2, is the only highway sequence in the
training set and the translation error is slightly worse. Translation is harder to estimate in
this sequence because very few close points can be tracked, due to highspeed and low frame-
rate. However orientation can be accurately estimated, achieving an error of 0.21 degrees
per 100 meters, as there are many far point that can be long tracked. Fig. 6.3 shows some
examples of estimated trajectories.
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Table 6.1: Comparison of accuracy in the KITTI Dataset.

ORB-SLAM2 (Stereo) Stereo LSD-SLAM
Error trel rrel tabs trel rabs tabs

(Units) (%) (deg/100m) (m) (%) (deg/100m) (m)

00 0.70 0.25 1.3 0.63 0.26 1.0
01 1.39 0.21 10.4 2.36 0.36 9.0
02 0.76 0.23 5.7 0.79 0.23 2.6
03 0.71 0.18 0.6 1.01 0.28 1.2
04 0.48 0.13 0.2 0.38 0.31 0.2
05 0.40 0.16 0.8 0.64 0.18 1.5
06 0.51 0.15 0.8 0.71 0.18 1.3
07 0.50 0.28 0.5 0.56 0.29 0.5
08 1.05 0.32 3.6 1.11 0.31 3.9
09 0.87 0.27 3.2 1.14 0.25 5.6
10 0.60 0.27 1.0 0.72 0.33 1.5
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Figure 6.3: Estimated trajectory (black) and ground-truth (red) in KITTI 01, 05, 07 and 08.
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6.2.2 EuRoC Dataset

The recent EuRoC dataset [6] contains 11 stereo sequences recorded from a micro aerial
vehicle (MAV) flying around two different rooms and a large industrial environment. The
stereo sensor has a ∼11cm baseline and provides WVGA images at 20Hz. The sequences are
classified as easy , medium and difficult depending on MAV’s speed, illumination and scene
texture. In all sequences the MAV revisits the environment and ORB-SLAM2 is able to
reuse its map, closing loops when necessary. Table 6.2 shows absolute translation RMSE of
ORB-SLAM2 for all sequences, comparing to Stereo LSD-SLAM, for the results provided in
[18]. ORB-SLAM2 achieves a localization precision of a few centimeters and is more accurate
than Stereo LSD-SLAM. Our tracking get lost in some parts of V2 03 difficult due to abrupt
motions. As shown in Chapter 7, this sequence can be processed using IMU information.
Fig. 6.4 shows examples of computed trajectories compared to the ground-truth.

6.2.3 TUM RGB-D Dataset

The TUM RGB-D dataset [78] contains indoors sequences from RGB-D sensors grouped
in several categories to evaluate object reconstruction and SLAM/odometry methods under
different texture, illumination and structure conditions. We show results in a subset of
sequences where most RGB-D methods are usually evaluated. In Table 6.3 we compare
our accuracy to the following state-of-the-art methods: ElasticFusion [87], Kintinuous [86],
DVO-SLAM [35] and RGB-D SLAM [15]. Our method is the only one based on bundle
adjustment and outperforms the other approaches in most sequences. As we already noticed
for RGB-D SLAM results in Section 4.6.2, depthmaps for freiburg2 sequences have a 4%
scale bias, probably coming from miscalibration, that we have compensated in our runs and
could partly explain our significantly better results. Fig. 6.5 shows the point clouds that
result from backprojecting the sensor depth maps from the computed keyframe poses in four
sequences. The good definition and the straight contours of desks and posters proves the
high accuracy localization of our approach.
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Table 6.2: EuRoC Dataset. Comparison of Translation RMSE (m).

ORB-SLAM2 (Stereo) Stereo LSD-SLAM
V1 01 easy 0.035 0.066
V1 02 medium 0.020 0.074
V1 03 difficult 0.048 0.089
V2 01 easy 0.037 -
V2 02 medium 0.035 -
V2 03 difficult X -
MH 01 easy 0.035 -
MH 02 easy 0.018 -
MH 03 medium 0.028 -
MH 04 difficult 0.119 -
MH 05 difficult 0.060 -
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Figure 6.4: Estimated trajectory (black) and groundtruth (red) in EuRoC V1 02 medium,
V2 02 medium, MH 03 medium and MH 05 difficutlt.
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Figure 6.5: Dense pointcloud reconstructions from estimated keyframe poses and sensor
depth maps in TUM RGB-D fr3 office, fr1 room, fr2 desk and fr3 nst.

Table 6.3: TUM RGB-D Dataset. Comparison of Translation RMSE (m).

ORB-SLAM2
(RGB-D)

ElasticFusion Kintinuous DVO-SLAM RGB-D SLAM

fr1/desk 0.016 0.020 0.037 0.021 0.026

fr1/desk2 0.022 0.048 0.071 0.046 -

fr1/room 0.047 0.068 0.075 0.043 0.087

fr2/desk 0.009 0.071 0.034 0.017 0.057

fr2/xyz 0.004 0.011 0.029 0.018 -

fr3/office 0.010 0.017 0.030 0.035 -

fr3/nst 0.019 0.016 0.031 0.018 -
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6.3 Discussion

We have presented a full SLAM system for monocular, stereo and RGB-D sensors, able
to perform relocalization, loop closing and reuse its map in real-time in standard CPUs.
We focus on building globally consistent maps for reliable localization in a wide range of
environments as demonstrated in the experiments. The comparison to the state-of-the-art
shows very competitive accuracy of ORB-SLAM2, being in most cases the most accurate
solution. Surprisingly our RGB-D results demonstrate that if the most accurate camera
localization is desired, bundle adjustment performs better than direct methods or ICP, with
the additional advantage of being less computationally expensive. We have released the
source code of our system, with examples and instructions so that it can be easily used by
other researchers. We are aware that it has been already used out-of-the-box in [79]. Future
extensions might include, to name some examples, non-overlapping multi-camera, fisheye or
omnidirectional cameras support, large scale dense fusion, cooperative mapping or increased
motion blur robustness.
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Chapter 7

Visual-Inertial Monocular
ORB-SLAM

In previous chapters we addressed visual SLAM using monocular, stereo and RGB-D cameras.
Among different sensor modalities, visual-inertial setups provide a cheap solution with great
potential. On the one hand, cameras provide rich information of the environment, which
allows to build 3D models, localize the camera and recognize already visited places. On the
other hand, IMU sensors provide self-motion information, allowing to recover metric scale
for monocular vision, and to estimate gravity direction, rendering absolute pitch and roll of
the sensor observable. In this chapter we present a novel visual-inertial SLAM system fusing
information from monocular vision and IMU sensors, being to the best of our knowledge the
first keyframe-based visual-inertial SLAM that is able to close loops and reuse its map.

7.1 IMU Preintegration

In Section 1.2.4 we have already introduced the IMU sensor and how to integrate measure-
ments to compute the motion of the sensor. It is also very useful to describe the motion
between two consecutive keyframes in terms of the preintegration ∆R, ∆v and ∆p from
all measurements in-between as proposed by Lupton and Sukkarieh [46]. We use the recent
preintegration on SO(3) manifold for rotations, as described by Forster et al. [21]:

Ri+1
WB = Ri

WB∆Ri,i+1Exp
((

Jg∆Rbig
))

Wv
i+1
B = Wv

i
B + gW∆ti,i+1 + Ri

WB

(
∆vi,i+1 + Jg∆vb

i
g + Ja∆vb

i
a

)
Wp

i+1
B = Wp

i
B + Wv

i
B∆ti,i+1 +

1

2
gW∆t

2
i,i+1 + Ri

WB

(
∆pi,i+1 + Jg∆pb

i
g + Ja∆pb

i
a

) (7.1)

where the Jacobians Ja(·) and Jg(·) account for a first-order approximation of the effect of
changing the biases without explicitly recomputing the preintegrations. Both preintegrations
and Jacobians can be efficiently computed iteratively as IMU measurements arrive [21].

99



7.2 System Description

The base of our visual-inertial system is our monocular ORB-SLAM, following the ORB-
SLAM2 framework described in Chapter 6, including the Full BA thread and the localization
mode. In this section we detail the main changes with respect to the original system.

7.2.1 Initialization

Our tracking and local BA fix states in their optimizations, which could potentially bias
the solution. For this reason we need a reliable visual-inertial initialization that provides
accurate state estimations before we start fixing states. To this end we propose to perform a
visual-inertial full BA that provides the optimal solution for structure, camera poses, scale,
velocities, gravity, and gyroscope and accelerometer biases. This full BA is a non-linear
optimization that requires a good initial seed to converge. We propose in Section 7.3 a divide
and conquer approach to compute this initial solution. We firstly process a few seconds
of video with our pure monocular ORB-SLAM to estimate an initial solution for structure
and several keyframe poses, up to an unknown scale factor. We then compute the bias of
the gyroscope, which can be easily estimated from the known orientation of the keyframes,
so that we can correctly rotate the accelerometer measurements. Then we solve scale and
gravity without considering the accelerometer bias, using an approach inspired by Lupton and
Sukkarieh [46]. To facilitate distinguishing between gravity and accelerometer bias, we use the
knowledge of the magnitude of the gravity and solve for accelerometer bias, refining scale and
gravity direction. At this point it is straightforward to retrieve the velocities for all keyframes.
Our experiments validate that this is an efficient, reliable and accurate initialization method.
Moreover it is general, could be applied to any keyframe-based monocular SLAM, does not
assume any initial condition, and just require a movement of the sensor that make all variables
observable [48]. While previous approaches [33, 48, 91] jointly solve vision and IMU, either
ignoring gyroscope or accelerometer biases, we efficiently compute all variables subdividing
the problem in simpler steps.

7.2.2 Tracking

Our visual-inertial tracking is in charge of tracking sensor pose, velocity and IMU biases, at
frame-rate. This allows us to predict the camera pose very reliably, instead of using an ad-hoc
motion model as in the original monocular system. Once the camera pose is predicted, the
map points in the local map are projected and matched with keypoints on the frame. We
then optimize current frame j by minimizing the feature reprojection error of all matched
points and an IMU error term. This optimization is different depending on the map being
updated or not by the Local Mapping or the Loop Closing thread, as illustrated in Fig. 7.1.

When tracking is performed just after a map update (Fig. 7.1a) the IMU error term links
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Figure 7.1: Evolution of the optimization in the Tracking thread. (a) We start optimizing the
frame j linked by an IMU constraint to last keyframe i. (b) The result of the optimization
(estimation and Hessian matrix) serves as prior for next optimization. (c) When tracking
next frame j + 1, both frames j and j + 1 are jointly optimized, being linked by an IMU
constraint, and having frame j the prior from previous optimization. (d) At the end of
the optimization, the frame j is marginalized out and the result serves as prior for following
optimization. This process is repeated until there is a map update from the Local Mapping or
Loop Closing thread. In such case the optimization links the current frame to last keyframe
discarding the prior, which is not valid after the map change.

current frame j with last keyframe i:
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where the feature reprojection error Eproj for a given match k, is defined as follows:
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(7.3)

where xk is the keypoint location in the image, Xk
W the map point in world coordinates, and

Σk the information matrix associated to the keypoint scale. The IMU error term EIMU is:
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(7.4)

where ΣI is the information matrix of the preintegration and ΣR of the bias random walk
[21], and ρ is the Huber robust cost function. We solve this optimization problem with
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Gauss-Newton algorithm implemented in g2o [38]. After the optimization (Fig. 7.1b) the
resulting estimation and Hessian matrix serves as prior for next optimization.

Assuming no map update (Fig. 7.1c), the next frame j + 1 will be optimized with a link
to frame j and using the prior computed at the end of the previous optimization (Fig 7.1b):

θ =
{
Rj

WB,p
j
W,v

j
W,b

j
g,b

j
a,R

j+1
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}
θ∗ = argmin

θ
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Eproj(k, j + 1) + EIMU(j, j + 1) + Eprior(j)
)

(7.5)

where Eprior is a prior term:
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(7.6)

where (̄·) and Σp are the estimated states and Hessian matrix resulting from previous opti-
mization (Fig. 7.1b). After this optimization (Fig. 7.1d), frame j is marginalized out [41].
This optimization linking two consecutive frames and using a prior is repeated until a map
change, when the prior will be no longer valid and the tracking will link again the current
frame to the last keyframe (Fig. 7.1a). Note that this is the optimization, Fig 7.1 (c-d), that
is always performed in Localization Mode, as the map is not updated.

7.2.3 Local Mapping

The Local Mapping thread performs local BA after a new keyframe insertion. It optimizes
the last N keyframes (local window) and all points seen by those N keyframes. All other
keyframes that share observations of local points (i.e. are connected in the covisibility graph
to any local keyframe), but are not in the local window, contribute to the total cost but are
fixed during optimization (fixed window). The keyframe N + 1 is always included in the
fixed window as it constraints the IMU states. Fig. 7.2 illustrates the differences between
local BA in original ORB-SLAM and Visual-Inertial ORB-SLAM. The cost function is a
combination of IMU error terms (7.4) and reprojection error terms (7.3). Note that the
visual-inertial version, compared to the vision-only, is more complex as there are 9 additional
states (velocity and biases) to optimize per keyframe. A suitable local window size has to be
chosen for real-time performance.

The Local Mapping is also in charge of keyframe management. The original ORB-SLAM
policy discards redundant keyframes, so that map size does not grow if localizing in a well
mapped area. This policy is problematic when using IMU information, which constrains the
motion of consecutive keyframes. The longer the temporal difference between consecutive
keyframes, the weaker information IMU provides. Therefore we allow the mapping to discard
redundant keyframes, if that does not make two consecutive keyframes in the local window
of local BA to differ more than 0.5s. To be able to perform full BA, after a loop closure or
at any time to refine a map, we do not allow any two consecutive keyframes to differ more
than 3s. If we switched-off full BA with IMU constraints, we would only need to restrict the
temporal offset between keyframes in the local window.
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Figure 7.2: Comparison of Local Bundle Adjustment between original ORB-SLAM (left)
and proposed Visual-Inertial ORB-SLAM (right). The local window in Visual-Inertial ORB-
SLAM is retrieved by temporal order of keyframes, while in ORB-SLAM is retrieved using
the covisibility graph.

7.2.4 Loop Closing

The loop closing thread aims to reduce the drift accumulated during exploration, when re-
turning to an already mapped area. The place recognition module matches a recent keyframe
with a past keyframe. This match is validated computing a rigid body transformation that
aligns matched points between keyframes [29]. Finally an optimization is carried out to
reduce the error accumulated in the trajectory. This optimization might be very costly in
large maps, therefore the strategy is to perform a pose-graph optimization, which reduces
the complexity, as structure is ignored, and exhibits good convergence as shown in Section
4.6.5. In contrast to the original ORB-SLAM, we perform the pose-graph on 6 Degrees of
Freedom (DoF) instead of 7 DoF [75], as scale is observable. This pose-graph ignores IMU
information, not optimizing velocity or IMU biases. Therefore we correct velocities by rotat-
ing them according to the corrected orientation of the associated keyframe. While this is not
optimal, biases and velocities should be locally accurate to continue using IMU information
right after pose-graph optimization. We perform afterwards a full BA in a parallel thread
that optimizes all states, including velocities and biases.

7.3 IMU Initialization

We propose in this section a method to compute an initial estimation for a visual-inertial
full BA of the scale, gravity direction, velocity and IMU biases, given a set of keyframes
processed by a monocular SLAM algorithm. The idea is to run the monocular SLAM for
a few seconds, assuming the sensor performs a motion that makes all variables observable.
While we build on ORB-SLAM, any other SLAM could be used. The only requirement is
that any two consecutive keyframes are close in time (see Section 7.2.3), to reduce IMU noise
integration.

The initialization is divided in simpler subproblems: (1) gyroscope bias estimation, (2)
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scale and gravity approximation, considering no accelerometer bias, (3) accelerometer bias
estimation, and scale and gravity direction refinement, and (4) velocity estimation.

7.3.1 Gyroscope Bias Estimation

Gyroscope bias can be estimated just from the known orientation of two consecutive keyframes.
Assuming a negligible bias change, we optimize a constant bias bg, which minimizes the dif-
ference between gyroscope integration and relative orientation computed from ORB-SLAM,
for all two consecutive keyframes:

argmin
bg

N−1∑
i=1

∥∥∥Log
(

(∆Ri,i+1Exp (Jg∆Rbg))
T Ri+1

BW Ri
WB

)∥∥∥2

(7.7)

where N is the number of keyframes. R
(·)
WB = R

(·)
WCRCB is computed from the orientation R

(·)
WC

computed by ORB-SLAM and calibration RCB. ∆Ri,i+1 is the gyroscope integration between
two consecutive keyframes. We solve (7.7) with Gauss-Newton with a zero bias seed. Analytic
jacobians for a similar expression can be found in [21].

7.3.2 Scale and Gravity Approximation (no accelerometer bias)

Once we have estimated the gyroscope bias, we can preintegrate velocities and positions,
rotating correctly the acceleration measurements compensating the gyroscope bias.

The scale of the camera trajectory computed by ORB-SLAM is arbitrary. Therefore we
need to include a scale factor s when transforming between camera C and IMU B coordinate
systems:

WpB = s WpC + RWC CpB (7.8)

Substituting (7.8) into the equation relating position of two consecutive keyframes (7.1),
and neglecting at this point accelerometer bias, it follows:
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The goal is to estimate s and gW by solving a linear system of equations on those variables.
To avoid solving for N velocities, and reduce complexity, we consider two relations (7.9)
between three consecutive keyframes and use velocity relation in (7.1), which results in the
following expression: [

λ(i) β(i)
] [ s

gW

]
= γ(i) (7.10)

where, writing keyframes i, i+ 1, i+ 2 as 1, 2, 3 for clarity of notation, we have:
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We stack then all relations of three consecutive keyframes (7.10) into a system A3(N−2)×4 x4×1 =
B3(N−2)×1 which can be solved via Singular Value Decomposition (SVD) to get the scale fac-
tor s∗ and gravity vector g∗W. Note that we have 3(N−2) equations and 4 unknowns, therefore
we need at least 4 keyframes.

7.3.3 Accelerometer Bias Estimation, and Scale and Gravity Re-
finement

So far we have not considered accelerometer bias when computing scale and gravity. Just
incorporating accelerometer biases in (7.10) will heavily increase the chance of having an
ill-conditioned system, because gravity and accelerometer biases are hard to distinguish [48].
To increase observability we introduce new information we did not consider so far, which
is the gravity magnitude G. Consider an inertial reference I with the gravity direction
ĝI = {0, 0,−1}, and the already computed gravity direction ĝW = g∗W/‖g∗W‖. We can compute
rotation RWI as follows:

RWI = Exp(v̂θ)

v̂ =
ĝI × ĝW

‖ĝI × ĝW‖
, θ = atan2 (‖ĝI × ĝW‖, ĝI · ĝW)

(7.12)

and express now gravity vector as:

gW = RWI ĝIG (7.13)

where RWI can be parametrized with just two angles around x and y axes in I, because a
rotation around z axis, which is aligned with gravity, has no effect in gW. This rotation can
be optimized using a perturbation δθ:

gW = RWIExp(δθ) ĝIG

δθ =
[
δθTxy 0

]T
, δθxy = [δθx δθy]

T
(7.14)

with a first-order approximation:

gW ≈ RWI ĝIG−RWI (ĝI)×G δθ (7.15)

Substituting (7.15) in (7.9) and including now the effect of accelerometer bias, we obtain:
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RWI (ĝI)×G∆t2i,i+1 δθ

+ Ri
WB

(
∆pi,i+1 + Ja∆pba

)
+
(
Ri

WC −Ri+1
WC

)
CpB

+
1

2
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Considering three consecutive keyframes as in (7.10) we can eliminate velocities and get
the following relation: [

λ(i) φ(i) ζ(i)
]  s
δθxy
ba

 = ψ(i) (7.17)
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where λ(i) remains the same as in (7.11), and φ(i), ζ(i), and ψ(i) are computed as follows:
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(7.18)

where [ ](:,1:2) means the first two columns of the matrix. Stacking all relations between three
consecutive keyframes (7.17) we form a linear system of equations A3(N−2)×6 x6×1 = B3(N−2)×1

which can be solved via SVD to get the scale factor s∗, gravity g∗W by using the correction
δθ∗xy in (7.14), and accelerometer bias b∗a. In this case we have 3(N − 2) equations and 6
unknowns and we need again at least 4 keyframes to solve the system. We can compute
the condition number (i.e. the ratio between the maximum and minimum singular value) to
check if the problem is well-conditioned (i.e. the sensor has performed a motion that makes
all variables observable). We could relinearize (7.15) and iterate the solution, but in practice
we found that a second iteration does not produce a noticeable improvement.

7.3.4 Velocity Estimation

We considered relations of three consecutive keyframes in equations (7.10) and (7.17), so
that the resulting linear systems do not have the 3N additional unknowns corresponding to
velocities. The velocities for all keyframes can now be computed using equation (7.16), as
scale, gravity and bias are known.
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(7.19)

To compute the velocity of the most recent keyframe, we use the velocity relation (7.1):

Wv
N
B = Wv

N−1
B + g∗W∆tN−1,N + RN−1

WB (∆vN−1,N + Ja∆vb
∗
a) (7.20)

7.3.5 Bias Reinitialization after Relocalization

When the system relocalizes after a long period of time, using place recognition, we reinitialize
gyroscope biases by solving (7.7). The accelerometer bias is estimated by solving a simplified
(7.17), where the only unknown is the bias, as scale and gravity are already known. We use
20 consecutive frames localized with only vision to estimate both biases.
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7.4 Experiments

We evaluate the proposed IMU initialization method, detailed in Section 7.3 and our Visual-
Inertial ORB-SLAM in the EuRoC dataset [6]. It contains 11 sequences recorded from a
micro aerial vehicle (MAV), flying around two different rooms and an industrial environment.
Sequences are classified as easy, medium and difficult, depending on illumination, texture,
fast/slow motions or motion blur. The dataset provides synchronized global shutter WVGA
stereo images at 20Hz with IMU measurements at 200Hz and trajectory ground-truth. These
characteristics make it a really useful dataset to test visual-inertial SLAM systems. The
experiments were performed processing left images only, in an Intel Core i7-4700MQ computer
with 8Gb RAM.

7.4.1 IMU Initialization

We evaluate the IMU initialization in sequences V1 01 easy and V2 01 easy. We run the IMU
initialization from scratch every time a new keyframe is inserted by ORB-SLAM. We run the
sequences at a lower frame-rate so that the repetitive initialization does not interfere with
the normal behavior of the system. The goal is to analyze the convergence of the variables as
more keyframes, i.e. longer trajectories, are processed by the initialization algorithm. Fig.
7.3 shows the estimated scale and IMU biases. It can be seen that between 10 and 15 seconds
all variables have already converged to stable values and that the estimated scale factor is
really close to its optimal value. This optimal scale factor is computed aligning the estimated
trajectory with the ground-truth by a similarity transformation [29]. Fig. 7.3 also shows the
condition number of (7.17), indicating that some time is required to get a well-conditioned
problem. This confirms that the sensor has to perform a motion that makes all variables
observable, especially the accelerometer bias. The last row in Fig. 7.3 shows the total time
spent by the initialization algorithm, which exhibits a linear growth. This complexity is
the result of not including velocities in (7.10) and (7.17), which would have resulted in a
quadratic complexity when using SVD to solve these systems. Subdividing the initialization
in simpler subproblems, in contrast to [33, 48], results in a very efficient method.

The proposed initialization allows to start fusing IMU information, as gravity, biases, scale
and velocity are reliably estimated. For the EuRoC dataset, we observed that 15 seconds of
MAV exploration gives always an accurate initialization. As a future work we would like to
investigate an automatic criterion to decide when we can consider an initialization successful,
as we observed that an absolute threshold on the condition number is not reliable enough.
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Figure 7.3: IMU initialization in the sequences V1 01 easy (left) and V2 01 easy (right).
To generate these plots, we have run our initialization algorithm with all keyframes, each
time a new keyframe is inserted. Note that the algorithm do not reuse any information from
previous runs. However it can be seen how the scale (first row), gyroscope biases (second row)
and accelerometer biases(third row) converge to stable values as the algorithm include more
keyframes. Fourth row shows the condition number of (7.17). ORB-SLAM is able to erase
keyframes, which explains that the condition number not always decrease if an informative
keyframe for IMU initialization is erased. The last row is the time spent by the initialization.
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7.4.2 SLAM Evaluation

We evaluate the accuracy of our Visual-Inertial ORB-SLAM in the 11 sequences of the EuRoC
dataset. We start processing the sequences when the MAV starts exploring. The local window
size for the local BA is set to 10 keyframes and the IMU initialization is performed after 15
seconds from monocular ORB-SLAM initialization. The system performs a full BA just after
IMU initialization. Table 7.1 shows the translation Root Mean Square Error (RMSE) of
the keyframe trajectory for each sequence, as proposed in [78]. We use the raw Vicon and
Leica ground-truth as the post-processed one already used IMU. We observed a time offset
between the visual-inertial sensor and the raw ground-truth of −0.2s in the Vicon Room 2
sequences and 0.2s in the Machine Hall, that we corrected when aligning both trajectories.
We also measure the ideal scale factor that would align optimally the estimated trajectory and
ground-truth. This scale factor can be regarded as the residual scale error of the trajectory
and reconstruction. Our system successfully processes all these sequences in real-time, except
V1 03 difficult, where the movement is too extreme for the monocular system to survive 15
seconds. Our system is able to recover motion with metric scale, with a scale error typically
below 1%, achieving a typical precision of 3cm for 30m2 room environments and of 8cm for
300m2 industrial environments. To show the loss in accuracy due to scale error, we also show
the RMSE if the system would be able to recover the true scale, see GT scale columns. We
also show that the precision and scale estimation can be further improved by performing a
visual-inertial full BA at the end of the execution, see Full BA columns. The reconstruction

Table 7.1: Keyframe trajectory accuracy in EuRoC dataset (raw ground-truth)

Visual-Inertial ORB-SLAM Monocular ORB-SLAM

No Full BA Full BA No Full BA Full BA

RMSE (m) Scale RMSE(m) RMSE (m) Scale RMSE (m) RMSE(m) RMSE(m)

Error (%) GT scale∗ Error (%) GT scale∗ GT scale∗ GT scale∗

V1 01 easy 0.027 0.9 0.019 0.023 0.8 0.016 0.015 0.015

V1 02 medium 0.028 0.8 0.024 0.027 1.0 0.019 0.020 0.020

V1 03 difficult X X X X X X X X

V2 01 easy 0.032 0.2 0.031 0.018 0.2 0.017 0.021 0.015

V2 02 medium 0.041 1.4 0.026 0.024 0.8 0.017 0.018 0.017

V2 03 difficult 0.074 0.7 0.073 0.047 0.6 0.045 X X

MH 01 easy 0.075 0.5 0.072 0.068 0.3 0.068 0.071 0.070

MH 02 easy 0.084 0.8 0.078 0.073 0.4 0.072 0.067 0.066

MH 03 medium 0.087 1.5 0.067 0.071 0.1 0.071 0.071 0.071

MH 04 difficult 0.217 3.4 0.081 0.087 0.9 0.066 0.082 0.081

MH 05 difficult 0.082 0.5 0.077 0.060 0.2 0.060 0.060 0.060

∗GT scale: the estimated trajectory is scaled so that it perfectly matches the scale of the ground-truth.

These columns are included for comparison purposes but do not represent the output of a real system, but

the output of an ideal system that could estimate the true scale.
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for sequence V1 02 medium can be seen in Fig. 7.4.

To contextualize our results, we include as baseline the results of our vision-only system
in Table 7.1. Our visual-inertial system is more robust as it can process V2 03 difficult, it
is able to recover metric scale and does not suffer scale drift. The accuracy of the visual-
inertial system is similar to the accuracy that would obtain the vision-only version if it could
ideally recover the true scale. However the visual-inertial bundle adjustment is more costly,
as explained in Section 7.2.3, and the local window of the local BA has to be smaller that in
the vision-only case. This explains the slightly worse results of the GT scaled visual-inertial
results without full BA. In fact the visual-inertial full BA typically converges in 15 iterations
in 7 seconds, while the vision-only full BA converges in 5 iterations in less than 1 second.

Figure 7.4: Top view of the reconstruction built by our system from sequence V1 02 medium.
This top view was aligned using the gravity direction computed by Visual-Inertial ORB-
SLAM. The green lines connect keyframes that share more than 100 point observations and
are a proof of the capability of the system to reuse the map. This reuse capability, in contrast
to visual-inertial odometry, allows drift-free localization when continually revisiting.

110



In order to test the capability of Visual-Inertial ORB-SLAM to reuse a previous map,
we run in a row all sequences of the same environment. We process the first sequence and
perform a full BA. Then we run the rest of the sequences, where our system relocalizes
and continue doing SLAM. We then compare the accumulated keyframe trajectory with the
ground-truth. As there exists a previous map, our system is now able to localize the camera
in sequence V1 03 difficult. The RMSE in meters for V1, V2 and MH environments are
0.037, 0.027 and 0.076 respectively, with an scale factor error of 1.2%, 0.1% and 0.2%. A
final full BA has a negligible effect as we have already performed a full BA at the end of the
first sequence. These results show that there is no drift accumulation when revisiting the
same scene, as the RMSE for all sequences is not larger than for individual sequences.

Finally we have compared Visual-Inertial ORB-SLAM to the state-of-the-art direct visual-
inertial odometry for stereo cameras [85], which also showed results in Vicon Room 1 se-
quences, allowing for a direct comparison. Fig. 7.5 shows the Relative Pose Error (RPE)
[27]. To compute the RPE for our method, we need to recover the frame trajectory, as only
keyframes are optimized by our backend. To this end, when tracking a frame we store a
relative transformation to a reference keyframe, so that we can retrieve the frame pose from
the estimated keyframe pose at the end of the execution. We have not run a full BA at the
end of the experiment. We can see that the error for the visual-inertial odometry method
grows with the traveled distance, while our visual-inertial SLAM system does not accumu-
late error due to map reuse. The stereo method [85] is able to work in V1 03 difficult, while
our monocular method fails. Our monocular SLAM successfully recovers metric scale, and
achieves comparable accuracy in short paths, where the advantage of SLAM is negligible

Direct Stereo Visual-Inertial Odometry Visual-Inertial ORB-SLAM (Mono)

2 5 10 15 20 25 30 35 40
0

1

2

3

4

Path length [m]

O
rie

nt
at

io
n 

er
ro

r 
[d

eg
]

2 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

Path length [m]

T
ra

ns
la

tio
n 

er
ro

r 
[m

]

Sequence: V1 01 easy

2 5 10 15 20 25 30 35 40
0

1

2

3

4

Path length [m]

O
rie

nt
at

io
n 

er
ro

r 
[d

eg
]

2 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

Path length [m]

T
ra

ns
la

tio
n 

er
ro

r 
[m

]

Sequence: V1 02 medium

Figure 7.5: Relative Pose Error [27] comparison between our approach and the state-of-the-
art direct stereo visual-inertial odometry [85]. The error for our SLAM system does not grow
for longer paths, due to map reuse, in contrast to the visual-inertial odometry method where
drift cannot be compensated. Note that [85] uses stereo, while our results are monocular.
We thank the authors of [85] for providing their results for this comparison.
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compared to odometry. This is a remarkable result of our feature-based monocular method,
compared to [85] which is direct and stereo.

7.5 Discussion

We have presented a novel tightly coupled visual-inertial SLAM system, that is able to close
loops in real-time and localize the sensor reusing the map in already mapped areas. This
allows to achieve a drift-free localization, in contrast to visual odometry approaches where
drift grows unbounded. The experiments show that our monocular SLAM recovers metric
scale with high precision, and achieves better accuracy than the state-of-the-art in stereo
visual-inertial odometry when continually localizing in the same environment. We consider
this drift-free localization of particular interest for virtual/augmented reality systems, where
the predicted user viewpoint must not drift when the user operates in the same workspace.
Moreover we expect to achieve better accuracy and robustness by using stereo or RGB-D cam-
eras, which would also simplify IMU initialization as scale is known. The main weakness of
our proposed IMU initialization is that it relies on the initialization of the monocular SLAM.
We would like to investigate the use of the gyroscope to make the monocular initialization
faster and more robust.
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Chapter 8

Conclusions

8.1 Discussion

In this thesis we have addressed the problem of Simultaneous Localization and Mapping
using the most common vision sensors. We have focused on developing robust and accurate
solutions that scale well in large environments, that operate in real-time in standard CPUs,
and that provide a drift-free localization when continually operating in the same environment.

A core element of our visual SLAM solutions is place recognition to close loops and
relocalize the vision sensor. We have proposed in Chapter 3 a place recognition method
based on DBoW2 and ORB features with a novel orientation consistency test, and applied it
to loop detection in image sequences and relocalization. Guided by the excellent recall and
precision of the loop detector, and the significant invariance of the relocalization to viewpoint,
we have integrated an improved version of this place recognition in our visual SLAM in
Chapter 4. The main improvement and contribution is the use of covisibility information
between images instead of temporal order. Covisibility information links images of the same
scene independently of the time at which the images were captured. This is important in
visual SLAM where keyframes of the same scene can be inserted at very different times when
the sensor revisits the environment. Our approach has demonstrated to work in real-time
for loop closing and relocalization, achieving perfect precision and high recall in popular
datasets like NewCollege, KITTI, EuRoC and TUM RGB-D. We have also made live hand-
held demonstrations in a wide variety of environments with excellent results. We have always
used the same ORB vocabulary of 1 million words, demonstrating that a big vocabulary work
well in almost any situation. While we have rarely seen false positive loop closures (which
have a catastrophic effect), they happen, and constitute an open challenge. The use of robust
loop closing techniques [39, 80] can help to mitigate false loop detections.

In Chapter 4 we have presented ORB-SLAM, which is currently the most reliable and
complete open-source monocular SLAM solution. We use the same ORB features for all
system tasks, unifying front-end, back-end and place recognition. The system is able to close
large loops and relocalize the camera in real-time, and includes an automatic and robust
system initialization. The result is a system that build maps that can be reused, allowing
a drift-free localization in mapped environments, in contrast to pure visual odometry ap-
proaches. This is a desirable capability for robot navigation or virtual and augmented reality
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systems. Our exhaustive evaluation in popular public datasets has shown that ORB-SLAM
is capable in real-time to work with unprecedented accuracy in small and large environments,
indoors and outdoors, and from hand-held, car, ground robot, and drone motions. The evalu-
ation also showed the better accuracy and robustness of our feature-based solution compared
to a state-of-the-art direct SLAM implementation. While direct approaches should ideally
be more accurate and robust, as not relying on features and potentially exploiting all image
information, in practice unmodeled effects like rolling shutter, auto gain or auto exposure
have a major impact. In addition a joint direct optimization of dense or semi-dense structure
and camera trajectory is more expensive than sparse bundle adjustment and is not feasible
in real-time, which we believe is essential to achieve the most accurate results. The recently
proposed sparse direct optimization [16] supports this claim and seems to be the means to
achieve a comparable accuracy to feature-based methods.

One of the main drawbacks of feature-based approaches is their sparse reconstruction.
While a sparse reconstruction has the benefit of being cheap in terms of memory footprint, its
description of the environment is rather poor for robotics tasks like navigation or interaction.
Therefore in Chapter 5 we have integrated a novel probabilistic semi-dense mapping module
in ORB-SLAM to build in real-time semi-dense reconstructions. In contrast to fully direct
approaches, our system builds a feature-based map that is used for camera localization,
and a semi-dense map to describe the environment using a direct method. In this way the
resulting system combines the high accuracy, robustness and place recognition capabilites of
our feature-based SLAM with the semi-dense reconstruction of direct methods.

In Chapter 6 we have extended our ORB-SLAM framework to stereo and RGB-D cameras,
re-designing some modules to best exploit the stereo and depth information from these kind
of sensors. The result is a system that outperforms in accuracy the state-of-the-art stereo and
RGB-D SLAM systems. Surprisingly our results shows that by using bundle adjustment, our
solution is more accurate than methods using standard ICP or photometric error. We have
also incorporated a new lightweight Localization Mode where the system is able to localize
(and relocalize) the camera in an already mapped environment, by having active only the
tracking thread of the system, saving CPU resources. Moreover when the input is stereo or
RGB-D the tracking in this mode, leverages visual odometry and map point matches so that
tracking can shortly survive in unmapped regions. This novel system, called ORB-SLAM2, is
the first open-source SLAM solution for monocular, stereo and RGB-D cameras, and might
benefit researchers working on a wide variety of environments.

Finally in Chapter 7 we have presented Visual-Inertial Monocular ORB-SLAM, which
fuses monocular vision and inertial information. This is a novel tightly coupled visual-
inertial SLAM that is able to close loops and build globally consistent maps in real-time.
The system is able to reuse its map and achieve drift-free localization in contrast to pure
visual-inertial odometry methods. While the visual-inertial bundle adjustment is more costly
than its vision-only counterpart, our visual-inertial system is able to estimate the true scale
of the map, also avoiding scale drift, and is more robust under extreme motions, thanks to
the prediction of the inertial sensor.
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8.2 Sensors

We have worked with monocular, stereo, RGB-D and IMU sensors. We have firstly addressed
monocular SLAM which is the most general and challenging visual SLAM problem. Monoc-
ular SLAM can be useful in situations where size or power consumption is critical, as in
endoscopy surgery or in mobile devices. It can also be the most efficient solution for some
augmented reality applications where absolute scale information is not needed. Apart from
an up-to-scale estimation, monocular SLAM has several drawbacks as a delicate initialization,
scale drift, or needing translation to reconstruct the environment. All these issues are easily
solved by using stereo and RGB-D and therefore we consider stereo or RGB-D SLAM the
most reliable solutions for visual SLAM. Choosing between stereo and RGB-D will mainly
depend on the application and environment, but as a rule of thumb stereo SLAM is the
most general solution. Our stereo and RGB-D SLAM solutions were based on a monocular
SLAM approach, and therefore they have a strong emphasis in multi-view geometry which
we consider important to exploit information out of the range of these sensors.

Finally we have developed a tightly-coupled visual-inertial monocular SLAM. By fusing
IMU information we are able to have a better prediction of the camera that can help under
abrupt movements of the camera, where a motion model would fail. The IMU also allows to
retrieve the true scale of the map and reduce scale drift. However, the cost is a more complex
system and where visual-inertial optimizations are more computationally demanding.

8.3 Future Work

We believe that our detailed descriptions of our state-of-the-art solutions and open-source
implementations provide a solid base for future developments in the field. We find interesting
the following lines of research:

� Extend our solutions to include support for wide field of view cameras and non-
overlapping camera systems, cooperative mapping and rolling shutter correction.

� Long-term mapping in dynamic environments so that outdated keyframes and points
are forgotten keeping the map size bounded. This will allow lifelong SLAM in dynamic
environments.

� Semantic mapping so that maps are augmented with semantic annotations that can be
useful for robot navigation or user interaction in augmented or virtual reality applica-
tions. Moreover semantic information can also boost the precision and recall of place
recognition.

� Dynamic object tracking so that moving objects are tracked and reconstructed. This
can increase the robustness of the camera tracking as correspondences to moving objects
are avoided, and be useful for robot or user interaction.

� Auto-calibration to increase the accuracy of visual SLAM.
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� Hybrid solutions combining strengths of feature-based and direct methods. Direct
methods are robust to motion blur and can better exploit the image information when
there is little texture. On the other hand feature-based methods are useful for place
recognition, loop closing, relocalization and map reuse, and exhibit better convergence.
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[25] D. Gálvez-López and J. D. Tardós. Bags of binary words for fast place recognition in
image sequences. IEEE Transactions on Robotics, 28(5):1188–1197, 2012.

[26] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun. Vision meets robotics: The KITTI
dataset. The International Journal of Robotics Research, 32(11):1231–1237, 2013.

[27] A. Geiger, P. Lenz, and R. Urtasun. Are we ready for autonomous driving? the kitti vi-
sion benchmark suite. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), Providence, USA, 2012.

[28] R. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision. Cambridge
University Press, second edition, 2004.

[29] B. K. P. Horn. Closed-form solution of absolute orientation using unit quaternions.
Journal of the Optical Society of America A, 4(4):629–642, 1987.

[30] V. Indelman, S. Williams, M. Kaess, and F. Dellaert. Information fusion in naviga-
tion systems via factor graph based incremental smoothing. Robotics and Autonomous
Systems, 61(8):721–738, 2013.

[31] E. S. Jones and S. Soatto. Visual-inertial navigation, mapping and localization: A
scalable real-time causal approach. The International Journal of Robotics Research,
30(4):407–430, 2011.

[32] M. Kaess, H. Johannsson, R. Roberts, V. Ila, J. J. Leonard, and F. Dellaert. iSAM2:
Incremental smoothing and mapping using the bayes tree. The International Journal of
Robotics Research, 31(2):216–235, 2012.

[33] J. Kaiser, A. Martinelli, F. Fontana, and D. Scaramuzza. Simultaneous state initializa-
tion and gyroscope bias calibration in visual inertial aided navigation. IEEE Robotics
and Automation Letters, 2(1):18–25, 2017.

[34] C. Kerl, J. Stueckler, and D. Cremers. Dense continuous-time tracking and mapping
with rolling shutter RGB-D cameras. In IEEE International Conference on Computer
Vision (ICCV), Santiago, Chile, 2015.

[35] C. Kerl, J. Sturm, and D. Cremers. Dense visual SLAM for RGB-D cameras. In
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Tokio,
Japan, 2013.

[36] G. Klein and D. Murray. Parallel tracking and mapping for small AR workspaces. In
IEEE and ACM International Symposium on Mixed and Augmented Reality (ISMAR),
pages 225–234, Nara, Japan, 2007.

119



[37] G. Klein and D. Murray. Improving the agility of keyframe-based SLAM. In European
Conference on Computer Vision (ECCV), pages 802–815. Marseille, France, 2008.

[38] R. Kuemmerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard. g2o: A general
framework for graph optimization. In IEEE International Conference on Robotics and
Automation (ICRA), pages 3607–3613, Shanghai, China, 2011.

[39] Y. Latif, C. Cadena, and J. Neira. Robust loop closing over time for pose graph SLAM.
The International Journal of Robotics Research, 32(14):1611–1626, 2013.

[40] V. Lepetit, F. Moreno-Noguer, and P. Fua. EPnP: An accurate O(n) solution to the
PnP problem. International Journal of Computer Vision, 81(2):155–166, 2009.

[41] S. Leutenegger, S. Lynen, M. Bosse, R. Siegwart, and P. Furgale. Keyframe-based visual–
inertial odometry using nonlinear optimization. The International Journal of Robotics
Research, 34(3):314–334, 2015.

[42] H. Lim, J. Lim, and H. J. Kim. Real-time 6-DOF monocular visual SLAM in a large-scale
environment. In IEEE International Conference on Robotics and Automation (ICRA),
pages 1532–1539, Hong Kong, China, 2014.

[43] H. Longuet-Higgins. The reconstruction of a plane surface from two perspective pro-
jections. Proceedings of the Royal Society of London. Series B. Biological Sciences,
227(1249):399–410, 1986.

[44] S. Lovegrove, A. J. Davison, and J. Ibanez-Guzmán. Accurate visual odometry from
a rear parking camera. In IEEE Intelligent Vehicles Symposium (IV), pages 788–793,
Baden-Baden, USA, 2011.

[45] D. G. Lowe. Distinctive image features from scale-invariant keypoints. International
Journal of Computer Vision, 60(2):91–110, 2004.

[46] T. Lupton and S. Sukkarieh. Visual-inertial-aided navigation for high-dynamic motion in
built environments without initial conditions. IEEE Transactions on Robotics, 28(1):61–
76, 2012.

[47] S. Lynen, T. Sattler, M. Bosse, J. Hesch, M. Pollefeys, and R. Siegwart. Get out of my
lab: Large-scale, real-time visual-inertial localization. In Robotics: Science and Systems
(RSS), Rome, Italy, 2015.

[48] A. Martinelli. Closed-form solution of visual-inertial structure from motion. Interna-
tional Journal of Computer Vision, 106(2):138–152, 2014.

[49] C. Mei, G. Sibley, M. Cummins, P. Newman, and I. Reid. RSLAM: A system for large-
scale mapping in constant-time using stereo. International Journal of Computer Vision,
94(2):198–214, 2011.

120



[50] C. Mei, G. Sibley, and P. Newman. Closing loops without places. In IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), pages 3738–3744, Taipei,
Taiwan, 2010.

[51] E. Mouragnon, M. Lhuillier, M. Dhome, F. Dekeyser, and P. Sayd. Real time localization
and 3d reconstruction. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), volume 1, pages 363–370, New York, USA, 2006.

[52] A. I. Mourikis and S. I. Roumeliotis. A multi-state constraint kalman filter for vision-
aided inertial navigation. In IEEE International Conference on Robotics and Automation
(ICRA), pages 3565–3572, Rome, Italy, 2007.

[53] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardós. ORB-SLAM: a versatile and accurate
monocular SLAM system. IEEE Transactions on Robotics, 31(5):1147–1163, 2015.

[54] R. Mur-Artal and J. D. Tardós. Fast relocalisation and loop closing in keyframe-based
SLAM. In IEEE International Conference on Robotics and Automation (ICRA), pages
846–853, Hong Kong, China, 2014.

[55] R. Mur-Artal and J. D. Tardos. Probabilistic semi-dense mapping from highly accurate
feature-based monocular SLAM. In Robotics: Science and Systems (RSS), Rome, Italy,
2015.

[56] R. Mur-Artal and J. D. Tardós. ORB-SLAM2: an open-source SLAM system for monoc-
ular, stereo and RGB-D cameras. arXiv preprint arXiv:1610.06475, 2016.

[57] R. Mur-Artal and J. D. Tardós. Visual-inertial monocular SLAM with map reuse. IEEE
Robotics and Automation Letters, 2017. (Accepted for publication).

[58] R. A. Newcombe and A. J. Davison. Live dense reconstruction with a single moving
camera. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 1498–1505, San Francisco, USA, 2010.

[59] R. A. Newcombe, A. J. Davison, S. Izadi, P. Kohli, O. Hilliges, J. Shotton, D. Molyneaux,
S. Hodges, D. Kim, and A. Fitzgibbon. KinectFusion: Real-time dense surface map-
ping and tracking. In IEEE International Symposium on Mixed and Augmented Reality
(ISMAR), Basel, Switzerland, 2011.

[60] R. A. Newcombe, S. J. Lovegrove, and A. J. Davison. DTAM: Dense tracking and
mapping in real-time. In IEEE International Conference on Computer Vision (ICCV),
pages 2320–2327, Barcelona, Spain, 2011.

[61] D. Nistér. An efficient solution to the five-point relative pose problem. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 26(6):756–770, 2004.

[62] D. Nister and H. Stewenius. Scalable recognition with a vocabulary tree. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), volume 2, pages
2161–2168, New York, USA, 2006.

121



[63] A. Patron-Perez, S. Lovegrove, and G. Sibley. A spline-based trajectory representation
for sensor fusion and rolling shutter cameras. International Journal of Computer Vision,
113(3):208–219, 2015.

[64] L. M. Paz, P. Piniés, J. D. Tardós, and J. Neira. Large-scale 6-DOF SLAM with stereo-
in-hand. IEEE Transactions on Robotics, 24(5):946–957, 2008.

[65] T. Pire, T. Fischer, J. Civera, P. De Cristóforis, and J. J. Berlles. Stereo parallel
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